

Page 1 of 43

Report No.: HK2307203147-1E

TEST REPORT

FCC PART 15 SUBPART C 15.247

Test report On Behalf of SHENZHEN FEIBIT ELECTRONIC TECHNOLOGY Co., LTD. For

FZT6090 module

Model No.: FZT6090

FCC ID: 2BB9L-FZT6090

Prepared For : SHENZHEN FEIBIT ELECTRONIC TECHNOLOGY Co., LTD. 14F, Building 2, Nanshan iPark Chongwen, 3370 Liuxian Avenue, Nanshan District, Shenzhen, 518000 China

Prepared By :

Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

 Date of Test:
 Jul. 20, 2023 ~ Aug. 01, 2023

 Date of Report:
 Aug. 01, 2023

 Report Number:
 HK2307203147-1E

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

TEST RESULT CERTIFICATION

Applicant's name:	SHENZHEN FEIBIT ELECTRONIC TECHNOLOGY Co., LTD.
Address	14F, Building 2, Nanshan iPark Chongwen, 3370 Liuxian Avenue, Nanshan District, Shenzhen, 518000 China
Manufacture's Name	SHENZHEN FEIBIT ELECTRONIC TECHNOLOGY Co., LTD.
Address	14F, Building 2, Nanshan iPark Chongwen, 3370 Liuxian Avenue, Nanshan District, Shenzhen, 518000 China
Dreduct description	

Product description

Trade Mark:	FBEE
Product name:	FZT6090 module
Model and/or type reference:	FZT6090

Standards......: 47 CFR FCC Part 15 Subpart C 15.247

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test	
Date (s) of performance of tests:	Jul. 20, 2023 ~ Aug. 01, 2023
Date of Issue:	Aug. 01, 2023
Test Result:	Pass

Prepared by:

Grang Bian

Project Engineer

Reviewed by:

ON

Project Supervisor

Approved by:

ason You

Technical Director

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

NG

IК

Contents

		Contents		Page
1	ST SUMMARY	ANTESIN' ANTES	AN TESTING	
1.1	TEST DESCRIPTION			
1.2	MEASUREMENT UNCERTAIN			
1.3				
	ENERAL INFORMATION			
2 GE				
2.1	GENERAL DESCRIPTION OF E			
2.2	CARRIER FREQUENCY OF CHANNE			
2.3	OPERATION OF EUT DURING TEST			
2.4	DESCRIPTION OF TEST CONE			
2.5	DESCRIPTION OF TEST SETU			
2.6	DESCRIPTION OF SUPPORT L			
3 EC	QUIPMENTS LIST FOR ALL TES	T ITEMS	Mulan Of	
4 TE	ST RESULT			14
	ANTENNA REQUIREMENT			
4.1	CC007	on the second se		
4.2	CONDUCTION EMISSIONS ME			
4.2		where since		
4.2				
		~		
	RADIATED EMISSIONS MEASU			
4.3		Hur On		
4.3	•			
4.3				
4.4	MAXIMUM OUTPUT POWER M			
4.4		an Ohne		
4.4	•			
4.4		<u>91</u>		
4.4		- WHATESIN		
4.4				
4.5	POWER SPECTRAL DENSITY.			
4.5				
4.5	(29), V	ALL		
4.5				
4.5	5.4 Test setup			29
4.5	5.5 Test results			30

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

•

Т 691

4.6	6DB	BANDWIDTH			IN MAKE			32
4.6		Limit						
4.6	.2	Test procedure				HUAN		32
4.6	.3	Deviation from standard						32
4.6	.4	Test setup						32
4.6	.5	Test result	ş6	1 TESTING		TESTING		32
4.7	occ	UPIED BANDWIDTH		NAK		HUAR	HUAR	34
4.7	.1	Test procedure						34
4.7	.2	Deviation from standard				TESTING.		34
4.7	.3	Test setup		STINE	- HUA		TESTING.	34
4.7		Test result						
4.8	BAN	D EDGE			STESTIN'	è	<u> </u>	35
4.8	.1	Limit			HUAN			35
4.8		Test procedure						
4.8	.3	Deviation from standard						35
4.8	.4	Test setup						35
4.8	.5	Test results						36
4.9		IDUCTED SPURIOUS EMISSION						
4.9	.1	Applied procedures / Limit		Normal Sector		HOM		37
4.9	.2	Test procedure						37
4.9	.3	Deviation from standard				TESTIN		37
4.9	.4	Test setup	WAX TE	5 ³				37
4.9	.5	Test results						37
5 TE	ST SF	TUP PHOTO			UAK TESTINU	r		
		S OF THE EUT						
6 PH	отоз	S OF THE EUT				- HUMATES'		43

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

** Modified History **

Revision	Description	Issued Data	Remark	
Revision 1.0	Initial Test Report Release	Aug. 01, 2023	Jason Zhou	
MK TESTING	MAN TESTING	AKTESTING	TESTING MK TESTING	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com/

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

CATION

1 TEST SUMMARY

1.1 TEST DESCRIPTION

TES'	TES.	N TES
Test Item	Test Requirement	Result
Antenna Requirement	§15.203/§15.247(b)(4)	PASS
Conducted Emission	FCC Part 15.207	PASS
Radiated Emissions	FCC Part 15.205/15.209	PASS
Maximum Peak Output Power	FCC Part 15.247(b)	PASS
Power Spectral Density	FCC Part 15.247(e)	PASS
6dB Bandwidth & 99% Bandwidth	FCC Part 15.247(a)(2)	PASS
Spurious RF Conducted Emission	FCC Part 15.247(d)	PASS
Band Edge	FCC Part 15.247(d)	PASS

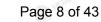
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

1.2 MEASUREMENT UNCERTAINTY

All measurements involve certain levels of uncertainties. The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. The maximum value of the uncertainty as below:

No.	Item	Uncertainty	
- HUTKITES	Conducted Emission Test	±2.71dB	
2	All emissions, radiated(<1G)	±3.90dB	
3	All emissions, radiated(>1G)	±4.28dB	


1.3 INFORMATION OF THE TEST LABORATORY

Shenzhen HUAK Testing Technology Co., Ltd. Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

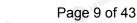
A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HS ⊢

2 GENERAL INFORMATION

HUAK TESTING


2.1 GENERAL DESCRIPTION OF EUT

EUT Name:	FZT6090 module	- WLAK TEST	JAK TE
Model No:	FZT6090	0	
Series Model:	FZT6090	TESTING	
Model Difference:	N/A	A HUAN	Who .
Trade Mark:	FBEE 6	O HUM	
Operation Frequency:	2405MHz to 2480 MHz	WTESTING	
Channel Separation:	5MHz	D HOW TING	~5
Number of Channel:	16 MIN 6 MIN	HUAK TES HUA	1
Modulation Technology:	GFSK	<u>e</u>	
Hardware Version:	V1.0		
Software Version:	V1.0	TESTING	1
Antenna Type:	Ceramic Antenna	O HUAT	Vba-
Antenna Gain:	3.53dBi	DIG	
Power Supply:	DC 3.3V	WANTESIN	NG
Note:	U HUAKTES	O HUNK TES	

1.For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

2.2 Carrier Frequency of Channels

Description of Channel:							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
11	2405	17	2435	23	2465		
5 ^{m6} 12	2410	18	2440	24	2470		
13	2415	19	2445	25	2475		
14 🔘 🖤	2420	20	2450	26	2480		
15	2425	21	2455	WKTESTIN			
16	2430	22	2460		NG TESTING		

2.3 Operation of EUT during testing

Operating Mode The mode is used: **Transmitting mode**

Low Channel: 2405MHz Middle Channel: 2445MHz High Channel: 2480MHz

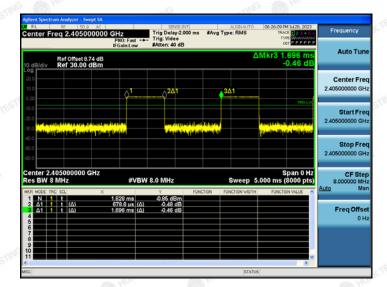
2.4 DESCRIPTION OF TEST CONDITIONS

(1) E.U.T. test conditions:

For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

- (2) Frequency range of radiated measurements: The test range will be up to the tenth harmonic of the highest fundamental frequency.
- (3) Mode Test Duty Cycle

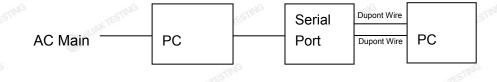
Mode	Duty Cycle	Duty Cycle Factor (dB)
Zigbee	0.40	-3.98


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Page 10 of 43

Report No.: HK2307203147-1E

•


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

2.5 DESCRIPTION OF TEST SETUP

Operation of EUT during conducted and radiation testing:

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position.

2.6 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

					(10))) · · · · · · · · · · · · · · · · · ·	
~	Item	Equipment	Mfr/Brand	Model/Type No.	Specification	Note
	1 TESTIN	FZT6090 module	6 FBEE	FZT6090	N/A	EUT
UP	2	PC	N/A	TP00067A	Input: DC 20V, 2.25-3.25A Output: 5VDC, 0.5A	Peripherals
Ś	3	Serial Port	N/A	N/A	USB to TTL	Peripherals
	4	Dupont Wire	N/A	Length: 0.1m	N/A	Peripherals
	5	Dupont Wire	N/A	Length: 0.1m	N/A	Peripherals

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use. 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

FICATION

3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interva
	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Feb. 17, 2023	1 Year
2.	L.I.S.N.	R&S	ENV216	HKE-059	Feb. 17, 2023	1 Year
3.	Receiver	R&S	ESR-7	HKE-010	Feb. 17, 2023	∋1 Year
4.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 17, 2023	1 Year
5.	Spectrum analyzer	R&S	FSP40	HKE-025	Feb. 17, 2023	1 Year
6.	Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 17, 2023	1 Year
7.	High gain antenna	Schwarzbeck	LB-180400KF	HKE-054	Feb. 17, 2023	1 Year
8.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Feb. 17, 2023	1 Year
9.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Feb. 17, 2023	1 Year
10.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Feb. 17, 2023	1 Year
11.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Feb. 17, 2023	1 Year
12.	Pre-amplifier	EMCI	EMC051845SE	HKE-015	Feb. 17, 2023	1 Year
13.	Pre-amplifier	Agilent	83051A	HKE-016	Feb. 17, 2023	1 Year
14.	High pass filter unit	Tonscend	JS0806-F	HKE-055	Feb. 17, 2023	1 Year
15.	Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	N/A	N/A
16.	Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A
17.	RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A
18.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 17, 2023	3 Year
19.	RF test software	Tonscend	JS1120-4	HKE-113	N/A	N/A
20.	RF test software	Tonscend	JS1120-3	HKE-114	N/A	N/A
21.	RF test software	Tonscend	JS1120-1	HKE-115	N/A	N/A
22.	Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 17, 2023	1 Year
23.	Signal generator	Agilent	N5182A	HKE-029	Feb. 17, 2023	1 Year
24.	Signal Generator	Agilent	83630A	HKE-028	Feb. 17, 2023	1 Year
25.	Power meter	Agilent	E4419B	HKE-085	Feb. 17, 2023	1 Year

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 13 of 43

Report No.: HK2307203147-1E

IJAK

26.	Power Sensor	Agilent	E9300A	HKE-086	Feb. 17, 2023	1 Year
27.	RF Cable(below1GHz)	Times	9kHz-1GHz	HKE-117	Feb. 17, 2023	1 Year
28.	RF Cable(above 1GHz)	Times	1-40G	HKE-034	Feb. 17, 2023	1 Year
29.	RF Cable (9KHz-40GHz)	Tonscend	170660	N/A	Feb. 17, 2023	1 Year
30.	Shielded room	Shiel Hong	4*3*3	HKE-039	[©] Dec. 09, 2021	3 Year
31.	10dB Attenuator	Schwarzbeck	VTSD9561F	HKE-153	Feb. 17, 2023	1 Year

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

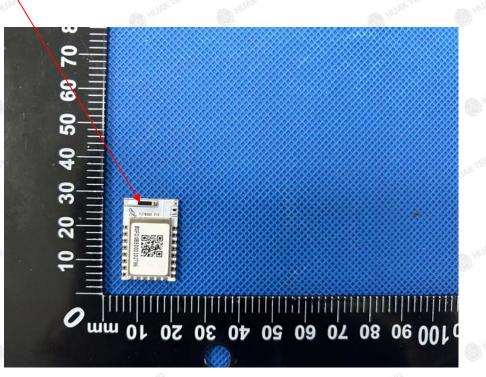
4 TEST RESULT

4.1 ANTENNA REQUIREMENT

4.1.1 Standard requirement

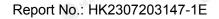
Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.


Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction


The antenna used in this product is a Ceramic Antenna, which permanently attached. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 3.53dBi.

4.1.2 EUT Antenna

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

NG

K

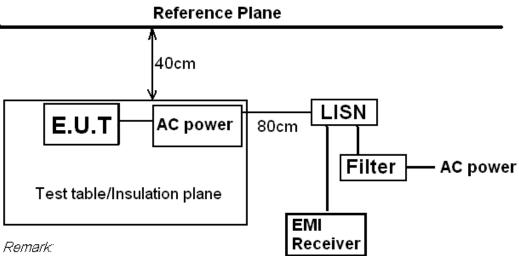
HUAK TESTING Page 15 of 43 4.2 CONDUCTION EMISSIONS MEASUREMENT

4.2.1 Applied procedures / Limit

According to FCC CFR Title 47 Part 15 Subpart C Section 15.207, AC Power Line Conducted Emissions Limits for Licence-Exempt Radio Apparatus as below:

Must reside	HUANTSTRU	Limi	t (dBuV)
Frequency range (MF	12)	Quasi-peak	Average
0.15-0.5	WAKTESTIN	66 to 56*	56 to 46*
0.5-5	0	56	46
5-30	W TESTING	60	50

* Decreases with the logarithm of the frequency.


4.2.2 Test procedure

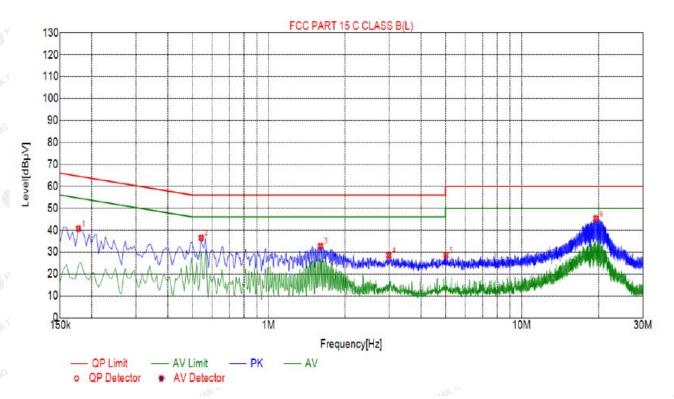
- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.2.3 Test setup

Remark. E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

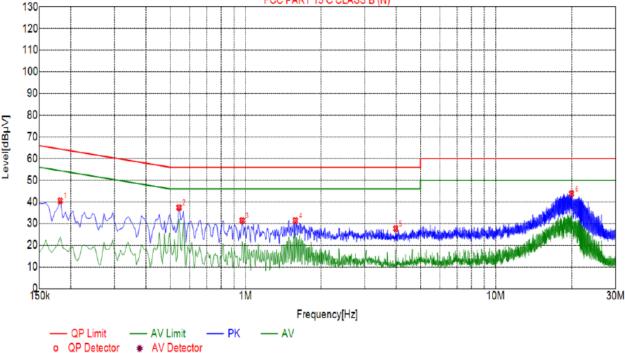
4.2.4 Test results

Remark: All modes were test at Low, Middle, and High channel; only the worst result of Low Channel: 2405MHz was reported as below:

Test Specification: Line

	Sus	spected	l List						
10	NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре
4	1	0.1770	40.67	20.05	64.63	23.96	20.62	PK	L
2	2	0.5415	36.44	20.05	56.00	19.56	16.39	PK	L
	3	1.6035	32.83	20.11	56.00	23.17	12.72	PK	L
3	4	2.9850	28.54	20.22	56.00	27.46	8.32	PK	L
	5	5.0235	28.59	20.26	60.00	31.41	8.33	PK	L
	6	19.5405	45.29	20.08	60.00	14.71	25.21	PK	L

Remark: Margin = Limit – Level Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Test Specification: Neutral

FCC PART 15 C CLASS B (N)

Sus	spected	l List						
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре
1	0.1815	40.50	20.06	64.42	23.92	20.44	PK	N
2	0.5415	37.40	20.05	56.00	18.60	17.35	PK	N
3	0.9690	31.41	20.06	56.00	24.59	11.35	PK	N
4	1.5810	31.43	20.11	56.00	24.57	11.32	PK	N
5	3.9795	27.67	20.25	56.00	28.33	7.42	PK	N
6	19.9635	43.79	20.10	60.00	16.21	23.69	PK	N

Remark: Margin = Limit – Level

Correction factor = Cable lose + LISN insertion loss

Level=Test receiver reading + correction factor

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

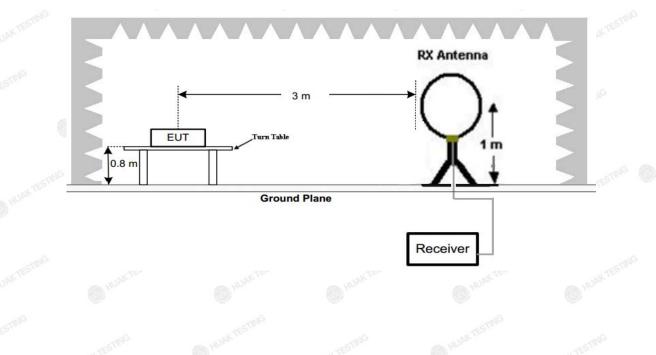
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.3 RADIATED EMISSIONS MEASUREMENT

4.3.1 Applied procedures / Limit

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

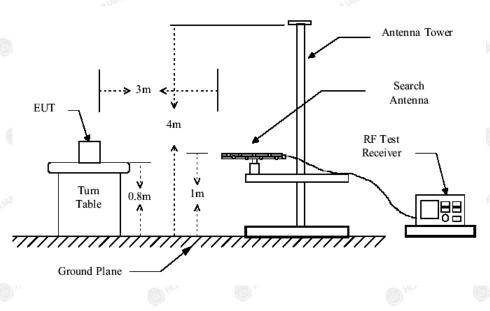

Except when the requirements applicable to a given device state otherwise, emissions from license-exempt transmitters shall comply with the field strength limits shown in table below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

N	KTEL HUAK	Radi	ated emission limits	HUAK
	Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
	0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
	0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
É	1.705-30	3	20log(30)+ 40log(30/3)	30
	30-88	3	40.0	100
116	88-216	3 STAR	43.5	150
	216-960	3	46.0	200
	Above 960	3	54.0	500
_	Country P		N.S. W.	A SUBJECT OF

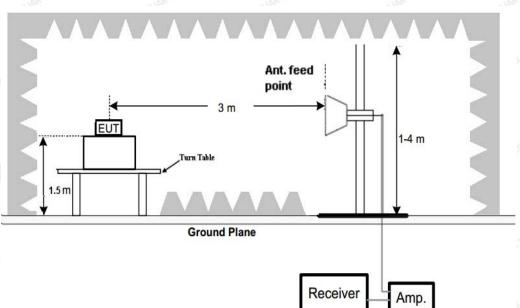
4.3.2 Test setup

Test Configuration:

1) 9 kHz to 30 MHz emissions:



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com


TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 20 of 43

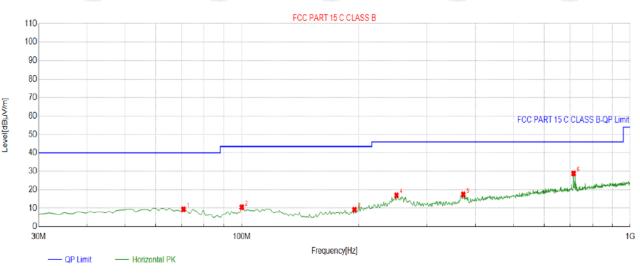
3) 1 GHz to 25 GHz emissions:

Test Procedure

- 1. The EUT was placed on turn table which is 0.8m above ground plane for below 1GHz test, and on a low permittivity and low loss tangent turn table which is 1.5m above ground plane for above 1GHz test.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° C to 360° C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com



4.3.3 Test Result

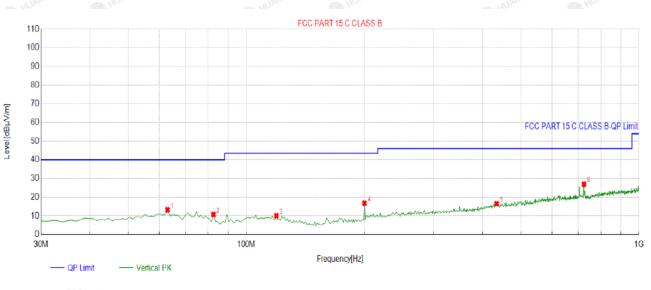
Remark: All modes were test at Low, Middle, and High channel; only the worst result of Low Channel: 2405MHz was reported as below:

Below 1GHz Test Results:

Antenna polarity: H

QP Detector

	NK TEN			NKT .		(35)		ax Ten	100
Suspe	cted List								
NO.	Freq. [MHz]	Factor [dB]	Reading [dBµV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	70.7808	-16.20	25.57	9.37	40.00	30.63	100	184	Horizontal
2	99.9099	-15.13	25.58	10.45	43.50	33.05	100	132	Horizontal
3	195.0651	-16.60	25.78	9.18	43.50	34.32	100	323	Horizontal
4	250.4104	-13.13	30.13	17.00	46.00	29.00	100	3	Horizontal
5	371.7818	-10.98	28.42	17.44	46.00	28.56	100	265	Horizontal
6	714.5345	-3.57	32.42	28.85	46.00	17.15	100	358	Horizontal


Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Antenna polarity: V

QP Detector

	Suspe	ected List									
8		Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Delerity	
	NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
	1	63.0130	-14.39	27.58	13.19	40.00	26.81	100	323	Vertical	7
2	2	82.4324	-17.57	28.27	10.70	40.00	29.30	100	252	Vertical	6
	3	119.3293	-15.50	25.54	10.04	43.50	33.46	100	103	Vertical	
8	4	199.9199	-15.27	32.11	16.84	43.50	26.66	100	118	Vertical	
	5	433.9239	-8.21	24.74	16.53	46.00	29.47	100	37	Vertical	(P)
	6	724.2442	-3.48	30.47	26.99	46.00	19.01	100	129	Vertical	

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

Harmonics and Spurious Emissions

Frequency Range (9 kHz-30MHz)

-			
G	Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
	100	ESTIN"	unit restrict
	MAKTESI Otto	"INI ^{TESI}	I MARTESIN
	- · ·		
	- AV TEST		EST.

Note: 1. Emission Level=Reading+ Cable loss+ Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

C al

For 1GHz to 25GHz

CH Low (2405MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	dB)	Туре
4810	58.53	-3.65	54.88	74.00	-19.12	peak
4810	37.85	-3.65	34.20	54.00	-19.80	AVG
7215	56.87	-0.95	55.92	74.00	-18.08	peak
7215	36.69	-0.95	35.74	54.00	-18.26	AVG

Vertical:

Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
57.53	-3.65	53.88	74.00	-20.12	peak
37.83	-3.65	34.18	54.00	-19.82	AVG
57.55	-0.95	56.60	74.00	-17.40	peak
35.76	-0.95	34.81	54.00	-19.19	AVG
	Reading (dBµV) 57.53 37.83 57.55	Reading Factor (dBµV) (dB) 57.53 -3.65 37.83 -3.65 57.55 -0.95	Reading Factor Emission Level (dBµV) (dB) (dBµV/m) 57.53 -3.65 53.88 37.83 -3.65 34.18 57.55 -0.95 56.60	Reading Factor Emission Level Limits (dBμV) (dB) (dBμV/m) (dBμV/m) 57.53 -3.65 53.88 74.00 37.83 -3.65 34.18 54.00 57.55 -0.95 56.60 74.00	Reading Factor Emission Level Limits Margin (dBμV) (dB) (dBμV/m) (dBμV/m) (dB) 57.53 -3.65 53.88 74.00 -20.12 37.83 -3.65 34.18 54.00 -19.82 57.55 -0.95 56.60 74.00 -17.40

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

FICATION

CH Middle (2445MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4890	57.04	-3.54	53.50	74.00	-20.50	peak
4890	37.21	-3.54	33.67	54.00	-20.33	AVG
7335	56.31	-0.81	55.50	74.00	-18.50	peak
7335	36.15	-0.81	35.34	54.00	-18.66	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level · Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4890	58.91	-3.54	55.37	74.00	-18.63	peak
4890	39.20	-3.54	35.66	54.00	-18.34	AVG
7335	56.46	-0.81	55.65	74.00	-18.35	peak
7335	36.70	-0.81	35.89		-18.11	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

CH High (2480MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4960	56.81	-3.43	53.38	74.00	-20.62	peak
4960	37.84	-3.44	34.40	54.00	-19.60	AVG
7440	55.86	-0.77	55.09	74.00	-18.91	peak
7440	37.19	-0.77	36.42	54.00	-17.58	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4960	56.95	-3.43	53.52	74.00	-20.48	peak
4960	37.79	-3.44	34.35	54.00	-19.65	AVG
7440	57.08	-0.77	56.31	74.00	-17.69	peak
7440	35.12	-0.77	34.35	54.00	-19.65	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Remark:

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

(7) All modes of operation were investigated and the worst-case emissions are reported.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Radiated Band Edge Test:

Operation Mode: TX CH Low (2405MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310.00	54.02	-5.81	48.21	74	-25.79	peak
2310.00	/	-5.81	1	54	1	AVG
2390.00	56.38	-5.84	50.54	74	-23.46	peak
2390.00	1	-5.84	1 m	54	HUM /	AVG
2400.00	55.01	-5.84	49.17	74	-24.83	peak
2400.00	W TEL TING	-5.84	5 ¹⁴⁶ / 15	^{NG} 54	TESTING	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level · Limit

Vertical:

~		MG	~	MG		
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310.00	55.02	-5.81	49.21	74	-24.79	peak
2310.00	STING	-5.81	NG I	54	STAL	AVG
2390.00	56.34	-5.84	50.5	74	-23.5	peak
2390.00	/	-5.84	1	54	TING 1	AVG
2400.00	55.97	-5.84	50.13	74	-23.87	peak
2400.00	1	-5.84		54	1 0	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 27 of 43

Operation Mode: TX CH High (2480MHz)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.50	54.62	-5.81	48.81	74	-25.19	peak
2483.50	TESTING /	-5.81	/ TESTING	54	/	AVG
2500.00	56.38	-6.06	50.32	74	-23.68	peak
2500.00	1	-6.06	/	54	1	AVG

Horizontal

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.50	54.79	-5.81	48.98	74	-25.02	peak
2483.50	/	-5.81	1	54 mm	1	AVG
2500.00	55.36	-6.06	49.3	74	-24.7	peak
2500.00	HUAN	-6.06	(1) HURA	54	HUAK	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

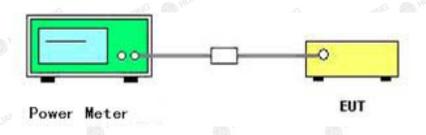
TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Report No.: HK2307203147-1E

4.4.1 Limit

The Maximum Peak Output Power Measurement is 30dBm.

4.4.2 Test procedure


The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

The maximum Average conducted output power may be measured using a wideband RF power meter with a thermocouple detector or equivalent. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

4.4.3 Deviation from standard

No deviation.

4.4.4 Test setup

4.4.5 Test results

Channel	Channel frequency (MHz)	Output power (dBm)	Limit (dBm)	Result
Low	2405	-10.77	O HUM	Pass
Middle	2445	-7.67	30	Pass
High	2480	-8.15	WIAK TESTING	Pass

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.5 POWER SPECTRAL DENSITY

4.5.1 Limit

HUAK TESTING

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

4.5.2 Test procedure

Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.

Set the RBW =10 kHz.

Set the VBW =30 KHz.

Set the span to 1.5 times the DTS channel bandwidth.

Detector = peak.

Sweep time = auto couple.

Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum power level. If measured value exceeds limit, reduce RBW(no less than 3 kHz)and repeat.

The resulting peak PSD level must be 8 dBm.

4.5.3 Deviation from standard

No deviation.

4.5.4 Test setup

EUT

SPECTRUM ANALYZER

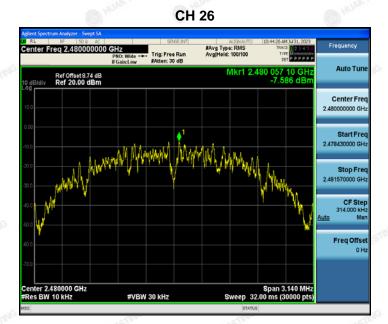
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

FICATION

4.5.5 Test results

Channe	Channel frequency (MHz)	Level (dBm/10KHz)	10log (3/10)	Power Spectral Density(dBm/ 3KHz)	Limit (dBm/3 KHz)	Result
Low	2405	-7.69	-5.23	-12.92	0	Pass
Middle	2445	-6.99	-5.23	-12.22	8.00	Pass
High	2480	-7.59	-5.23	-12.82		Pass



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

IJAK

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.6 6DB BANDWIDTH

4.6.1 Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

4.6.2 Test procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=100 KHz and VBW=300KHz. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

- 1. Set RBW = 100 kHz.
- Set the video bandwidth (VBW) ≥ 3 RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.6.3 Deviation from standard

No deviation.

4.6.4 Test setup

4.6.5 Test result

Channel	Channel frequency (MHz)	6dB Bandwidth (MHz)	Limit (KHz)	Result
Low	2405	1.410		Pass
Middle	2445	1.490	≥500	Pass
High	2480	1.570	<u> </u>	Pass

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com


Page 33 of 43

Report No.: HK2307203147-1E

NG

IK.

PB

CH 19

CH 26

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.7 OCCUPIED BANDWIDTH

4.7.1 Test procedure

HUAK TESTING

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

RBW=1% to 5% of the OBW

VBW=approximately 3 X RBW

Detector=Peak

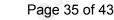
Trace Mode: Max Hold

Use the 99% power bandwidth function of the instrument to measure the Occupied Bandwidth and recorded.

4.7.2 Deviation from standard

No deviation.

4.7.3 Test setup



4.7.4 Test result

N/A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

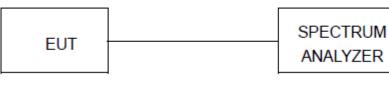
TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.8 BAND EDGE

HUAK TESTING

4.8.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under FCC rules in section 5.8.1, the attenuation required shall be 30 dB instead of 20 dB.

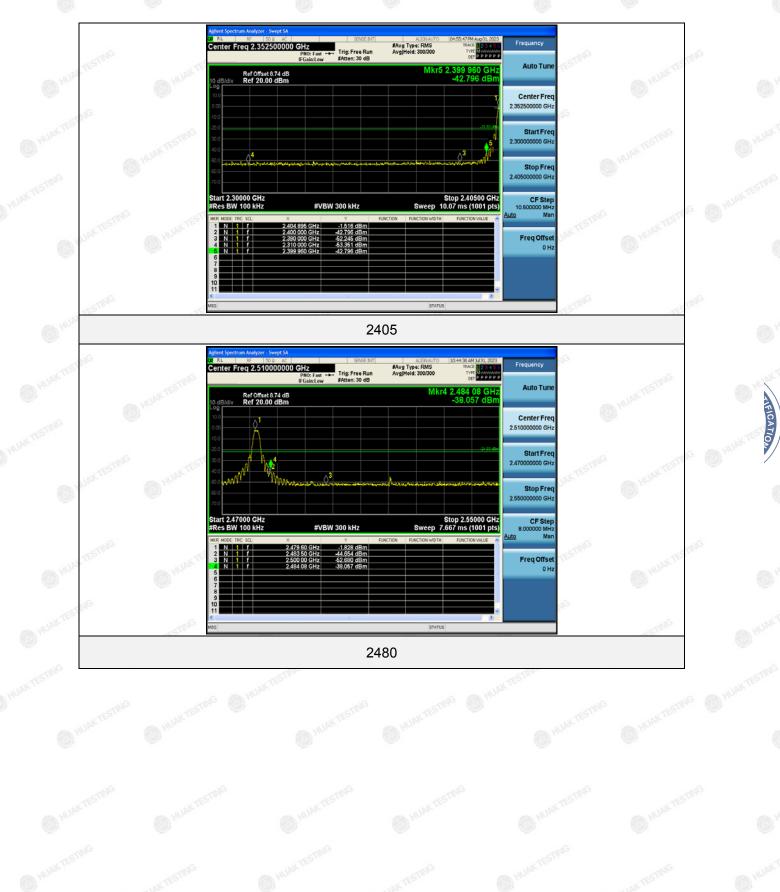

4.8.2 Test procedure

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation, RBW ≥ 1% of the span, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold

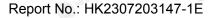
4.8.3 Deviation from standard

No deviation.

4.8.4 Test setup


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com


4.8.5 Test results

PASS

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.9 CONDUCTED SPURIOUS EMISSIONS

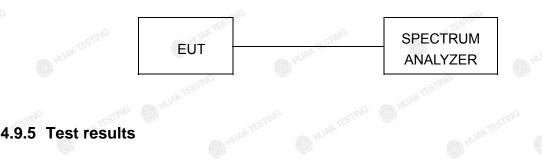
4.9.1 Applied procedures / Limit

HUAK TESTING

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section (b)(3) of RSS 5.4(4), the attenuation required shall be 30 dB instead of 20 dB.

For below 30MHz,For 9KHz-150kHz,150K-10MHz,We use the RBW 1KHz,10KHz, So the limit need to calculated by "10lg(BW1/BW2)". for example For9KHz-150kHz,RBW 1KHz, The Limit= the highest emission level-20-10log(100/1)= the highest emission level-40.

4.9.2 Test procedure


a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

b.Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation, $RBW \ge 1\%$ of the span, $VBW \ge RBW$, Sweep = auto, Detector function = peak, Trace = max hold

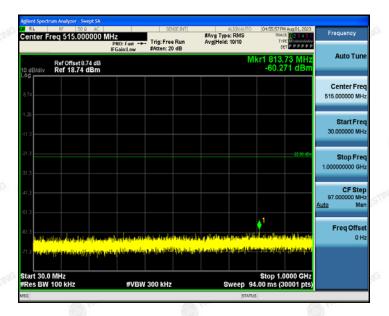
4.9.3 Deviation from standard

No deviation.

4.9.4 Test setup

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com



Page 38 of 43

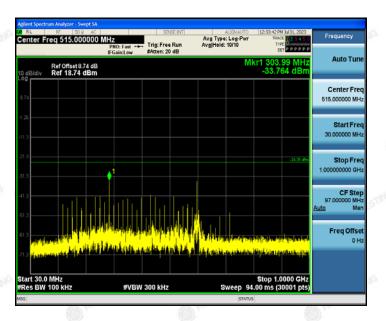
Report No.: HK2307203147-1E

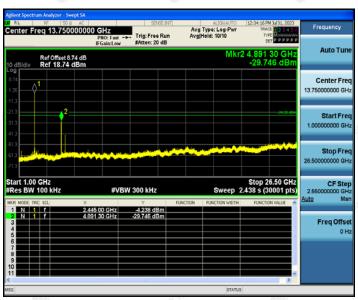
RL RF 50 R AC enter Freq 13.75000000	0 GHz PNO: Fast	Trig: Free Run #Atten: 20 dB	#Avg Typ- Avg Hold:		04:56:31PM TRACE TYPE DE	123456 M	Frequency
Ref Offset 8.74 dB				Mkr2	25.983 -49.30	20 GHz 19 dBm	Auto Tu
3 3							Center Fr 13.750000000 G
3						-22 98 48-	Start Fr 1.000000000 G
	~~~~~						
art 1.00 GHz tes BW 100 kHz	#VB1	W 300 kHz		Sweep 2			Stop Fr 26.50000000 G CF St 2.55000000 G <u>Auto</u> N
N 1 f 2.4	#VB\ 05.05.05.GHz 33.20.GHz	W 300 kHz		<u> </u>	.438 s (30	1001 pts)	26.50000000 G CF St 2.55000000 G

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com




## Page 39 of 43


#### Report No.: HK2307203147-1E

TIN









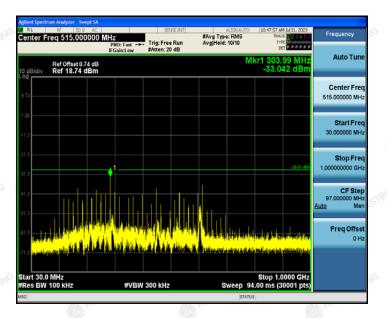
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

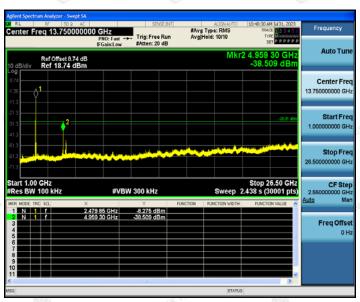
TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com



## Page 40 of 43

#### Report No.: HK2307203147-1E


Ç,


B:O

*

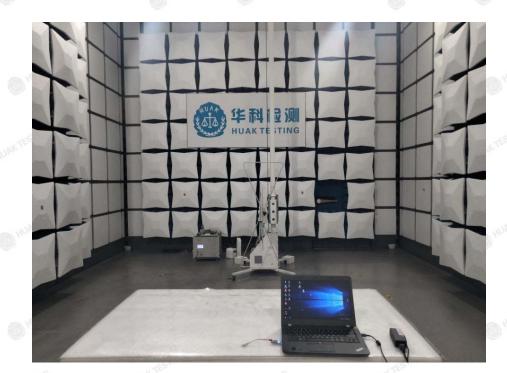








The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com



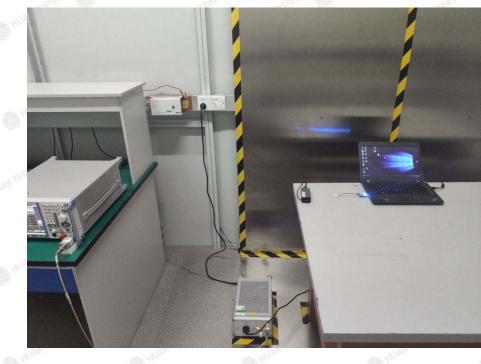
Page 41 of 43

ГI VA

Radiated Emissions






The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com



Page 42 of 43

Conducted Emission



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com/

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com



EICATIO.

# 6 PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

----End of test report-----

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com