

Report Number	:: ZHT-240704019E
Date of Test	July 04, 2024 to July 19, 2024
Date of issue	: July 19, 2024
Test Result	
Testing Laboratory	:: Guangdong Zhonghan Testing Technology Co., Ltd.
Address	: Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Communi Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Applicant's name	: Dongguan Fismool Technology Co., Ltd.
Address	: Room 801, Building 4, No.2, Angyue Road, Chashan Town, Dongguan City Guangdong · China.
Manufacturer's name	: Dongguan Fismool Technology Co., Ltd.
Address	: Room 801, Building 4, No.2, Angyue Road, Chashan Town, Dongguan City Guangdong [,] China.
Test specification:	
Standard	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Test procedure	:: KDB558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013
Non-standard test method	
	nas been tested by ZHT, and the test results show that the equipment und
test (EUT) is in compliance with identified in the report. This report shall not be reprodu be altered or revised by ZHT, p	th the FCC requirements. And it is applicable only to the tested sample duced except in full, without the written approval of ZHT, this document ma personal only, and shall be noted in the revision of the document.
test (EUT) is in compliance with identified in the report. This report shall not be reprodu be altered or revised by ZHT, p Product name	duced except in full, without the written approval of ZHT, this document mapersonal only, and shall be noted in the revision of the document.
test (EUT) is in compliance with identified in the report. This report shall not be reprodu be altered or revised by ZHT, p Product name Trademark	duced except in full, without the written approval of ZHT, this document mapersonal only, and shall be noted in the revision of the document:: Sound sleep mask
test (EUT) is in compliance with identified in the report. This report shall not be reprodu be altered or revised by ZHT, p Product name Trademark	duced except in full, without the written approval of ZHT, this document mapersonal only, and shall be noted in the revision of the document:: Sound sleep mask
test (EUT) is in compliance with identified in the report. This report shall not be reprodu- be altered or revised by ZHT, p Product name Trademark Model/Type reference	<pre>duced except in full, without the written approval of ZHT, this document ma personal only, and shall be noted in the revision of the document. :: Sound sleep mask :: / :: FS201</pre>

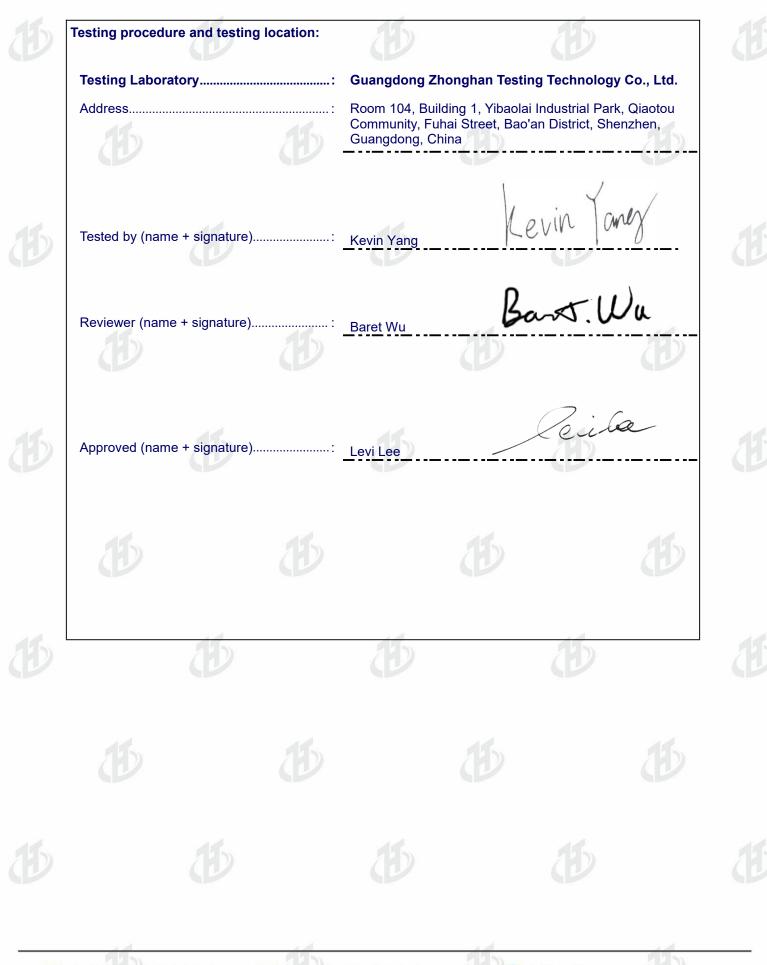


Table of Contents

Page

1. VERSION			5
2. SUMMARY	OF TEST RESULTS		
2.1 TEST F	ACILITY		7
2.2 MEASU	REMENT UNCERTAINTY		7
3. GENERAL		<u>. 155 </u>	8
3.1 GENER	AL DESCRIPTION OF EUT		
3.2 DESCR	IPTION OF TEST MODES		9
3.3 TEST S	ETUP CONFIGURATION		9
3.4 DESCR	IPTION OF SUPPORT UNIT	rs(conducted mode)	
		T ITEMS	
		REMENT	
		EMISSION Limits	
		NDARD	
		NS	
		MENT	
		5	
		NDARD	
		NS	
		və	
		DARD	
		S	
and the second se		-	
		т	
		3	
6.6 TES	T RESULTS		27

Table of Contents

7. CHANNEL BANDWIDTH	
7.1 APPLIED PROCEDURES / LIMIT	
7.2 TEST PROCEDURE	
7.3 DEVIATION FROM STANDARD	
7.4 TEST SETUP	31
7.5 EUT OPERATION CONDITIONS	
7.6 TEST RESULTS	
8.PEAK OUTPUT POWER TEST	
8.1 APPLIED PROCEDURES / LIMIT	
8.2 TEST PROCEDURE	
8.3 DEVIATION FROM STANDARD	
8.4 TEST SETUP	
8.5 EUT OPERATION CONDITIONS	
8.6 TEST RESULTS	
9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION	
9.1 APPLICABLE STANDARD	
9.2 TEST PROCEDURE	
9.3 DEVIATION FROM STANDARD	
9.4 TEST SETUP	
9.5 EUT OPERATION CONDITIONS	41
10.ANTENNA REQUIREMENT	53
11. TEST SETUP PHOTOS	54
12. EUT CONSTRUCTIONAL DETAILS	

Report	No.	Version	D	Description	Ð	Approved	
ZHT-2407(04019E	Rev.01		Initial issue of re	eport	July 19, 2024	
B		B	I	B		Ð	
						15	

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C							
Standard Section	Test Item	Judgment	Remark				
FCC part 15.203/15.247 (b)(4)	Antenna requirement	PASS					
FCC part 15.207	AC Power Line Conducted Emission	PASS					
FCC part 15.247 (b)(3)	Conducted Output Power	PASS					
FCC part 15.247 (a)(2)	Channel Bandwidth& 99% OCB	PASS					
FCC part 15.247 (e)	Power Spectral Density	PASS	15				
FCC part 15.247(d)	Band Edge	PASS	C				
FCC part 15.205/15.209	Spurious Emission	PASS					

NOTE:

- (1) " N/A" denotes test is not applicable in this Test Report
- (2) The EUT was programmed to be in continuously transmitting mode and the transmit duty cycle is not less than 98%.

2.1 TEST FACILITY

Guangdong Zhonghan Testing Technology Co., Ltd. Add. : Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District Shenzhen, Guangdong, China

FCC Registration Number:255941 Designation Number: CN0325 IC Registered No.: 29832 CAB identifier: CN0143

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y \pm U \cdot where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2 \cdot providing a level of confidence of approximately 95 % \circ

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF conducted power	±0.16dB
3	Conducted spurious emissions	±0.21dB
4	All radiated emissions (9k-30MHz)	±4.68dB
5	All radiated emissions (<1G)	±4.68dB
6	All radiated emissions (>1G)	±4.89dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	Occupied Bandwidth	±4.96%

🖀 0755-27782934 🛛 🖂 admin@zht-lab.cn 🌑 🌐 http://www.zht-lab.cn

Project No.: ZHT-240704019E Page 8 of 54

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

	Product Name:	Sound sleep mask	
1	Model No.:	FS201	
	Hardware Version:	V1.0	
	Software Version:	V1.0	
	Sample(s) Status:	Engineer sample	
	Operation Frequency:	2402MHz~2480MHz	
	Channel Numbers:	40	
	Channel Separation:	2MHz	14
	Modulation Type:	GFSK	\mathcal{D}
	Antenna Type:	PCB antenna	
	Antenna gain:	-0.58dBi	

	115					115			
Operatio	Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz		
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz		
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz		
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz		
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz		
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz		
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz		
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz		
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz		
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

3.2 DESCRIPTION OF TEST MODES

Transmitting mode k	eep the EUT in continuous	y transmitting mode	
Remark: EUT use new batt nominal rated supply voltag condition. So the report just	e, and found that the worst	case was under the nom	
3.3 TEST SETUP CONFIGURATIO	DN		
Conducted Emission			
AE EUT	165		
Radiated Emission			
EUT			

Project No.: ZHT-240704019E Page 10 of 54

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E1	AC Adapter	HUAWEI	HW-050450C00		AE
		G			C

	Item	Shielded Type	Ferrite Core	Length	Note
				44	46
\mathbf{D}		<u> </u>			

Note:

(2)

- (1) The support equipment was authorized by Declaration of Confirmation.
 - For detachable type I/O cable should be specified the length in cm in ^r Length ^a column.

3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

lalation	rest equipment				
ltem	Equipment	Manufacturer	Model	Last Cal.	Next Cal.
1	Receiver	R&S	ESCI	May 10, 2024	May 09, 2025
2	Loop antenna	EMCI	LAP600	May 10, 2024	May 09, 2025
3	Amplifier	Schwarzbeck	BBV 9743 B	May 10, 2024	May 09, 2025
4	Amplifier	Schwarzbeck	BBV 9718 B	May 10, 2024	May 09, 2025
5	Bilog Antenna	Schwarzbeck	VULB9162	Aug. 04, 2023	Aug. 03, 2024
6	Horn Antenna	Schwarzbeck	BBHA9120D	May 16, 2024	May 15, 2025
7	Horn Antenna	A.H.SYSTEMS	SAS574	May 10, 2024	May 09, 2025
8	Amplifier	AEROFLEX	100KHz-40GHz	May 10, 2024	May 09, 2025
9	Spectrum Analyzer	R&S	FSV40	May 10, 2024	May 09, 2025
10	966 Anechoic Chamber	EMToni	9m6m6m	May 10, 2024	May 09, 2025
11	Spectrum Analyzer	KEYSIGHT	N9020A	May 10, 2024	May 09, 2025
12	WIDBAND RADIO COMMUNICATI ON TESTER	R&S	CMW500	May 10, 2024	May 09, 2025
13	Single Generator	Agilent	N5182A	May 10, 2024	May 09, 2025
14	Power Sensor	MWRFtest	MW100-RFCB	May 10, 2024	May 09, 2025
15	Audio analyzer	R&S	UPL	May 10, 2024	May 09, 2025
16	Single Generator	R&S	SMB100A	May 10, 2024	May 09, 2025
17	Power Amplifier Shielding Room	EMToni	2m3m3m	Nov. 25, 2021	Nov. 24, 2024

Ð

Ð

Ð

🖂 admin@zht-lab.cn **1** 0755-27782934

http://www.zht-lab.cn

Conduction Test equipment

Equipment	Manufacturer	Model	Last Cal.	Next Cal.
Receiver	R&S	ESCI	May 10, 2024	May 09, 2025
LISN	R&S	ENV216	May 10, 2024	May 09, 2025
ISN CAT 6	Schwarzbeck	NTFM 8158	May 10, 2024	May 09, 2025
ISN CAT 5	Schwarzbeck	CAT5 8158	May 10, 2024	May 09, 2025
Capacitive Voltage Probe	Schwarzbeck	CVP 9222 C	May 10, 2024	May 09, 2025
Current Transformer Clamp	Schwarzbeck	SW 9605	May 10, 2024	May 09, 2025
CE Shielding Room	EMToni	9m4m3m	Nov. 25, 2021	Nov. 24, 2024

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

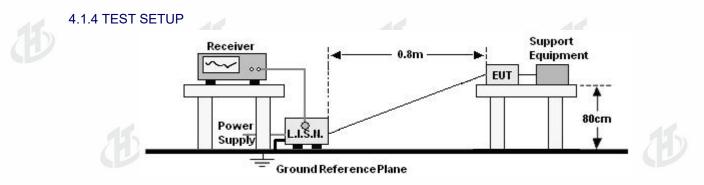
Test Requirement:	FCC Part15 C Section 15.207	
Test Method:	ANSI C63.10:2013	
Test Frequency Rang	e: 150KHz to 30MHz	
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto	

4.1.1 POWER LINE CONDUCTED EMISSION Limits

					1
	FREQUENCY (MHz)	Limit (Standard	6	
	FREQUENCT (MIDZ)	QP	AVG	Standard	
	0.15 -0.5	66 - 56 *	56 - 46 *	FCC	
	0.50 -5.0	56.00	46.00	FCC	
ſ	5.0 -30.0	60.00	50.00	FCC	

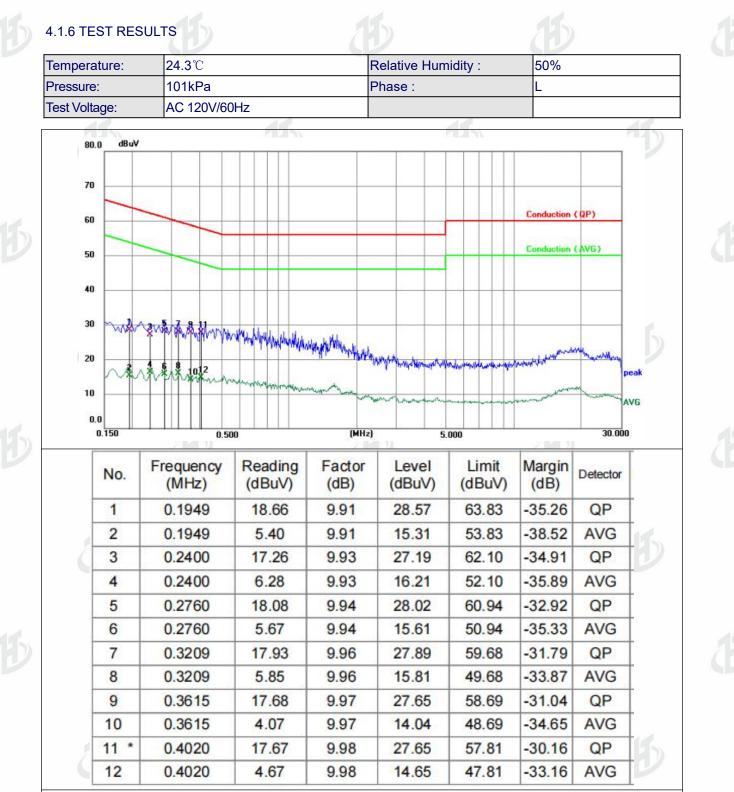
Note:

(1) *Decreases with the logarithm of the frequency.


4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD No deviation

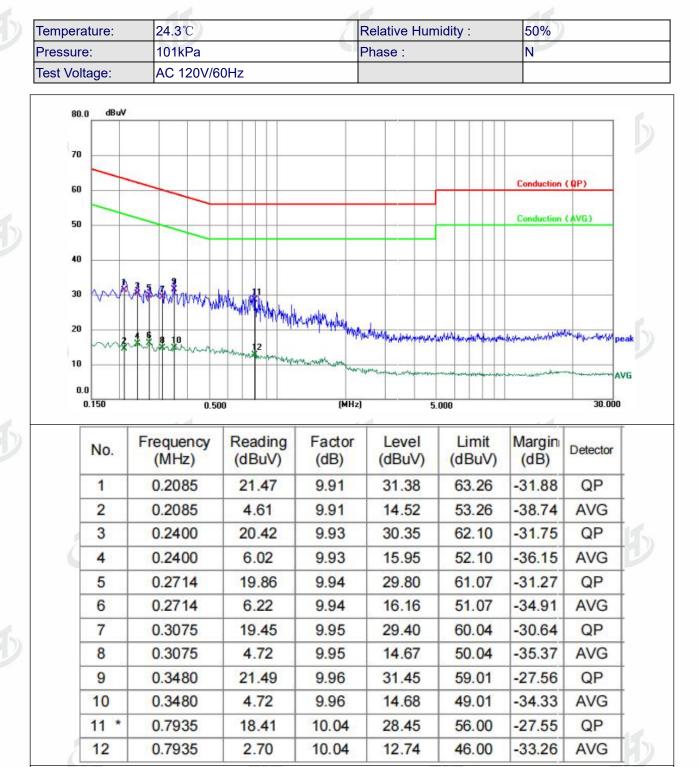

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

Notes:

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
 3.Mesurement Level = Reading level + Correct Factor


4. The test data shows only the worst case Low Channel: 2402MHz)

Project No.: ZHT-240704019E Page 16 of 54

Notes:

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.3.Mesurement Level = Reading level + Correct Factor

4. The test data shows only the worst case Low Channel: 2402MHz)

4.2 RADIATED EMISSION MEASUREMENT

n			15		15				
2	Test Requirement:	FCC Part15 C Sect	ion 15.209						
	Test Method:	ANSI C63.10:2013							
	Test Frequency Range:	9kHz to 25GHz	kHz to 25GHz						
	Test site:	Measurement Distance: 3m							
	Receiver setup:	Frequency	Detector	RBW	VBW	Value			
		9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak			
2		150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak			
		30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak			
			Peak	1MHz	3MHz	Peak			
		Above 1GHz	Peak	1MHz	10Hz	Average			

4.2.1 RADIATED EMISSION LIMITS

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT

FREQUENCY (MHz) Above 1000	Limit (dBuV/m) (at 3M)			
	PEAK	AVERAGE		
Above 1000	74	54		
N 1 - 4				

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

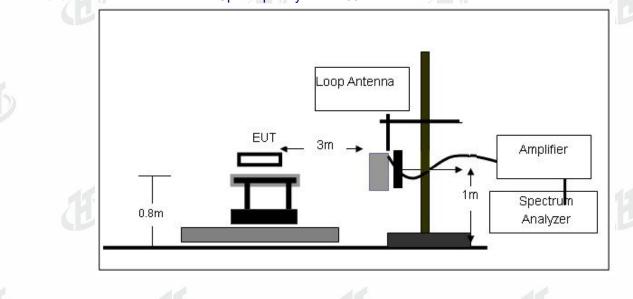
🖂 admin@zht-lab.cn 🚺

Project No.: ZHT-240704019E Page 18 of 54

4.2.2 TEST PROCEDURE

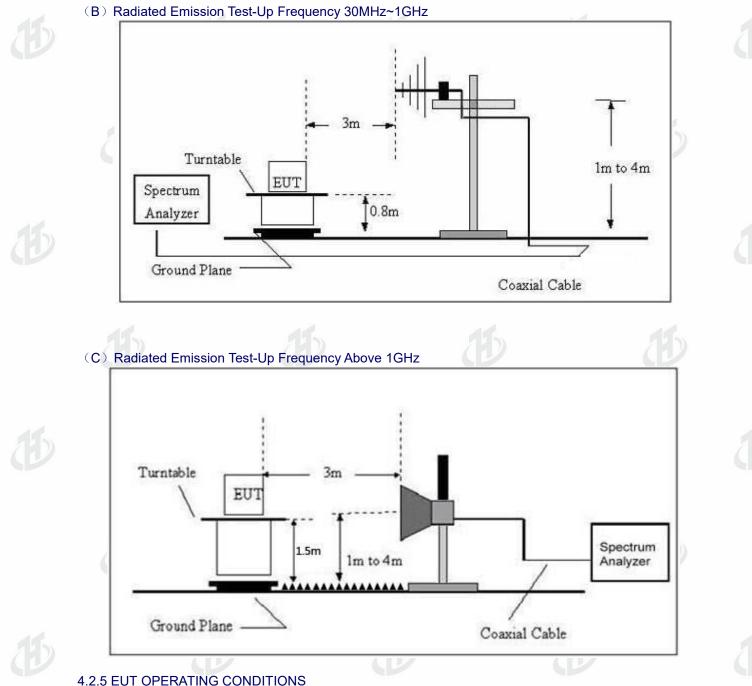
- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 25GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-chamber test. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- g. For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.


The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

4.2.3 DEVIATION FROM TEST STANDARD No deviation


4.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

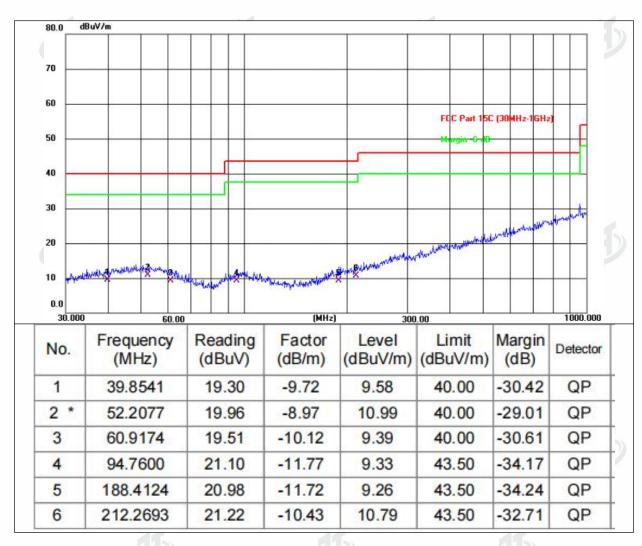
Project No.: ZHT-240704019E Page 19 of 54

4.2.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

4.2.6 TEST RESULTS (Between 9KHz - 30 MHz)

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.



Between 30MHz – 1GHz

Temperature:	25.6 ℃	Relative Humidity:	47%
Pressure:	101 kPa	Polarization:	Horizontal
Test Voltage:	DC 3.8V		

11)

D

B



Æ

Temperature:25.6°CRelative Humidity:47%Pressure:101kPaPolarization:VerticalTest Voltage:DC 3.8VVertical

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. The test data shows only the worst case Low Channel: 2402MHz)

1 0755-27782934

	1	GHz~25GHz								
						GFSK				
	Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
	(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
						nnel:2402M	and the second sec			
	V	4804	59.18	30.55	5.77	24.66	59.06	74	-14.94	Pk
	V	4804	43.24	30.55	5.77	24.66	43.12	54	-10.88	AV
	V	7206	55.07	30.33	6.32	24.55	55.61	74	-18.39	Pk
	V	7206	42.77	30.33	6.32	24.55	43.31	54	-10.69	AV
	Н	4804	58.48	30.55	5.77	24.66	58.36	74	-15.64	Pk
	Н	4804	42.93	30.55	5.77	24.66	42.81	54	-11.19	AV
11	Эн	7206	57.36	30.33	6.32	24.55	57.9	74	-16.1	Pk
	Н	7206	44.75	30.33	6.32	24.55	45.29	54	-8.71	AV
		•		N	liddle Ch	annel:2440	MHz			
	V	4880	59.44	30.55	5.77	24.66	59.32	74	-14.68	Pk
	V	4880	41.02	30.55	5.77	24.66	40.9	54	-13.1	AV
	V	7320	55.73	30.33	6.32	24.55	56.27	74	-17.73	Pk
	V	7320	42.61	30.33	6.32	24.55	43.15	54	-10.85	AV
	Н	4880	58	30.55	5.77	24.66	57.88	74	-16.12	Pk
	Н	4880	41.42	30.55	5.77	24.66	41.3	54	-12.7	AV
	Н	7320	55.26	30.33	6.32	24.55	55.8	74	-18.2	Pk
	Н	7320	41.16	30.33	6.32	24.55	41.7	54	-12.3	AV
					High Cha	nnel:2480M	IHz			
12	V	4960	55.91	30.55	5.77	24.66	55.79	74	-18.21	Pk
	V	4960	41.17	30.55	5.77	24.66	41.05	54	-12.95	AV
	V	7440	55.9	30.33	6.32	24.55	56.44	74	-17.56	Pk
	V	7440	42.17	30.33	6.32	24.55	42.71	54	-11.29	AV
	Н	4960	57.7	30.55	5.77	24.66	57.58	74	-16.42	Pk
	Н	4960	42.93	30.55	5.77	24.66	42.81	54	-11.19	AV
	Н	7440	55.86	30.33	6.32	24.55	56.4	74	-17.6	Pk
	Н	7440	44.62	30.33	6.32	24.55	45.16	54	-8.84	AV

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier, Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

5.RADIATED Band EMISSION MEASUREMENT

5.1 TEST REQUIREMENT:		(D)			9		
Test Requirement:	FCC Part15 C	FCC Part15 C Section 15.209 and 15.205					
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.						
Test site:	Measurement	Measurement Distance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
	Above	Peak	1MHz	3MHz	Peak		
	1GHz	Average	1MHz	3MHz	Average		

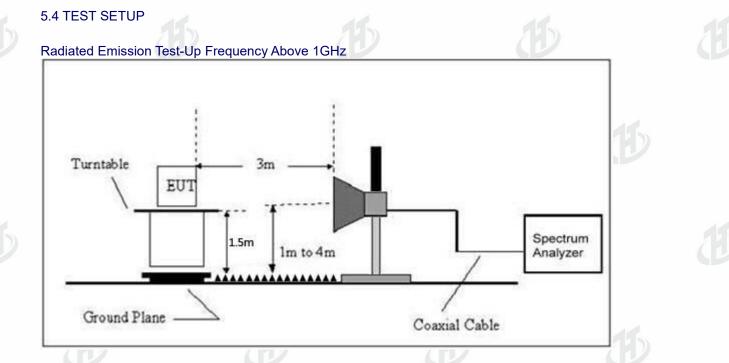
LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)			
	PEAK	AVERAGE	P	
Above 1000	74	54		

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

5.2 TEST PROCEDURE


Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel,the Highest channel Note:
- Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported
- 5.3 DEVIATION FROM TEST STANDARD No deviation

🖂 admin@zht-lab.cn 🚺 🌐 http://www.zht-lab.cn

5.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULT

	Polar	Frequenc	Meter	Pre-	Cable	Antenna	Emission	Limit	Margi	Detec	
	(H/V)	y	Reading	amplifier	Loss	Factor	level	(dBuV	n	tor	Resul
	(□/ V)	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	/m)	(dB)	Туре	
				Low	Channe	I: 2402MHz	7				
	H	2390.00	61.77	30.22	4.85	23.98	60.38	74.00	-13.62	PK	PASS
	H	2390.00	46.45	30.22	4.85	23.98	45.06	54.00	-8.94	AV	PASS
	(\mathbf{H})	2400.00	59.78	30.22	4.85	23.98	58.39	74.00	-15.61	PK	PASS
	H	2400.00	48.95	30.22	4.85	23.98	47.56	54.00	-6.44	AV	PASS
	V	2390.00	61.52	30.22	4.85	23.98	60.13	74.00	-13.87	PK	PASS
	V	2390.00	47.19	30.22	4.85	23.98	45.80	54.00	-8.20	AV	PASS
	V	2400.00	59.26	30.22	4.85	23.98	57.87	74.00	-16.13	PK	PASS
GFSK	V	2400.00	48.44	30.22	4.85	23.98	47.05	54.00	-6.95	AV	PASS
OFOR		(12			el: 2480MH		(1)			1
	Н	2483.50	61.81	30.22	4.85	23.98	60.42	74.00	-13.58	PK	PASS
	Н	2483.50	47.70	30.22	4.85	23.98	46.31	54.00	-7.69	AV	PASS
	Н	2500.00	62.19	30.22	4.85	23.98	60.80	74.00	-13.20	PK	PASS
	Н	2500.00	46.31	30.22	4.85	23.98	44.92	54.00	-9.08	AV	PASS
	V	2483.50	62.76	30.22	4.85	23.98	61.37	74.00	-12.63	PK	PASS
	V	2483.50	46.97	30.22	4.85	23.98	45.58	54.00	-8.42	AV	PASS
	V	2500.00	61.39	30.22	4.85	23.98	60.00	74.00	-14.00	PK	PASS
	V	2500.00	46.71	30.22	4.85	23.98	45.32	54.00	-8.68	AV	PASS

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier, Margin= Emission Level - Limit

6.POWER SPECTRAL DENSITY TEST

Test Requirement:	FCC Part15 C Section 15.247 (e)	
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02	

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247	Power Spectral Density	8dBm/3kHz	2400-2483.5	PASS		

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: 3 kHz \leq RBW \leq 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

0755-27782934

6.6 TEST RESUL

6.6 TEST RESULTS			
Temperature :	25.6℃	Relative Humidity :	51%
Test Mode :	GFSK-1M	Test Voltage :	AC 120V

Frequency	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
2402 MHz	-20.93	8	PASS
2440 MHz	-21.47	8	PASS
2480 MHz	-21.83	8	PASS

Project No.: ZHT-240704019E Page 29 of 54

Temperature :	25.6℃	Relative Humidity :	51%
Test Mode :	GFSK-2M	Test Voltage :	AC 120V

Frequency	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
2402 MHz	-24.59	8	PASS
2440 MHz	-25.1	8	PASS
2480 MHz	-25.57	8	PASS

7. CHANNEL BANDWIDTH

		_
Test Requirement:	FCC Part15 C Section 15.247 (a)(2)	
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02	

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS	

7.2 TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

EUT

SPECTRUM ANALYZER

7.5 EUT OPERATION CONDITIONS

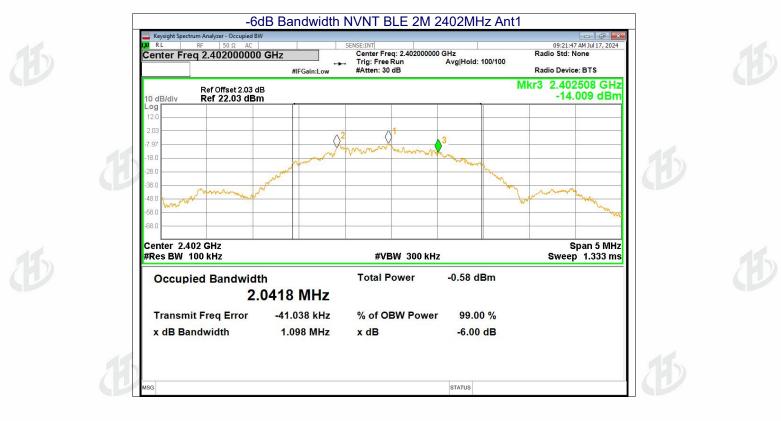
The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

🖂 admin@zht-lab.cn 🤇

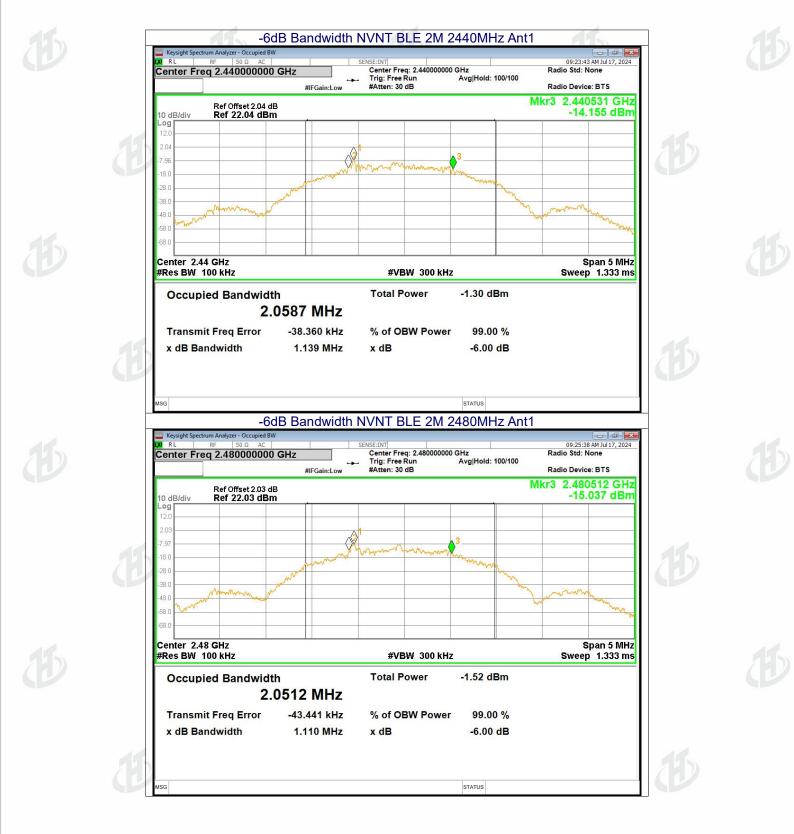
7.6 TEST RESULTS

		y	
Temperature :	25.6 ℃	Relative Humidity :	51%
Test Mode :	GFSK-1M	Test Voltage :	AC 120V

Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result	
Lowest	0.665			
Middle	0.664	>= 500	Pass	
Highest	0.644			



(emperature : 25.6°C		Relative Humidity :	51%
	Test Mode :	GFSK-2M	Test Voltage :	AC 120V


Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result	
Lowest	1.098			
Middle	1.139	>= 500	Pass	
Highest	1.11			

🖀 0755-27782934 🛛 🖂 admin@zht-lab.cn 🌕 🏐 http://www.zht-lab.cn

8. OUTPUT POWER TEST

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

8.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

8.2 TEST PROCEDURE

- a. 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
 - Set the spectrum analyzer: RBW = 2MHz. VBW =6MHz. Sweep = auto; Detector Function = Peak.
 Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

8.3 DEVIATION FROM STANDARD

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

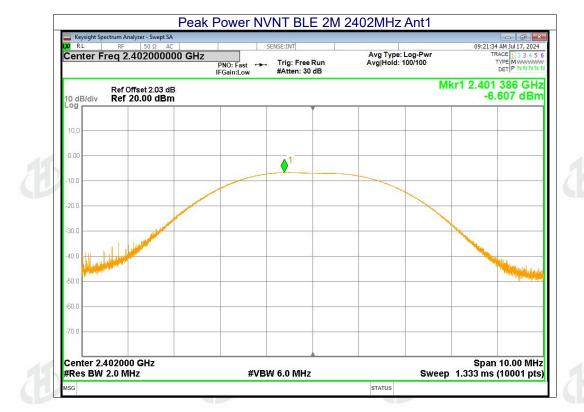
1 0755-27782934

🖂 admin@zht-lab.cn

8.6 TEST RESULTS

		9	
Temperature :	25.6 ℃	Relative Humidity :	51%
Test Mode :	GFSK-1M	Test Voltage :	AC 120V

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	-6.77		
Middle	-7.31	30.00	Pass
Highest	-7.71		



🖀 0755-27782934 🛛 🖂 admin@zht-lab.cn 🌑 🏐 http://www.zht-lab.cn

Temperature :	25.6℃	Relative Humidity :	51%	
Test Mode :	GFSK-2M	Test Voltage :	AC 120V	
Test channel	Peak Output Power (dBm)	Limit(dBm)	Result	
Lowest	-6.61			
Middle	-7.11	30.00	Pass	
Highest	-7.53			

🖀 0755-27782934 🛛 🖂 admin@zht-lab.cn 🍼 🏐 http://www.zht-lab.cn

9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

9.1 APPLICABLE STANDARD

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

9.2 TEST PROCEDURE

Using the following spectrum analyzer setting:

A) Set the RBW = 100KHz.

- B) Set the VBW = 300KHz.
- C) Sweep time = auto couple.
- D) Detector function = peak.
- E) Trace mode = max hold.
- F) Allow trace to fully stabilize.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Band Edge				
Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
BLE 1M	2402	-37.36	-20	Pass
BLE 1M	2480	-49.17	-20	Pass
BLE 2M	2402	-31	-20	Pass
BLE 2M	2480	-49.27	-20	Pass
		Test Graphs	/	עוור
	Band Edge N	NVNT BLE 1M 2402MHz Ant1	Ref	
	Keysight Spectrum Analyzer - Swept SA ΙΧΙ RF 50 Ω AC	SENSE:INT	09:15:53 AM Jul 17, 2024	
	Center Freq 2.402000000 GHz	Avg Type: Log-F de ++ Trig: Free Run Avg Hold: 100/10	Pwr TRACE 1 2 3 4 5 6	
	IFGain:Lo	#Atten: 30 dB	Mkr1 2.402 200 GHz	
	Ref Offset 2.03 dB 10 dB/div Ref 20.00 dBm		-7.704 dBm	
	10.0			
	0.00			
	-10.0			
	-10.0			
	-20.0			
	-30.0			
	-40.0			
	-40.0	La My		
	-50.0		Δ.	
	-60.0 man	- Mahar	dry who have a work	
			<u> </u>	
	-70.0			
	Center 2.402000 GHz		Span 8.000 MHz	
	#Res BW 100 kHz	#VBW 300 kHz	Sweep 1.000 ms (1001 pts)	
	MSG Band Edge NV/I	STATUS NT BLE 1M 2402MHz Ant1 Em	lission	
	Keysight Spectrum Analyzer - Swept SA			
	LXI RL RF 50Ω AC	SENSE:INT Avg Type: Log-F	09:15:58 AM Jul 17, 2024	
	Center Freq 2.356000000 GHz			
		st 🛶 Trig: Free Run Avg Hold: 100/10	00 TYPE MWWWW DET P N N N N N	
	Center Freq 2.356000000 GHz PNO: Fat IFGain:Lo Ref Offset 2.03 dB	st 🛶 Trig: Free Run Avg Hold: 100/10	Mkr1 2.401 9 GHz	
	Center Freq 2.356000000 GHz PNO: Fas IFGain:Lo Ref Offset 2.03 dB 10 dB/div Ref 20.00 dBm	st 🛶 Trig: Free Run Avg Hold: 100/10	DETPNNNN	
	Center Freq 2.356000000 GHz PNO: Fas IFGain:Lo Ref Offset 2.03 dB 10 dB/div Ref 20.00 dBm	st 🛶 Trig: Free Run Avg Hold: 100/10	Mkr1 2.401 9 GHz	
	Ref Offset 2.03 dB Ref Offset 2.03 dB 10 dB/div Ref 20.00 dBm 10 0 10 0	st 🛶 Trig: Free Run Avg Hold: 100/10	Mkr1 2.401 9 GHz	
	Ref Offset 2.03 dB PNO: Fas 10 dB/div Ref 20.00 dBm 0 00 0.00 -10.0 -20.0	st 🛶 Trig: Free Run Avg Hold: 100/10	Mkr1 2.401 9 GHz	
	Ref Offset 2.03 dB Ref Offset 2.03 dB 10 dB/div Ref 20.00 dBm 000 0.00	st 🛶 Trig: Free Run Avg Hold: 100/10	DET P NNNNN Mkr1 2.401 9 GHz -7.297 dBm	
	Ref Offset 2.03 dB PNO: Fas 10 dB/div Ref 20.00 dBm 0 00 0.00 -10.0	st 🛶 Trig: Free Run Avg Hold: 100/10	Mkr1 2.401 9 GHz -7.297 dBm	
	Center Freq 2.35600000 GHz PNO: Fast IFGain:Lo PNO: Fast IFGain:Lo PNO: Fast IFGain:Lo 10 dB/div Ref Offset 2.03 dB 10 dB/div Ref 20.00 dBm 10 dB/div Ref 20.00 dBm <td>st 🛶 Trig: Free Run Avg Hold: 100/10</td> <td>DET P NNNNN Mkr1 2.401 9 GHz -7.297 dBm</td> <td>15</td>	st 🛶 Trig: Free Run Avg Hold: 100/10	DET P NNNNN Mkr1 2.401 9 GHz -7.297 dBm	15
	Center Freq 2.35600000 GHz PNO: Fast IFGain:Lo PNO: Fast IFGain:Lo PNO: Fast IFGain:Lo 10 dB/div Ref Offset 2.03 dB 10 dB/div Ref 20.00 dBm 10 0	st 🛶 Trig: Free Run Avg Hold: 100/10	DET P NNNNN Mkr1 2.401 9 GHz -7.297 dBm 0.1 -27 70 dBm 0.1 -27 70 dBm 	15
æ	Center Freq 2.35600000 GHz PNO: Fast IFGain:Lo PNO: Fast IFGain:Lo PNO: Fast IFGain:Lo 10 dB/div Ref Offset 2.03 dB 10 dB/div Ref 20.00 dBm 10 dB/div Ref 20.00 dBm <td>st 🛶 Trig: Free Run Avg Hold: 100/10</td> <td>Mkr1 2.401 9 GHz -7.297 dBm</td> <td>B</td>	st 🛶 Trig: Free Run Avg Hold: 100/10	Mkr1 2.401 9 GHz -7.297 dBm	B
æ	Center Freq 2.35600000 GHz PNO: Fast IFGain: Lo PNO: Fast IFGain: Lo PNO: Fast IFGain: Lo PNO: Fast IFG IFGAIN: Lo PNO: Fast IFGain: Lo PNO: Fast IFGAIN: Lo PNO: FastIFGAIN: Lo PNO: Fast IFGAIN: L	t → Trig: Free Run Avg Hold: 100/10 #Atten: 30 dB	DET IP NNNNN Mkr1 2.401 9 GHz -7.297 dBm DL1-27 70 dBm 	B
ð	Center Freq 2.35600000 GHz PNO: Fas PNO: Fas IFGain:Lo PNO: Fas IFGAIN PAS IFGAIN PAS IFGAIN PAS IFGAIN PAS IFGAIN PAS IFGAIN PAS IFGAIN	trig: Free Run Avg Hold: 100/10 w #Atten: 30 dB #Atten: 30 dB #VBW 300 kHz Y FUNCTION FUNCTION WIDTH -7.297 dBm	DET IP NNNNN Mkr1 2.401 9 GHz -7.297 dBm 0.1 -27 0 dBn 0.1 -27 0 dBn 44 44 44 44 44 44 44 44 500 2.40600 GHz Sweep 9.600 ms (1001 pts)	B
Ð	Center Freq 2.35600000 GHz PNO: Fast IFGain:Lo PNO: Fast IFGain:Lo PNO: Fast IFGain:Lo 10 dB/div Ref Offset 2.03 dB 10 dB/div Ref 20.00 dBm 10 dB/div Ref 2.401 9 GHz 10 f 2.400 0 GHz 10 f 2.400 0 GHz 10 f 2.308 7 GHz	t → Trig: Free Run Avg Hold: 100/10 #Atten: 30 dB	DET IP NNNNN Mkr1 2.401 9 GHz -7.297 dBm 0.1 -27 0 dBn 0.1 -27 0 dBn 44 44 44 44 44 44 44 44 500 2.40600 GHz Sweep 9.600 ms (1001 pts)	B
E	Center Freq 2.356000000 GHz PNO: Fast IFGain: Lo PNO: Fast IFGain: Lo PNO: Fast IFGain: Lo PNO: Fast IFG IFGAIN PNO: Fast IFGain: Lo PNO: Fast IFGAIN PNO: Fast IFGAIN PNO: Past IFGAIN PNO: Fast IFGAIN PNO: Past IFGAIN Past IFGAIN Past IFGAIN <td< td=""><td>t → Trig: Free Run Avg Hold: 100/10 w #Atten: 30 dB #Atten: 30 dB</td><td>DET IP NNNNN Mkr1 2.401 9 GHz -7.297 dBm 0.1 -27 0 dBn 0.1 -27 0 dBn 44 44 44 44 44 44 44 44 500 2.40600 GHz Sweep 9.600 ms (1001 pts)</td><td>B</td></td<>	t → Trig: Free Run Avg Hold: 100/10 w #Atten: 30 dB #Atten: 30 dB	DET IP NNNNN Mkr1 2.401 9 GHz -7.297 dBm 0.1 -27 0 dBn 0.1 -27 0 dBn 44 44 44 44 44 44 44 44 500 2.40600 GHz Sweep 9.600 ms (1001 pts)	B
ð	Center Freq 2.35600000 GHz PNO: Fast IFGain: Log PNO: Fast IFGain: Log Ref Offset 2.03 dB 10 dB/div Ref 20.00 dBm 20 dB/div Ref 20.00 dBm -20 dB/div Ref 2.00 dBm </td <td>t → Trig: Free Run Avg Hold: 100/10 w #Atten: 30 dB #Atten: 30 dB</td> <td>DET IP NNNNN Mkr1 2.401 9 GHz -7.297 dBm 0.1 -27 0 dBn 0.1 -27 0 dBn 44 44 44 44 44 44 44 44 500 2.40600 GHz Sweep 9.600 ms (1001 pts)</td> <td>B</td>	t → Trig: Free Run Avg Hold: 100/10 w #Atten: 30 dB #Atten: 30 dB	DET IP NNNNN Mkr1 2.401 9 GHz -7.297 dBm 0.1 -27 0 dBn 0.1 -27 0 dBn 44 44 44 44 44 44 44 44 500 2.40600 GHz Sweep 9.600 ms (1001 pts)	B
æ	Center Freq 2.35600000 GHz PNO: Fast IFGain: Lo PNO: Fast IFGain: Lo PNO: Fast IFGain: Lo 10 dB/div Ref Offset 2.03 dB 10 dB/div Ref 20.00 dBm Log Image: Comparison of the set o	t → Trig: Free Run Avg Hold: 100/10 w #Atten: 30 dB #Atten: 30 dB	DET IP NNNNN Mkr1 2.401 9 GHz -7.297 dBm 0.1 -27 0 dBn 0.1 -27 0 dBn 44 44 44 44 44 44 44 44 500 2.40600 GHz Sweep 9.600 ms (1001 pts)	Æ

2 0755-27782934

Project No.: ZHT-240704019E Page 43 of 54

1 0755-27782934

Conducted R	F Spurious Emission	11				
Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict		
BLE 1M	2402	-35.91	-20	Pass		
BLE 1M	2440	-32.37	-20	Pass		
BLE 1M	2480	-28.13	-20	Pass		
BLE 2M	2402	-36.23	-20	Pass		
BLE 2M	2440	-33.01	-20	Pass		
BLE 2M	2480	-28.26	-20	Pass		

				B
				B
				Ð
				B

🕗 🌐 http://www.zht-lab.cn

🕖 🌐 http://www.zht-lab.cn

🕗 🌐 http://www.zht-lab.cn

10.ANTENNA REQUIREMENT

An inte be use intenti use of 15.247 (4) The directi directi	ed with the de onal radiator, f a standard ar 7(b) (4) requin e conducted c onal gains tha onal gain grea	tor shall be desig vice. The use of the manufacture ntenna jack or el- ement: butput power limi at do not exceed ater than 6 dBi ar	ned to ensure tha f a permanently a r may design the ectrical connector t specified in para 6 dBi. Except as re used, the cond	attached antenna unit so that a bro is prohibited. agraph (b) of this shown in paragra ucted output pow	or of an antenna ken antenna can section is based o ph (c) of this sect er from the intent	that uses a unique be replaced by the con the use of ante tion, if transmittin ional radiator sha	ue coupling to the ne user, but the ennas with g antennas of all be reduced
directi EUT /	onal gain of th Antenna:	ne antenna excee	ns (b)(1), (b)(2), a eds 6 dBi. est case gain of th			44.	
							1.4

ZH	E ONGHAN					Project No.: ZF	HT-240704019E Page 54 of 54	
1 1	I. TEST SETUP	• PHOTOS to the appendix	/ I for details					æ
12		RUCTIONAL DE						
	Reference t	to the appendix	II for details.					
			**** EN	ID OF REPORT	`****			
								Ð
								Ð
			_ 10.					