Page 1 of 32 Report No.: 23061516ER-62

FCC RADIO TEST REPORT

FCC ID: 2BBH7-NORISR

Sample: Mechanical gaming keyboard

Trade Name: Nori

Main Model: NORISR

Additional Model: NORISRD, Spring Rider, MJ88PROC,

MJ88, MJ88PRO

Report No.: 23060204ER-62

Prepared for

ZALMAN TECH CO., LTD

26F OBIZ Tower, 126, Beolmal-ro, Dongan-gu, Anyang-si, South Korea

Prepared by

Global United Technology Services Co. Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Page 2 of 32

Report No.: 23061516ER-62

TEST RESULT CERTIFICATION

Applicant	: ZALMAN TECH C	O., LTD					
Address	: 26F OBIZ Tower, 1 South Korea	26, Beolmal-ro, D	Oongan-gu, Anyang-si,				
Manufacturer	: SHENZHEN SARE	SHENZHEN SAREPO TECHNOLOGY CO., LTD.					
Address	GONGMING VILL	SHENZHEN GUANGMING NEW DISTRICT OFFICE OF GONGMING VILLAGE COMMUNITY IN LIANTANG INDUSTRIAL CITY D DISTRICT EIGHTH ON THE EIGHTH FLOOR OF B UNIT					
Product description							
Product	: Mechanical gamin	g keyboard					
Trade Mark	: Nori						
Model Name	: NORISR, NORISE	RD, Spring Rider,	MJ88PROC, MJ88, MJ88PRO				
Test Methods	: FCC Rules and Re ANSI C63.10: 201	•	Subpart C Section 15.249,				
requirements. And it is This report shall not be	by Global United Technology	d sample identifie vithout the written					
Date of Test							
Date (s) of performance	e of tests Jun. 16,	2023 ~ Aug. 08,	2023				
Date of Issue	: Aug. 08	, 2023					
Test Result	: Pass						
Prepared By:	Trankly	Date:	2023-8-8				
	Project Engineer						
Check By:	Popular of law	Date:	2023-8-8				
	Reviewer						

Table of Contents	Pages
1 TEST SUMMARY	4
1.1 TEST PROCEDURES AND RESULTS	4
1.2 TEST FACILITY	5
1.3 MEASUREMENT UNCERTAINTY	6
1.4 ENVIRONMENTAL CONDITIONS	6
2 GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF EUT	7
2.2 CARRIER FREQUENCY OF CHANNELS	8
2.3 DESCRIPTION OF TEST MODES	8
2.4 TEST SETUP	9
2.5 EQUIPMENT USED IN TESTED SYSTEM	9
2.6 MEASUREMENT INSTRUMENTS LIST	10
3 CONDUCTED EMISSION	12
3.1 TEST LIMIT	12
3.2 TEST SETUP	12
3.3 TEST PROCEDURE	13
3.4 TEST RESULT	13
4 RADIATED EMISSION	16
4.1 TEST LIMIT	16
4.2 TEST SETUP	17
4.3 TEST PROCEDURE	18
4.4 TEST RESULT	18
5 BAND EDGE	24
5.1 TEST LIMIT	24
5.2 TEST SETUP	24
5.3 MEASUREMENT EQUIPMENT USED	24
5.4 TEST PROCEDURE	24
5.5 TEST RESULT	24
6 20dB Bandwidth	27
6.1 TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	27
6.2 MEASUREMENT EQUIPMENT USED	27
6.3 TEST PROCEDURE	27
6.4 TEST RESULT	27
7 ANTENNA REQUIREMENT	30
8 PHOTO OF TEST	31

1 TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

Item	FCC Rules	Description Of Test	Result
1	FCC Part 15.207	Conducted Emission	Pass
2	FCC Part 15.209/15.249	Radiated Emission	Pass
3	FCC Part 15.249/15.205	Band Edge	Pass
4	FCC Part 15.215	20dB Bandwidth	Pass
5	FCC Part 15.203	Antenna Requirement	Pass

Note:

[&]quot;N/A" denotes test is not applicable in this Test Report.

Page 5 of 32 Report No.: 23061516ER-62

1.2 TEST FACILITY

Test Firm : Global United Technology Services Co. Ltd.

Address : No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong

Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong,

China 518102

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission.

The acceptance letter from the FCC is maintained in files.

• IC —Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

1.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

A. Conducted Measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
LINII	II ANSI	9kHz ~ 150kHz	2.96	
UNI		150kHz ~ 30MHz	2.44	

B. Radiated Measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
UNI AN		9kHz ~ 30MHz	2.50	
	ANSI	30MHz ~ 1000MHz	4.80	
		Above 1000MHz	4.13	

C. RF Conducted Method:

Item	Measurement Uncertainty	
Uncertainty of total RF power, conducted	$U_{c} = \pm 0.8 \text{ dB}$	
Uncertainty of RF power density, conducted	$U_{c} = \pm 2.6 \text{ dB}$	
Uncertainty of spurious emissions, conducted	$U_c = \pm 2 \%$	
Uncertainty of Occupied Channel Bandwidth	$U_{c} = \pm 2 \%$	

1.4 ENVIRONMENTAL CONDITIONS

During the measurement the environmental conditions were within the listed ranges:

Barring the measurement the environmental conditions were within the listed ranges.					
	NORMAL CONDITIONS EXTREME CONDITION				
Temperature range (°C)	15 - 35	-20 - 50			
Relative humidty range	20 % - 75 %	20 % - 75 %			
Pressure range (kPa)	86 - 106	86 - 106			
Note: The Extreme Temperature and Extreme Voltages declared by the manufacturer.					

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Product:	Mechanical gaming keyboard	
Trade Mark:	Nori	
Main Model:	NORISR	
Additional Model:	NORISRD, Spring Rider, MJ88PROC, MJ88, MJ88PRO	
Model Difference:	All model's the function, software and electric circuit are the same, only with a product color and model named different. Test sample model: NORISR.	
FCC ID:	2BBH7-NORISR	
Operation Frequency:	2402MHz~2480MHz	
Number of Channels:	40CH	
Field Strength of Fundamental:	98.56dBuV/m(Peak)@3m	
Modulation Type:	GFSK	
Antenna Type:	Internal Antenna	
Antenna Gain:	2.34dBi	
Battery:	DC 3.7V, 2500mAh	
Adapter:	N/A	
Power Source:	DC 5.0V from adapter or DC 3.7V from Li-battery	

2.2 CARRIER FREQUENCY OF CHANNELS

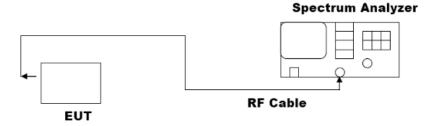
	Channel List								
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
00	2402	10	2422	20	2442	30	2462		
01	2404	11	2424	21	2444	31	2464		
02	2406	12	2426	22	2446	32	2466		
03	2408	13	2428	23	2448	33	2468		
04	2410	14	2430	24	2450	34	2470		
05	2412	15	2432	25	2452	35	2472		
06	2414	16	2434	26	2454	36	2474		
07	2416	17	2436	27	2456	37	2476		
08	2418	18	2438	28	2458	38	2478		
09	2420	19	2440	29	2460	39	2480		

2.3 DESCRIPTION OF TEST MODES

No.	Test Mode Description			
1	Low channel TX			
2	Middle channel TX			
3	High channel TX			

Note: 1. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

2.For Conducted Test method, at emporary antenna connector is provided by the manufacture.


Page 9 of 32 Report No.: 23061516ER-62

2.4 TEST SETUP

Operation of EUT during Radiation testing:

Operation of EUT during RF Conducted testing:

2.5 EQUIPMENT USED IN TESTED SYSTEM

Item	Equipment	Model/Type No.	Cable Length(m)	Note
1	Mechanical gaming keyboard	NORISR		EUT
2	Adapter	MDY-11-EX		AE

Note:1. The support equipment was authorized by Declaration of Confirmation.

2. All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.

Report No.: 23061516ER-62

2.6 MEASUREMENT INSTRUMENTS LIST

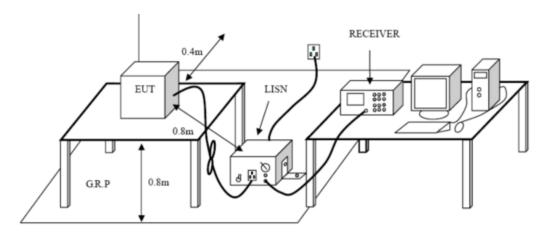
Radia	ated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	June 23, 2021	June 22, 2024
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 14, 2023	April 13, 2024
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 19, 2023	March 18, 2025
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	April 17, 2023	April 16, 2025
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Coaxial Cable	GTS	N/A	GTS213	April 21, 2023	April 20, 2024
8	Coaxial Cable	GTS	N/A	GTS211	April 21, 2023	April 20, 2024
9	Coaxial cable	GTS	N/A	GTS210	April 21, 2023	April 20, 2024
10	Coaxial Cable	GTS	N/A	GTS212	April 21, 2023	April 20, 2024
11	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 14, 2023	April 13, 2024
12	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 29, 2022	Nov. 28, 2023
13	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 14, 2023	April 13, 2024
14	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 14, 2023	April 13, 2024
15	Horn Antenna (18-26.5GHz)	/	UG-598A/U	GTS664	Oct. 30, 2022	Oct. 29, 2023
16	Horn Antenna (26.5-40GHz)	A.H Systems	SAS-573	GTS665	Oct. 30, 2022	Oct. 29, 2023
17	FSV-Signal Analyzer (10Hz-40GHz)	Keysight	FSV-40-N	GTS666	March 13, 2023	March 12, 2024
18	Amplifier	/	LNA-1000-30S	GTS650	April 14, 2023	April 13, 2024
19	CDNE M2+M3-16A	HCT	30MHz-300MHz	GTS668	Dec. 20, 2022	Dec.19, 2023
20	Thermo meter	JINCHUANG	GSP-8A	GTS643	April 19, 2023	April 18, 2024

Report No.: 23061516ER-62

Cond	ucted Emission					
lt a ma		Manufacturer	Madal Na	Inventory	Cal.Date	Cal.Due date
Item	Test Equipment	Manufacturer	Model No.	No.	(mm-dd-yy)	(mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	July 12, 2022	July 11, 2027
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 14, 2023	April 13, 2024
3	LISN	ROHDE & SCHWARZ	ENV216	GTS226	April 14, 2023	April 13, 2024
4	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
6	Thermo meter	JINCHUANG	GSP-8A	GTS642	April 19, 2023	April 18, 2024
7	Absorbing clamp	Elektronik-Feinmechani k	MDS21	GTS229	April 14, 2023	April 13, 2024
8	ISN	SCHWARZBECK	NTFM 8158	GTS565	April 14, 2023	April 13, 2024
9	High voltage probe	SCHWARZBECK	TK9420	GTS537	April 14, 2023	April 13, 2024
10	Antenna end assembly	Weinschel	1870A	GTS560	April 14, 2023	April 13, 2024

RF C	onducted Test:					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 14, 2023	April 13, 2024
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 14, 2023	April 13, 2024
3	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	April 14, 2023	April 13, 2024
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 14, 2023	April 13, 2024
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 14, 2023	April 13, 2024
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 14, 2023	April 13, 2024
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 14, 2023	April 13, 2024
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 14, 2023	April 13, 2024
9	Thermo meter	JINCHUANG	GSP-8A	GTS641	April 19, 2023	April 18, 2024

3 CONDUCTED EMISSION


3.1 TEST LIMIT

For unintentional device, according to § 15.207(a) Line Conducted Emission Limits is as following

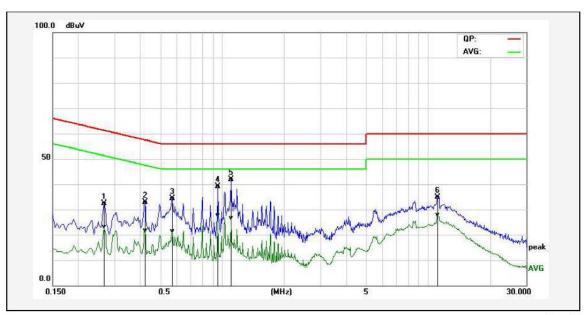
Frequency (MHz)	Maximum RF Line Voltage (dB V)						
	CLA	SS A	CLASS B				
(IVII 12)	Q.P.	Ave.	Q.P.	Ave.			
0.15~0.50	79	66	66~56*	56~46*			
0.50~5.00	73	60	56	46			
5.00~30.0	73	60	60	50			

* Decreasing linearly with the logarithm of the frequency. For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2 TEST SETUP

3.3 TEST PROCEDURE

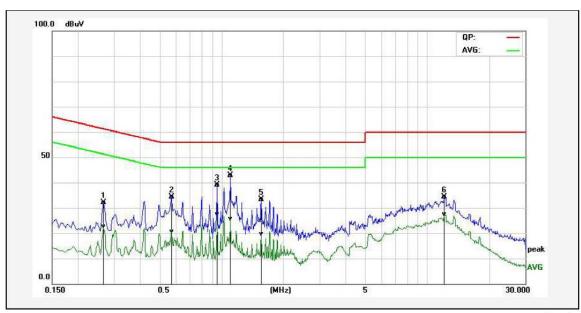
- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is placed on a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.


3.4 TEST RESULT

PASS

Remark:

- 1. All modes were tested at AC 120V and 240V, only the worst result of AC 120V was reported.
- 2. All modes were test at Low, Middle, and High channel, only the worst result of GFSK Low Channel was reported.


Temperature:	24℃	Relative Humidity:	48%		
Test Date:	Aug. 02, 2023	Pressure:	1010hPa		
Test Voltage:	AC 120V, 60Hz	Phase:	Line		
Test Mode:	Transmitting mode of GFSK 2402MHz				

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
-	(MHz)	(dBu∀)	(dBu∀)	(dB)	(dBu∀)	(dBu∀)	(dBu∀)	(dBu∀)	(dB)	(dB)	
1P	0.2660	22.36	12.94	10.11	32.47	23.05	61.24	51.24	-28.77	-28.19	Pass
2P	0.4220	22.83	11.61	10.11	32.94	21.72	57.41	47.41	-24.47	-25.69	Pass
3P	0.5740	24.16	11.38	10.10	34.26	21.48	56.00	46.00	-21.74	-24.52	Pass
4P	0.9540	29.06	17.56	10.11	39.17	27.67	56.00	46.00	-16.83	-18.33	Pass
5*	1.1060	31.66	16.60	10.11	41.77	26.71	56.00	46.00	-14.23	-19.29	Pass
6P	11.0860	24.61	17.75	10.16	34.77	27.91	60.00	50.00	-25.23	-22.09	Pass

Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result – Limit.

Temperature:	24 ℃	Relative Humidity:	48%		
Test Date:	Aug. 02, 2023	Pressure:	1010hPa		
Test Voltage:	AC 120V, 60Hz	Phase:	Neutral		
Test Mode:	Transmitting mode of GFSK 2402MHz				

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
100	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBu∀)	(dBu∀)	(dBu∀)	(dB)	(dB)	13
1P	0.2660	22.22	12.66	10.00	32.22	22.66	61.24	51.24	-29.02	-28.58	Pass
2P	0.5740	24.32	10.66	9.99	34.31	20.65	56.00	46.00	-21.69	-25.35	Pass
3P	0.9540	29.04	17.37	10.01	39.05	27.38	56.00	46.00	-16.95	-18.62	Pass
4*	1.1060	32.90	15.60	10.01	42.91	25.61	56.00	46.00	-13.09	-20.39	Pass
5P	1.5620	23.31	9.67	10.02	33.33	19.69	56.00	46.00	-22.67	-26.31	Pass
6P	12.1300	24.20	17.22	10.17	34.37	27.39	60.00	50.00	-25.63	-22.61	Pass

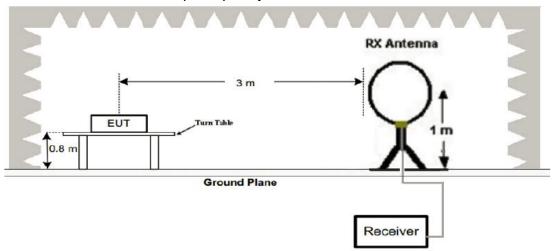
Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result – Limit.

4 RADIATED EMISSION

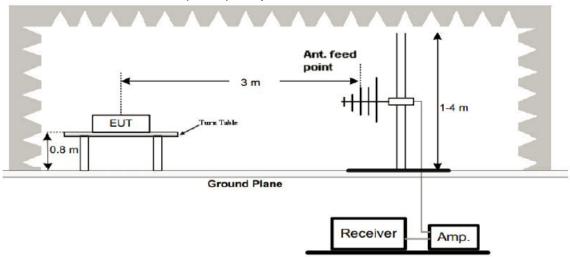
4.1 TEST LIMIT

For unintentional device, according to § 15.209(a), except for Class B digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

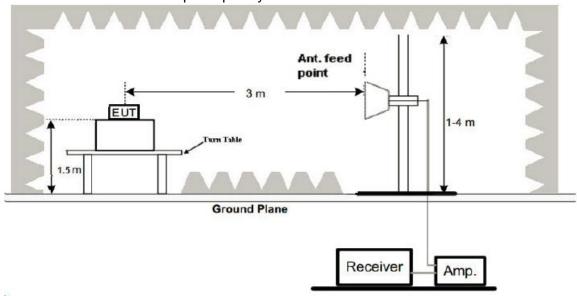
Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F (kHz)	-	Quasi-peak	300
0.490MHz-1.705MHz	24000/F (kHz)	-	Quasi-peak	30
1.705MHz-30MHz	30	-	Quasi-peak	30
30MHz-88MHz	100	00 40.0		3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0 Quasi-peak		3
	500	54.0	Average	3
Above 1GHz	500	74.0 Peak		3


For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

Limit: (Field strength of the fundamental signal)


Frequency	Limit (dBuV/m @3m)	Remark
2400MHz-2483.5MHz	94.0	Average Value
	114.0	Peak Value

4.2 TEST SETUP


1. Radiated Emission Test-Up Frequency Below 30MHz

2. Radiated Emission Test-Up Frequency 30MHz~1GHz

3. Radiated Emission Test-Up Frequency Above 1GHz

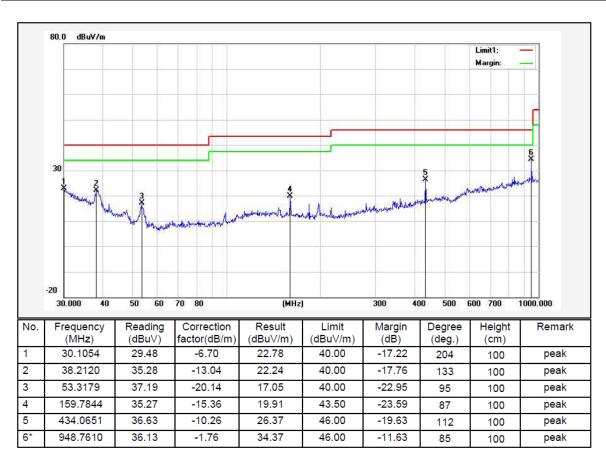
Report No.: 23061516ER-62

4.3 TEST PROCEDURE

- 1. Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane. And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The test frequency range from 9kHz to 25GHz per FCC PART 15.33(a).

Note: For battery operated equipment, the equipment tests shall be performed using a new battery.

4.4 TEST RESULT


PASS

Remark:

- 1. All modes were test at Low, Middle, and High channel, only the worst result of GFSK Low Channel was reported for below 1GHz test.
- 2. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "X axis" position was the worst, and test data recorded in this report.
- 3. Radiated emission test from 9kHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9kHz to 30MHz and not recorded in this report.

Below 1GHz Test Results:

Temperature:	24℃	Relative Humidity:	48%			
Test Date:	Aug. 02, 2023	Pressure:	1010hPa			
Test Voltage:	AC 120V, 60Hz	C 120V, 60Hz Phase: Horizontal				
Test Mode:	Transmitting mode of GFSK 2402MHz					

Remark: Result = Reading Level + Factor, Margin = Result - Limit Factor = Ant. Factor + Cable Loss - Pre-amplifier

Temperature:	24 ℃	Relative Humidity:	48%			
Test Date:	Aug. 02, 2023	Pressure:	1010hPa			
Test Voltage:	AC 120V, 60Hz	Phase:	Vertical			
Test Mode:	Transmitting mode of GFSK 2402MHz					

Remark: Result = Reading Level + Factor, Margin = Result - Limit Factor = Ant. Factor + Cable Loss - Pre-amplifier

Remark:

- 1. Measuring frequencies from 9 kHz to the 1 GHz, Radiated emission test from 9kHz to 30MHzwas verified, and no any emission was found except system noise floor.
- 2. * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- 3. The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120kHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10kHz.

Page 21 of 32 Report No.: 23061516ER-62

Above 1 GHz Test Results:

CH00 (2402MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2402	104.4	-5.84	98.56	114	-15.44	PK
2402	84.04	-5.84	78.2	94	-15.8	AV
4804	61.38	-3.64	57.74	74	-16.26	PK
4804	41.09	-3.64	37.45	54	-16.55	AV
7206	57.6	-0.95	56.65	74	-17.35	PK
7206	36.73	-0.95	35.78	54	-18.22	AV
Remark: Fac	ctor = Antenna	Factor + Cab	le Loss – Pre-amp	lifier. Margin =	Emission L	.evel – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2402	103.7	-5.84	97.86	114	-16.14	PK
2402	83.24	-5.84	77.4	94	-16.6	AV
4804	60.51	-3.64	56.87	74	-17.13	PK
4804	40.17	-3.64	36.53	54	-17.47	AV
7206	56.69	-0.95	55.74	74	-18.26	PK
7206	35.81	-0.95	34.86	54	-19.14	AV
Remark: Fac	ctor = Antenna	Factor + Cab	le Loss – Pre-amp	lifier. Margin =	= Emission L	.evel – Limit

CH19 (2440MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2440	104.17	-5.71	98.46	114	-15.54	PK
2440	83.89	-5.71	78.18	94	-15.82	AV
4880	61.15	-3.51	57.64	74	-16.36	PK
4880	40.92	-3.51	37.41	54	-16.59	AV
7320	57.31	-0.82	56.49	74	-17.51	PK
7320	36.37	-0.82	35.55	54	-18.45	AV
Remark: Fac	ctor = Antenna	Factor + Cab	le Loss – Pre-amp	lifier. Margin =	Emission L	.evel – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2440	103.3	-5.71	97.59	114	-16.41	PK
2440	82.85	-5.71	77.14	94	-16.86	AV
4880	60.15	-3.51	56.64	74	-17.36	PK
4880	39.78	-3.51	36.27	54	-17.73	AV
7320	56.22	-0.82	55.4	74	-18.6	PK
7320	35.31	-0.82	34.49	54	-19.51	AV
Remark: Fac	ctor = Antenna	Factor + Cab	le Loss – Pre-amp	lifier. Margin =	Emission L	.evel – Limit

CH39 (2480MHz)

Horizontal:

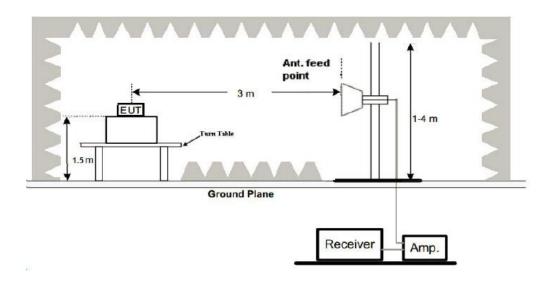
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2480	103.96	-5.65	98.31	114	-15.69	PK
2480	83.61	-5.65	77.96	94	-16.04	AV
4960	60.93	-3.43	57.5	74	-16.5	PK
4960	40.64	-3.43	37.21	54	-16.79	AV
7440	57.15	-0.75	56.4	74	-17.6	PK
7440	36.24	-0.75	35.49	54	-18.51	AV
Remark: Fac	ctor = Antenna	Factor + Cab	le Loss – Pre-amp	lifier. Margin =	= Emission L	.evel – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2480	102.58	-5.63	96.95	114	-17.05	PK
2480	82.23	-5.65	76.58	94	-17.42	AV
4960	59.56	-3.43	56.13	74	-17.87	PK
4960	39.18	-3.43	35.75	54	-18.25	AV
7440	55.66	-0.75	54.91	74	-19.09	PK
7440	34.71	-0.75	33.96	54	-20.04	AV
Remark: Fac	ctor = Antenna	Factor + Cab	ole Loss – Pre-amp	lifier. Margin =	= Emission L	.evel – Limit

Remark

- 1. Measuring frequencies from 1 GHz to the 25 GHz.
- 2. "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- 3. * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120kHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10kHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 6. When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.
- 7. For fundamental frequency, RBW >20dB BW, VBW>=3XRBW, PK detector for PK value, AV detector for AV value.


Page 24 of 32 Report No.: 23061516ER-62

5 BAND EDGE

5.1 TEST LIMIT

FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

5.2 TEST SETUP

5.3 MEASUREMENT EQUIPMENT USED

Refer to Section 3.3.

5.4 TEST PROCEDURE

- 1. The EUT operates at transmitting mode. The operate channel is tested to verify the largest transmission and spurious emissions power at the continuous transmission mode. The band edge compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc.
- Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission: (a) PEAK: RBW=1MHz, VBW=3MHz / Sweep=AUTO
 (b) AVERAGE: RBW=1MHz; VBW=3MHz / Sweep=AUTO

5.5 TEST RESULT

PASS

Operation Mode: TX CH00 (2402MHz)

Horizontal:

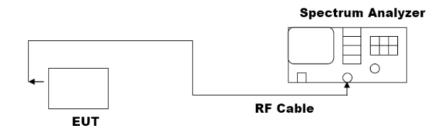
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
2310	57.58	-5.81	51.77	74	-22.23	PK	
2310	/	-5.81	/	54	/	AV	
2390	57.61	-5.84	51.77	74	-22.23	PK	
2390	/	-5.84	/	54	/	AV	
2400	57.35	-5.84	51.51	74	-22.49	PK	
2400	/	-5.84	/	54	/	AV	
Remark: Fact	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
2310	57.26	-5.81	51.45	74	-22.55	PK	
2310	/	-5.81	/	54	/	AV	
2390	57.34	-5.84	51.5	74	-22.5	PK	
2390	/	-5.84	/	54	/	AV	
2400	57.57	-5.84	51.73	74	-22.27	PK	
2400	/	-5.84	/	54	/	AV	
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

Operation Mode: TX CH39 (2480MHz)

Horizontal:


Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	56.11	-5.65	50.46	74	-23.54	PK
2483.5	/	-5.65	/	54	/	AV
2500	57.28	-5.72	51.56	74	-22.44	PK
2500	/	-5.72	/	54	/	AV
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
2483.5	57.63	-5.65	51.98	74	-22.02	PK	
2483.5	/	-5.65	/	54	/	AV	
2500	57.15	-5.72	51.43	74	-22.57	PK	
2500	/	-5.72	/	54	/	AV	
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

6 20dB Bandwidth

6.1 TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

6.2 MEASUREMENT EQUIPMENT USED

Refer to Section 3.3.

6.3 TEST PROCEDURE

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 30 kHz. Set the Video bandwidth (VBW) = 100 kHz. In order to make an accurate measurement.
- 4. For 20dB Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) ≥ 3 * RBW.
- 5. Measure and record the results in the test report.

6.4 TEST RESULT

PASS

GFSK Modulation:

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Result
CH00	2402	1.337	PASS
CH19	2440	1.295	PASS
CH39	2480	1.553	PASS

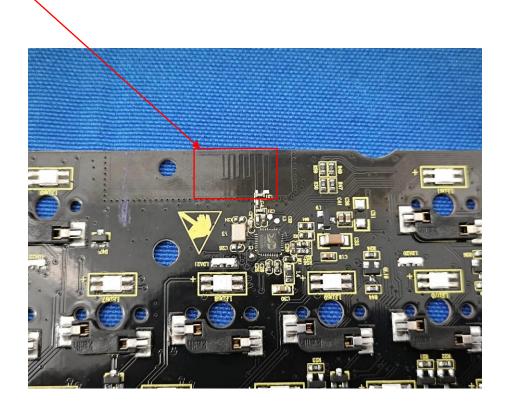
CH00: 2402MHz

Report No.: 23061516ER-62

CH19: 2440MHz

CH39: 2480MHz

7 ANTENNA REQUIREMENT


Standard Applicable:

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Conncted Construction

The antenna used in this product is an Internal Antenna, The directional gains of antenna used for transmitting is 2.34dBi.

ANTENNA:

Report No.: 23061516ER-62

8 PHOTO OF TEST

RADIATED EMISSION


30MHz-1000MHz

Above 1GHz

Report No.: 23061516ER-62

CONDUCTED EMISSION

RF CONDUCTED

End of Report