

CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 2 (DTS)

TEST REPORT

For

Portable Power Station

MODEL NUMBER: SR0KW6L-SG1-US, PS600-US, ALM-600USCA, XP2W600USCA, PW601-600

REPORT NUMBER: E04A23080505F00801

ISSUE DATE: December 27, 2023

FCC ID: 2BBDT-SR0KW6L-SG1

IC: 30669-SR0KW6L

Prepared for

CE LINK LIMITED

ROOM 2204 22/F TUNG CHIU COMMERCIAL CENTER 193 LOCKHART ROAD WANCHAI HONG KONG SAR CHINA

Prepared by

Guangdong Global Testing Technology Co., Ltd.

Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

This report shall not be reproduced, except in full, without the written approval of Guangdong Global Testing Technology Co., Ltd.

TRF No.: 04-E001-1A Web: www.gtggroup.com

TRF Originator: GTG E-mail: info@gtggroup.com

TRF Date: 2022-06-29 Tel.: 86-400 755 8988

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	December 27, 2023	Initial Issue	Joson

Summary of Test Results

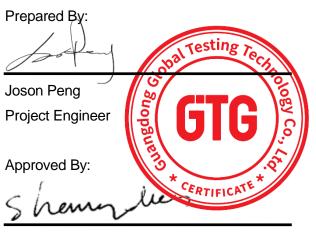
Immunity						
Basic Standard Test Item Test Specification Criteria Resul						

Test Item	Clause	Limit/Requirement	Result
Antenna Requirement	N/A	FCC Part 15.203/15.247 (c) RSS-GEN Clause 6.8	Pass
AC Power Line Conducted Emission	ANSI C63.10-2013, Clause 6.2	FCC Part 15.207 RSS-GEN Clause 8.8	Pass
Conducted Output Power	ANSI C63.10-2013, Clause 11.9.1.3	FCC Part 15.247 (b)(3) RSS-247 Clause 5.4 (d)	Pass
6dB Bandwidth and 99% Occupied Bandwidth	ANSI C63.10-2013, Clause 11.8.1	FCC Part 15.247 (a)(2) RSS-247 Clause 5.2 (a) ISED RSS-Gen Clause 6.7	Pass
Power Spectral Density	ANSI C63.10-2013, Clause 11.10.2	FCC Part 15.247 (e) RSS-247 Clause 5.2 (b)	Pass
Conducted Band edge and spurious emission	ANSI C63.10-2013, Clause 11.11	FCC Part 15.247(d) RSS-247 Clause 5.5	Pass
Radiated Band edge and Spurious Emission	ANSI C63.10-2013, Clause 11.11 & Clause 11.12	FCC Part 15.247 (d) FCC Part 15.205/15.209 RSS-247 Clause 5.5 RSS-GEN Clause 8.9	Pass
Duty Cycle	ANSI C63.10-2013, Clause 11.6	None; for reporting purposes only.	Pass

*This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

*The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C

ISED RSS-247 ISSUE 2 (DTS)> when <Accuracy Method> decision rule is applied.


CONTENTS

1. ATT	ESTATION OF TEST RESULTS	5
2. TES	T METHODOLOGY	6
3. FAC	ILITIES AND ACCREDITATION	6
4. CAL	IBRATION AND UNCERTAINTY	7
4.1.	MEASURING INSTRUMENT CALIBRATION	7
4.2.	MEASUREMENT UNCERTAINTY	7
5. EQU	IPMENT UNDER TEST	8
5.1.	DESCRIPTION OF EUT	8
5.2.	CHANNEL LIST	
5.3.	MAXIMUM AVERAGE EIRP	
5.4.	TEST CHANNEL CONFIGURATION	
5.5.	THE WORSE CASE POWER SETTING PARAMETER	
5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	
5.7.	SUPPORT UNITS FOR SYSTEM TEST	
5.8.	SETUP DIAGRAM	
6. MEA	SURING EQUIPMENT AND SOFTWARE USED	1/
	ENNA PORT TEST RESULTS	
		15
7. ANT	ENNA PORT TEST RESULTS	15 15
7. ANT 7.1.	ENNA PORT TEST RESULTS Conducted Output Power	15 15 17
7. ANT 7.1. 7.2.	ENNA PORT TEST RESULTS Conducted Output Power 6dB Bandwidth and 99% Occupied Bandwidth	15 15 17 19
7. ANT 7.1. 7.2. 7.3.	ENNA PORT TEST RESULTS Conducted Output Power 6dB Bandwidth and 99% Occupied Bandwidth Power Spectral Density	15 15 17 19 21
 7. ANT 7.1. 7.2. 7.3. 7.4. 7.5. 	ENNA PORT TEST RESULTS Conducted Output Power 6dB Bandwidth and 99% Occupied Bandwidth Power Spectral Density Conducted Band edge and spurious emission	15 15 17 19 21 23
 7. ANT 7.1. 7.2. 7.3. 7.4. 7.5. 8. RAD 	ENNA PORT TEST RESULTS Conducted Output Power 6dB Bandwidth and 99% Occupied Bandwidth Power Spectral Density Conducted Band edge and spurious emission Duty Cycle	15 151719212324
 7. ANT 7.1. 7.2. 7.3. 7.4. 7.5. 8. RAD 	ENNA PORT TEST RESULTS Conducted Output Power 6dB Bandwidth and 99% Occupied Bandwidth Power Spectral Density Conducted Band edge and spurious emission Duty Cycle	
 ANT 7.1. 7.2. 7.3. 7.4. 7.5. RAD ANT 	ENNA PORT TEST RESULTS Conducted Output Power	15 15 17 19 21 23 24 24 24 24 24
 ANT 7.1. 7.2. 7.3. 7.4. 7.5. 8. RAD 9. ANT 10. 11. 	ENNA PORT TEST RESULTS Conducted Output Power	15 15 17 19 21 23 24 24 42 43 43

1. ATTESTATION OF TEST RESULTS

Applicant Information Company Name: Address:	CE LINK LIMITED ROOM 2204 22/F TUNG CHIU COMMERCIAL CENTER 193 LOCKHART ROAD WANCHAI HONG KONG SAR CHINA
Manufacturer Information Company Name:	Dongguan Hinen New Energy Technology Co., Ltd
Address:	No.24 Dongkang Road, Dalingshan Town, Dongguan City, Guangdong Province, China
EUT Information	
Product Description:	Portable Power Station
Model:	SR0KW6L-SG1-US, PS600-US, ALM-600USCA, XP2W600USCA, PW601-600
	(All models have the same technical construction including circuit diagram, PCB layout and component layout, except for the model name and trade mark, All tests was performed on model
Brand:	SR0KW6L-SG1-US) See the model list for details
Sample Received Date:	August 30, 2023
Sample Status:	Normal
Sample ID:	A23080505 002
Date of Tested:	August 30, 2023 to December 26, 2023

APPLICABLE STANDARDS				
STANDARD TEST RESULTS				
CFR 47 FCC PART 15 SUBPART C	Pass			
ISED RSS-247 ISSUE 2 (DTS)	F855			

Checked By:

Lan La

Alan He Manager

Shawn Wen Laboratory Manager

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 2 (DTS)

3. FACILITIES AND ACCREDITATION

Note: All tests measurement facilities use to collect the measurement data are located at Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Items	k	Uncertainty		
DTS Bandwidth	1.96	±9.2 PPM		
20dB Emission Bandwidth	1.96	±9.2 PPM		
Carrier Frequency Separation	1.96	±9.2 PPM		
Time of Occupancy	1.96	±0.57%		
Conducted Output Power	1.96	±1.5 dB		
Power Spectral Density Level	1.96	±1.9 dB		
9 kHz-30 MHz: ± 0.95 dB 30 MHz-1 GHz: ± 1.5 dB 1.96 1GHz-12.75GHz: ± 1.8 dE 12.75 GHz-26.5 GHz: ± 2.10				
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95%				
confidence level using a coverage factor of k=1.96.				

Test Item	Measurement Frequency Range	к	U(dB)
Conducted emissions from the AC mains power ports (AMN)	150 kHz ~ 30 MHz	2	3.37
Radiated emissions	9 kHz ~ 30 MHz	2	4.16
Radiated emissions	30 MHz ~ 1 GHz	2	3.79
Radiated emissions	1 GHz ~ 18 GHz	2	5.62
Radiated emissions	18 GHz ~ 40 GHz	2	5.54

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name		Portable Power Station	
Model		SR0KW6L-SG1-US	
Input Rating		AC Input: 100-120V~,60Hz, 10A max., 1200W max. Solar/Car input:12-20V === 10A max., 200W max.	
Power Supply AC		120V~	
Fower Suppry	Battery	/	

Frequency Band:	2400 MHz to 2483.5 MHz
Frequency Range:	2412 MHz to 2462 MHz
Support Standards:	IEEE 802.11b, IEEE 802.11g, IEEE 802.11n-HT20, IEEE 802.11n-HT40
Type of Modulation:	IEEE 802.11b: DSSS(CCK, DQPSK, DBPSK) IEEE 802.11g/n: OFDM(64-QAM, 16-QAM, QPSK, BPSK)
Data Rate:	IEEE 802.11b: Up to 11 Mbps IEEE 802.11g: Up to 54 Mbps IEEE 802.11n: Up to MCS7
Number of Channels:	IEEE 802.11b/g/n-HT20: 11 IEEE 802.11n-HT40: 7
Maximum Peak Power:	IEEE 802.11b: 15.25 dBm IEEE 802.11g: 14.45dBm IEEE 802.11n-HT20: 14.08 dBm IEEE 802.11n-HT40: 12.79 dBm
Antenna Type:	PCB Antenna
Antenna Gain:	2.2dBi
Hardware version:	V1.0
Software version:	V1.0

Model No.	Ratings	Trade mark	
SR0KW6L-SG1- US	Battery capacity: 512Wh, 25.6V === 20Ah Discharge temperature range: -20-45°C Charge temperature range: 0-45°C	CE-LINK	CE-LINK °
PS600-US	AC Input: 100-120V~,60Hz, 10A max., 1200W max. Solar/Car input:12-20V10A max., 200W max. AC socket output x2 (Inverter Mode): 100-120V~, 60Hz,	HINEN	hinen
ALM-600USCA	6A max., Total 600W max. AC socket output x2 (Bypass Mode): 100-120V~, 60Hz, 6A max., Total 600W max.	BOLT	BOLL
XP2W600USCA	Cigarette lighter output/DC 5521 total: 126W max. Cigarette lighter output: 12.6V === 10A max. DC 5521 output x2:126V === 3A max.	xtorm	xtorm
PW601-600	USB-C1/C2 output:5/9/12/15V=3A, 20V=5A, 100W max. USB-A1/A2 output: 5V=2,4A, 12W max.	WECON NEX	Y/ECONNEX

Model list:

	Channel List for 802.11b/g/n (20 MHz)								
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
1	2412	4	2427	7	2442	10	2457		
2	2417	5	2432	8	2447	11	2462		
3	2422	6	2437	9	2452	/	/		

5.2. CHANNEL LIST

	Channel List for 802.11n (40 MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
3	2422	5	2432	7	2442	9	2452	
4	2427	6	2437	8	2447	/	/	

5.3. MAXIMUM PEAK EIRP

IEEE Std. 802.11	Frequency (MHz)	Channel Number	Maximum Conducted Peak Output Power (dBm)	Maximum AVG EIRP (dBm)
b	2412 ~ 2462	1-11[11]	15.25	17.45
g	2412 ~ 2462	1-11[11]	14.45	16.65
n HT20	2412 ~ 2462	1-11[11]	14.08	16.28
n HT40	2422 ~ 2452	3-9[7]	12.79	14.99

5.4. TEST CHANNEL CONFIGURATION

IEEE Std. 802.11	Test Channel Number	Frequency
b	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz
g	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz
n HT20	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz
n HT40	CH 3(Low Channel), CH 6(MID Channel), CH 9(High Channel)	2422 MHz, 2437 MHz, 2452 MHz

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band								
Test Softw	vare		N	/ifi Test Tool	v1.6.0 relea	ase		
	Transmit		Test Channel					
Modulation Mode	Antenna Number	NCB: 20MHz			NCB: 40MHz			
Wiode		CH 1	CH 6	CH 11	CH 3	CH 6	CH 9	
802.11b	1	0	0	0				
802.11g	1	0	0	0				
802.11n HT20	1	0	0	0				
802.11n HT40	1				0	0	0	

5.5. THE WORSE CASE POWER SETTING PARAMETER

WORST-CASE CONFIGURATIONS

The EUT was tested in the following configuration(s):

Controlled in test mode using a software application on the EUT supplied by customer. The application was used to enable a continuous transmission and to select the mode, test channels, bandwidth, data rates as required.

Test channels referring to section 5.4.

Maximum power setting referring to section 5.5.

Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11g mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0

The measured additional path loss was included in any path loss calculations for all RF cable used during tested.

Conducted output power, power spectral density tests separately on each port with all supported SISO & MIMO port combinations.

Conducted bandedge and spurious emissions tests were performed with SISO mode, as this port was found to have the worst case in terms of power settings amongst all supported possible SISO & MIMO port combinations.

Radiated emissions tests were performed with the MIMO modes. These were found to be the worst modulation scheme with regards to emissions after preliminary investigations and, as this mode emits the highest conducted output power level, it was deemed to be the worst case.

The EUT support Cyclic Shift Diversity(CDD), Space Time Coding(STBC), Spartial Division Multiplexing(SDM) modes. They use the same conducted power per chain in any given mode, so we only chose the worst case mode CDD for final testing.

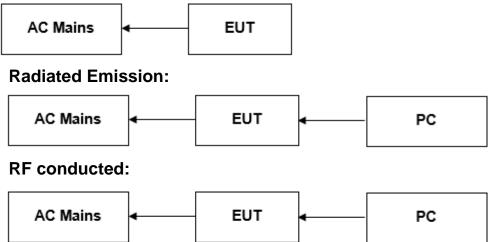
TRF No.: 04-E001-1A

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2412-2462	PCB Antenna	2.2

Test Mode	Transmit and Receive Mode	Description
IEEE 802.11b	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11g	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11n HT20	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11n HT40	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.

Note: The value of the antenna gain was declared by customer.


5.7. SUPPORT UNITS FOR SYSTEM TEST

The EUT has been tested as an independent unit

Item	Equipment	Trademark	Model No.	FCC ID	Note
1.	Portable Power Station	CE-LINK°, hinen	SR0KW6L-SG1-US	2BBDT-SR0KW6L- SG1	EUT
2.	PC	Lenovo	T14	/	AE

5.8. SETUP DIAGRAM

AC conducted emission

	Test Equipment of Conducted RF							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date			
Spectrum Analyzer	Rohde & Schwarz	FSV40	102257	2023/09/18	2024/09/17			
Spectrum Analyzer	KEYSIGHT	N9020A	MY51285127	2023/09/18	2024/09/17			
EXG Analog Signal Generator	KEYSIGHT	N5173B	MY61253075	2023/09/18	2024/09/17			
Vector Signal Generator	Rohde & Schwarz	SMM100A	101899	2023/09/18	2024/09/17			
RF Control box	MWRF-test	MW100-RFCB	MW220926GTG	2023/09/18	2024/09/17			
Wideband Radio Communication Tester	Rohde & Schwarz	CMW270	102792	2023/09/18	2024/09/17			
Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	103235	2023/09/18	2024/09/17			
temperature humidity chamber	Espec	SH-241	SH-241-2014	2023/09/18	2024/09/17			
RF Test Software	MWRF-test	MTS8310E (Ver. V2/0)	N/A	N/A	N/A			

6. MEASURING EQUIPMENT AND SOFTWARE USED

	Test Equipment of Radiated emissions below 1GHz							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date			
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2146	2022/08/30	2025/08/29			
EMI Test Receiver	Rohde & Schwarz	ESCI3	101409	2023/09/18	2024/09/17			
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2023/09/18	2024/09/17			
Pre-Amplifier	HzEMC	HPA-9K0130	HYPA21001	2023/09/18	2024/09/17			
Biconilog Antenna	Schwarzbeck	VULB 9168	01315	2022/10/10	2025/10/09			
Biconilog Antenna	ETS	3142E	00243646	2022/03/23	2025/03/22			
Loop Antenna	ETS	6502	243668	2022/03/30	2025/03/29			
Test Software	Farad	EZ-EMC (Ver.FA- 03A2 RE)	N/A	N/A	N/A			

REPORT NO.: E04A23080505F00801 Page 15 of 71

	Test Equipment of Radiated emissions above 1GHz							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date			
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2149	2022/08/30	2025/08/29			
Spectrum Analyzer	Rohde & Schwarz	FSV40	101413	2023/09/18	2024/09/17			
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2023/09/18	2024/09/17			
Pre-Amplifier	A-INFO	HPA-1G1850	HYPA21003	2023/09/18	2024/09/17			
Horn antenna	A-INFO	3117	246069	2022/03/11	2025/03/10			
Pre-Amplifier	ZKJC	HPA-184057	HYPA21004	2023/09/18	2024/09/17			
Horn antenna	ZKJC	3116C	246265	2022/03/29	2025/03/28			
Test Software	Farad	EZ-EMC (Ver.FA- 03A2 RE+)	N/A	N/A	N/A			

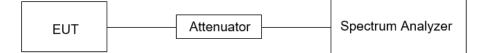
Test Equipment of Conducted emissions							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date		
Shielded Room	CHENG YU	8m*5m*4m	N/A	2022/10/29	2025/10/28		
EMI Test Receiver	Rohde & Schwarz	ESR3	102647	2023/09/18	2024/09/17		
LISN/AMN	Rohde & Schwarz	ENV216	102843	2023/09/18	2024/09/17		
NNLK 8129 RC	Schwarzbeck	NNLK 8129 RC	5046	2023/09/18	2024/09/17		
Test Software	Farad	EZ-EMC (Ver. EMC-con-3A1 1+)	N/A	N/A	N/A		

7. ANTENNA PORT TEST RESULTS

7.1. CONDUCTED OUTPUT POWER

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section Test Item Limit Frequency Range (MHz)			
CFR 47 FCC 15.247(b)(3) ISED RSS-247 5.4 (d)	Peak Conduct Output Power	1 watt or 30 dBm	2400-2483.5


TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TRF No.: 04-E001-1A

TEST SETUP

TEST ENVIRONMENT

Temperature	24°C	Relative Humidity	55%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix B

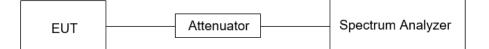
7.2. 6DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC 15.247(a)(2) ISED RSS-247 5.2 (a)	6 dB Bandwidth	≥ 500 kHz	2400-2483.5	
ISED RSS-Gen Clause 6.7	99 % Occupied Bandwidth	For reporting purposes only.	2400-2483.5	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.


Center Frequency	The center frequency of the channel under test
Frequency Span	For 6 dB Bandwidth: Enough to capture all products of the modulation carrier emission For 99 % Occupied Bandwidth: Between 1.5 times and 5.0 times the OBW
Detector	Peak
RBW	For 6 dB Bandwidth: 100 kHz For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
VBW	For 6 dB Bandwidth: ≥3 × RBW For 99 % Occupied Bandwidth: ≥3 × RBW
Trace	Max hold
Sweep	Auto couple

Connect the EUT to the spectrum analyser and use the following settings:

a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.

b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

TEST ENVIRONMENT

Temperature	24°C	Relative Humidity	55%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix B

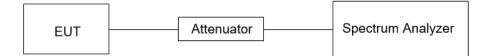
7.3. POWER SPECTRAL DENSITY

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section Test Item Limit Frequency Rang (MHz)			
CFR 47 FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.10.


Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	PEAK
RBW	$3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	24°C	Relative Humidity	55%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix B

7.4. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

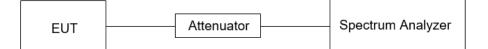
<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section Test Item Limit			
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:


Center Frequency	The center frequency of the channel under test	
Detector	Peak	
RBW	100 kHz	
VBW	≥3 × RBW	
Span	1.5 x DTS bandwidth	
Trace	Max hold	
Sweep time	Auto couple.	

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Change the settings for emission level measurement:

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

TEST SETUP

TEST ENVIRONMENT

Temperature	24°C	Relative Humidity	55%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix B

7.5. DUTY CYCLE

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	24°C	Relative Humidity	55%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix B

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions rad	ated outside of the specified frequenc	y bands above 30 l	MHz	
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m		field Strength Limit (dBuV/m) at 3 m	
	, , , ,	Quasi-I	Peak	
30 - 88	100	40		
88 - 216	150	43.	5	
216 - 960	200	46		
Above 960	500	54		
Above 1000	500	Peak	Average	
	300	74	54	

FCC Emissions radiated outside of the specified frequency bands below 30 MHz		
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30

ISED General field strength limits at frequencies below 30 MHz

Table 6 – General field strength limits at frequencies below 30 MHz		
Frequency	Magnetic field strength (H-Field) (µA/m)	Measurement distance (m)
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300
490 - 1705 kHz	63.7/F (F in kHz)	30
1.705 - 30 MHz	0.08	30

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

Hz	MHz	GHz
090 - 0.110	149.9 - 150.05	9.0 - 9.2
495 - 0.505	156.52475 - 156.52525	9.3 - 9.5
1735 - 2.1905	158.7 - 158.9	10.6 - 12.7
020 - 3.028	162.0125 - 167.17	13.25 - 13.4
125 - 4.128	167.72 - 173.2	14.47 - 14.5
17725 - 4.17775	240 - 285	15.35 - 16.2
20725 - 4.20775	322 - 335.4	17.7 - 21.4
877 - 5.683	399.9 - 410	22.01 - 23.12
215 - 6.218	608 - 614	23.6 - 24.0
28775 - 6.28825	960 - 1427	31.2 - 31.8
31175 - 6.31225	1435 - 1626.5	38.43 - 38.5
91 - 8.294	1645.5 - 1648.5	Above 38.6
82 - 8.366	1680 - 1710	
7625 - 8.38675	1718.8 - 1722.2	
1425 - 8.41475	2200 - 2300	
29 - 12.293	2310 - 2390	
51975 - 12.52025	2483.5 - 2500	
57675 - 12.57725	2655 - 2900	
.36 - 13.41	3260 - 3267	
.42 - 16.423	3332 - 3339	
.69475 - 16.69525	3345.8 - 3358	
.80425 - 16.80475	3500 - 4400	
5 - 25.67	4500 - 5150	
5 - 38.25	5350 - 5460	
74.6	7250 - 7750	
8 - 75.2	8025 - 8500	
8 - 138		

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note:1. Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

2. Above 38.6c

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

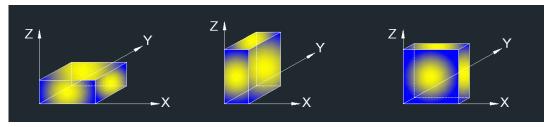
Above 1G

RBW	1 MHz
VBW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

The setting of the spectrum analyser

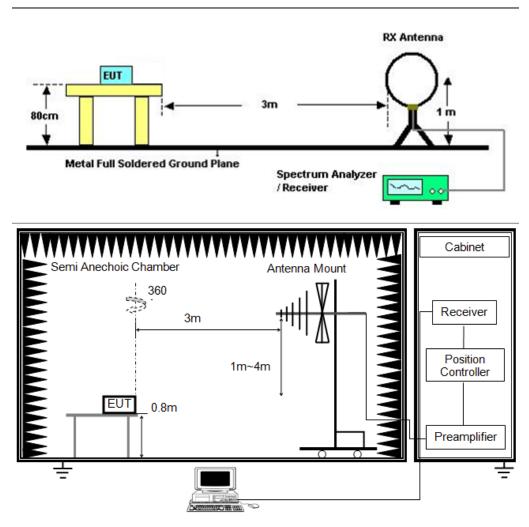
1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.

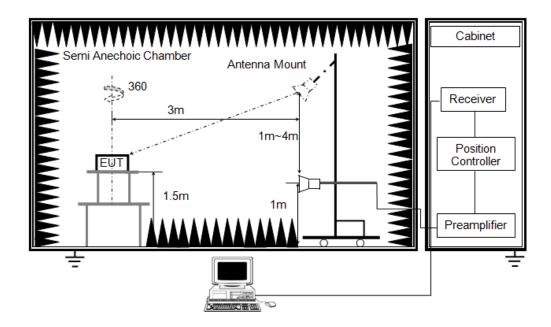
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

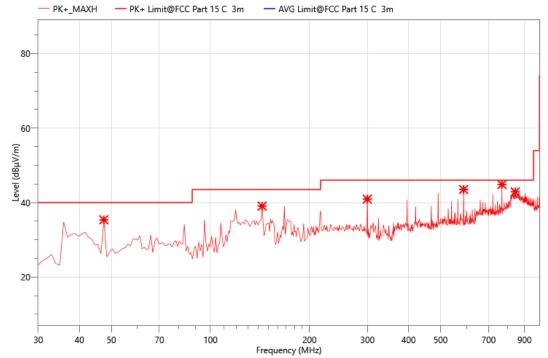
5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.


6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.


X axis, Y axis, Z axis positions:

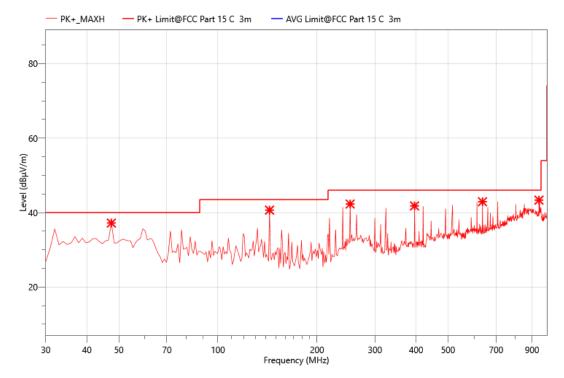
Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TEST SETUP



TEST ENVIRONMENT

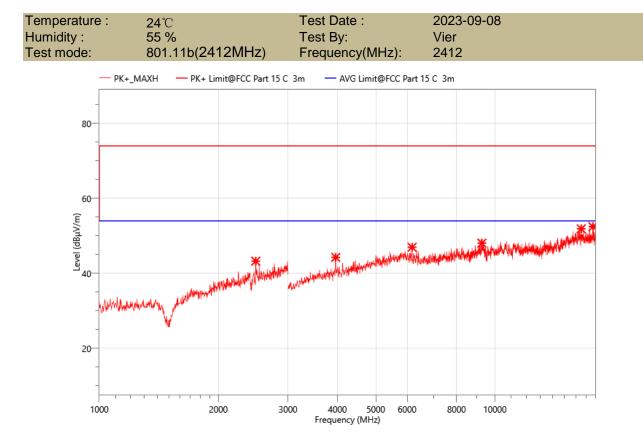
Temperature	23 °C	Relative Humidity	56%
Atmosphere Pressure	101kPa		


TEST RESULTS

The worst data of the mode	e (802.11b 2412MHz)	are recorded in the following pages.
----------------------------	---------------------	--------------------------------------

Site:	LAB	Antenna: Horizontal	Temperature(C):23(C)
Limit:	FCC Part 15 C 3m Radiation(QP)		Humidity(%):56%
EUT:	Portable Power Station	Test Time:	2023-09-08
M/N.:	SR0KW6L-SG1-US	Power Rating:	AC 120V
Mode:	802.11b 2412MHz	Test Engineer:	Luffy
Note:		0	-

No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	47.460	39.38	35.37	40.00	4.63	PK+	Н	-4.01
2	143.490	44.70	39.05	43.50	4.45	PK+	Н	-5.65
3	299.660	41.37	40.93	46.00	5.07	PK+	Н	-0.44
4	587.750	35.97	43.51	46.00	2.49	PK+	Н	7.54
5	768.170	33.17	44.84	46.00	1.16	PK+	Н	11.67
6	842.860	28.91	42.88	46.00	3.12	PK+	Н	13.97

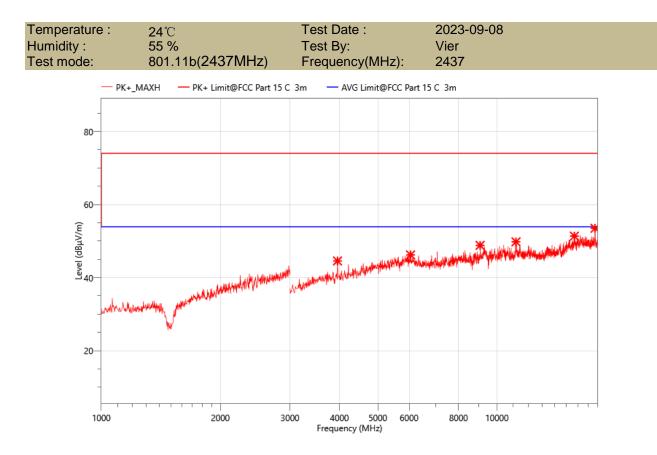


Site: Limit: EUT: M/N.: Mode:	LAB FCC Part 15 C 3m Radiation(QP) Portable Power Station SR0KW6L-SG1-US 802.11b 2412MHz	Antenna: Vertical Test Time: Power Rating: Test Engineer:	Temperature(C):23(C) Humidity(%):56% 2023-09-08 AC 120V Luffy
Note:	602.11D 2412MH2	Test Engineer:	Luity

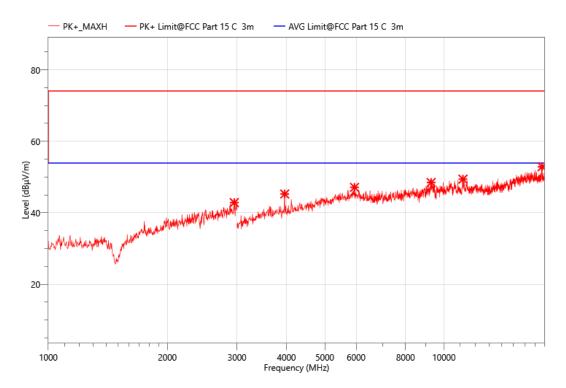
No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	47.460	41.20	37.19	40.00	2.81	PK+	V	-4.01
2	143.490	46.31	40.66	43.50	2.84	PK+	V	-5.65
3	252.130	44.94	42.30	46.00	3.70	PK+	V	-2.64
4	395.690	39.00	41.79	46.00	4.21	PK+	V	2.79
5	636.250	34.34	42.92	46.00	3.08	PK+	V	8.58
6	944.710	31.66	43.35	46.00	2.65	PK+	V	11.69

Above 1000MHz~10th Harmonics:

All the modulation modes were tested the data of the worst mode (TX 802.11b) are recorded in the following pages and the others modulation methods do not exceed the limits. The frequency range from 1GHz to 25GHz is investigated.

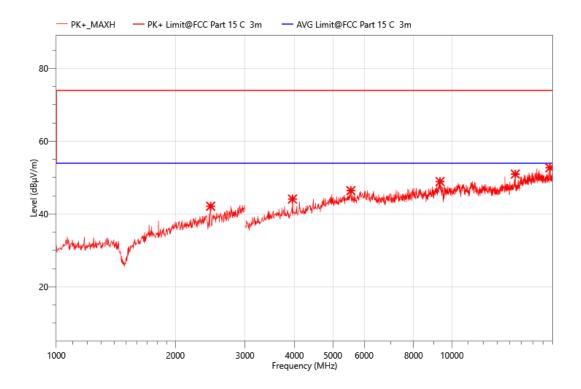


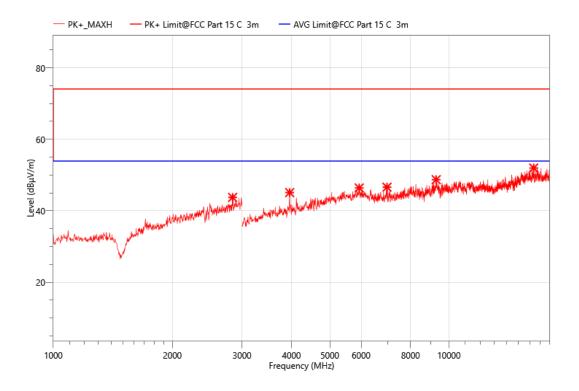
No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	2486.000	54.29	43.23	74.00	30.77	PK+	Н	-11.06
2	3960.000	57.03	44.26	74.00	29.74	PK+	Н	-12.77
3	6175.000	52.15	46.95	74.00	27.05	PK+	Н	-5.2
4	9270.000	48.64	48.05	74.00	25.95	PK+	Н	-0.59
5	16530.000	48.19	51.86	74.00	22.14	PK+	Н	3.67
6	17695.000	47.61	52.44	74.00	21.56	PK+	Н	4.83



No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	3960.000	57.93	45.16	74.00	28.84	PK+	V	-12.77
2	5875.000	53.41	47.69	74.00	26.31	PK+	V	-5.72
3	9295.000	50.64	49.86	74.00	24.14	PK+	V	-0.78
4	11160.000	48.99	49.91	74.00	24.09	PK+	V	0.92
5	16410.000	47.90	52.09	74.00	21.91	PK+	V	4.19
6	17715.000	48.37	52.84	74.00	21.16	PK+	V	4.47

REPORT NO.: E04A23080505F00801 Page 34 of 71

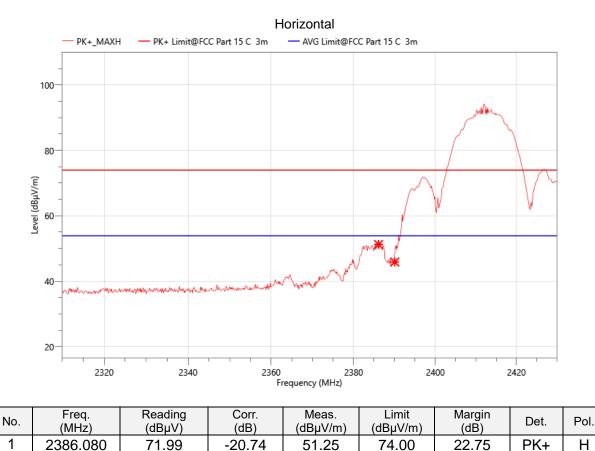

No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	3955.000	57.33	44.56	74.00	29.44	PK+	Н	-12.77
2	6050.000	51.00	46.22	74.00	27.78	PK+	Н	-4.78
3	9070.000	50.72	48.83	74.00	25.17	PK+	Н	-1.89
4	11175.000	49.07	49.80	74.00	24.20	PK+	Н	0.73
5	15700.000	48.40	51.36	74.00	22.64	PK+	Н	2.96
6	17700.000	48.75	53.50	74.00	20.50	PK+	Н	4.75


No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	2952.000	52.68	42.87	74.00	31.13	PK+	V	-9.81
2	3960.000	58.04	45.27	74.00	28.73	PK+	V	-12.77
3	5945.000	52.74	47.13	74.00	26.87	PK+	V	-5.61
4	9285.000	49.14	48.49	74.00	25.51	PK+	V	-0.65
5	11175.000	48.70	49.43	74.00	24.57	PK+	V	0.73
6	17700.000	48.11	52.86	74.00	21.14	PK+	V	4.75

REPORT NO.: E04A23080505F00801 Page 36 of 71

Temperature :	24 ℃	Test Date :	2023-09-08
Humidity :	55 %	Test By:	Vier
Test mode:	801.11b(2462MHz)	Frequency(MHz):	2462

No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	2456.000	53.34	42.15	74.00	31.85	PK+	Н	-11.19
2	3955.000	56.89	44.12	74.00	29.88	PK+	Н	-12.77
3	5555.000	53.18	46.44	74.00	27.56	PK+	Н	-6.74
4	9335.000	49.78	48.93	74.00	25.07	PK+	Н	-0.85
5	14465.000	49.06	50.97	74.00	23.03	PK+	Н	1.91
6	17690.000	47.79	52.70	74.00	21.30	PK+	Н	4.91



No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Corr. (dB)
1	2840.000	54.06	43.76	74.00	30.24	PK+	V	-10.3
2	3960.000	57.88	45.11	74.00	28.89	PK+	V	-12.77
3	5935.000	51.94	46.41	74.00	27.59	PK+	V	-5.53
4	6975.000	49.80	46.62	74.00	27.38	PK+	V	-3.18
5	9285.000	49.38	48.73	74.00	25.27	PK+	V	-0.65
6	16385.000	47.96	51.98	74.00	22.02	PK+	V	4.02

No others harmonics emissions are higher than 20 dB below the limits of 47 CFR Part 15.247.

- Note: (1) All Readings are Peak Value.
 - (2) Emission Level= Reading Level+ Probe Factor +Cable Loss.
 - (3) The average measurement was not performed when the peak measured data under the limit of average detection.
 - (4) Measuring frequencies from 1GHz to 25GHz.

Band Edge (Radiated Test)

45.88

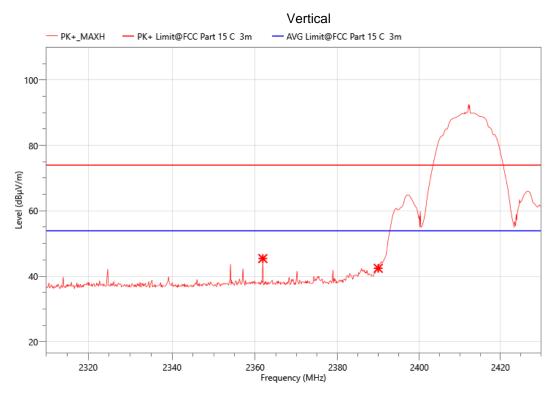
74.00

-20.73

802.11b 2412MHz

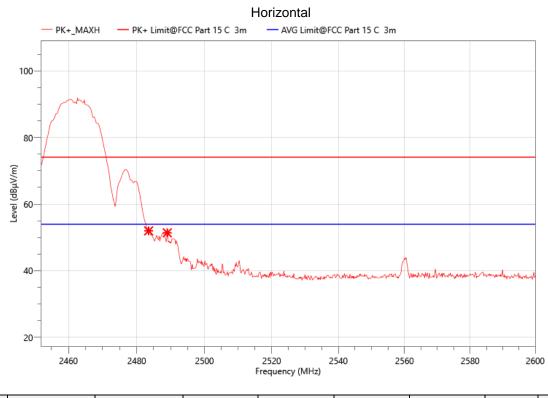
Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]

66.61


2

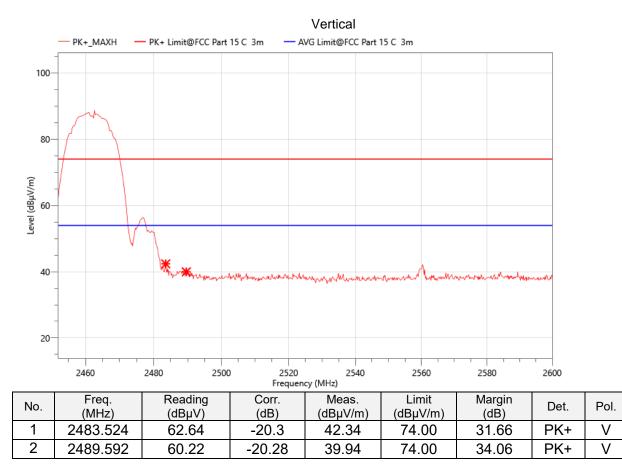
2390.040

PK+


Н

28.12

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2361.840	66.14	-20.73	45.41	74.00	28.59	PK+	V
2	2389.920	63.16	-20.73	42.43	74.00	31.57	PK+	V


Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]

802.11b 2462MHz

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2483.500	72.27	-20.3	51.97	74.00	22.03	PK+	Н
2	2489.000	71.68	-20.28	51.40	74.00	22.60	PK+	Н

Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]

Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]

Note:802.11b, 802.11g, 802.11n (HT-20), 802.11n (HT-40) all has been tested, the worst case is 802.11b 2412MHz, only shown the worst case.

9. ANTENNA REQUIREMENT

REQUIREMENT

The EUT'S antenna is met the requirement of FCC part 15C section 15.203 and 15.247.

FCC part 15C section 15.247 requirements:

Systems operating in the 2402-2480MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

DESCRIPTION

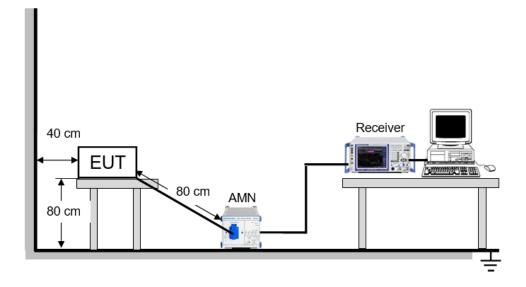
The EUT's antenna, permanent attached antenna, used Internal PCB antenna and

integrated on PCB, The antenna's gain is 2dBi and meets the requirement.

10. AC POWER LINE CONDUCTED EMISSION

LIMITS

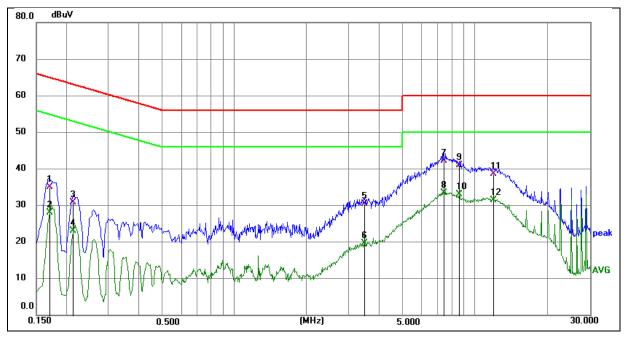
Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8


FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

TEST PROCEDURE

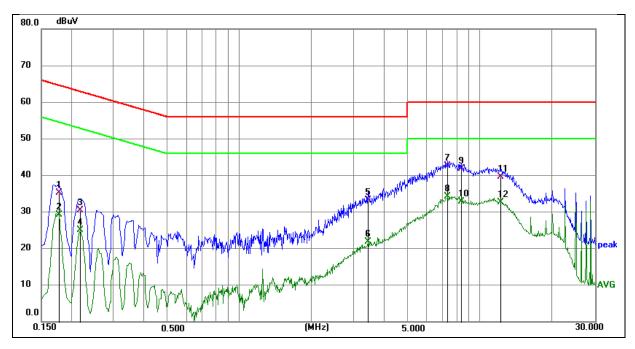
The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.


TEST SETUP

TEST ENVIRONMENT

Temperature	26 ℃	Relative Humidity	54.3%
Atmosphere Pressure	101kPa		


TEST RESULTS

Site:		Phase:N	Temperature(C):25(C)
Limit:	FCC Part 15 B Conduction(QP)		Humidity(%):54%
EUT:	Portable Power Station	Test Time:	2023/9/6
M/N.:	SR0KW6L-SG1-US	Power Rating:	AC 120V/60Hz
Mode: Note:	802.11b 2412MHz	Test Engineer:	Fink

No.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB)	Measure- ment(dBuV)	Limit (dBuV)	Margin (dB)	Detector	Comment
1	0.1703	25.19	9.91	35.10	64.95	-29.85	QP	
2	0.1703	18.12	9.91	28.03	54.95	-26.92	AVG	
3	0.2130	20.89	9.91	30.80	63.09	-32.29	QP	
4	0.2130	13.10	9.91	23.01	53.09	-30.08	AVG	
5	3.4890	20.36	10.14	30.50	56.00	-25.50	QP	
6	3.4890	9.48	10.14	19.62	46.00	-26.38	AVG	
7	7.4264	31.47	10.63	42.10	60.00	-17.90	QP	
8	7.4264	22.71	10.63	33.34	50.00	-16.66	AVG	
9	8.5920	30.10	10.80	40.90	60.00	-19.10	QP	
10	8.5920	22.14	10.80	32.94	50.00	-17.06	AVG	
11	11.9130	27.61	10.99	38.60	60.00	-21.40	QP	
12	11.9130	20.46	10.99	31.45	50.00	-18.55	AVG	

*:Maximum data x:Over limit !:over margin

Site:		Phase:L1	Temperature(C):25(C)
Limit:	FCC Part 15 B Conduction(QP)		Humidity(%):54%
EUT:	Portable Power Station	Test Time:	2023/9/6
M/N.:	SR0KW6L-SG1-US	Power Rating:	AC 120V/60Hz
Mode:	802.11b 2412MHz	Test Engineer:	Fink
Note:		U	

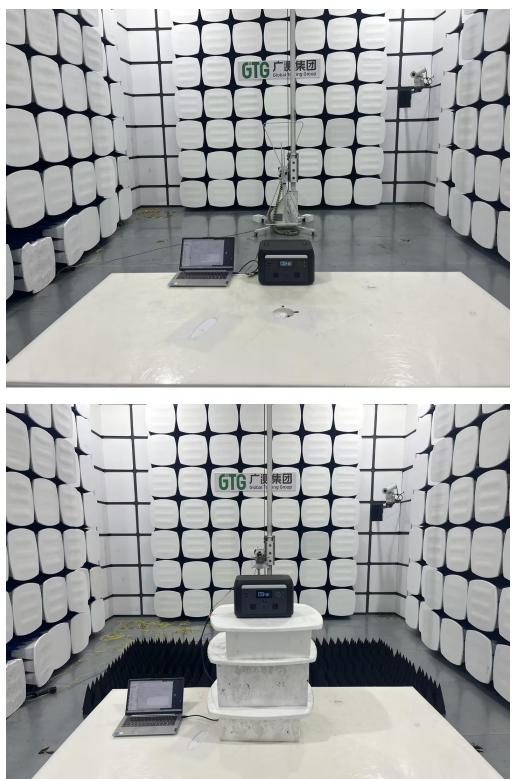
No.	Frequency	Reading	Factor	Measure-	Limit	Margin	Detector	Comment
	(MHz)	Level(dBuV)	(dB)	ment(dBuV)	(dBuV)	(dB)		
1	0.1770	25.36	9.94	35.30	64.63	-29.33	QP	
2	0.1770	19.35	9.94	29.29	54.63	-25.34	AVG	
3	0.2174	20.47	9.93	30.40	62.92	-32.52	QP	
4	0.2174	15.10	9.93	25.03	52.92	-27.89	AVG	
5	3.4350	22.96	10.24	33.20	56.00	-22.80	QP	
6	3.4350	11.57	10.24	21.81	46.00	-24.19	AVG	
7	7.3500	31.96	10.54	42.50	60.00	-17.50	QP	
8	7.3500	23.58	10.54	34.12	50.00	-15.88	AVG	
9	8.3354	31.10	10.70	41.80	60.00	-18.20	QP	
10	8.3354	22.17	10.70	32.87	50.00	-17.13	AVG	
11	12.1965	28.62	10.98	39.60	60.00	-20.40	QP	
12	12.1965	21.63	10.98	32.61	50.00	-17.39	AVG	

*:Maximum data x:Over limit !:over margin

Note: 1. Result = Reading + Correct Factor.

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).


4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

Note: All the modes have been tested, only the worst data was recorded in the report.

11. TEST DATA

Please refer to section "Test Data" - Appendix B

APPENDIX: PHOTOGRAPHS OF TEST CONFIGURATION

REPORT NO.: E04A23080505F00801 Page 48 of 71

APPENDIX: PHOTOGRAPHS OF THE EUT

Model: SR0KW6L-SG1-US

Model: SR0KW6L-SG1-US

Model: SR0KW6L-SG1-US

Model: SR0KW6L-SG1-US

Model: SR0KW6L-SG1-US

Model: SR0KW6L-SG1-US

Model: PS600-US

Model: PS600-US

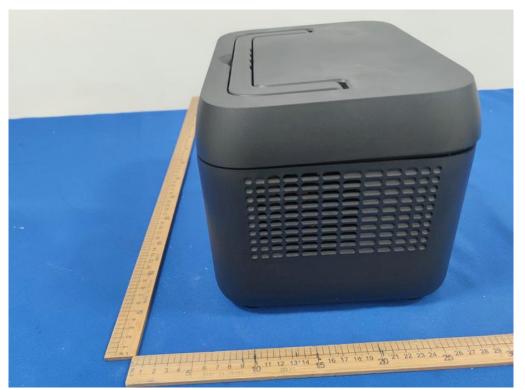
REPORT NO.: E04A23080505F00801 Page 53 of 71

Model: PS600-US

Model: PS600-US

Model: PS600-US

Model: PS600-US


Model: ALM-600USCA

Model: ALM-600USCA

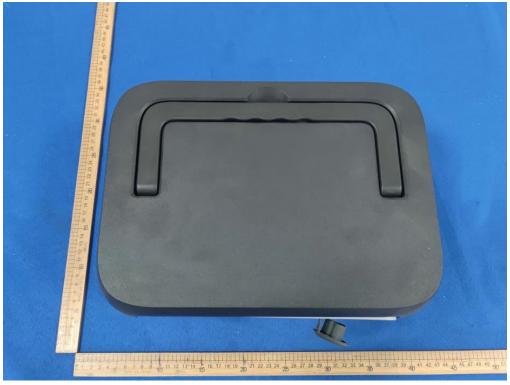
Model: ALM-600USCA

Model: ALM-600USCA

Model: ALM-600USCA

Model: ALM-600USCA

Model: XP2W600USCA


Model: XP2W600USCA

Model: XP2W600USCA

Model: XP2W600USCA


Model: XP2W600USCA

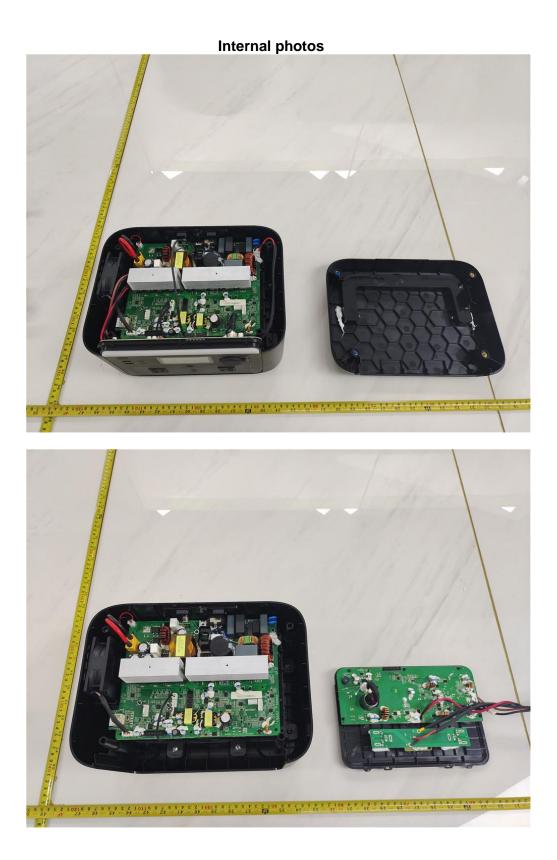
Model: XP2W600USCA

Model: PW601-600

Model: PW601-600

Model: PW601-600

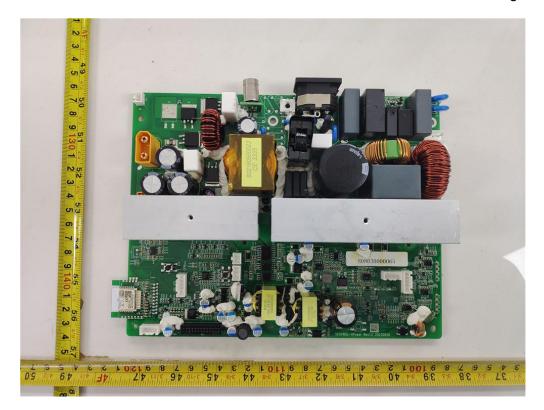
Model: PW601-600



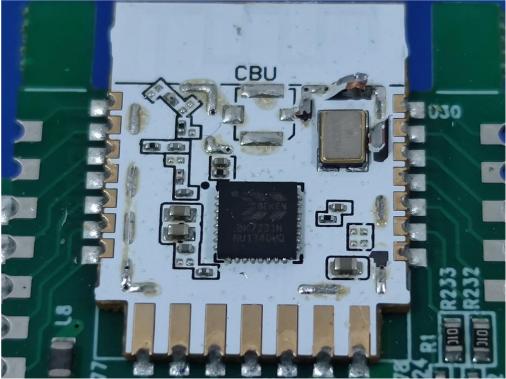
Model: PW601-600

Model: PW601-600

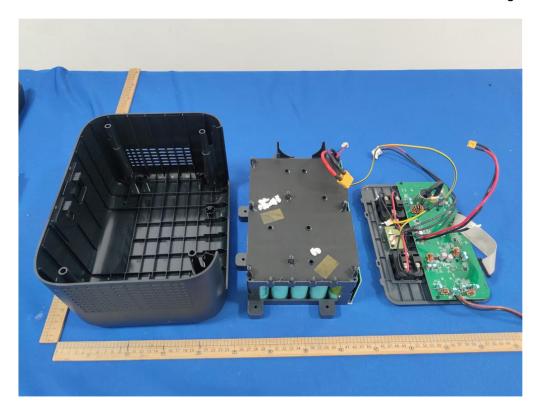
REPORT NO.: E04A23080505F00801 Page 64 of 71

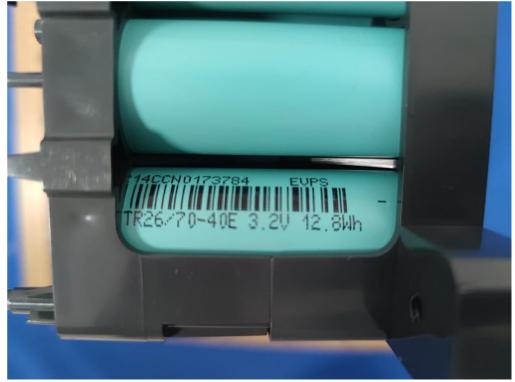


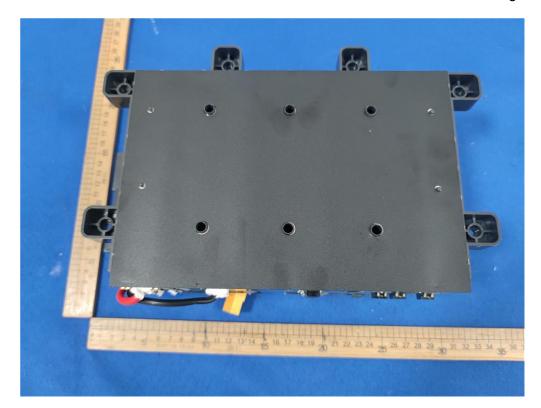
REPORT NO.: E04A23080505F00801 Page 65 of 71

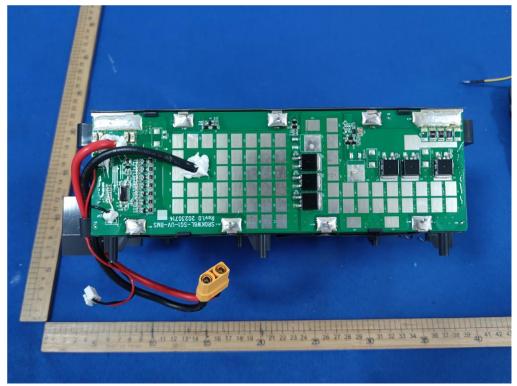


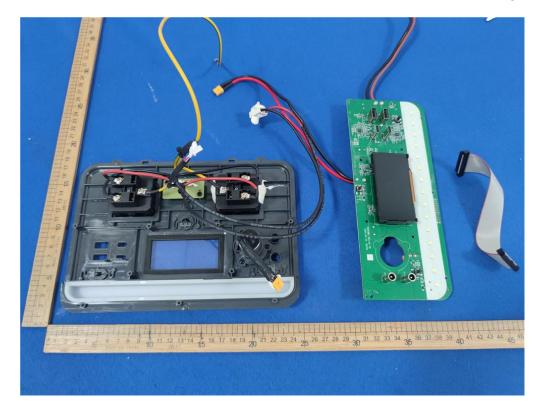
REPORT NO.: E04A23080505F00801 Page 66 of 71



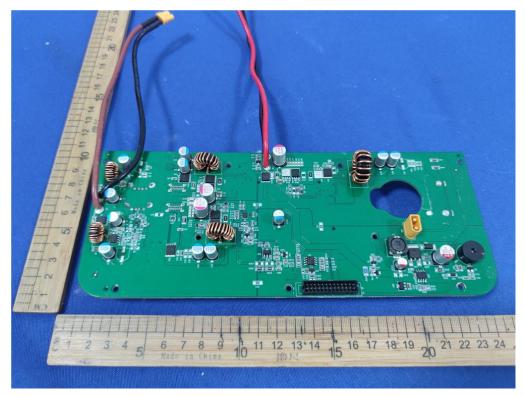





REPORT NO.: E04A23080505F00801 Page 68 of 71




REPORT NO.: E04A23080505F00801 Page 69 of 71


REPORT NO.: E04A23080505F00801 Page 70 of 71

REPORT NO.: E04A23080505F00801 Page 71 of 71

END OF REPORT