## TEST REPORT

| Applicant: | Cali Inc. |
| :--- | :--- |
| Address: | 99 South Almaden Blvd., Suite 600, San Jose, CA |
| Equipment Type: | GTE MODEM |
| Model Name: | C42GM (refer to section 2.3) |
| Brand Name: | CAVLI WIRELESS |
| FCC ID: | 2BB64C42GM |
| Test Standard: | 47 CFR Part 15 Subpart B |

ANSI C63.4-2014
Sample Arrival Date: May 31, 2023
Test Date:
Oct. 13, 2023
Date of Issue:

## ISSUED BY:

Shenzhen BALUN Technology


Tested by: Zhenxiang Lu
Checked by: Liyao Kong
Approved by: Liao Jianming (Technical Director)


|  |  | Revision History |
| :--- | :--- | :--- |
| Version | Issue Date | Revisions |
| Rev. 01 | Dec. 26, 2023 | Initial Issue |

## TABLE OF CONTENTS

1 GENERAL INFORMATION ..... 4
1.1 Test Laboratory ..... 4
1.2 Test Location ..... 4
2 PRODUCT INFORMATION ..... 5
2.1 Applicant Information ..... 5
2.2 Manufacturer Information ..... 5
2.3 General Description for Equipment under Test (EUT) ..... 5
2.4 Ancillary Equipment ..... 5
2.5 Technical Information ..... 6
3 SUMMARY OF TEST RESULTS ..... 7
3.1 Test Standards ..... 7
3.2 Verdict ..... 7
3.3 Test Uncertainty ..... 7
4 GENERAL TEST CONFIGURATIONS ..... 8
4.1 Test Enclosure List ..... 8
4.2 Test Configurations ..... 8
4.3 Test Setups ..... 9
5 TEST ITEMS ..... 11
5.1 Emission Tests ..... 11
ANNEX A TEST RESULTS ..... 15
A. 1 Radiated Emission ..... 15
A. 2 Conducted Emission, AC Ports ..... 22
ANNEX B TEST SETUP PHOTOS ..... 25
ANNEX C EUT EXTERNAL PHOTOS ..... 25
ANNEX D EUT INTERNAL PHOTOS ..... 25

## 1 GENERAL INFORMATION

### 1.1 Test Laboratory

| Name | Shenzhen BALUN Technology Co., Ltd. |
| :--- | :--- |
| Address | Block B, 1/F, Baisha Science and Technology Park, Shahe Xi Road, <br> Nanshan District, Shenzhen, Guangdong Province, P. R. China |
| Phone Number | +8675566850100 |

### 1.2 Test Location

| Name | Shenzhen BALUN Technology Co., Ltd. |
| :--- | :--- |
| Location | V Block B, 1/F, Baisha Science and Technology Park, Shahe Xi <br> Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China |
|  | 1/F, Building B, Ganghongji High-tech Intelligent Industrial Park, <br> No. 1008, Songbai Road, Yangguang Community, Xili Sub-district, <br> Nanshan District, Shenzhen, Guangdong Province, P. R. China |
|  | The laboratory is a testing organization accredited by FCC as a <br> accredited testing laboratory. The designation number is CN1196. |

2 PRODUCT INFORMATION

### 2.1 Applicant Information

| Applicant | Cavli Inc. |
| :--- | :--- |
| Address | 99 South Almaden Blvd., Suite 600, San Jose, CA 95113 United <br> States |

### 2.2 Manufacturer Information

| Manufacturer | Cavli Inc |
| :--- | :--- |
| Address | 99 South Almaden Blvd., Suite 600, San Jose, CA 95113 United <br> States |

### 2.3 General Description for Equipment under Test (EUT)

| EUT Name | LTE MODEM |
| :---: | :---: |
| Model Name Under Test | C42GM |
| Series Model Name | C42GM-N16S0N, C42GM-N16S0H, C42GM-N16GNN, C42GMN16GNH, C42GM-M16SON, C42GM-M16SOH, C42GM-M16GNN, C42GM-M16GNH, C42GM-N32SON, C42GM-N32SOH, C42GMN32GNN, C42GM-N32GNH, C42GM-M32S0N, C42GM-M32SOH, C42GM-M32GNN, C42GM-M32GNH |
| Description of Model name differentiation | The difference between the series models is whether they support GNSS or not, with different memory (16MB or 32MB) and internal sim variant will have additional eSim. The circuit schematic and PCB layout are exactly the same. <br> (this information provided by the customer) |
| Hardware Version | C42GM_V3.4(2410) |
| Software Version | V1.2.1 |
| Dimensions (Approx.) | N/A |
| Weight (Approx.) | N/A |

### 2.4 Ancillary Equipment

Note: Not applicable.

### 2.5 Technical Information

| Network and Wireless <br> connectivity | 4G Network FDD LTE-M1 Band <br> FDD NB-IoT Band $2 / 4 / 4 / 5 / 12 / 12 / 13 / 66 / 71 / 1 / 85$ <br> BDS, GPS, SBAS, GLONASS, Galileo, QZSS |
| :--- | :--- |
| Classification of <br> equipment | Class B |
| The highest internal <br> frequency of EUT | 5850 MHz |

3 SUMMARY OF TEST RESULTS

### 3.1 Test Standards

| No. | Identity | Document Title |
| :---: | :---: | :--- |
| 1 | 47 CFR Part 15 Subpart B | Unintentional Radiators |
| 2 | ANSI C63.4-2014 | American National Standard for Methods of <br> Measurement of Radio-Noise Emissions from Low- <br> Voltage Electrical and Electronic Equipment in the <br> Range of 9 kHz to 40 GHz |

### 3.2 Verdict

| No. | Description | FCC Rule | Test Verdict | Remark |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Radiated Emission | 15.109 | Pass | -- |
| 2 | Conducted Emission, AC Ports | 15.107 | Pass | -- |

### 3.3 Test Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the $95 \%$ confidence level using a coverage factor of $\mathrm{k}=2$.

| Measurement | Value |
| :---: | :---: |
| Conducted emissions $(9 \mathrm{kHz}-30 \mathrm{MHz})$ | 3.2 dB |
| Radiated emissions $(30 \mathrm{MHz}-1 \mathrm{GHz})-3 \mathrm{~m}$ | 4.8 dB |
| Radiated emissions $(1 \mathrm{GHz}-18 \mathrm{GHz})-3 \mathrm{~m}$ | 4.9 dB |

4 GENERAL TEST CONFIGURATIONS

### 4.1 Test Enclosure List

| Description | Manufacturer | Model | Serial No. | Length | Description | Use |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Adapter | N/A | N/A | N/A | N/A | N/A | $\boxtimes$ |
| USB Cable | N/A | N/A | N/A | N/A | N/A | $\boxtimes$ |
| Antenna | N/A | N/A | N/A | N/A | N/A | $\boxtimes$ |
| RF Cable | N/A | N/A | N/A | N/A | N/A | $\boxtimes$ |
| Development <br> Board | N/A | N/A | N/A | N/A | N/A | $\boxtimes$ |

### 4.2 Test Configurations

All test modes of EUT are listed in the table below.

| Test Mode <br> Configuration | Description |
| :---: | :--- |
| Mode 1 | The Normal Test Mode <br> EUT + Adapter + USB Cable + RF Cable + Antenna + Development Board |


| Test Case | Test Mode Configuration | Worst Mode |
| :---: | :---: | :---: |
| Radiated Emission | Mode 1 | 1 |
| Conducted Emission, AC <br> Ports | Mode 1 | 1 |

### 4.3 Test Setups

## Test Setup 1



Radiated Emission ( $30 \mathrm{MHz}-1 \mathrm{GHz}$ )


Radiated Emission (above 1 GHz )

## Test Setup 2



Conducted Emissions, AC Ports

## 5 TEST ITEMS

### 5.1 Emission Tests

### 5.1.1 Radiated Emission

### 5.1.1.1 Limit

| Frequency range <br> $(\mathrm{MHz})$ | Class B (at 3 m) |  | Class $\mathrm{A}($ at 3 m) |
| :---: | :---: | :---: | :---: |
|  | Field Strength <br> $(\mu \mathrm{V} / \mathrm{m})$ | Field Strength <br> $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$ | Field Strength <br> $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$ |
| $30-88$ | 100 | 40 | 49.5 |
| $88-216$ | 150 | 43.5 | 54 |
| $216-960$ | 200 | 46 | 56.9 |
| Above 960 | 500 | 54 | 60 |

## NOTE:

1) Field Strength $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})=20^{*} \log [$ Field Strength $(\mu \mathrm{V} / \mathrm{m})]$.
2) In the emission tables above, the tighter limit applies at the band edges.
3) The limits using ANSI C63.4.
4) For 30 MHz to 1000 MHz , the CISPR quasi-peak is employed.

For above 1000 MHz , according to the requirements of FCC 15.35, unless otherwise specified, the limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

|  | Class B (at 3 m) |  |  | Class A (at 3 m) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency range <br> $(\mathrm{GHz})$ | Field Strength <br> $(\mu \mathrm{V} / \mathrm{m})$ | Field Strength <br> Average <br> $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$ | Field <br> Strength <br> Peak <br> $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$ | Field Strength <br> Average <br> $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$ | Field <br> Strength <br> Peak <br> $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$ |
| $1-\mathrm{F}_{\mathrm{M}}$ | 500 | 54 | 74 | 60 | 80 |

Note 1: The highest measurement frequency, $\mathrm{F}_{\mathrm{M}}$, in GHz , shall be determined as next Table.
Note 2: Average Class A limit at $3 \mathrm{~m} \mathrm{~L}_{3 \mathrm{~m}}$ is determined by the following conversion formula:
$\mathrm{L}_{3 \mathrm{~m}}=\mathrm{L}_{10 \mathrm{~m}}+20^{*} \log \left(\mathrm{~d}_{10 \mathrm{~m}} / \mathrm{d}_{3 \mathrm{~m}}\right)$
Where:
$\mathrm{L}_{3 \mathrm{~m}}$ is Average Class A limit at 3 m ;
$\mathrm{L}_{10} \mathrm{~m}$ is Average Class A limit at 10 m ;
$\mathrm{d}_{10 \mathrm{~m}}$ is Measurement distance in 10 m ;
$d_{3 m}$ is Measurement distance in 3 m .
For this case: $\mathrm{L}_{3 \mathrm{~m}}=49.5+20^{*} \log (10 / 3)=60(\mathrm{~dB} \mu \mathrm{~V} / \mathrm{m})$.

| Highest internal frequency $\left(\mathrm{F}_{\mathrm{X}}\right)$ | Highest measurement frequency $\left(\mathrm{F}_{\mathrm{M}}\right)$ |
| :---: | :---: |
| $\mathrm{F}_{\mathrm{X}} \leq 108 \mathrm{MHz}$ | 1 GHz |
| $108 \mathrm{MHz} \leq \mathrm{F}_{\mathrm{X}} \leq 500 \mathrm{MHz}$ | 2 GHz |
| $500 \mathrm{MHz} \leq \mathrm{F}_{\mathrm{X}} \leq 1 \mathrm{GHz}$ | 5 GHz |


| Highest internal frequency $\left(F_{x}\right)$ | Highest measurement frequency $\left(F_{M}\right)$ |
| :--- | :---: |
| $F_{x} \geq 1 \mathrm{GHz}$ | $5^{*} \mathrm{~F}_{\mathrm{x}}$ |
|  | or 40 GHz whichever is lower. |
| Note: $F_{x}$ is Highest frequency generated or used in the device or on which the device operates or <br> tunes. |  |

### 5.1.1.2 Test Setup

Refer to 4.3 section (test setup 1 to test setup 2) for radiated emission test, the photo of test setup please refer to ANNEX $B$.

### 5.1.1.3 Test Procedure

All Radiated Emission tests were performed in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axis direction. And only the worst axis test condition was recorded in this test report.

An initial pre-scan was performed in the chamber using the EMI Receiver in peak detection mode. Quasipeak measurements were conducted based on the peak sweep graph. The EUT was measured by Bi-Log antenna with 2 orthogonal polarities.

The measurement frequency range is from 30 MHz to the 5th harmonic of the maximum frequency of the EUT internal source. The Turn Table is actuated to turn from $0^{\circ}$ to $360^{\circ}$, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented.

Use the following spectrum analyzer settings:
Span = wide enough to fully capture the emission being measured
RBW $=1 \mathrm{MHz}$ for $\mathrm{f} \geq 1 \mathrm{GHz}, 100 \mathrm{kHz}$ for $\mathrm{f}<1 \mathrm{GHz}$
VBW $\geq$ RBW
Sweep $=$ auto
Detector function $=$ peak for $\mathrm{f}<1 \mathrm{GHz}$, peak \& RMS Average for $\mathrm{f} \geq 1 \mathrm{GHz}$
Trace $=$ max hold

### 5.1.1.4 Test Result and Test Equipment List

Please refer to ANNEX A.1.

## NOTE:

1. Results $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})=$ Reading $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})+$ Factor $(\mathrm{dB} / \mathrm{m})$

The reading level is calculated by software which is not shown in the sheet
2. Factor $(\mathrm{dB} / \mathrm{m})=$ Antenna Factor $(\mathrm{dB} / \mathrm{m})+$ Cable Factor $(\mathrm{dB})-$ Amplifier Gain ( dB )
3. Margin $=$ Limit - Results

### 5.1.2 Conducted Emission, AC Ports

### 5.1.2.1 Test Limit

| Frequency range $(\mathrm{MHz})$ | Class A |  |
| :---: | :---: | :---: |
|  | Quasi-peak <br> $(\mathrm{dB} \mu \mathrm{V})$ | Average <br> $(\mathrm{dB} \mu \mathrm{V})$ |
| $0.15-0.50$ | 79 | 66 |
| $0.50-30$ | 73 | 60 |


| Frequency range $(\mathrm{MHz})$ | Class B |  |
| :---: | :---: | :---: |
|  | Quasi-peak <br> $(\mathrm{dB} \mu \mathrm{V})$ | Average <br> $(\mathrm{dB} \mu \mathrm{V})$ |
| $0.15-0.50$ | 66 to 56 | 56 to 46 |
| $0.50-5$ | 56 | 46 |
| $5-30$ | 60 | 50 |

NOTE:

1) The lower limit shall apply at the band edges.
2) The limit decreases linearly with the logarithm of the frequency in the range $0.15-0.50 \mathrm{MHz}$.

### 5.1.2.2 Test Setup

Refer to 4.3 section test (test setup 3) for conducted emission, the photo of test setup please refer to ANNEX B.

### 5.1.2.3 Test Procedure

The EUT is connected to the power mains through a LISN which provides $50 \Omega / 50 \mu \mathrm{H}$ of coupling impedance for the measuring instrument. The test frequency range is from 150 kHz to 30 MHz . The maximum conducted interference is searched using Peak (PK), Quasi-peak (QP) and Average (AV) detectors; the emission levels that are more than the AV and QP limits, and that have narrow margins from the $A V$ and $Q P$ limits will be re-measured with $A V$ and $Q P$ detectors. Tests for both $L$ phase and $N$ phase lines of the power mains connected to the EUT are performed.

Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal $120 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ and $240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ ) for which the device is capable of operation. A device rated for $50 / 60 \mathrm{~Hz}$ operation need not be tested at both frequencies provided the radiated and line conducted emissions are the same at both frequencies.

Use the following spectrum analyzer settings:
RBW $=9 \mathrm{kHz}$
$V B W \geq R B W$
Sweep $=10 \mathrm{~ms}$
Detector function $=$ peak \& Average
Trace = max hold

### 5.1.2.4 Test Result and Test Equipment List

Please refer to ANNEX A.2.

NOTE:

1. Results $(\mathrm{dB} \mu \mathrm{V})=$ Reading $(\mathrm{dB} \mu \mathrm{V})+$ Factor $(\mathrm{dB})$

The reading level is calculated by software which is not shown in the sheet
2. Factor $=$ Insertion loss + Cable loss
3. Margin $=$ Limit - Results

ANNEX A TEST RESULTS

## A. 1 Radiated Emission

Note 1: The symbol of "--" in the table which means not application.
Note 2: For the test data above 1 GHz , according the ANSI C63.4-2014, where limits are specified for both average and peak (or quasi-peak) detector functions, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.

Note 3: When the EUT is on, it will automatically emit Bluetooth signal and cannot be turned off. So the marked spikes near 2400 MHz with circle should be ignored because they are Bluetooth carrier frequencies.

Note 4: The Radiated Emission is required to be investigated to the upper frequency of 5th harmonic of the highest internal frequency of EUT or 40 GHz , whichever is lower. The test results above 18 GHz are only noise and are not recorded in the report.

| Sample No. | S08 | Temperature | $23.9^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- | :--- |
| Humidity | $43 \%$ RH | Pressure | 101 kPa |
| Test Engineer | Xiao Tangqi | Test Date | 2023.10 .13 |

## Test Mode 1

1) Test Antenna Vertical, $30 \mathrm{MHz}-1 \mathrm{GHz}$


| No. | Frequency <br> $(\mathrm{MHz})$ | Results <br> $(\mathrm{dBuV} / \mathrm{m})$ | Factor <br> $(\mathrm{dB})$ | Limit <br> $(\mathrm{dBuV} / \mathrm{m})$ | Margin <br> $(\mathrm{dB})$ | Detector | Table <br> $($ Degree $)$ | Height <br> $(\mathrm{cm})$ | Antenna | Verdict |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 30.000 | 27.29 | -28.82 | 40.0 | 12.71 | Peak | 192.00 | 100 | Vertical | Pass |
| 2 | 49.497 | 23.32 | -25.52 | 40.0 | 16.68 | Peak | 248.00 | 100 | Vertical | Pass |
| 3 | 121.374 | 34.07 | -28.70 | 43.5 | 9.43 | Peak | 192.00 | 100 | Vertical | Pass |
| 4 | 196.258 | 22.13 | -26.80 | 43.5 | 21.37 | Peak | 106.00 | 100 | Vertical | Pass |
| 5 | 278.029 | 24.44 | -24.23 | 46.0 | 21.56 | Peak | 0.00 | 100 | Vertical | Pass |
| 6 | 384.002 | 25.51 | -21.41 | 46.0 | 20.49 | Peak | 210.00 | 200 | Vertical | Pass |

2) Test Antenna Horizontal, $30 \mathrm{MHz}-1 \mathrm{GHz}$


| No. | Frequency <br> $(\mathrm{MHz})$ | Results <br> $(\mathrm{dBuV} / \mathrm{m})$ | Factor <br> $(\mathrm{dB})$ | Limit <br> $(\mathrm{dBuV} / \mathrm{m})$ | Margin <br> $(\mathrm{dB})$ | Detector | Table <br> $($ Degree $)$ | Height <br> $(\mathrm{cm})$ | Antenna | Verdict |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 115.797 | 23.39 | -27.59 | 43.5 | 20.11 | Peak | 108.00 | 200 | Horizontal | Pass |
| 2 | 203.339 | 18.49 | -26.47 | 43.5 | 25.01 | Peak | 205.00 | 100 | Horizontal | Pass |
| 3 | 219.102 | 19.15 | -26.25 | 46.0 | 26.85 | Peak | 208.00 | 200 | Horizontal | Pass |
| 4 | 274.634 | 25.30 | -24.38 | 46.0 | 20.70 | Peak | 39.00 | 100 | Horizontal | Pass |
| 5 | 299.030 | 24.43 | -23.73 | 46.0 | 21.57 | Peak | 198.00 | 100 | Horizontal | Pass |
| 6 | 384.002 | 24.17 | -21.41 | 46.0 | 21.83 | Peak | 69.00 | 100 | Horizontal | Pass |


| Equipment Information |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Equipment Name | Supplier | Model | Serial No. | Cal. Date | Cal. Due | Use |  |
| Frequency Below 1 GHz |  |  |  |  |  |  |  |
| EMI Receiver | Keysight | N9038A | MY55330120 | 2023.09 .05 | 2024.09 .04 | $\boxtimes$ |  |
| Amplifier <br> (30-1GHz) | COM-MV | ZT30-1000M | B2017119081 | 2022.12 .07 | 2023.12 .06 | $\boxtimes$ |  |
| Test Antenna- <br> Bi-Log | SCHWARZB <br> ECK | VULB 9168 | $9168-00867$ | 2022.04 .12 | 2025.04 .11 | $\boxtimes$ |  |
| Anechoic <br> Chamber (\#2) | YiHeng | $9 m * 6 m * 6 m$ | 142 | 2021.08 .19 | 2024.08 .18 | $\boxtimes$ |  |
| Description | Supplier | Name | Version |  | $/$ | Use |  |
| Test Software | BALUN | BL410-E | V22.930 |  | / | $\boxtimes$ |  |

3) Test Antenna Vertical, $1 \mathrm{GHz}-18 \mathrm{GHz}$


| No. | Frequency <br> $(\mathrm{MHz})$ | Results <br> $(\mathrm{dBuV} / \mathrm{m})$ | Factor <br> $(\mathrm{dB})$ | Limit <br> $(\mathrm{dBuV} / \mathrm{m})$ | Margin <br> $(\mathrm{dB})$ | Detector | Table <br> $($ Degree $)$ | Height <br> $(\mathrm{cm})$ | Antenna | Verdict |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1327.200 | 38.75 | -16.65 | 74.0 | 35.25 | Peak | 12.00 | 100 | Vertical | Pass |
| $1^{* *}$ | 1327.200 | 30.17 | -16.65 | 54.0 | 23.83 | AV | 12.00 | 100 | Vertical | Pass |
| 2 | 3545.750 | 48.40 | -4.93 | 74.0 | 25.60 | Peak | 27.00 | 100 | Vertical | Pass |
| $2^{* *}$ | 3545.750 | 37.06 | -4.93 | 54.0 | 16.94 | AV | 27.00 | 100 | Vertical | Pass |
| 3 | 4745.250 | 52.88 | -0.66 | 74.0 | 21.12 | Peak | 102.00 | 100 | Vertical | Pass |
| $3^{* *}$ | 4745.250 | 43.05 | -0.66 | 54.0 | 10.95 | AV | 102.00 | 100 | Vertical | Pass |
| 4 | 6693.000 | 55.77 | 1.61 | 74.0 | 18.23 | Peak | 178.00 | 100 | Vertical | Pass |
| $4^{* *}$ | 6693.000 | 46.77 | 1.61 | 54.0 | 7.23 | AV | 178.00 | 100 | Vertical | Pass |
| 5 | 11290.500 | 55.28 | 2.28 | 74.0 | 18.72 | Peak | 148.00 | 100 | Vertical | Pass |
| $5^{* *}$ | 11290.500 | 45.44 | 2.28 | 54.0 | 8.56 | AV | 148.00 | 100 | Vertical | Pass |
| 6 | 13796.000 | 56.56 | 5.63 | 74.0 | 17.44 | Peak | 161.00 | 100 | Vertical | Pass |
| $6^{* *}$ | 13796.000 | 47.60 | 5.63 | 54.0 | 6.40 | AV | 161.00 | 100 | Vertical | Pass |

4) Test Antenna Horizontal, $1 \mathrm{GHz}-18 \mathrm{GHz}$


| No. | Frequency <br> $(\mathrm{MHz})$ | Results <br> $(\mathrm{dBuV} / \mathrm{m})$ | Factor <br> $(\mathrm{dB})$ | Limit <br> $(\mathrm{dBuV} / \mathrm{m})$ | Margin <br> $(\mathrm{dB})$ | Detector | Table <br> $($ Degree $)$ | Height <br> $(\mathrm{cm})$ | Antenna | Verdict |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1479.000 | 38.47 | -16.73 | 74.0 | 35.53 | Peak | 255.00 | 100 | Horizontal | Pass |
| $1^{* *}$ | 1479.000 | 29.02 | -16.73 | 54.0 | 24.98 | AV | 255.00 | 100 | Horizontal | Pass |
| 2 | 2334.500 | 43.99 | -11.72 | 74.0 | 30.01 | Peak | 282.00 | 100 | Horizontal | Pass |
| $2^{* *}$ | 2334.500 | 33.45 | -11.72 | 54.0 | 20.55 | AV | 282.00 | 100 | Horizontal | Pass |
| 3 | 3897.250 | 49.33 | -2.21 | 74.0 | 24.67 | Peak | 100.00 | 100 | Horizontal | Pass |
| $3^{* *}$ | 3897.250 | 39.63 | -2.21 | 54.0 | 14.37 | AV | 100.00 | 100 | Horizontal | Pass |
| 4 | 5611.250 | 53.85 | 0.75 | 74.0 | 20.15 | Peak | 175.00 | 100 | Horizontal | Pass |
| $4^{* *}$ | 5611.250 | 44.14 | 0.75 | 54.0 | 9.86 | AV | 175.00 | 100 | Horizontal | Pass |
| 5 | 7617.250 | 56.66 | 2.17 | 74.0 | 17.34 | Peak | 286.00 | 100 | Horizontal | Pass |
| $5^{* *}$ | 7617.250 | 45.42 | 2.17 | 54.0 | 8.58 | AV | 286.00 | 100 | Horizontal | Pass |
| 6 | 13821.500 | 57.41 | 5.54 | 74.0 | 16.59 | Peak | 309.00 | 100 | Horizontal | Pass |
| $6^{* *}$ | 13821.500 | 47.46 | 5.54 | 54.0 | 6.54 | AV | 309.00 | 100 | Horizontal | Pass |


| Equipment Information |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Equipment Name | Supplier | Model | Serial No. | Cal. Date | Cal. Due | Use |  |
| Frequency Above 1 GHz |  |  |  |  |  |  |  |
| EMI Receiver | Keysight | N9038A | MY55330120 | 2023.09 .05 | 2024.09 .04 | $\boxtimes$ |  |
| Amplifier <br> $(1-12 G H z)$ | Advanced <br> Microwave | WLA652A | 1740103 | 2022.12 .07 | 2023.12 .06 | $\boxtimes$ |  |
| Amplifier <br> $(0.8-21 G H z)$ | Mini-Circuits | ZVA-213-S+ | 225321316 | 2022.12 .07 | 2023.12 .06 | $\boxtimes$ |  |
| Test Antenna- <br> Horn | SCHWARZB <br> ECK | BBHA 9120D | 01917 | 2022.06 .09 | 2025.06 .08 | $\boxtimes$ |  |
| Anechoic <br> Chamber (\#2) | YiHeng | $9 m^{*} 6 m^{*} 6 m$ | 142 | 2021.08 .19 | 2024.08 .18 | $\boxtimes$ |  |
| Description | Supplier | Name | Version |  | $/$ | Use |  |
| Test Software | BALUN | BL410-E | V22.930 |  | $/$ | $\boxtimes$ |  |

## A. 2 Conducted Emission, AC Ports

Note: Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal $120 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ and $240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ ) for which the device is capable of operation. So, The configuration $120 \mathrm{VAC}, 60 \mathrm{~Hz}$ and $240 \mathrm{VAC}, 50 \mathrm{~Hz}$ were tested respectively, but only the worst configuration ( $120 \mathrm{VAC}, 60 \mathrm{~Hz}$ ) shown here.

| Sample No. | S08 | Temperature | $23.9^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- | :--- |
| Humidity | $43 \% \mathrm{RH}$ | Pressure | 101 kPa |
| Test Engineer | Yang yang | Test Date | 2023.10 .13 |

## Test Mode 1

1) AC Ports - L Phase


| No. | Frequency <br> $(\mathrm{MHz})$ | Results <br> $(\mathrm{dBuV})$ | Factor <br> $(\mathrm{dB})$ | Limit <br> $(\mathrm{dBuV})$ | Margin <br> $(\mathrm{dB})$ | Detector | Line | Verdict |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0.256 | 40.89 | 9.79 | 61.56 | 20.67 | Peak | L | Pass |
| $1^{* *}$ | 0.256 | 28.69 | 9.79 | 51.56 | 22.87 | AV | L | Pass |
| 2 | 0.778 | 39.11 | 9.61 | 56.00 | 16.89 | Peak | L | Pass |
| $2^{* *}$ | 0.778 | 24.59 | 9.61 | 46.00 | 21.41 | AV | L | Pass |
| 3 | 1.372 | 33.32 | 10.38 | 56.00 | 22.68 | Peak | L | Pass |
| $3^{* *}$ | 1.372 | 19.05 | 10.38 | 46.00 | 26.95 | AV | L | Pass |
| 4 | 2.346 | 32.12 | 10.20 | 56.00 | 23.88 | Peak | L | Pass |
| $4^{* *}$ | 2.346 | 19.38 | 10.20 | 46.00 | 26.62 | AV | L | Pass |
| 5 | 4.038 | 32.18 | 10.21 | 56.00 | 23.82 | Peak | L | Pass |
| $5^{* *}$ | 4.038 | 17.02 | 10.21 | 46.00 | 28.98 | AV | L | Pass |
| 6 | 6.602 | 31.30 | 10.20 | 60.00 | 28.70 | Peak | L | Pass |
| $6^{* *}$ | 6.602 | 19.03 | 10.20 | 50.00 | 30.97 | AV | L | Pass |

2) AC Ports - N Phase


| No. | Frequency <br> $(\mathrm{MHz})$ | Results <br> $(\mathrm{dBuV})$ | Factor <br> $(\mathrm{dB})$ | Limit <br> $(\mathrm{dBuV})$ | Margin <br> $(\mathrm{dB})$ | Detector | Line | Verdict |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0.296 | 38.80 | 9.80 | 60.35 | 21.55 | Peak | N | Pass |
| $1^{* *}$ | 0.296 | 26.76 | 9.80 | 50.35 | 23.59 | AV | N | Pass |
| 2 | 0.792 | 41.37 | 9.54 | 56.00 | 14.63 | Peak | N | Pass |
| $2^{* *}$ | 0.792 | 28.89 | 9.54 | 46.00 | 17.11 | AV | N | Pass |
| 3 | 1.284 | 32.79 | 10.06 | 56.00 | 23.21 | Peak | N | Pass |
| $3^{* *}$ | 1.284 | 20.87 | 10.06 | 46.00 | 25.13 | AV | N | Pass |
| 4 | 2.312 | 33.19 | 10.27 | 56.00 | 22.81 | Peak | N | Pass |
| $4^{* *}$ | 2.312 | 20.07 | 10.27 | 46.00 | 25.93 | AV | N | Pass |
| 5 | 4.276 | 30.00 | 10.09 | 56.00 | 26.00 | Peak | N | Pass |
| $5^{* *}$ | 4.276 | 18.37 | 10.09 | 46.00 | 27.63 | AV | N | Pass |
| 6 | 6.586 | 32.55 | 10.17 | 60.00 | 27.45 | Peak | N | Pass |
| $6^{* *}$ | 6.586 | 17.52 | 10.17 | 50.00 | 32.48 | AV | N | Pass |


| Equipment Information |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Equipment Name | Supplier | Model | Serial No. | Cal. Date | Cal. Due | Use |  |
| EMI Receiver | KEYSIGHT | N9010B | MY57110309 | 2023.09 .05 | 2024.09 .04 | $\boxtimes$ |  |
| LISN | SCHWARZB <br> ECK | NSLK 8127 | $8127-687$ | 2023.05 .16 | 2024.05 .15 | $\boxtimes$ |  |
| ISN | TESEQ | ISN T800 | 34449 | 2022.11 .11 | 2023.11 .10 | $\square$ |  |
| ISN | TESEQ | ISN T8-Cat6 | 53561 | 2023.04 .23 | 2024.04 .22 | $\square$ |  |
| Shielded Room | YiHeng <br> Electronic <br> Co., Ltd | $3.5 \mathrm{~m}^{* 3.1 m * 2 . ~}$ <br> 8 m | 112 | 2022.02 .19 | 2025.02 .18 | $\boxtimes$ |  |
| Description | Supplier | Name | Version |  | $/$ | Use |  |
| Test Software | BALUN | BL410-E | V22.930 |  | $/$ | $\boxtimes$ |  |

## ANNEX B TEST SETUP PHOTOS

Please refer the document "BL-SZ2370129-AE.PDF".

## ANNEX C EUT EXTERNAL PHOTOS

Please refer the document "BL-SZ2370129-AW.PDF".

## ANNEX D EUT INTERNAL PHOTOS

Please refer the document "BL-SZ2370129-AI.PDF".

## Statement

1. The laboratory guarantees the scientificity, accuracy and impartiality of the test, and is responsible for all the information in the report, except the information provided by the customer. The customer is responsible for the impact of the information provided on the validity of the results.
2. The report without China inspection body and laboratory Mandatory Approval (CMA) mark has no effect of proving to the society.
3. For the report with CNAS mark or A2LA mark, the items marked with "ヶ̌" are not within the accredited scope.
4. This report is invalid if it is altered, without the signature of the testing and approval personnel, or without the "inspection and testing dedicated stamp" or test report stamp.
5. The test data and results are only valid for the tested samples provided by the customer.

6 . This report shall not be partially reproduced without the written permission of the laboratory.
7. Any objection shall be raised to the laboratory within 30 days after receiving the report.

