

FCC Part 15 B TEST REPORT

FCC ID:2BAYC-NDN23BHFICW

Report Number.....: ZKT-2312250365E

Date of Test..... Dec. 01, 2023 to Dec. 25, 2023

Date of issue.....: Dec. 25, 2023

Total number of pages..... 15

Test Result: PASS

Testing Laboratory.....: Shenzhen ZKT Technology Co., Ltd.

Address: 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name: Simply NUC, Inc.

Address: 3500 s Dupont Hwy, In the city of Dover , County of Kent, Delaware, United states19901

Manufacturer's name: QUTHC Limited

Address: 7 Floor C Building, Longsheng Industrial Park,Huiyang District,Huizhou City,Guangdong province(516211) P.R.China

Test specification:

Standard.....: FCC Part 15 B, ANSI C63.4:2014

Test procedure.....: /

Non-standard test method: N/A

Test Report Form No......: TRF-EL-117_V0

Test Report Form(s) Originator....: ZKT Testing

Master TRF: Dated: 2020-01-06

This device described above has been tested by ZKT, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of ZKT, this document may be altered or revised by ZKT, personal only, and shall be noted in the revision of the document.

Product name.....: Bloodhound Mini PC

Trademark: Simply NUC

Model/Type reference.....: NDN23BHFICW

Adapter:

Mode:FJ-GN20651204000

INPUT:100-240V~50/60Hz 1.5A Max

OUTPUT:12.0V 4.0A 48.0W

Testing procedure and testing location:

Testing Laboratory.....: **Shenzhen ZKT Technology Co., Ltd.**

Address.....: 1/F, No. 101, Building B, No. 6, Tangwei Community
Industrial Avenue, Fuhai Street, Bao'an District,
Shenzhen, China

Tested by (name + signature).....: Jim Liu

Reviewer (name + signature).....: Jackson Fang

Approved (name + signature).....: Lake Xie

TABLE OF CONTENT

	Page
1.VERSION	4
2.GENERAL INFORMATION	5
2.1 Description of Device (EUT)	5
2.2 Tested System Details	5
2.3 Test Facility	5
2.4 SUMMARY OF TEST RESULTS	5
2.5 MEASUREMENT UNCERTAINTY	6
2.6 Test Instrument Used	7
3.CONDUCTED EMISSION AT THE MAINS TERMINALS TEST	8
3.1 Block Diagram Of Test Setup	8
3.2 Test Standard	8
3.3 Power Line Conducted Emission Limit	8
3.4 EUT Configuration on Test	8
3.5 Operating Condition of EUT	8
3.6 Test Procedure	8
3.7 Test Result	8
4.RADIATION EMISSION TEST	11
4.1 Block Diagram of Test Setup	11
4.2 Test Standard	11
4.3 Radiation Limit	11
4.4 EUT Configuration on Test	11
4.5 Operating Condition of EUT	11
4.6 Test Procedure	11
4.7 Test Result	12
5. EUT TEST PHOTOGRAPHS	16
6 .EUT Photographs	16

1.VERSION

Report No.	Version	Description	Approved
ZKT-2312250365E	Rev.01	Initial issue of report	Dec. 25, 2023

2.GENERAL INFORMATION

2.1 Description of Device (EUT)

EUT : Bloodhound Mini PC
Trademark : Simply NUC
Model Number : NDN23BHFICW
Serial No.: ZKT-2312250365E-1
Power Supply :
Adapter 1:
Mode:FJ-GN20651204000
INPUT:100-240V~50/60Hz 1.5A Max
OUTPUT:12.0V 4.0A 48.0W
Adapter 2:
Mode:FJ-SW528G1204000N
INPUT:100-240V~50/60Hz 1.5A Max
OUTPUT:12.0V 4.0A 48.0W

2.2 Tested System Details

None.

2.3 Test Facility

Site Description

Name of Firm : Shenzhen ZKT Technology Co., Ltd.
Site Location : 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

FCC Test Firm Registration Number: 692225
Designation Number: CN1299
IC Registered No.: 27033

2.4 SUMMARY OF TEST RESULTS

FCC Part15 , Subpart B			
Standard Section	Test Item	Judgment	Remark
15.107	Conducted Emission	PASS	
15.109	Radiated Emission	PASS	

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

(2) The internal module of the product has obtained FCC ID certification, and the FCC ID number is: PD99260NG.

2.5 MEASUREMENT UNCERTAINTY

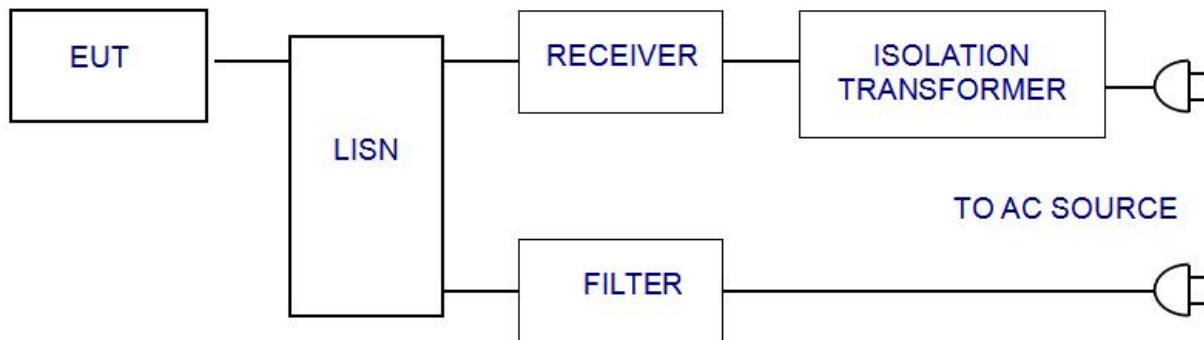
Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Value (dB)
Conducted Emission (150K-30MHZ)	3.20
Radiated disturbance30MHz-1000MHz	4.80

2.6 Test Instrument Used

Conducted emissions Test

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Firmware Version	Last calibration	Calibrated until
1	LISN	R&S	ENV216	101471	N/A	Oct. 21, 2023	Oct. 20, 2024
2	LISN	CYBERTEK	EM5040A	E1850400149	N/A	Oct. 21, 2023	Oct. 20, 2024
3	Test Cable	N/A	C-01	N/A	N/A	Oct. 21, 2023	Oct. 20, 2024
4	Test Cable	N/A	C-02	N/A	N/A	Oct. 21, 2023	Oct. 20, 2024
5	Test Cable	N/A	C-03	N/A	N/A	Oct. 21, 2023	Oct. 20, 2024
6	EMI Test Receiver	R&S	ESCI3	101393	4.42 SP3	Oct. 28, 2023	Oct. 27, 2024
7	Triple-Loop Antenna	N/A	RF300	N/A	N/A	Oct. 28, 2023	Oct. 27, 2024
8	Absorbing Clamp	DZ	ZN23201	15034	N/A	Oct. 31, 2023	Oct. 30, 2024
9	EMC Software	Frad	EZ-EMC	Ver.EMC-CO N 3A1.1	N/A	\	\


Radiation emissions& Radio Test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Firmware Version	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	KEYSIGHT	9020A	MY55370835	A.17.05	Oct. 28, 2023	Oct. 27, 2024
2	Spectrum Analyzer (10kHz-39.9GHz)	R&S	FSV40-N	100363	1.71 SP2	Oct. 28, 2023	Oct. 27, 2024
3	EMI Test Receiver (9kHz-7GHz)	R&S	ESCI7	101169	4.32	Oct. 28, 2023	Oct. 27, 2024
4	Bilog Antenna (30MHz-1500MHz)	Schwarzbeck	VULB9168	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
5	Horn Antenna (1GHz-18GHz)	Agilent	AH-118	071145	N/A	Nov. 01, 2023	Oct. 31, 2024
6	Horn Antenna (15GHz-40GHz)	A.H.System	SAS-574	588	N/A	Oct. 28, 2023	Oct. 27, 2024
7	Loop Antenna	TESEQ	HLA6121	58357	N/A	Nov. 01, 2023	Oct. 31, 2024
8	Amplifier (30-1000MHz)	EM Electronics	EM330 Amplifier	060747	N/A	Nov. 15, 2023	Nov. 14, 2024
9	Amplifier (1GHz-26.5GHz)	Agilent	8449B	3008A00315	N/A	Oct. 28, 2023	Oct. 27, 2024
10	Amplifier (500MHz-40GHz)	全聚达	DLE-161	097	N/A	Oct. 28, 2023	Oct. 27, 2024
11	Test Cable	N/A	R-01	N/A	N/A	Oct. 28, 2023	Oct. 27, 2024
12	Test Cable	N/A	R-02	N/A	N/A	Oct. 28, 2023	Oct. 27, 2024
13	Test Cable	N/A	R-03	N/A	N/A	Oct. 28, 2023	Oct. 27, 2024
14	Test Cable	N/A	RF-01	N/A	N/A	Oct. 28, 2023	Oct. 27, 2024
15	Test Cable	N/A	RF-02	N/A	N/A	Oct. 28, 2023	Oct. 27, 2024
16	Test Cable	N/A	RF-03	N/A	N/A	Oct. 28, 2023	Oct. 27, 2024
17	D.C. Power Supply	LongWei	TPR-6405D	N/A	N/A	\	\
18	EMC Software	Frad	EZ-EMC	Ver.EMC-CO N 3A1.1	N/A	\	\
19	Turntable	MF	MF-7802BS	N/A	N/A	\	\
20	Antenna tower	MF	MF-7802BS	N/A	N/A	\	\

3.CONDUCTED EMISSION AT THE MAINS TERMINALS TEST

3.1 Block Diagram Of Test Setup

3.2 Test Standard

FCC PART 15 B

3.3 Power Line Conducted Emission Limit

Frequency MHz	Limits dB(μ V)	
	Quasi-peak Level	Average Level
0.15 ~ 0.50	66 ~ 56*	56 ~ 46*
0.50 ~ 5.00	56	46
5.00 ~ 30.00	60	50

Notes: 1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

3.4 EUT Configuration on Test

The following equipments are installed on conducted emission test to meet FCC PART 15 B requirement and operating in a manner which tends to maximize its emission characteristics in a normal application.

3.5 Operating Condition of EUT

3.5.1 Setup the EUT and simulators as shown in Section 3.1.

3.5.2 Turn on the power of all equipments.

3.5.3 Let the EUT work in test modes and test it.

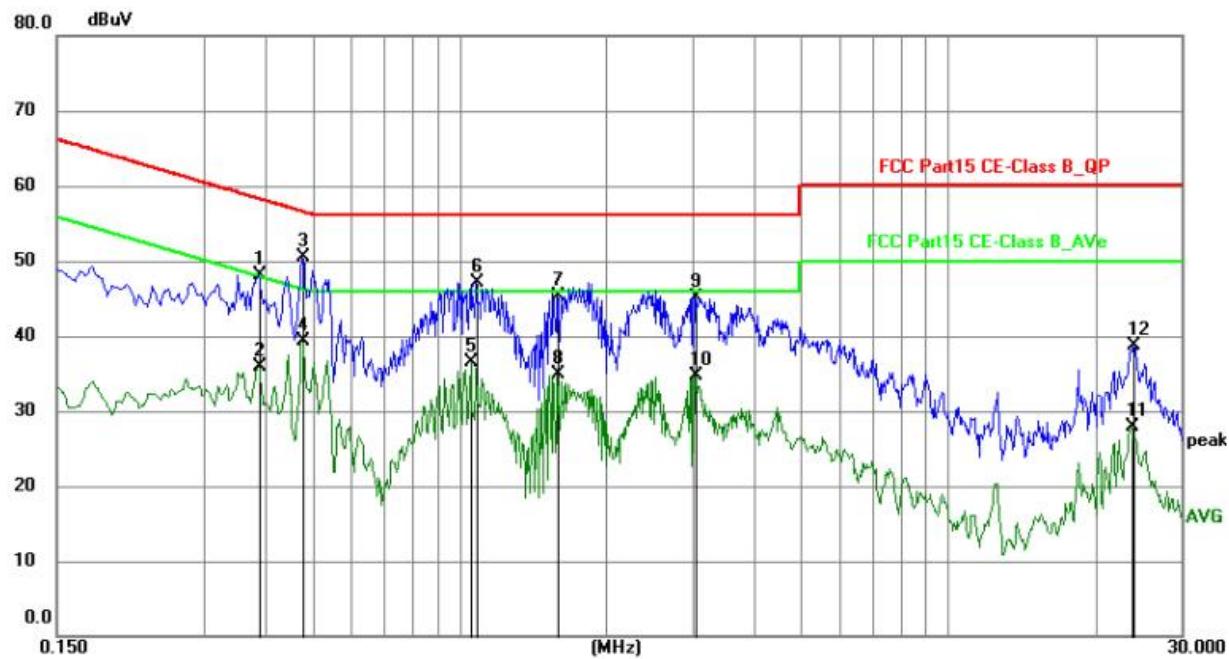
3.6 Test Procedure

The EUT is put on the ground and connected to the AC mains through a Artificial Mains Network (AMN). This provided a 50ohm coupling impedance for the tested equipments. Both sides of AC line are checked to find out the maximum conducted emission levels according to the **FCC PART 15 B** regulations during conducted emission test.

The bandwidth of the test receiver (R&S Test Receiver ESCI) is set at 10KHz.

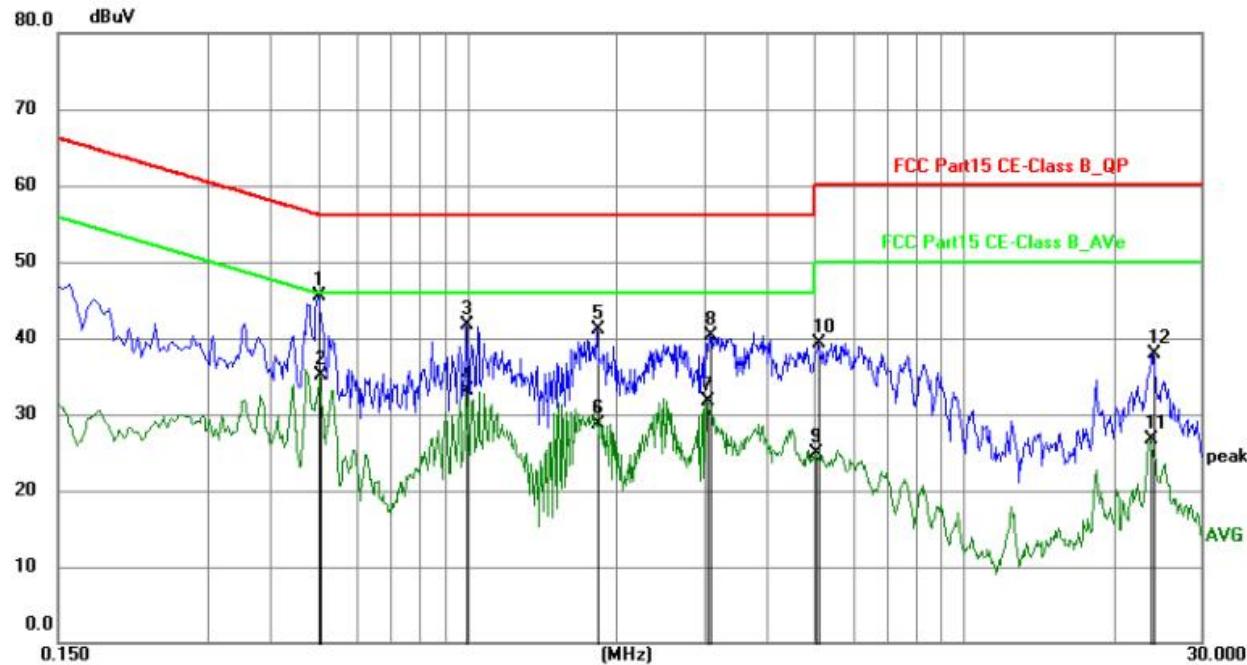
The frequency range from 150 KHz to 30 MHz is investigated.

3.7 Test Result


PASS

Please refer to the following page.

Conducted Emission At The Mains Terminals Test Data			
Temperature:	24.5 °C	Relative Humidity:	54%
Pressure:	1009hPa	Phase :	Line
Test Voltage :	AC 120V/60Hz	Test Mode:	Working

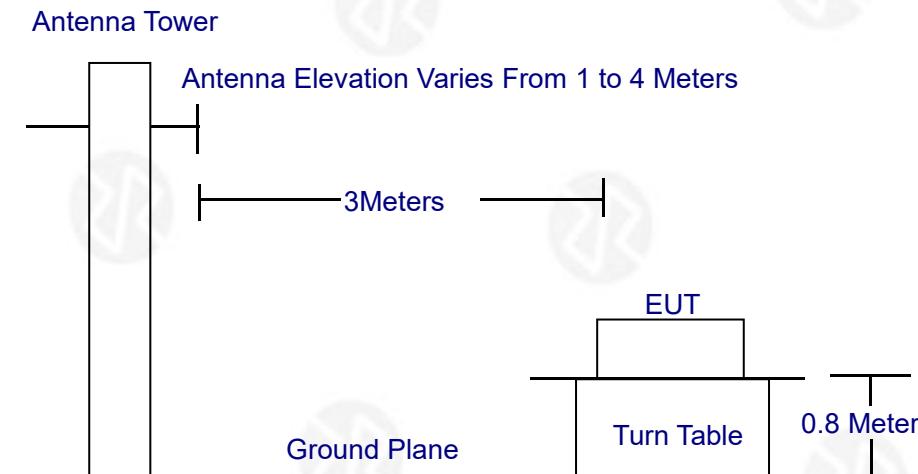

Node:Both adapters are pre-scanned, with adapter 1 being the worst

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1	0.3885	37.02	11.05	48.07	58.10	-10.03	QP	P
2	0.3885	24.94	11.05	35.99	48.10	-12.11	AVG	P
3	0.4785	39.85	10.64	50.49	56.37	-5.88	QP	P
4	0.4785	28.60	10.64	39.24	46.37	-7.13	AVG	P
5	1.0545	26.02	10.43	36.45	46.00	-9.55	AVG	P
6	1.0859	36.76	10.42	47.18	56.00	-8.82	QP	P
7	1.5900	34.95	10.29	45.24	56.00	-10.76	QP	P
8	1.5900	24.56	10.29	34.85	46.00	-11.15	AVG	P
9	3.0300	35.16	9.92	45.08	56.00	-10.92	QP	P
10	3.0300	24.74	9.92	34.66	46.00	-11.34	AVG	P
11	23.7525	18.06	9.90	27.96	50.00	-22.04	AVG	P
12	23.9505	28.84	9.90	38.74	60.00	-21.26	QP	P

Conducted Emission At The Mains Terminals Test Data			
Temperature:	24.5 °C	Relative Humidity:	54%
Pressure:	1009hPa	Phase :	Neutral
Test Voltage :	AC 120V/60Hz	Test Mode:	Working

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1	0.5010	35.01	10.54	45.55	56.00	-10.45	QP	P
2	0.5055	24.63	10.54	35.17	46.00	-10.83	AVG	P
3	0.9960	31.24	10.44	41.68	56.00	-14.32	QP	P
4	0.9960	22.61	10.44	33.05	46.00	-12.95	AVG	P
5	1.8195	30.77	10.24	41.01	56.00	-14.99	QP	P
6	1.8195	18.44	10.24	28.68	46.00	-17.32	AVG	P
7	3.0300	21.84	9.92	31.76	46.00	-14.24	AVG	P
8	3.0885	30.48	9.88	40.36	56.00	-15.64	QP	P
9	5.0235	16.33	8.65	24.98	50.00	-25.02	AVG	P
10	5.0910	30.67	8.65	39.32	60.00	-20.68	QP	P
11	23.6490	16.78	9.90	26.68	50.00	-23.32	AVG	P
12	24.0630	27.94	9.90	37.84	60.00	-22.16	QP	P

Notes:


1. An initial pre-scan was performed on the live and neutral lines with peak detector.
2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

Final Level = Receiver Read level + LISN Factor + Cable Loss

4. RADIATION EMISSION TEST

4.1 Block Diagram of Test Setup

4.2 Test Standard

FCC PART 15 B

4.3 Radiation Limit

FREQUENCY (MHz)	DISTANCE (Meters)	FIELD STRENGTHS LIMITS (dB μ V/m)
30 ~ 88	3	40.0
88 ~ 216	3	43.5
216 ~ 960	3	46.0
960 ~ 1000	3	54.0

4.4 EUT Configuration on Test

The FCC PART 15 B regulations test method must be used to find the maximum emission during radiated emission test. The configuration of EUT is the same as used in conducted emission test. Please refer to Section 2.2.

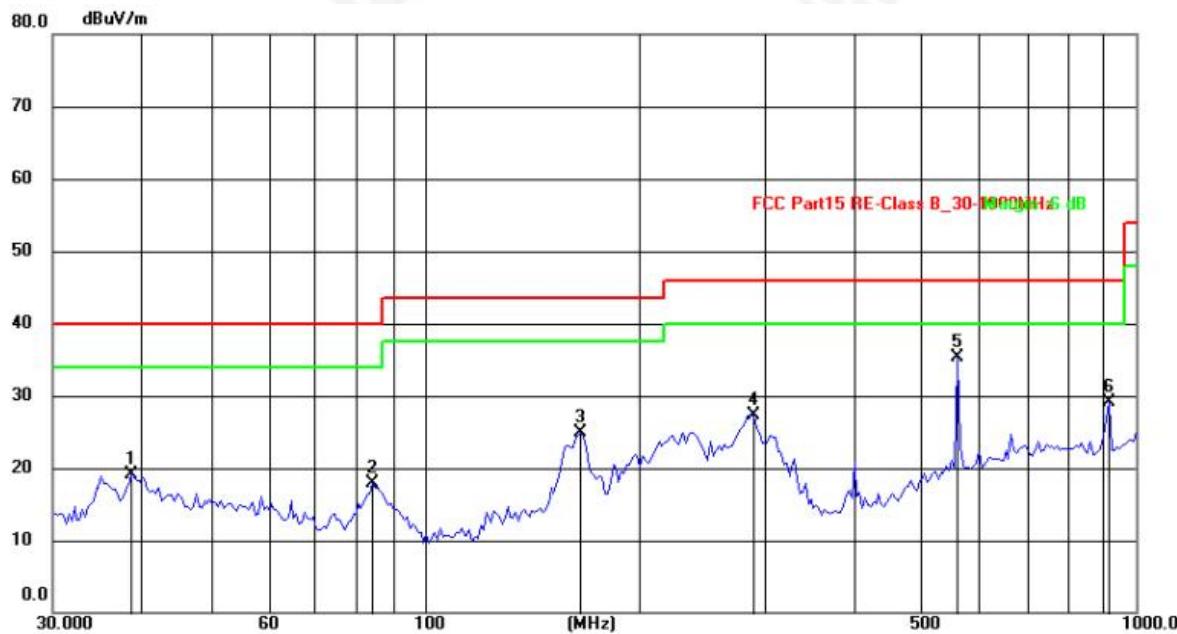
4.5 Operating Condition of EUT

Same as conducted emission test, which is listed in Section 2.2 except the test set up replaced as Section 4.1.

4.6 Test Procedure

The EUT and its simulators are placed on a turned table that is 0.8 meter above the ground. The turned table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna that is mounted on the antenna tower. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated biconical and log periodical antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on test. In order to find the maximum emission levels, the interface cable must be manipulated according to FCC PART 15 B on radiated emission test.

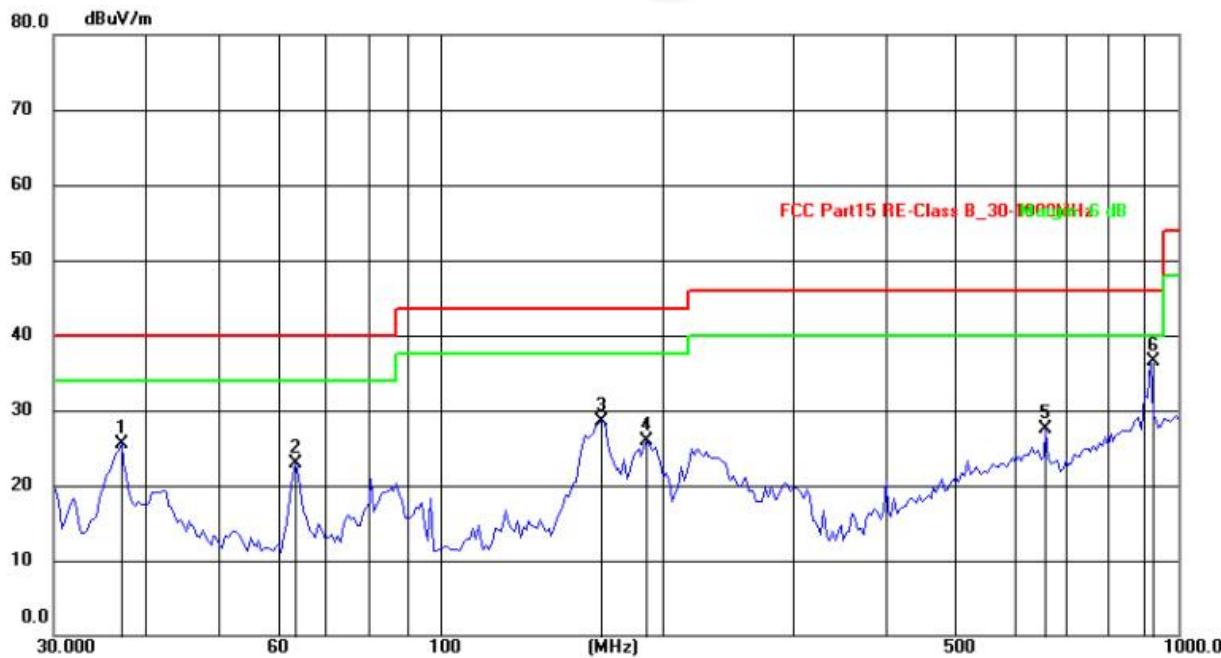
The bandwidth setting on the field strength meter (R&S Test Receiver ESCI) is set at 120KHz below 1GHz, set at 1MHz above 1GHz. The frequency range from 30MHz to 1000MHz is checked. The highest frequency of the internal sources of the EUT was below 108MHz, so the measurement was only made up to 1GHz.



4.7 Test Result

Radiation Emission Test Data			
Temperature:	26°C	Relative Humidity:	54%
Pressure:	1009hPa	Phase :	Horizontal
Test Voltage :	AC 120V/60Hz	Test Mode:	Working

Between 30MHz-1GHz:


Node: Both adapters are pre-scanned, with adapter 1 being the worst

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	38.6837	33.53	-14.37	19.16	40.00	-20.84	QP
2	84.4054	37.60	-19.79	17.81	40.00	-22.19	QP
3	165.7770	41.62	-16.67	24.95	43.50	-18.55	QP
4	290.5260	43.12	-15.73	27.39	46.00	-18.61	QP
5	560.6928	45.30	-9.93	35.37	46.00	-10.63	QP
6	916.0685	35.75	-6.66	29.09	46.00	-16.91	QP

Radiation Emission Test Data			
Temperature:	26°C	Relative Humidity:	54%
Pressure:	1009hPa	Phase :	Vertical
Test Voltage :	AC 120V/60Hz	Test Mode:	Working

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	37.0248	42.91	-17.31	25.60	40.00	-14.40	QP
2	63.7588	41.52	-18.70	22.82	40.00	-17.18	QP
3	165.7771	48.61	-20.09	28.52	43.50	-14.98	QP
4	190.7390	46.23	-20.30	25.93	43.50	-17.57	QP
5	662.3106	35.15	-7.69	27.46	46.00	-18.54	QP
6	916.0687	37.18	-0.66	36.52	46.00	-9.48	QP

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

Above 1GHz

Radiation Emission Test Data			
Temperature:	26°C	Relative Humidity:	54%
Pressure:	1009hPa	Phase :	Vertical
Test Voltage :	AC 120V/60Hz	Test Mode:	Working

Note: Both adapters are pre-scanned, with adapter 1 being the worst

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Margin
			Level	Factor	ment		
		MHz	dBuV	dB	dBuV/m	dB/m	dB
1		1185.000	55.20	-12.12	43.08	74.00	-30.92
2		2025.000	52.44	-8.36	44.08	74.00	-29.92
3		2535.000	51.27	-7.79	43.48	74.00	-30.52
4		3345.000	53.29	-6.48	46.81	74.00	-27.19
5	*	4000.000	54.55	-7.29	47.26	74.00	-26.74
6		4940.000	52.47	-5.63	46.84	74.00	-27.16

Radiation Emission Test Data			
Temperature:	26°C	Relative Humidity:	54%
Pressure:	1009hPa	Phase :	Horizontal
Test Voltage :	AC 120V/60Hz	Test Mode:	Working

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Margin
			Level	Factor	ment		
		MHz	dBuV	dB	dBuV/m	dB/m	dB
1		1395.000	55.10	-11.33	43.77	74.00	-30.23
2		2035.000	51.86	-8.36	43.50	74.00	-30.50
3		2565.000	51.63	-7.70	43.93	74.00	-30.07
4	*	3345.000	54.29	-6.48	47.81	74.00	-26.19
5		4215.000	53.99	-6.90	47.09	74.00	-26.91
6		5090.000	52.97	-5.47	47.50	74.00	-26.50

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

5. EUT TEST PHOTOGRAPHS

Reference to the appendix I for details.

6 .EUT Photographs

Reference to the appendix II for details.

***** END OF REPORT *****