RF Exposure evaluation

Product Name	: Barcode scanner
FCC ID	: 2BBKD-G2-B
Test Standard	: KDB447498 D04 General RF Exposure Guidance v01

According to 447498 D04 Interim General RF Exposure Guidance v01

$$P_{\rm th} (\rm mW) = ERP_{20 \,\rm cm} (\rm mW) = \begin{cases} 2040f & 0.3 \,\rm GHz \le f < 1.5 \,\rm GHz \\ 3060 & 1.5 \,\rm GHz \le f \le 6 \,\rm GHz \end{cases}$$
(B.1)

$$P_{\rm th} (\rm mW) = \begin{cases} ERP_{20 \,\rm cm} (d/20 \,\rm cm)^x & d \le 20 \,\rm cm \\ \\ ERP_{20 \,\rm cm} & 20 \,\rm cm < d \le 40 \,\rm cm \end{cases}$$
(B.2)

where

$$x = -\log_{10}\left(\frac{60}{ERP_{20} \operatorname{cm}\sqrt{f}}\right)$$

and f is in GHz, d is the separation distance (cm), and ERP_{20cm} is per Formula (B.1). The example values shown in Table B.2 are for illustration only.

		Distance (mm)										
		5	10	15	20	25	30	35	40	45	50	
Frequency (MHz)	300	39	65	88	110	129	148	166	184	201	217	
	450	22	44	67	89	112	135	158	180	203	226	
	835	9	25	44	66	90	116	145	175	207	240	
	1900	3	12	26	44	66	92	122	157	195	236	
	2450	3	10	22	38	59	83	111	143	179	219	
	3600	2	8	18	32	49	71	96	125	158	195	
	5800	1	6	14	25	40	58	80	106	136	169	

Table B.2-Example Power Thresholds (mW)

```
BLE:Ant gain = -1.36 dBi
MAX output power : -1.805dBm@2402MHz
ERP=-1.805-1.36-2.15=-5.315dBm
WORSE CASE:
10^{-0.1805=0.66} mW < 2.715 mW
Then SAR evaluation is not required
2.4G:
eirp = pt x gt = (EXd)^2/30
where:
pt = transmitter output power in watts,
gt = numeric gain of the transmitting antenna (unitless),
E = electric field strength in V/m, --- 10^{((dBuV/m)/20)}/10^6
d = measurement distance in meters (m) - -3m
So pt = (EXd)^2/30 \times gt
Ant gain = 0 dBi [-2.15dBd]
Field strength = 93.79 dB\muV/m @3m @2440MHz
So Pt=\{ [10^{(93.79)}/20)/10^{6} \times 3]^{2}/30\}\times 1000 \text{ mW} = 0.7230 \text{ mW} < 2.781 \text{ mW}
So ERP=0.7230x0.61=0.44<2.781mW
Then SAR evaluation is not required
```