

Page 1 of 23

Report Number..... ZHT-230630013E

Date of Test...... June 30, 2023 to July 14, 2023

Date of issue...... July 26, 2023

Test Result: PASS

Testing Laboratory...... Guangdong Zhonghan Testing Technology Co., Ltd.

Address : Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Applicant's name Dongguan Fismool Technology Co.,Ltd.

Address Room 801, Building 4, NO.2 Anyue Road, Chashan Town,

Dongguan, Guangdong, China.

Manufacturer's name Dongguan Fismool Technology Co.,Ltd.

Address Room 801, Building 4, NO.2 Anyue Road, Chashan Town,

Dongguan, Guangdong, China.

Test specification:

Standard...... FCC CFR Title 47 Part 15 Subpart C

Test procedure.....: /

Non-standard test method: N/A

This device described above has been tested by ZHT, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of ZHT, this document may be altered or revised by ZHT, personal only, and shall be noted in the revision of the document.

Product name.....: WIRELESS CHARGER

Trademark: /

Model/Type reference.....: F2

Ratings.....: Input: 9V===3A

Output:

Wireless charging port 1: 15W Wireless charging port 2: 5W Wireless charging port 3: 3W

Project No.: ZHT-230630013E Page 2 of 23

Testing procedure and testing loca	ition:			
Testing Laboratory	:	Guangdong Zho	nghan Testing Technology	Co., Ltd.
Address	(15)		ling 1, Yibaolai Industrial P ai Street, Bao'an District, S ina	
Tested by (name + signature)	:	Leon Li	Leon	Li
Reviewer (name + signature)		Baret Wu	Bax.	44
Approved (name Laigheture)		Louidaa	Order Change of the Control of the C	Technology Co. V.d Grange
Approved (name + signature)	:	Levi Lee	goordoof gaines	Tanhungan
15)				
		44	44	

TABLE OF CONTENTS

1. VERSION			
2. TEST SUMMARY	•••••	•••••	5
2.1 TEST FACILITY			
2.2 MEASUREMENT UNCERT			
3. GENERAL INFORMATION			
3.1 GENERAL DESCRIPTION	OF EUT		7. 4.22
3.2 Test mode			
3.3 Block Diagram of EUT Con			
3.4 Test Conditions			
3.5 Description Of Support Uni 3.6 EQUIPMENTS LIST FOR A	ts (Conducted Mode)		
4. CONDUCTED EMISSION			
4.1 CONDUCTED EMISSION 4.1.1 POWER LINE CONDUCT			
4.1.2 TEST PROCEDURE			
4.1.3 DEVIATION FROM TEST	T STANDARD		11
4.1.4 TEST SETUP			
4.1.5 EUT OPERATING COND	DITIONS		12
4.1.6 Test Result			13
5. RADIATED EMISSION ME	ASUREMENT	•••••	15
5.1 Radiated Emission Limits			
5.2 Anechoic Chamber Test Se	etup Diagram		16
5.3 Test Procedure			16
5.4 DEVIATION FROM TEST S			
5.5 Test Result			
6. BANDWIDTH TEST			
7. ANTENNA REQUIREMEN			
8. TEST SETUP PHOTO	<u> </u>		23
9. EUT CONSTRUCTIONAL	DETAILS		23

Project No.: ZHT-230630013E Page 4 of 23

1. VERSION

Report No.	Version	Description	Approved
ZHT-230630013E	Rev.01	Initial issue of report July 26, 20	
	33.4	3.2	4.21
(H)	(H)	(1)	11)

Project No.: ZHT-230630013E Page 5 of 23

2. TEST SUMMARY

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Spurious Emission	15.209(a)(f)	Pass
20dB Bandwidth	15.215	Pass

NOTE:

Project No.: ZHT-230630013E Page 6 of 23

2.1 TEST FACILITY


Guangdong Zhonghan Testing Technology Co., Ltd.

Add.: Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an Distric

Shenzhen, Guangdong, China

FCC Registration Number:255941 Designation Number: CN0325 IC Registered No.: 29832 CAB identifier: CN0143

2.2 MEASUREMENT UNCERTAINTY

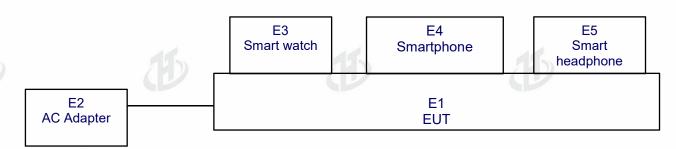
The reported uncertainty of measurement $y \pm U_{\tau}$ where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %。

No.	Item	Uncertainty	
1	Conducted Emission Test	±1.38dB	
2	RF power conducted	±0.16dB	
3	Spurious emissions conducted	±0.21dB	
4	All emissions radiated(9k-30MHz)	±4.68dB	
5	All emissions radiated(<1G)	±4.68dB	
6	All emissions radiated(>1G)	±4.89dB	
7	Temperature	±0.5°C	
8	Humidity	±2%	
9	Occupied Bandwidth	±4.96dB	

Project No.: ZHT-230630013E Page 7 of 23

3.1 GENERAL DESCRIPTION OF EUT

Product Name:	WIRELESS CHARGER			
Model No.:	F2			
150	F2-1			
Model Difference:	All the model are of the same circuit and RF module, and only the Model name are different, all tests are based on F2.			
Hardware version:	V1.0			
Software version:	V1.0			
Operation Frequency:	110-205KHz			
Modulation type:	MSK			
Antenna Type:	Inductive loop coil Antenna			
Antenna gain:	0dBi			
Power supply:	Input : 9V==3A Output: Wireless charging port 1: 15W Wireless charging port 2: 5W Wireless charging port 3: 3W			


3.2 Test mode

Test Modes:

Mode 1 Wireless charging mode(Smartphone(15W) + Smart headphone(5W) + Smart watch(3W)

Note: All modes were tested, only the worst-case was recorded in the report. Mode 1 is the worst mode.

3.3 Block Diagram of EUT Configuration

3.4 Test Conditions

Temperature: 23~26 °C Relative Humidity: 54~63 %

Project No.: ZHT-230630013E Page 8 of 23

3.5 Description Of Support Units (Conducted Mode)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E1	WIRELESS CHARGER	Fismool	F2	1	EUT
E2	AC Adapter	HUAWEI	HW-100	1	AE
E3	Smart watch	APPLE	Apple Watch S6	1	AE
E4	Smartphone	APPLE	iphone13	1	AE
E5	Smart headphone	HUAWEI	HUAWEI FreeBuds Pro	1	AE

Item	Shielded Type	Ferrite Core	Length	Note	Э
		45	3)	115	11
			2		
				,	

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.
- "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core". (3)

Project No.: ZHT-230630013E Page 9 of 23

3.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

<u>kadialion</u>	rest equipment			12/	
Item	Equipment	Manufacturer	Model	Last Cal.	Next Cal.
1	Receiver	R&S	ESCI	Mar 12, 2023	Mar 11, 2024
2	Loop antenna	EMCI	LAP600	Mar 12, 2023	Mar 11, 2024
3	Amplifier	Schwarzbeck	BBV 9743 B	Mar 12, 2023	Mar 11, 2024
4	Amplifier	Schwarzbeck	BBV 9718 B	Mar 12, 2023	Mar 11, 2024
5	Bilog Antenna	Schwarzbeck	VULB9162	Mar 17, 2023	Mar 16, 2024
6	Horn Antenna	Schwarzbeck	BBHA9120D	Mar 17, 2023	Mar 16, 2024
7	Horn Antenna	A.H.SYSTEMS	SAS574	Mar 12, 2023	Mar 11, 2024
8	Amplifier	AEROFLEX	100KHz-40GHz	Mar 12, 2023	Mar 11, 2024
9	Spectrum Analyzer	R&S	FSV40	Mar 12, 2023	Mar 11, 2024
10	CDNE	Schwarzbeck	CDNE M2 + CDNE M3	Aug. 09, 2022	Aug. 08, 2023
11	966 Anechoic Chamber	EMToni	9m6m6m	Nov. 25, 2021	Nov. 24, 2024
12	Spectrum Analyzer	KEYSIGHT	N9020A	Mar 12, 2023	Mar 11, 2024
13	WIDBAND RADIO COMMUNICATI ON TESTER	R&S	CMW500	Mar 12, 2023	Mar 11, 2024
14	Single Generator	Agilent	N5182A	Mar 12, 2023	Mar 11, 2024
15	Power Sensor	MWRFtest	MW100-RFCB	Mar 12, 2023	Mar 11, 2024
16	Audio analyzer	R&S	UPL	Mar 12, 2023	Mar 11, 2024
17	Single Generator	R&S	SMB100A	Mar 12, 2023	Mar 11, 2024
18	Power Amplifier Shielding Room	EMToni	2m3m3m	Nov. 25, 2021	Nov. 24, 2024

Project No.: ZHT-230630013E

Page 10 of 23

Conduction	Test ed	mqiur	ent

Equipment	Manufacturer	Model	Last Cal.	Next Cal.
Receiver	R&S	ESCI	Mar 12, 2023	Mar 11, 2024
LISN	R&S	ENV216	Mar 12, 2023	Mar 11, 2024
ISN CAT 6	Schwarzbeck	NTFM 8158	Mar 12, 2023	Mar 11, 2024
ISN CAT 5	Schwarzbeck	CAT5 8158	Mar 12, 2023	Mar 11, 2024
Capacitive Voltage Probe	Schwarzbeck	CVP 9222 C	Mar 12, 2023	Mar 11, 2024
Current Transformer Clamp	Schwarzbeck	SW 9605	Mar 12, 2023	Mar 11, 2024
CE Shielding Room	EMToni	9m4m3m	Nov. 25, 2021	Nov. 24, 2024

Project No.: ZHT-230630013E Page 11 of 23

4.1 CONDUCTED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2013
Test Frequency Range:	150KHz to 30MHz
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

4.1.1 POWER LINE CONDUCTED EMISSION Limits

FREQUENCY (MHz)	Limit (d	Standard	
FREQUENCT (MITZ)	QP	AVG	Standard
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

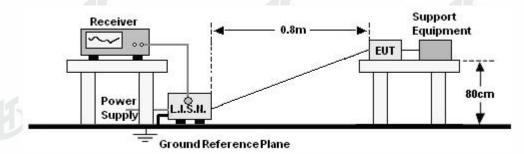
(1) *Decreases with the logarithm of the frequency.

4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

No deviation



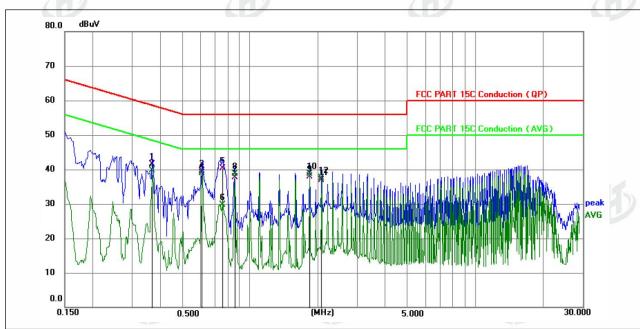
Project No.: ZHT-230630013E Page 12 of 23

4.1.4 TEST SETUP

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

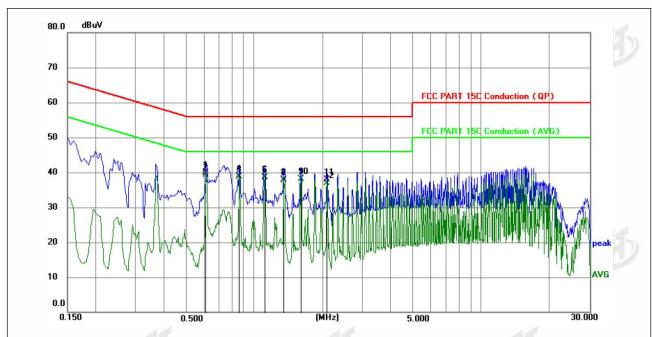
We pretest AC 120V and AC 230V, the worst voltage was AC 120V and the data recording in the report.



Temperature:	26℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	L
Test Voltage:	AC 120V/60Hz		

_										
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	
	1	0.3660	31.48	9.97	41.45	58.59	-17.14	QP	Р	
	2	0.3660	29.65	9.97	39.62	48.59	-8.97	AVG	Р	1
	3	0.6134	29.47	10.03	39.50	56.00	-16.50	QP	Р	1
	4 *	0.6134	28.81	10.03	38.84	46.00	-7.16	AVG	Р	
	5	0.7574	30.24	10.04	40.28	56.00	-15.72	QP	Р	
	6	0.7574	19.75	10.04	29.79	46.00	-16.21	AVG	Р	
	7	0.8565	27.65	10.05	37.70	56.00	-18.30	QP	Р	
	8	0.8565	28.66	10.05	38.71	46.00	-7.29	AVG	Р	
	9	1.8420	27.78	10.06	37.84	56.00	-18.16	QP	Р	
	10	1.8420	28.72	10.06	38.78	46.00	-7.22	AVG	Р	
	11	2.0803	26.77	10.07	36.84	56.00	-19.16	QP	Р	1
	12	2.0803	27.43	10.07	37.50	46.00	-8.50	AVG	Р	

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor



ZHONGHAN

Project No.: ZHT-230630013E Page 14 of 23

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	N
Test Voltage:	AC 120V/60Hz		

(MHz) (dBuV) (dBuV) </th <th></th> <th></th> <th></th> <th></th> <th>AIII IIII</th> <th></th> <th></th> <th></th> <th></th> <th></th>					AIII IIII					
2 * 0.6134 29.25 10.03 39.28 46.00 -6.72 A 3 0.8610 28.73 10.05 38.78 56.00 -17.22 C 4 0.8610 28.92 10.05 38.97 46.00 -7.03 A 5 1.1130 28.36 10.06 38.42 56.00 -17.58 C 6 1.1130 28.62 10.06 38.68 46.00 -7.32 A 7 1.3515 27.71 10.07 37.78 56.00 -18.22 C 8 1.3515 27.86 10.07 37.93 46.00 -8.07 A 9 1.6080 27.96 10.06 38.02 56.00 -17.98 C 10 1.6080 28.10 10.06 38.16 46.00 -7.84 A	No.							Detector	P/F	
3 0.8610 28.73 10.05 38.78 56.00 -17.22 0 4 0.8610 28.92 10.05 38.97 46.00 -7.03 A 5 1.1130 28.36 10.06 38.42 56.00 -17.58 0 6 1.1130 28.62 10.06 38.68 46.00 -7.32 A 7 1.3515 27.71 10.07 37.78 56.00 -18.22 0 8 1.3515 27.86 10.07 37.93 46.00 -8.07 A 9 1.6080 27.96 10.06 38.02 56.00 -17.98 0 10 1.6080 28.10 10.06 38.16 46.00 -7.84 A	1	0.6134	29.95	10.03	39.98	56.00	-16.02	QP	Р	
4 0.8610 28.92 10.05 38.97 46.00 -7.03 A 5 1.1130 28.36 10.06 38.42 56.00 -17.58 C 6 1.1130 28.62 10.06 38.68 46.00 -7.32 A 7 1.3515 27.71 10.07 37.78 56.00 -18.22 C 8 1.3515 27.86 10.07 37.93 46.00 -8.07 A 9 1.6080 27.96 10.06 38.02 56.00 -17.98 C 10 1.6080 28.10 10.06 38.16 46.00 -7.84 A	2 *	0.6134	29.25	10.03	39.28	46.00	-6.72	AVG	Р	ĺ
5 1.1130 28.36 10.06 38.42 56.00 -17.58 0 6 1.1130 28.62 10.06 38.68 46.00 -7.32 A 7 1.3515 27.71 10.07 37.78 56.00 -18.22 0 8 1.3515 27.86 10.07 37.93 46.00 -8.07 A 9 1.6080 27.96 10.06 38.02 56.00 -17.98 0 10 1.6080 28.10 10.06 38.16 46.00 -7.84 A	3	0.8610	28.73	10.05	38.78	56.00	-17.22	QP	Р	1
6 1.1130 28.62 10.06 38.68 46.00 -7.32 A 7 1.3515 27.71 10.07 37.78 56.00 -18.22 O 8 1.3515 27.86 10.07 37.93 46.00 -8.07 A 9 1.6080 27.96 10.06 38.02 56.00 -17.98 O 10 1.6080 28.10 10.06 38.16 46.00 -7.84 A	4	0.8610	28.92	10.05	38.97	46.00	-7.03	AVG	Р	6
7 1.3515 27.71 10.07 37.78 56.00 -18.22 0 8 1.3515 27.86 10.07 37.93 46.00 -8.07 A 9 1.6080 27.96 10.06 38.02 56.00 -17.98 0 10 1.6080 28.10 10.06 38.16 46.00 -7.84 A	5	1.1130	28.36	10.06	38.42	56.00	-17.58	QP	Р	
8 1.3515 27.86 10.07 37.93 46.00 -8.07 A 9 1.6080 27.96 10.06 38.02 56.00 -17.98 O 10 1.6080 28.10 10.06 38.16 46.00 -7.84 A	6	1.1130	28.62	10.06	38.68	46.00	-7.32	AVG	Р	
9 1.6080 27.96 10.06 38.02 56.00 -17.98 0 10 1.6080 28.10 10.06 38.16 46.00 -7.84 A	7	1.3515	27.71	10.07	37.78	56.00	-18.22	QP	Р	
10 1.6080 28.10 10.06 38.16 46.00 -7.84 A	8	1.3515	27.86	10.07	37.93	46.00	-8.07	AVG	Р	
# 8-24 # Accession (1975) # 1985 19	9	1.6080	27.96	10.06	38.02	56.00	-17.98	QP	Р	
11 2.0985 27.89 10.07 37.96 56.00 -18.04 0	10	1.6080	28.10	10.06	38.16	46.00	-7.84	AVG	Р	
	11	2.0985	27.89	10.07	37.96	56.00	-18.04	QP	Р	
12 2.0985 26.85 10.07 36.92 46.00 -9.08 A	12	2.0985	26.85	10.07	36.92	46.00	-9.08	AVG	Р	

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor

Project No.: ZHT-230630013E Page 15 of 23

5. RADIATED EMISSION MEASUREMENT

		20 402						
Test Requirement:	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013						
Test Frequency Range:	9kHz to 1GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Value			
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak			
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak			
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak			
	Above 1GHz	Peak	1MHz	3MHz	Peak			
	1.5515 . 5112	Peak	1MHz	10Hz	Average			

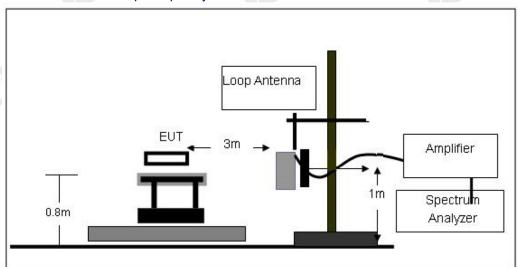
5.1 Radiated Emission Limits

Limits for frequency below 30MHz

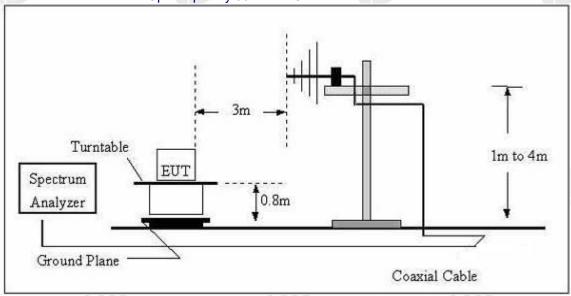
Emilia for frequenc	y Delow John 12		
Frequency	Limit (uV/m)	Measurement Distance(m)	Remark
0.009-0.490	2400/F(kHz)	300	Quasi-peak Value
0.490-1.705	24000/F(kHz)	30	Quasi-peak Value
1.705-30	30	30	Quasi-peak Value

Limits for frequency Above 30MHz

Frequency	Limit (dBuV/m @3m)	Remark
30MHz-88MHz	40.00	Quasi-peak Value
88MHz-216MHz	43.50	Quasi-peak Value
216MHz-960MHz	46.00	Quasi-peak Value
960MHz-1GHz	54.00	Quasi-peak Value
Above 1GHz	54.00	Average Value
	74.00	Peak Value



Project No.: ZHT-230630013E Page 16 of 23



5.2 Anechoic Chamber Test Setup Diagram

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.205 limits.

5.3 Test Procedure

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can move up and down between 1 to 4 meters to find out the maximum emission level. Broadband antenna (calibrated by dipole antenna) are used as a receiving antenna. Both horizontal and vertical polarization of the antenna are set on measurement.

5.4 DEVIATION FROM TEST STANDARD

No deviation

Measurement data:

Note: Limit dBuV/m @3m = Limit dBuV/m @300m+ 80 Limit dBuV/m @3m = Limit dBuV/m @30m + 40

9 kHz~30 MHz

				The state of the s		
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(kHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
53.05	56.2	15.15	71.35	111.85	-40.5	AVG
110.00	56.38	15.18	70.94	106.78	-35.22	AVG
126.12	75.18	15.2	90.97	105.58	-15.2	AVG
731.57	26.3	16.33	43.46	70.83	-28.2	QP
963.14	25.64	16.87	41.99	68.37	-25.86	QP
1302.05	21.05	17.62	38.17	65.29	-26.62	QP

Note:

Pre-scan in the all of mode, the worst case in of was recorded.

Factor = antenna factor + cable loss – pre-amplifier.

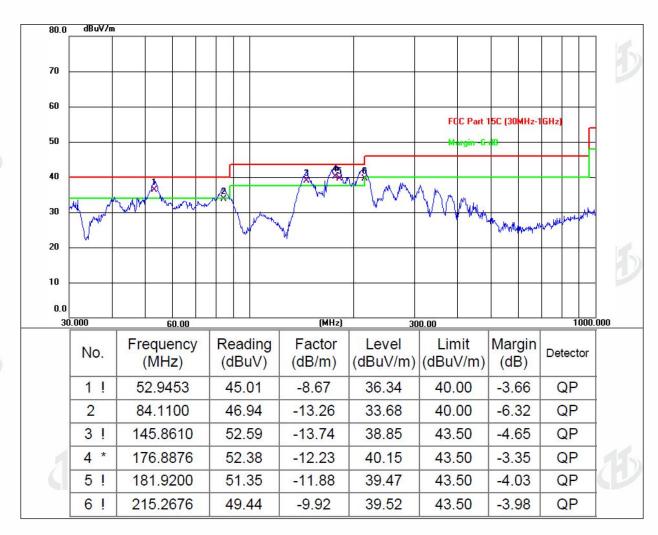
Margin = Emission Level- Limit.

The amplitude of emissions which are attenuated by more than 20db below the permissible value has no need to be reported.

Project No.: ZHT-230630013E Page 18 of 23

30MHz-1GHz

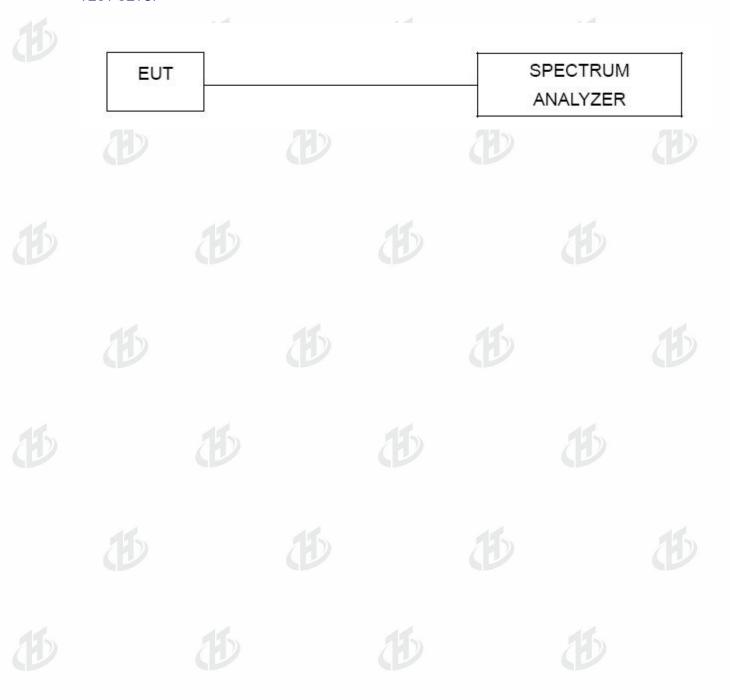
Temperature:	26℃	Relative Humidity:	54%
Pressure:	101 kPa	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz		



Project No.: ZHT-230630013E Page 19 of 23

Temperature:	26℃	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz		

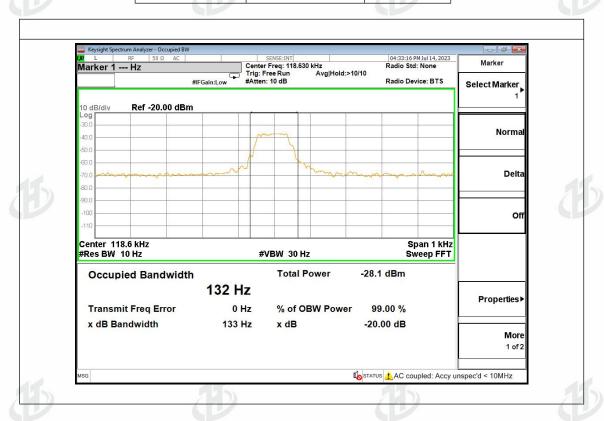
- 1.Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.


Project No.: ZHT-230630013E Page 20 of 23

6. BANDWIDTH TEST

- 2. Set the video bandwidth (VBW) ≥ 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP



Project No.: ZHT-230630013E Page 21 of 23

Temperature:	25.7 ℃	Relative Humidity:	55%
Pressure:	101kPa		71)

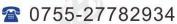
Frequency (KHz)	20dB bandwidth (KHz)	Result	
118.63	0.133	Pass	

Project No.: ZHT-230630013E Page 22 of 23

7. ANTENNA REQUIREMENT

Ot			
Standa	rd rea	uirem	ent:
Ctarraar	· u · uq	an on	Oi it.

FCC Part15 C Section 15.203


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is Inductive loop coil Antenna, the best case gain of the antennas is 0dBi, reference to the appendix II for details

8. TEST SETUP PHOTO

Reference to the appendix I for details.

9. EUT CONSTRUCTIONAL DETAILS

Reference to the appendix II for details.

