

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

FCC ID.....: 2BB7I-TST1C

Compiled by

(position+printed name+signature)... File administrators Zoey Cao

Supervised by

(position+printed name+signature)... Project Engineer Amy Wen

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... Shenzhen Dana Intelligent Equipment Co., Ltd

Room 703, Block A, Building 12, Shenzhen Bay Science and

CTATESTIN'

Address Technology Ecological Park, Nanshan District, Shenzhen City,

China

Test specification:

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Equipment description...... Tennis training machine

Trade Mark DANA 大拿智能

Manufacturer Shenzhen Dana Intelligent Equipment Co., Ltd

Model/Type reference.....TST1C

Listed ModelsTST2C

Modulation: GFSK

Frequency...... From 2402MHz to 2480MHz

Result.....PASS

Report No.: CTA23062000801 Page 2 of 41

TEST REPORT

Equipment under Test Tennis training machine

Model /Type TST1C

Listed Models TST2C

Shenzhen Dana Intelligent Equipment Co., Ltd **Applicant**

Room 703, Block A, Building 12, Shenzhen Bay Science and Technology Address

Ecological Park, Nanshan District, Shenzhen City, China

Manufacturer Shenzhen Dana Intelligent Equipment Co., Ltd

Room 703, Block A, Building 12, Shenzhen Bay Science and Technology Address

Ecological Park, Nanshan District, Shenzhen City, China

CTA	Test Result:	TESTING	PASS
		. 71 100	- 11 7

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory. CTATESTING

Page 3 of 41 Report No.: CTA23062000801

Contents

		TEST STANDARDS		
		Col	ntents	
		TA	TING	
	(SVA)	TEGT OTANDARDO TES		
	The state of the s	TEST STANDARDS		<u>4</u>
	<u>2</u>	SUMMARY		<u>5</u>
	2.1	General Remarks		5
	2.2	Product Description		5 5 5 5
	2.3	Equipment Under Test		5
	2.4	Short description of the Equipment unde	r Test (EUT)	5
	2.5	EUT operation mode		6
	2.6	Block Diagram of Test Setup		6
2	2.7	Related Submittal(s) / Grant (s)		6
	2.8	Modifications		6
		Con C.	STILL	
	•	TECT ENVIRONMENT	TATES	46
	<u>3</u>	TEST ENVIRONMENT		<u></u>
				LES.
	3.1	Address of the test laboratory	CTA	7
	3.2	Test Facility	CTA:	7
	3.3	Environmental conditions		7
	3.4	Summary of measurement results		8
	3.5	Statement of the measurement uncertain	ty	8
	3.6	Equipments Used during the Test		9
		TATES		
	1	TEST CONDITIONS AND RESU	LTS	10
	4	TEST CONDITIONS AND RESO		10
		CTA.	CTATESTING	
	4.1	AC Power Conducted Emission	TES!	10
	4.2	Radiated Emissions and Band Edge		13
	4.3	Maximum Peak Output Power	Court Ci	20
	4.4	Power Spectral Density		21
	4.5	6dB Bandwidth		23
	4.6	Out-of-band Emissions		25
	4.7	Antenna Requirement		29
	9.			
CTATE	<u>5</u>	TEST SETUP PHOTOS OF THE	EUT	30
	<u>6</u>	PHOTOS OF THE EUT	TESTING	31
			CTATES!	LES!
			CIL	

Report No.: CTA23062000801 Page 4 of 41

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices CTATE KDB558074 D01 V05r02: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 CTATESTING

Page 5 of 41 Report No.: CTA23062000801

SUMMARY

General Remarks

CIATES			
2.1 General Remarks			
Date of receipt of test sample	TO THE	Jun. 20, 2023	TESTING
Testing commenced on		Jun. 20, 2023	CTA
Testing concluded on	:	Jul. 20, 2023	HE TO THE STATE OF

2.2 Product Description

Testing commenced on	: Jun. 20, 2023
Testing concluded on	: Jul. 20, 2023
2.2 Product Descript	otion
Product Description:	Tennis training machine
Model/Type reference:	TST1C
Power supply:	DC 25.2V From Battery and DC 25.2V From external circuit
Adapter information:	Model: BYX6-25205000 Input: AC 100-240V 50/60Hz Output: DC 25.2V 5A
Hardware version:	V1.0
Software version:	V1.0
Testing sample ID:	CTA230620008-1# (Engineer sample) CTA230620008-2# (Normal sample)
Bluetooth BLE	
Supported type:	Bluetooth low Energy
Modulation:	GFSK
Operation frequency:	2402MHz to 2480MHz
Channel number:	40
Channel separation:	2 MHz
Antenna type:	Internal antenna
Antenna gain:	1.32 dBi

2.3 Equipment Under Test

Power supply system utilised

Power supply system u				STING		
Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz	TING
		0	12 V DC	0	24 V DC	TES
		•	Other (specified in blan	k below) Status	CAR

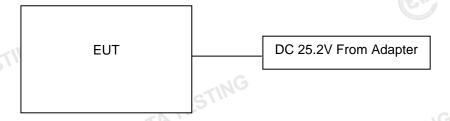
DC 25.2V From Battery and DC 25.2V From external circuit

Short description of the Equipment under Test (EUT)

This is a Tennis training machine.

For more details, refer to the user's manual of the EUT. CTATES!

Report No.: CTA23062000801 Page 6 of 41


2.5 **EUT** operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test.

Operation Frequency:

Frequency (MHz)			
2402			
2404			
2406			
÷			
2440			
.s.lG			
2476			
2478			
2480			

2.6 Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 Modifications

No modifications were implemented to meet testing criteria.

Page 7 of 41 Report No.: CTA23062000801

3 TEST ENVIRONMENT

Address of the test laboratory 3.1

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

Environmental conditions

During the measurement the environmental conditions were within the listed ranges: CTATESTING Radiated Emission:

Temperature:	Colt	23 ° C	
Humidity:	The same of the sa	44 %	
Atmospheric pressure:		950-1050mbar	

AC Main Conducted testing: CTATES

to Main Conducted testing.	
Temperature:	24 ° C
	. C.
Humidity:	47 %
TE	9.
Atmospheric pressure:	950-1050mbar

Conducted testing:

on addition rooming.	10:30
Temperature:	24 ° C
Humidity:	46 %
Atmospheric pressure:	950-1050mbar
CTATESTING	TATESTING

Page 8 of 41 Report No.: CTA23062000801

Summary of measurement results

	Test Specification clause	Test case	Test Mode	Test Channel		ecorded Report	Test result
	§15.247(e)	Power spectral density	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
	§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
-6	§15.247(b)(3)	Maximum output Peak power	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
CTATE	§15.247(d)	Band edge compliance conducted	BLE 1Mpbs		BLE 1Mpbs	✓ Lowest✓ Highest	complies
,	§15.205	Band edge compliance radiated	BLE 1Mpbs	☑ Lowest☑ Highest	BLE 1Mpbs	☑ Lowest☑ Highest	complies
	§15.247(d)	TX spurious emissions conducted	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
G	§15.247(d)	TX spurious emissions radiated	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
	§15.209(a)	TX spurious Emissions radiated Below 1GHz	BLE 1Mpbs	-/-	BLE 1Mpbs	-/-	complies
	§15.107(a) §15.207	Conducted Emissions < 30 MHz	BLE 1Mpbs	ING -/-	BLE 1Mpbs	-/-	complies

Remark:

- The measurement uncertainty is not included in the test result.
- 2. We tested all test mode and recorded worst case in report

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

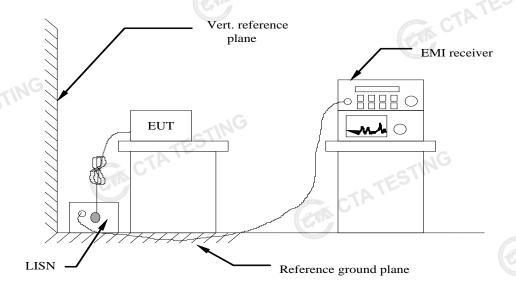
Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% CTATESTING confidence level using a coverage factor of k=2.

Page 9 of 41 Report No.: CTA23062000801

3.6 Equipments Used during the Test


	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2022/08/03	2023/08/0
	LISN	R&S	ENV216	CTA-314	2022/08/03	2023/08/0
	EMI Test Receiver	R&S	ESPI	CTA-307	2022/08/03	2023/08/0
TE	EMI Test Receiver	R&S	ESCI	CTA-306	2022/08/03	2023/08/
, ,	Spectrum Analyzer	Agilent	N9020A	CTA-301	2022/08/03	2023/08/
	Spectrum Analyzer	R&S	FSP	CTA-337	2022/08/03	2023/08/
	Vector Signal generator	Agilent	N5182A	CTA-305	2022/08/03	2023/08/
	Analog Signal Generator	R&S	SML03	CTA-304	2022/08/03	2023/08/
	Universal Radio Communication	CMW500	R&S	CTA-302	2022/08/03	2023/08/
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2022/08/03	2023/08/
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2021/08/07	2024/08/
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2024/08/
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2024/08/
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2022/08/03	2023/08/
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2022/08/03	2023/08/
	Directional coupler	NARDA	4226-10	CTA-303	2022/08/03	2023/08/
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2022/08/03	2023/08/
TE	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2022/08/03	2023/08/
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2022/08/03	2023/08/
	Power Sensor	Agilent	U2021XA	CTA-405	2022/08/03	2023/08/
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2022/08/03	2023/08/
			(cm)		CIN CT	ATEST

Page 10 of 41 Report No.: CTA23062000801

TEST CONDITIONS AND RESULTS

AC Power Conducted Emission

TEST CONFIGURATION

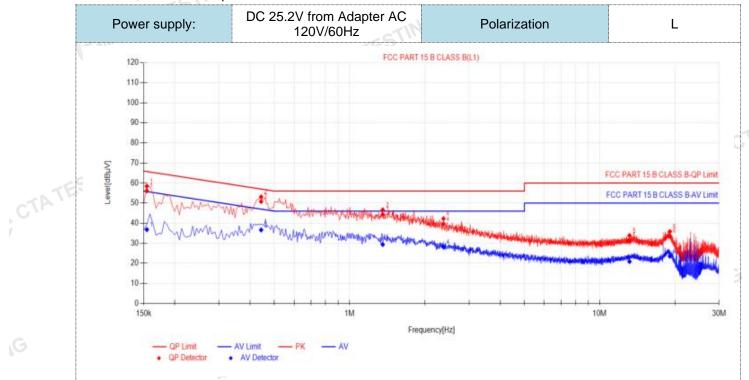
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limit (c	lBuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* Decreases with the logarithm of the frequen	ncy.	

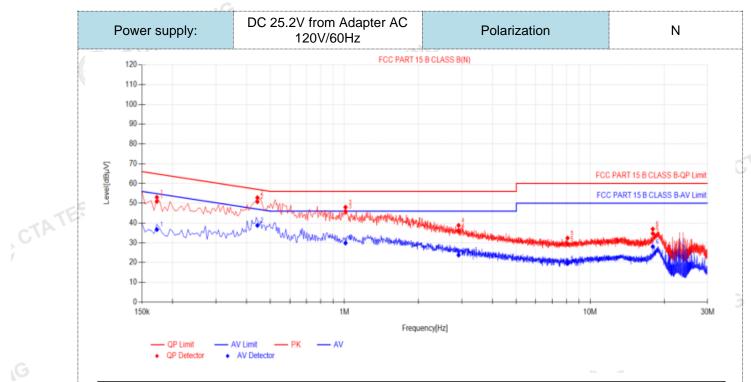

TEST RESULTS

Remark:

1. BLE 1Mpbs was tested at Low, Middle, and High channel; only the worst result of BLE 1Mpbs High channel was reported as below:

Page 11 of 41 Report No.: CTA23062000801

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:


Fina	l Data Lis	t									
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	AV Reading [dBµV]	ΑV Value [dBμV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict
1	0.1545	10.50	45.63	56.13	65.75	9.62	26.32	36.82	55.75	18.93	PASS
2	0.4425	10.50	40.31	50.81	57.01	6.20	26.12	36.62	47.01	10.39	PASS
3	1.356	10.50	33.85	44.35	56.00	11.65	18.88	29.38	46.00	16.62	PASS
4	2.373	10.50	29.17	39.67	56.00	16.33	17.64	28.14	46.00	17.86	PASS
5	13.155	10.50	20.96	31.46	60.00	28.54	10.41	20.91	50.00	29.09	PASS
6	19.0815	10.50	23.19	33.69	60.00	26.31	13.07	23.57	50.00	26.43	PASS

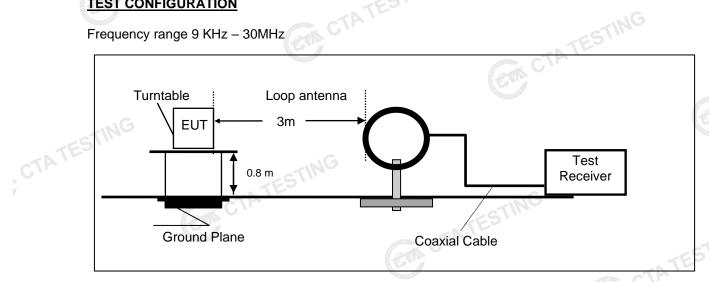
Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
- GM CTATESTING 4). $AVMargin(dB) = AV Limit (dB\mu V) - AV Value (dB\mu V)$

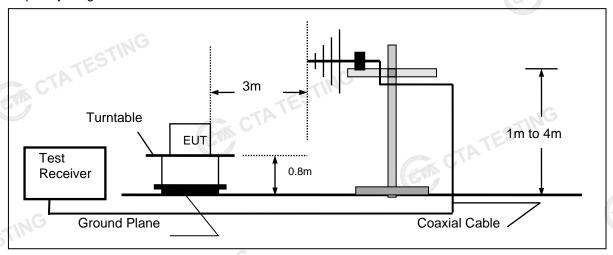
CTA TESTING

Report No.: CTA23062000801 Page 12 of 41

NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	ΑV Reading [dBμV]	AV Value [dBµV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict	
1	0.1725	10.50	40.44	50.94	64.84	13.90	26.20	36.70	54.84	18.14	PASS	
2	0.4425	10.50	40.26	50.76	57.01	6.25	28.30	38.80	47.01	8.21	PASS	
3	1.0095	10.50	35.43	45.93	56.00	10.07	19.38	29.88	46.00	16.12	PASS	
4	2.913	10.50	25.65	36.15	56.00	19.85	13.30	23.80	46.00	22.20	PASS	
5	8.0835	10.50	19.02	29.52	60.00	30.48	9.03	19.53	50.00	30.47	PASS	
6	17.9655	10.50	24.19	34.69	60.00	25.31	17.58	28.08	50.00	21.92	PASS	
6 17.9655 10.50 24.19 34.69 60.00 25.31 17.58 28.08 50.00 21.92 PASS te:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB)												

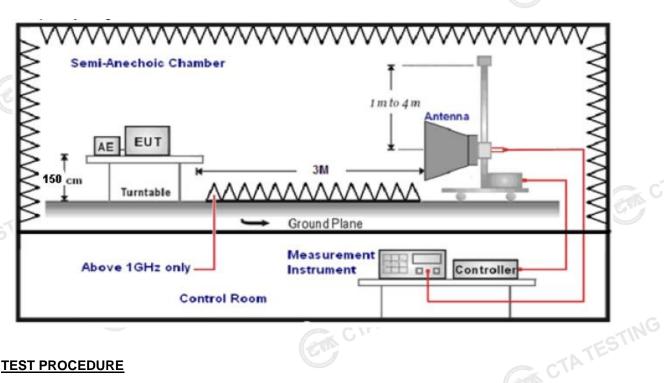

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$ CTATESTING

Report No.: CTA23062000801 Page 13 of 41


Radiated Emissions and Band Edge

TEST CONFIGURATION

Frequency range 9 KHz – 30MHz



Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Page 14 of 41 Report No.: CTA23062000801

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.

6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
Const.	Peak Value: RBW=1MHz/VBW=3MHz,	TING
1GHz-40GHz	Sweep time=Auto	Peak
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,	Peak
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

le calculation is as follows:	
RA + AF + CL - AG	
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	(37A)

Page 15 of 41 Report No.: CTA23062000801

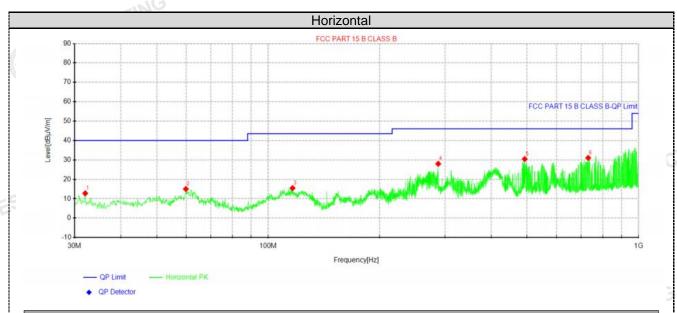
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500


TEST RESULTS

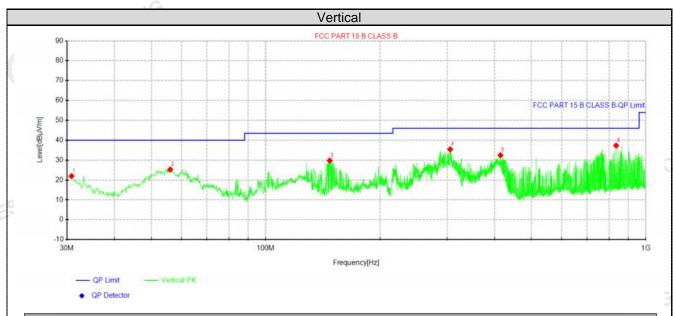
Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- 2. BLE 1Mpbs were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report. CTATESTING

For 30MHz-1GHz

Report No.: CTA23062000801 Page 16 of 41

Suspe	ected Data	List								
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolorita	
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	32.0612	31.15	12.76	-18.39	40.00	27.24	100	251	Horizontal	
2	59.9488	33.19	14.99	-18.20	40.00	25.01	100	242	Horizontal	
3	116.33	35.23	15.47	-19.76	43.50	28.03	100	242	Horizontal	
4	287.777	45.54	28.00	-17.54	46.00	18.00	100	199	Horizontal	
5	492.568	44.87	30.43	-14.44	46.00	15.57	100	199	Horizontal	
6	731.067	42.15	31.03	-11.12	46.00	14.97	100	199	Horizontal	


TATE

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTATESTING

Report No.: CTA23062000801 Page 17 of 41

1	Suspe	ected Data	List								
	NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity	
	NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Folarity	
	1	30.8488	40.59	21.98	-18.61	40.00	18.02	100	299	Vertical	
	2	56.0688	42.66	25.30	-17.36	40.00	14.70	100	264	Vertical	
	3	147.37	51.55	29.78	-21.77	43.50	13.72	100	248	Vertical	
	4	305.722	52.70	35.43	-17.27	46.00	10.57	100	350	Vertical	
	5	414.483	47.85	32.44	-15.41	46.00	13.56	100	357	Vertical	
	6	835.463	47.47	37.31	-10.16	46.00	8.69	100	255	Vertical	

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTATESTING

Page 18 of 41 Report No.: CTA23062000801

For 1GHz to 25GHz

GFSK (above 1GHz)

Frequency(MHz):			2402		Polarity:		HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	62.08	PK	74	11.92	66.35	32.33	5.12	41.72	-4.27	
4804.00	44.72	AV	54	9.28	48.99	32.33	5.12	41.72	-4.27	
7206.00	52.56	PK	74	21.44	53.08	36.6	6.49	43.61	-0.52	
7206.00	42.77	AV	54	11.23	43.29	36.6	6.49	43.61	-0.52	

Freque	ncy(MHz)	:	24	02	Pola	Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	60.18	PK	74	13.82	64.45	32.33	5.12	41.72	-4.27	
4804.00	42.43	AV	54	11.57	46.70	32.33	5.12	41.72	-4.27	
7206.00	50.69	PK	74	23.31	51.21	36.6	6.49	43.61	-0.52	
7206.00	40.38	AV	54	13.62	40.90	36.6	6.49	43.61	-0.52	

				- VA					
Freque	ncy(MHz)):	24	40	Polarity: HORIZONTAL			۸L	
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	61.73	PK	74	12.27	65.61	32.6	5.34	41.82	-3.88
4880.00	44.18	AV	54	9.82	48.06	32.6	5.34	41.82	-3.88
7320.00	52.30	PK	74	21.70	52.41	36.8	6.81	43.72	-0.11
7320.00	42.16	AV	54	11.84	42.27	36.8	6.81	43.72	-0.11

The Management of the Control of the				P			-IN	G	
Freque	Frequency(MHz):		2440		Polarity:		VERTICAL		•
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	59.97	PK	74	14.03	63.85	32.6	5.34	41.82	-3.88
4880.00	42.31	AV	54	11.69	46.19	32.6	5.34	41.82	-3.88
7320.00	51.94	PK	74	22.06	52.05	36.8	6.81	43.72	-0.11
7320.00	40.38	AV	54	13.62	40.49	36.8	6.81	43.72	-0.11
	•	•	-GTIN						

Frequency(MHz):			2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	61.19	PK	74	12.81	64.27	32.73	5.66	41.47	-3.08
4960.00	44.14	AV	54	9.86	47.22	32.73	5.66	41.47	-3.08
7440.00	52.64	PK	74	21.36	52.19	37.04	7.25	43.84	0.45
7440.00	42.99	PK	54	11.01	42.54	37.04	7.25	43.84	0.45

Frequency(MHz):		2480		Polarity:		VERTICAL			
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	58.78	PK	74	15.22	61.86	32.73	5.66	41.47	-3.08
4960.00	43.53	AV	54	10.47	46.61	32.73	5.66	41.47	-3.08
7440.00	52.49	PK	74	21.51	52.04	37.04	7.25	43.84	0.45
7440.00	41.60	PK	54	12.40	41.15	37.04	7.25	43.84	0.45

REMARKS:

Page 19 of 41 Report No.: CTA23062000801

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

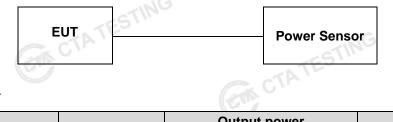
Frequer	Frequency(MHz):		24	02	Pola	Polarity:		HORIZONTAL			
Frequency (MHz)	Emis Lev (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
2390.00	61.86	PK	74	12.14	72.28	27.42	4.31	42.15	-10.42		
2390.00	43.57	AV	54	10.43	53.99	27.42	4.31	42.15	-10.42		
Frequer	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	-		
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
2390.00	59.59	PK	74	14.41	70.01	27.42	4.31	42.15	-10.42		
2390.00	40.73	AV	54	13.27	51.15	27.42	4.31	42.15	-10.42		
Frequer	Frequency(MHz):		24	80	P olarity:		HORIZONTAL		AL		
Frequency (MHz)	Emis Lev (dBu)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
2483.50	61.32	PK	74	12.68	71.43	27.7	4.47	42.28	-10.11		
2483.50	44.37	AV	54	9.63	54.48	27.7	4.47	42.28	-10.11		
Frequer	ncy(MHz)	:	2480		Polarity:		VERTICAL				
Frequency (MHz)	Emis Lev (dBu)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
2483.50	59.43	PK	74	14.57	69.54	27.7	4.47	42.28	-10.11		
2483.50	42.12	AV	54	11.88	52.23	27.7	4.47	42.28	-10.11		
2483.50 REMARKS: 1. Emission 2. Correction 3. Margin va	42.12 level (dB n Factor (alue = Lim	AV (dV/m) =R (dB/m) = A nit value-	427 EVENT VIDE	11.88 BuV)+Correct or (dB/m)+Ca	52.23 tion Factor (able Factor	27.7 dB/m)	4.47				

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Report No.: CTA23062000801 Page 20 of 41

Maximum Peak Output Power 4.3


Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

Test Results		CTATES!		TESTING
Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	3.63		
GFSK 1Mbps	19	4.37	30.00	Pass
TATES	39	4.83		

Note: 1.The test results including the cable lose.

Report No.: CTA23062000801 Page 21 of 41

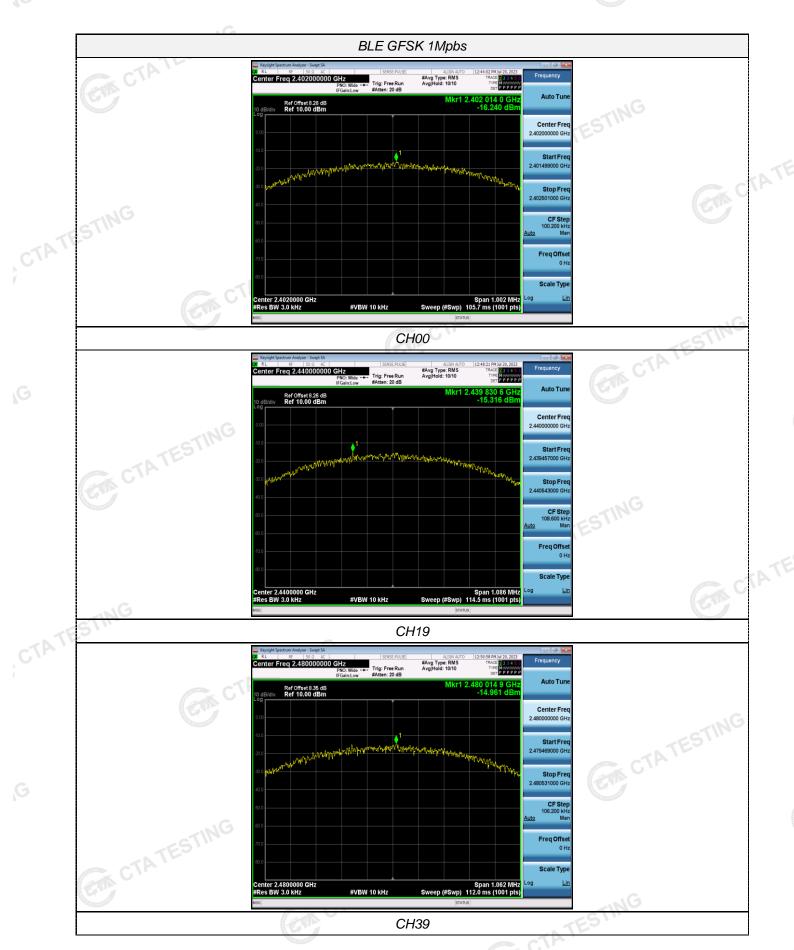
Power Spectral Density

Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- Set the VBW ≥ 3× RBW.
- CTA TESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.


Test Configuration

Test Results

	Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
-5	STIN	00	-16.24		2777
CTATE	GFSK 1Mbps	19	-15.32	8.00	Pass
C		39	-14.96		
1	Test plot as follows	SIL CTATE			
					CTATESTIN

Report No.: CTA23062000801 Page 22 of 41

Report No.: CTA23062000801 Page 23 of 41

4.5 6dB Bandwidth

Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

C. All		ANALYZI	ER	
Test Results				CTATESTING
Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
	00	0.668		
GFSK 1Mbps	19	0.724	≥500	Pass
TATES	39	0.708		
Test plot as follows:	GIA C	TATESTING	- CTATESTIN	G

Page 25 of 41 Report No.: CTA23062000801

Out-of-band Emissions 4.6

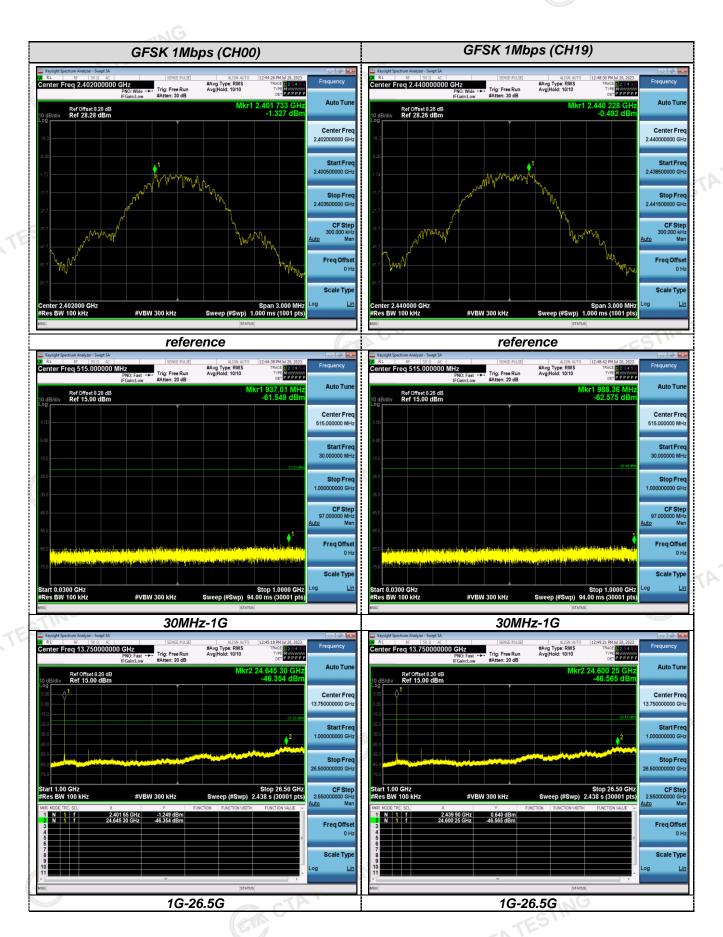
Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

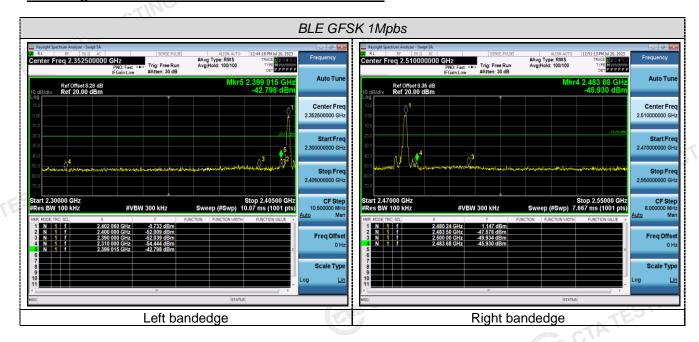


Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

Test plot as follows: CTATESTING

Report No.: CTA23062000801 Page 26 of 41



Report No.: CTA23062000801 Page 27 of 41

Report No.: CTA23062000801 Page 28 of 41

Band-edge Measurements for RF Conducted Emissions:

Page 29 of 41 Report No.: CTA23062000801

Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

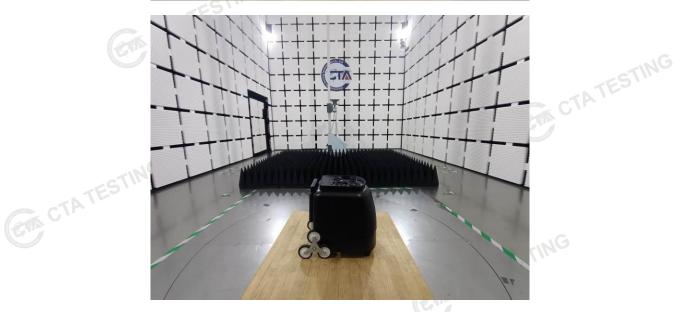
FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 1.32 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility.


CTATESTING

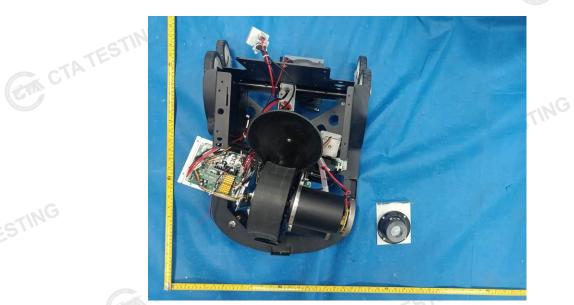
Report No.: CTA23062000801 Page 30 of 41

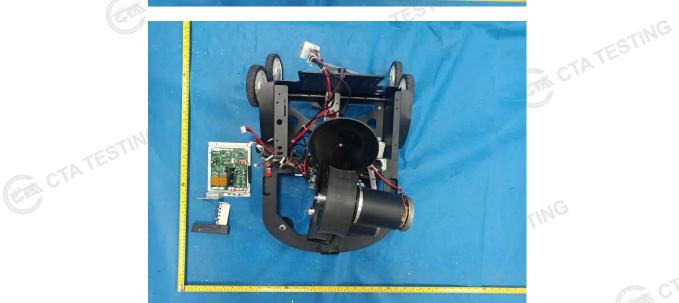
5 Test Setup Photos of the EUT

Report No.: CTA23062000801 Page 31 of 41

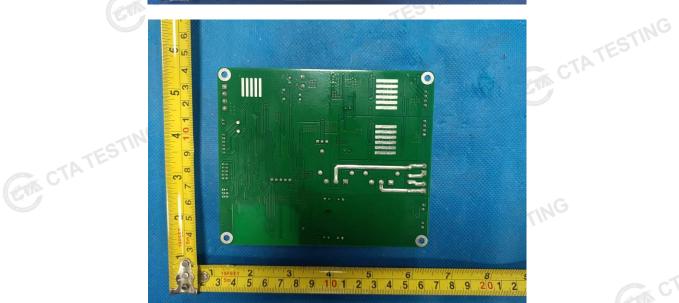
6 Photos of the EUT

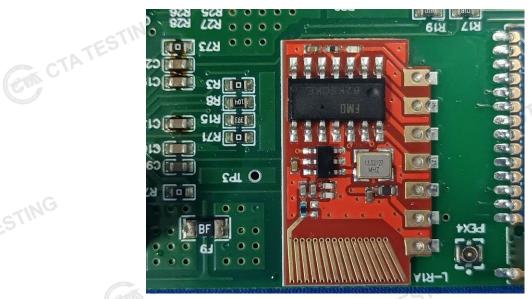
Page 32 of 41 Report No.: CTA23062000801


Page 33 of 41 Report No.: CTA23062000801



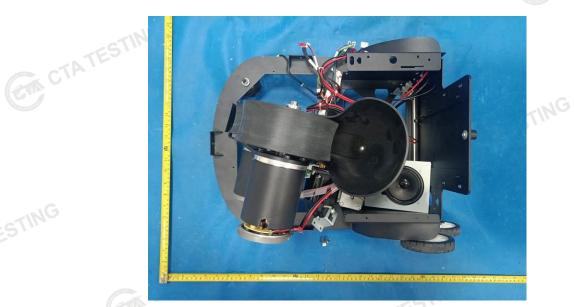
Page 34 of 41 Report No.: CTA23062000801

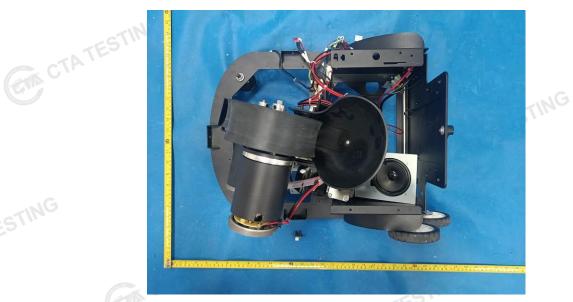


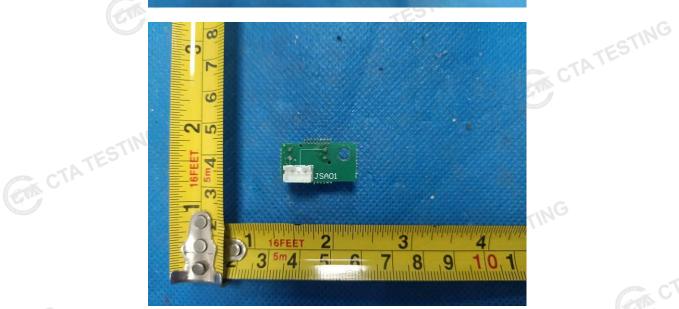

Page 35 of 41 Report No.: CTA23062000801

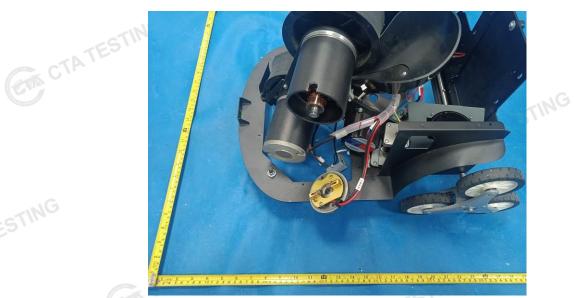


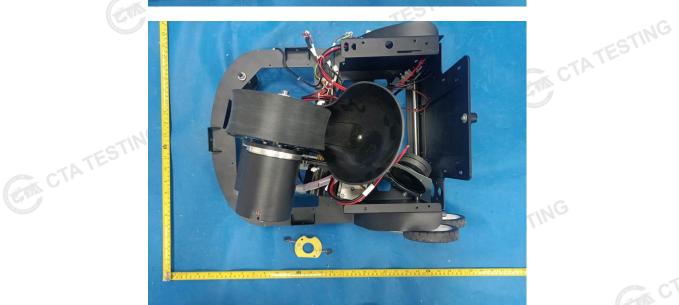
Page 36 of 41 Report No.: CTA23062000801


Page 37 of 41 Report No.: CTA23062000801


Page 38 of 41 Report No.: CTA23062000801




Page 39 of 41 Report No.: CTA23062000801



Page 40 of 41 Report No.: CTA23062000801

Page 41 of 41 Report No.: CTA23062000801

