

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

Test Report

Prepared for: KoreLock, Inc.

Address:

7100 E. Bellevue Ave. Suite 203 Greenwood Village, CO 80111 USA

Product:

KIC Select series locks

Test Report No:

R20240322-70-E2F

Approved By:

1mes

Fox Lane EMC Test Engineer

DATE:

28 October 2024

Total Pages:

15

The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

ncee	Report Number:	R20240322-70-E2	Rev	F
	Prepared for:	Korelock, Inc.		

Revision Page

Rev. No.	Date	Description				
		Issued by FLane				
0	16 July 2024	Reviewed by KVepuri				
		Prepared by FLane				
А	A 30 July 2024 Updated model- FL					
В	7 August 2024 Checked settings - FL					
С	12 August 2024	Updated Model Name - FL				
D	15 August 2024	Updated model name - FL				
Е	0 Soptombor 2024	Removed text in purpose of test				
E .	9 September 2024	Added Frequency Error test - FL				
F	28 October 2024	Added Band edge/OBW/Field Strength – FL				

F

TABLE OF CONTENTS

1	Sum	mary of Test Results	4
	1.1	Emissions Test Results	.4
2	EUT	Description	5
	2.1	Equipment under Test (EUT)	5
	2.2	Laboratory Description	5
	2.3	EUT Setup	5
3	Test	Results	6
	3.1	Radiated Emissions, Field Strength and Band edge	6
	3.1	Frequency Error1	1
	APPE	NDIX A: SAMPLE CALCULATION1	3
	APPE	NDIX B – MEASUREMENT UNCERTAINTY1	4
R	EPORT	END	5

1 Summary of Test Results Summary of test results presented in this report correspond to the following section(s):

1.1 Emissions Test Results

The EUT was tested for compliance to:

US CFR Title 47 FCC Part 15.225 RSS-210 Issue 11

Emissions Tests	Test Method and Limits	Result	
	FCC Part 15.225 (a), (b), (c), (d)		
Radiated Emissions	RSS-Gen, Issue 5, 6.5, 6.13	Complies	
	RSS-210 Issue 11 B.6	-	
Dondodao	FCC Part 15.225 (b) (c)	Complies	
Бапбебде	RSS-210 Issue 11 B.6(a)		
Fraguanay Error	FCC Part 15.225(e)	Complian	
Frequency Endi	RSS-210 Issue 11 B.6(b)	Complies	

Table 1 – Emissions Test Results

Prepared for: Korelock, Inc.

2 EUT Description 2.1 Equipment under Test (EUT)

Table 2 – Equipment under Test (EUT)

EUT	KIC Select series locks			
FCC ID	2BBNS-KLKIC			
EUT Received	13 February 2023			
EUT Tested	31 May 2024- 7 June 2024			
Serial No.	011633 (NCEE Assigned Serial number)			
Operating Band	13.56MHz			
Device Type	□ GMSK □ GFSK □ BT BR □ BT EDR 2MB □ BT EDR 3MB □ 802.11x ⊠ NFC			
Power Supply / Voltage	Internal Batteries 4xAA batteries			

2.2 Laboratory Description

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs) 4740 Discovery Drive Lincoln, NE 68521

A2LA Certificate Number:	1953.01
FCC Accredited Test Site Designation No:	US1060
Industry Canada Test Site Registration No:	4294A
NCC CAB Identification No:	US0177

Environmental conditions varied slightly throughout the tests: Relative humidity of $28 \pm 4\%$ Temperature of $22 \pm 3^{\circ}$ C

2.3 EUT Setup

EUT was powered by 4 AA batteries. EUT was paired with an NFC Card for testing

3 Test Results 3.1 Radiated Emissions, Field Strength and Band edge

Test:	FCC Part 15.225 (a), (b), (c), (d)
Test Specifications:	Class A
Test Result:	Complies

3.1.1 Test Description

Radiated emissions measurements were made from 30MHz to 1GHz at a distance of 3m (Radiated Emissions) and 3m (Bandwidth, Field Strength and Band edges) inside a semianechoic chamber. The EUT was rotated 360°, the antenna height varied from 1-4 meters and both the vertical and horizontal antenna polarizations examined. For measurements below 30 MHz, the loop antenna was used to measure in all 3 axes. The results were compared against the limits. Measurements were made by first using a spectrum analyzer to acquire the signal spectrum; individual frequencies were then measured using a CISPR 16.1 compliant receiver with the following bandwidth setting:

30MHz – 1GHz: 120kHz IF bandwidth, 60kHz steps 150kHz – 30MHz: 9kHz RBW, 4.5 kHz steps

Intermodulation products were investigated by measuring spurious emissions with each of the two 2.4 GHz radios running in parallel with the NFC radio. No intermodulation products

3.1.2 Test Results

were found above the labs system sensitivity.

No radiated emissions measurements were found in excess of the limits. Test result data can be seen below.

3.1.3 Test Environment

Testing was performed at the NCEE Labs Lincoln facility in the 10m semi-anechoic chamber. Laboratory environmental conditions varied slightly throughout the test:

Relative humidity of $30 \pm 5\%$

Temperature of 23 ±2° C

3.1.4 Test Setup

See Section 2.3 for further details.

Rev

3.1.5 Test Equipment Used

DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE
Keysight MXE Signal Analyzer (26.5GHz)	N9038A	MY56400083	July 17, 2023	July 17, 2025
Com-Power Hybrid Antenna	ACL-6000	10350002	April 29, 2024	April 29, 2025
Com-Power Active Loop Antenna	Al-130R	10160084	July 24, 2023	July 23, 2024
Agilent Preamp*	87405A	3207A01475	May 2, 2024	May 2, 2026
ETS – Lindgren- VSWR on 10m Chamber	10m Semi- anechoic chamber-VSWR	4740 Discovery Drive	May 15, 2024	May 15, 2027
NCEE Labs-NSA on 10m Chamber*	10m Semi- anechoic chamber-NSA	NCEE-001	May 22, 2024	May 22, 2026
RF Cable (antenna to 10m chamber bulkhead)*	FSCM 64639	01E3872	June 5, 2023	June 5, 2025
RF Cable (10m chamber bulkhead to control room bulkhead)*	FSCM 64639	01E3874	June 5, 2023	June 5, 2025
RF Cable (control room bulkhead to test receiver)*	FSCM 64639	01F1206	June 5, 2023	June 5, 2025
N connector bulkhead (10m chamber)*	PE9128	NCEEBH1	June 5, 2023	June 5, 2025
N connector bulkhead (control room)*	PE9128	NCEEBH2	June 5, 2023	June 5, 2025
TDK Emissions Lab Software	V11.25	700307	NA	NA

*Internal Characterization

ncee	Report Number:	R20240322-70-E2	Rev	F
	Prepared for:	Korelock, Inc.		

3.1.6 Test Pictures and/or Figures

Figure 1 – NFC Radiated Emissions Plot, 10MHz – 30MHz The loop antenna was maximized in all 3 orthogonal axes. The worst-case is shown in the plot and table above. All other emissions were found to be at least 6dB below the limit line.

All emissions found to be at least 6dB below limit line All other emissions were found to be at least 6dB below the limit line. System Noise floor was at least 6 dB below the limit line throughout the test range.

	Keysight Spectrum Analy	/zer - Swept SA												
L XI	RF	50 Ω AC			SEN	SE:INT		🛕 ALIG	N OFF			02:	54:33 PM O	ct 28, 2024
Re	f Offset 14.42	2 dB					_		Avg Typ	e: Voltag	e		TRACE	2345 6
PΔ	SS DOT		NFE PNO	Close	P	#Atton: 0	dB		Avginoid	1:>100/10	0		DET	NNNN
	PREA	AMP	IFGa	n:Hign	_	#Atten. 0	ub							
Ре	ak Table					Ref Off	et 1/ /2	dB			Mkr1	13.5	53 00() MHz
	Freq (MHz)	dBμV	ΔLimit 1 (dB)	10 dl	B/div	Ref 81	.41 dB	uν				3	5.410	dBµV
1	13.5530	35.41	-35.069	Log	-	1 D				v				<u> </u>
2					Trace	ass								
2				71.4										
3														
4														
5				61.4										
6														
7				51.4	<u> </u>									
'														
8				A1 A										
9														│
10														1
11				31.4								۰۸		
					ha nom	Anna maril	man	hann	m ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mahan	mm /un	mall	white	mm
12				21.4			-		10.					
13														
14				11.4										
15														
15														
16				1.41										
17														
18				-8.59	<u> </u>									
19														
20				_										
20				Star	t 13.1	100 MH	Ζ					Stop	0 13.553	30 MHz
<			>	Res	BW (C	JISPR)	9 KHZ V	BW 62	KHZ		sweep	10.67	ms (10	01 pts)
MSG									STATUS					

Figure 5 – Lower Band Edge

Figure 6 – Higher Band Edge

All band edge emissions were found to be at least 10dB below the applicable limit line and were not tabulated

3.1 Frequency Error

Test:	FCC Part 15.225 (e)
Test Result:	Complies

3.1.1 Test Description

Frequency error was determined using the built-in frequency error function of the spectrum analyzer. The analyzer finds the occupied bandwidth, calculates the center of the given band then returns the deviation with respect to the given transmit frequency. The temperature was varied from -20°C to 50°C. The voltage was not variable, but the battery was let to drain, voltage of drained battery was reported. Limit: 100 PPM

3.1.2 Test Results

No results were found to be in excess of the limits. A table of the results can be seen below.

3.1.3 Test Environment

Testing was performed at the NCEE Labs Lincoln facility.

Laboratory environmental conditions varied slightly throughout the test:

Relative humidity of $30 \pm 5\%$

Temperature of 23 ±2° C

3.1.4 Test Setup

Device was tested with fresh batteries for testing. See Section 2.3 for further details.

3.1.5 Test Equipment Used

See section 2.4 for the equipment list.

3.1.6 Test results

KIC Select series locks	
Tomporaturo (°C)	Channel (Hz)
Temperature (C)	13.56000 Nom.
-20°C	+428
-10°C	+400
0°C	+371
10°C	+335
20°C	+313
30°C	+300
40°C	+277
50°C	+262

*Tests were performed on brand new batteries

Limit: 100 PPM = 0.01% = 0.01×13.56 MHz = 1356 Hz Values shown in Hz. Uncertainty = ± 500 Hz

APPENDIX A: SAMPLE CALCULATION

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor, Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF - (-CF + AG) + AV

where FS = Field Strength

RA = Receiver Amplitude AF = Antenna Factor CF = Cable Attenuation Factor AG = Amplifier Gain AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB μ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB μ V/m.

 $FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \text{ dB}\mu\text{V/m}$

The 48.1 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m. Level in μ V/m = Common Antilogarithm [(48.1 dB μ V/m)/20]= 254.1 μ V/m

AV is calculated by the taking the $20^{100}(T_{on}/100)$ where T_{on} is the maximum transmission time in any 100ms window.

EIRP Calculations

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)]² / 30 Power (watts) = 10^[Power (dBm)/10] / 1000 Voltage (dBµV) = Power (dBm) + 107 (for 50 Ω measurement systems) Field Strength (V/m) = 10^[Field Strength (dBµV/m) / 20] / 10^6 Gain = 1 (numeric gain for isotropic radiator) Conversion from 3m field strength to EIRP (d=3):

 $EIRP = [FS(V/m) \times d^2]/30 = FS[0.3]$ for d = 3

 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$ 10log(10^9) is the conversion from micro to milli

Prepared for: Korelock, Inc.

APPENDIX B - MEASUREMENT UNCERTAINTY

NCEE Does not add uncertainty to measurements. Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

Test	Frequency Range	Uncertainty Value (dB)	
Radiated Emissions, 3m	30MHz - 1GHz	±4.31	
Radiated Emissions, 3m	1GHz - 18GHz	±5.08	

Expanded uncertainty values are calculated to a confidence level of 95%.

Incee	Report Number:	R20240322-70-E2	Rev	F
	Prepared for:	Korelock, Inc.		

REPORT END