

FCC RF Test Report

For

Shenzhen OBLUE Communication Technology Co.,Ltd.

Test Standards: FCC 47 CFR Part 2, 27

Product Name: Smart phone TANK3

Model Name: TANK 3

FCC ID: 2BAVY-TANK3

Classification PCS Licensed Transmitter Held to Ear (PCE)

Report No.: EC2310001RF03

Tested Date: 2023-10-09 to 2023-12-08

Issued Date: 2023-12-08

Prepared By: Laxy Ruan

Laxy Ruan / Engineer

Approved By: Tiny Yang

Tiny Yang / RF Manager

Hunan Ecloud Testing Technology Co., Ltd.

Building A1, Changsha E Center, No. 18 Xiangtai Avenue, Liuyang Economic and Technological
Development Zone, Hunan, P.R.C

Tel.: +86-731-89634887 Fax.: +86-731-89634887

www.hn-ecloud.com

Note: The test results in this report apply exclusively to the tested model / sample. Without written approval of
Hunan Ecloud Testing Technology Co., Ltd., the test report shall not be reproduced except in full.

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	2023-12-08	Valid	Original Report

TABLE OF CONTENTS

Summary Of Test Result	4
1 TEST LABORATORY	5
1.1 Test facility	5
2 GENERAL DESCRIPTION	6
2.1 Applicant	6
2.2 Manufacturer	6
2.3 Product Feature of Equipment Under Test	6
2.4 Product Specification of Equipment Under Test	7
2.5 Modification of EUT	7
2.6 Applicable Standards	7
3 TEST CONFIGURATION OF EQUIPMENT UNDER TEST	8
3.1 Test Item And Test Configuration	8
3.2 Connection Diagram of Test System	10
3.3 Support Unit used in test configuration	10
3.4 Measurement Results Explanation Example	11
3.5 Test Condition	11
4 TEST TYPES AND RESULTS	12
4.1 Conducted Output Power And E.R.P./E.I.R.P	12
4.2 Frequency Stability	13
4.3 Peak-to-average Ratio	15
4.4 99% Occupied Bandwidth And 26dB Bandwidth	16
4.5 Conducted Band Edge Measurement	17
4.6 Conducted Spurious Emissions	19
4.7 Radiated Spurious Emissions	20
5 LIST OF MEASURING EQUIPMENT	24
6 UNCERTAINTY OF EVALUATION	25
7 PHOTOGRAPHS OF TEST SETUP	26
8 PHOTOGRAPHS OF EUT	27
APPENDIX : TEST RESULTS	28

Summary Of Test Result

Report Section	Standard Section	Description	Result	Remark
4.1	§2.1046	Conducted Output Power	PASS	-
	§27.50(j)(3)	Equivalent Isotropically Radiated Power (n77)	PASS	-
4.2	§2.1055 §27.54	Frequency Stability	PASS	-
4.3	§27.50(j)(4)	Peak-to-average Ratio	PASS	-
4.4	§2.1049	Occupied Bandwidth	PASS	-
4.5	§2.1051 §27.53(l)(2)	Conducted Band Edge Measurement (n77)	PASS	-
4.6	§2.1051 §27.53(l)(2)	Conducted Spurious Emissions (n77)	PASS	-
4.7	§2.1053 §27.53(l)(2)	Radiated Spurious Emissions (n77)	PASS	-

1 Test Laboratory

1.1 Test facility

CNAS (accreditation number: L11138)

Hunan Ecloud Testing Technology Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS).

FCC (Designation number: CN1244 , Test Firm Registration Number: 793308)

Hunan Ecloud Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

ISED(CAB identifier: CN0012, ISED# :24347)

Hunan Ecloud Testing Technology Co., Ltd. has been listed on the Wireless Device Testing Laboratories list of innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements.

A2LA (Certificate Code : 4895.01)

Hunan Ecloud Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

2 General Description

2.1 Applicant

Shenzhen OBLUE Communication Technology Co.,Ltd.

Room 702, Hepingdayou industrial and trade industrial park, No. 41, Yonghe Road, Heping Community, Fuhai Street, Baoan District, Shenzhen City, China

2.2 Manufacturer

Shenzhen OBLUE Communication Technology Co.,Ltd.

Room 702, Hepingdayou industrial and trade industrial park, No. 41, Yonghe Road, Heping Community, Fuhai Street, Baoan District, Shenzhen City, China

2.3 Product Feature of Equipment Under Test

Product Feature	
Product Name	Smart phone TANK3
Model Name	TANK 3
Additional Model	N/A
Difference Description	N/A
Nominal Voltage	Li-ion Polymer Battery/ DC 3.87V, 10400mAh
FCC ID	2BAVY-TANK3
HW Version	TANK3_20231008
SW Version	G91_V2.0
Extreme Voltage	3.0 ~ 4.35 Vdc
Sample no.	2310001R-1/2~2/2
Sample Received Date	2023-10-08

Note: The above EUT information is declared by manufacturer. Our laboratory is not responsible for the information provided by the manufacturer.

2.4 Product Specification of Equipment Under Test

Standards-related Product Specification		
Modulation	DFT-s-OFDM	Pi/2 BPSK, QPSK, 16QAM, 64QAM, 256QAM
Technology	CP-OFDM	QPSK, 16QAM, 64QAM, 256QAM
Operation Band	n77	Only SA Mode
Frequency Range	n77	3700MHz ~ 3800MHz
Channel Bandwidth	n77(SCS=30kHz)	10MHz, 15MHz, 20MHz, 40MHz, 50MHz, 60MHz, 70MHz, 80MHz, 90MHz, 100MHz
Maximum E.I.R.P.	n77	84.72 mW
Antenna Type/ Gain	n77	PIFA Antenna with -2.6 dBi gain

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
2. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.

2.5 Modification of EUT

No modifications are made to the EUT during all test items.

2.6 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC 47 CFR Part 2, 27
- KDB 971168 D01 Power Meas License Digital Systems v03r01
- KDB 412172 D01 Determining ERP and EIRP v01r01
- KDB 414788 D01 Radiated Test Site v01r01
- ANSI/TIA-603-E
- ANSI C63.26-2015

Note:

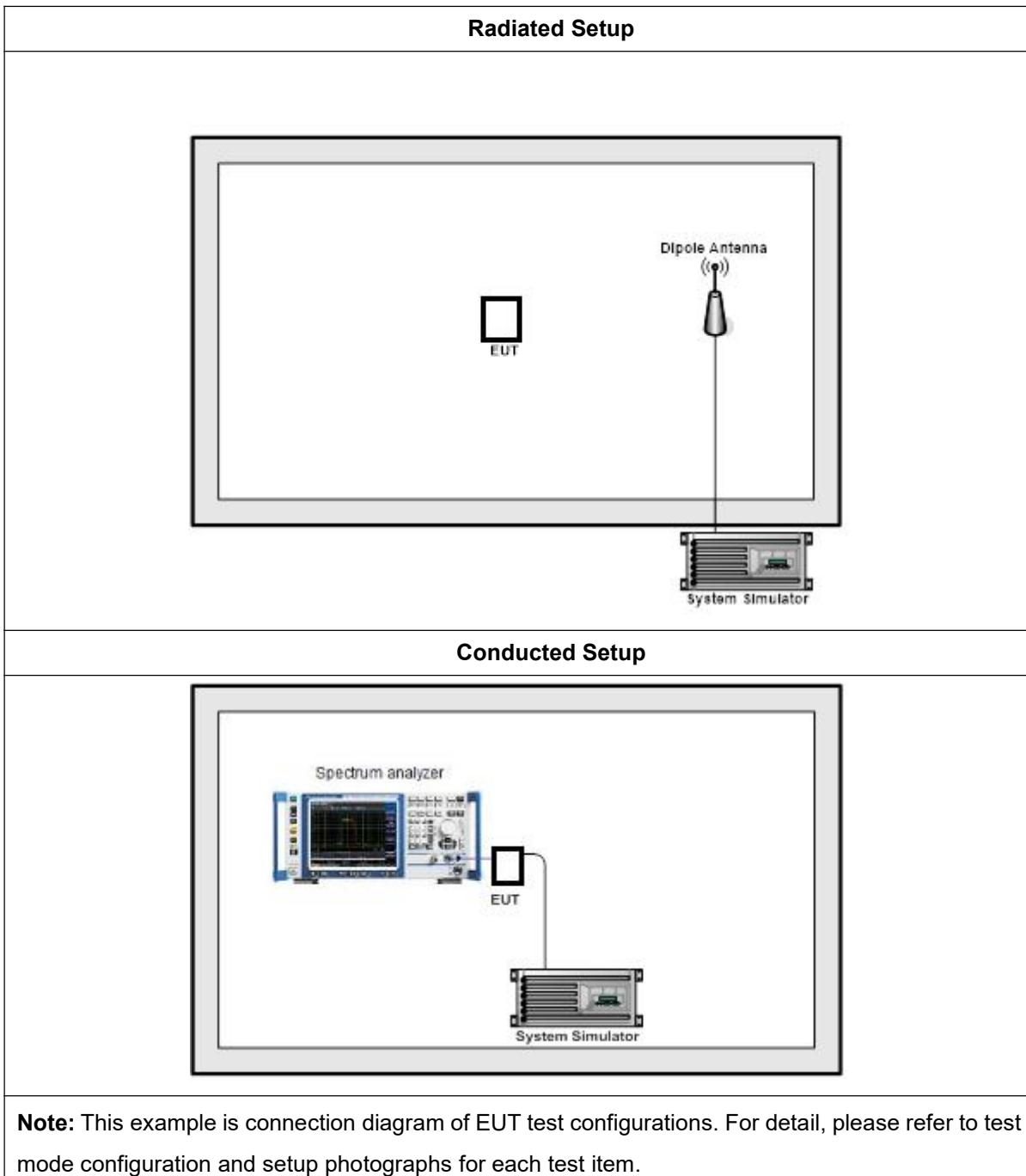
1. All test items were verified and recorded according to the standards and without any deviation during the test.
2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B recorded in a separate test report.

3 Test Configuration of Equipment Under Test

3.1 Test Item And Test Configuration

Antenna port conducted and radiated test items listed below are performed according to KDB 971168 D01 Power Meas License Digital Systems v03r01 with maximum output power.

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports. The worst case was found when positioned on X-axis for radiated emission. Following configuration was selected for the final test as listed below:


Test Item	Channel	Bandwidth	Mode	Modulation	RB Allocation
Conducted Output Power And E.R.P/E.I.R.P.	Low, Middle, High	All	DFT-s-OFDM	Pi/2 BPSK, QPSK, 16QAM, 64QAM, 256QAM	Outer_Full Inner_Full Inner_1RB_Left Inner_1RB_Right
			CP-OFDM	QPSK, 16QAM, 64QAM, 256QAM	
Frequency Stability	Middle	High	DFT-s-OFDM	Pi/2 BPSK	Outer_Full
Peak-to-average Ratio	Middle	20M	DFT-s-OFDM	Pi/2 BPSK, QPSK, 16QAM, 64QAM, 256QAM	Outer_Full
99% Occupied Bandwidth And 26dB Bandwidth	Middle	All	DFT-s-OFDM	Pi/2 BPSK	Outer_Full
			CP-OFDM	QPSK, 16QAM, 64QAM, 256QAM	
Conducted Band Edge Measurement	Low	All	DFT-s-OFDM	Pi/2 BPSK, QPSK, 16QAM, 64QAM, 256QAM	Edge_1RB_Left Outer_Full
			CP-OFDM	QPSK	Outer_Full
	High	All	DFT-s-OFDM	Pi/2 BPSK, QPSK, 16QAM, 64QAM, 256QAM	Edge_1RB_Right Outer_Full
			CP-OFDM	QPSK	Outer_Full

Conducted Spurious Emissions	Low,Middle, High	High	DFT-s-OFDM	Pi/2 BPSK	Edge_1RB_Left Edge_1RB_Right Outer_Full
Radiated Spurious Emissions	Worst Case				1RB

Note:

1. This device was tested under all bandwidths, RB configurations and modulations. Only the worst case configuration was listed.
2. One representative bandwidth is selected to perform PAR, Occupied Bandwidth and Frequency Stability.
3. For radiated measurement, pre-scanned in two modes: DFT-s-OFDM and CP-OFDM. The worst case (DFT-s-OFDM) was recorded in this report.

3.2 Connection Diagram of Test System

3.3 Support Unit used in test configuration

Item	Equipment	Trade Name	Model No.	FCC ID	Data Cable	Power Cord
1.	DC Power Supply	Keysight	E3642A	N/A	N/A	Unshielded, 1.8 m

3.4 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between RF conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level will be exactly the RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

The following shows an offset computation example with RF cable loss 4.5 dB and a 10dB attenuator.

Example :

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

$$= 4.5 + 10 = 14.5 \text{ (dB)}$$

3.5 Test Condition

Test Item	Environmental Condition	Input Power	Test Engineer
Conducted Output Power And E.R.P./E.I.R.P.	20 ~ 25 deg. C, 55 ~ 70% RH	EUT 3.87V	Laxy Ruan
Peak-to-average Ratio	20 ~ 25 deg. C, 55 ~ 70% RH	EUT 3.87V	Laxy Ruan
Frequency Stability	20 deg. C, 55 ~ 70% RH	EUT 3.0V/ 3.87V/ 4.35V	Laxy Ruan
	-30 ~ 50 deg. C, 55 ~ 70% RH	EUT 3.87V	Laxy Ruan
99% Occupied Bandwidth And 26dB Bandwidth	20 ~ 25 deg. C, 55 ~ 70% RH	EUT 3.87V	Laxy Ruan
Conducted Band Edge Measurement	20 ~ 25 deg. C, 55 ~ 70% RH	EUT 3.87V	Laxy Ruan
Conducted Spurious Emissions	20 ~ 25 deg. C, 55 ~ 70% RH	EUT 3.87V	Laxy Ruan
Radiated Spurious Emissions	20 ~ 25 deg. C, 55 ~ 70% RH	EUT 3.87V	Jack Liu

4 Test Types And Results

4.1 Conducted Output Power And E.R.P./E.I.R.P.

4.1.1 Limit

§27.50(j)(3) - Mobile and portable stations are limited to 1 Watt EIRP. Mobile and portable stations operating in these bands must employ a means for limiting power to the minimum necessary for successful communications.

4.1.2 Test Procedures

Conducted Output Power Measurement

1. The transmitter output port was connected to the system simulator.
2. Set EUT at maximum power through the system simulator.
3. Select lowest, middle, and highest channels for each band and different modulation.
4. Measure and record the power level from the system simulator.

ERP/EIRP Measurement

Per KDB 971168 D01 Power Meas License Digital Systems v03r01 or subclause 5.2.5.5 of ANSI C63.26-2015, the relevant equation for determining the ERP or EIRP from the conducted RF output power measured using the guidance provided above is:

$$\text{ERP or EIRP} = P_{\text{Meas}} + G_T - L_c$$

Where:

ERP or EIRP = effective radiated power or equivalent isotropically radiated power, respectively
(expressed in the same units as P_{Meas} , typically dBW or dBm);

P_{Meas} = measured transmitter output power or PSD, in dBm or dBW;

G_T = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);

L_c = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

4.1.3 Test Setup

4.1.4 Test Results

Please refer to Appendix A of this test report.

4.2 Frequency Stability

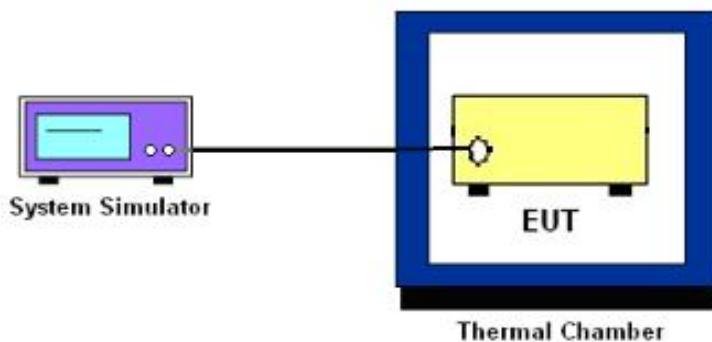
4.2.1 Limit

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

4.2.2 Test Condition

Temp. = -30° to +50°C

Voltage = (85% - 115%)


4.2.3 Test Procedures for Temperature Variation

1. The testing follows ANSI C63.26-2015 section 5.6.4.
2. The EUT was set up in the thermal chamber and connected with the system simulator.
3. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
4. With power OFF, the temperature was raised in 10°C steps up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

4.2.4 Test Procedures for Voltage Variation

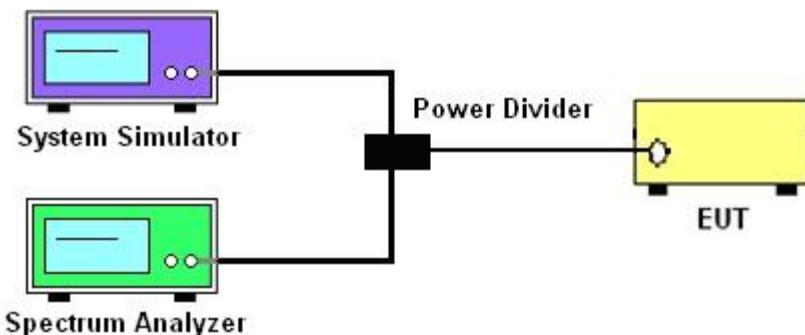
1. The testing follows ANSI C63.26-2015 section 5.6.5.
2. The EUT was placed in a temperature chamber at $20\pm 5^\circ C$ and connected with the system simulator.
3. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
4. Record the maximum frequency change.

4.2.5 Test Setup

4.2.6 Test Results

Please refer to Appendix A of this test report.

4.3 Peak-to-average Ratio


4.3.1 Limit

In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

4.3.2 Test Procedures

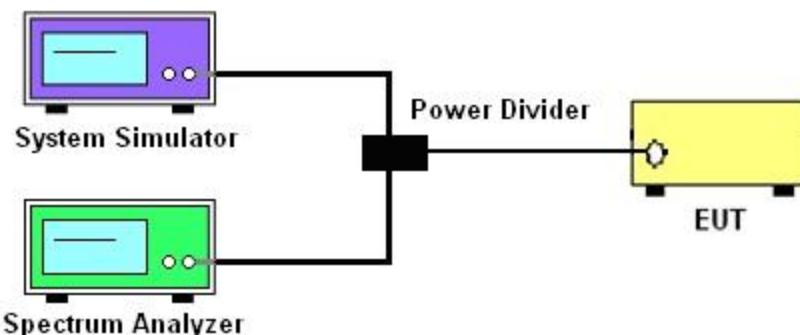
1. The testing follows ANSI C63.26-2015 Section 5.2.3.4 (CCDF).
2. The EUT was connected to spectrum analyzer and system simulator via a power divider.
3. Set EUT to transmit at maximum output power.
4. The signal analyzer's CCDF measurement profile is enabled.
5. Frequency = carrier center frequency.
6. Measurement BW > emission bandwidth of signal.
7. When the duty cycle is less than 98%, then signal gating will be implemented on the spectrum analyzer by triggering from the system simulator.
8. Set the CCDF (Complementary Cumulative Distribution Function) option of the spectrum analyzer.
9. Record the maximum PAPR level associated with a probability of 0.1%.

4.3.3 Test Setup

4.3.4 Test Results

Please refer to Appendix A of this test report.

4.4 99% Occupied Bandwidth And 26dB Bandwidth


4.4.1 Limit

For reporting purposes only.

4.4.2 Test Procedures

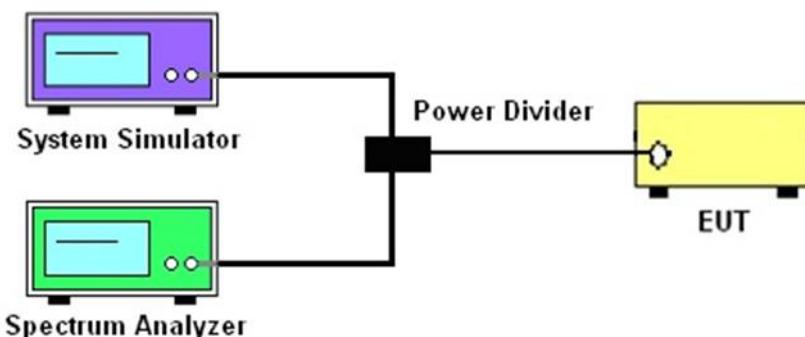
1. The testing follows Sub clause 5.4.3 and Sub clause 5.4.4 of ANSI C63.26-2015.
2. The EUT was connected to spectrum analyzer and system simulator via a power divider.
3. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth the bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
4. RBW = 1%~5% of the expected OBW, VBW $\geq 3 \times$ RBW.
5. Set the detection mode to peak, and the trace mode to max hold.
6. Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace.(this is the reference value).
7. Determine the “-26 dB down amplitude” as equal to (Reference Value – X).
8. Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the “-X dB down amplitude” determined in step 6. If a marker is below this “-X dB down amplitude” value it shall be placed as close as possible to this value. The OBW is the positive frequency difference between the two markers.
9. Use the 99 % power bandwidth function of the spectrum analyzer and record the measured bandwidth.

4.4.3 Test Setup

4.4.4 Test Results

Please refer to Appendix A of this test report.

4.5 Conducted Band Edge Measurement


4.5.1 Limit

§27.53(l)(2) - For mobile operations in the 3700 – 3980 MHz band, the conducted power of any emission outside the licensee's authorized bandwidth shall not exceed –13 dBm/MHz. Compliance with this paragraph (l)(2) is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, the minimum resolution bandwidth for the measurement shall be either one percent of the emission bandwidth of the fundamental emission of the transmitter or 350 kHz. In the bands between 1 and 5 MHz removed from the licensee's frequency block, the minimum resolution bandwidth for the measurement shall be 500 kHz.

4.5.2 Test Procedures

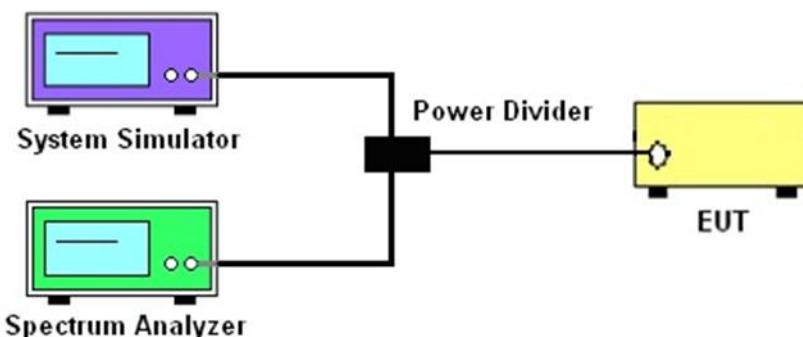
1. The testing follows ANSI C63.26-2015 Section 5.7.
2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
3. Start and stop frequency were set such that the band edge would be placed in the center of the plot.
4. Span was set large enough so as to capture all out of band emissions near the band edge.
5. RBW \geq 1% of the emission bandwidth.
6. VBW \geq 3 x RBW.
7. Detector = RMS.
8. Number of sweep points \geq 2 x Span/RBW.
9. Trace mode = trace average for continuous emissions, max hold for pulse emissions.
10. Sweep time = auto couple.
11. The trace was allowed to stabilize.
12. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
13. Checked that all the results comply with the limit.

4.5.3 Test Setup

4.5.4 Test Results

Please refer to Appendix A of this test report.

4.6 Conducted Spurious Emissions


4.6.1 Limit

The power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P)$ dB. The limit of emission is equal to -13dBm.

4.6.2 Test Procedures

1. The testing follows ANSI C63.26-2015 section 5.7.
2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
3. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the results for each measurement.
4. The conducted spurious emission for the whole frequency range was taken.
5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
6. Checked that all the results comply with the limit.

4.6.3 Test Setup

4.6.4 Test Results

Please refer to Appendix A of this test report.

4.7 Radiated Spurious Emissions

4.7.1 Limit

The power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P)$ dB. The limit of emission is equal to -13dBm.

4.7.2 Test Procedures

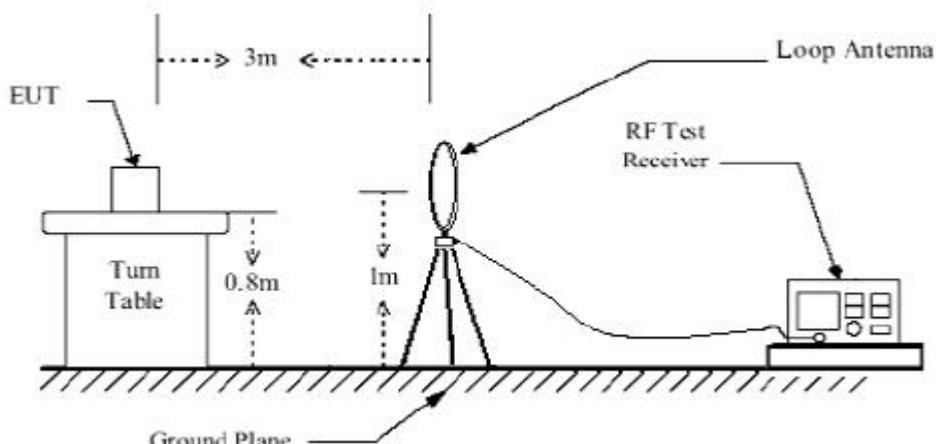
The testing follows FCC KDB 971168 D01 v03r01 Section 7 and ANSI/TIA-603-E-2016 Section 2.2.12.

Below 1GHz test procedure as below:

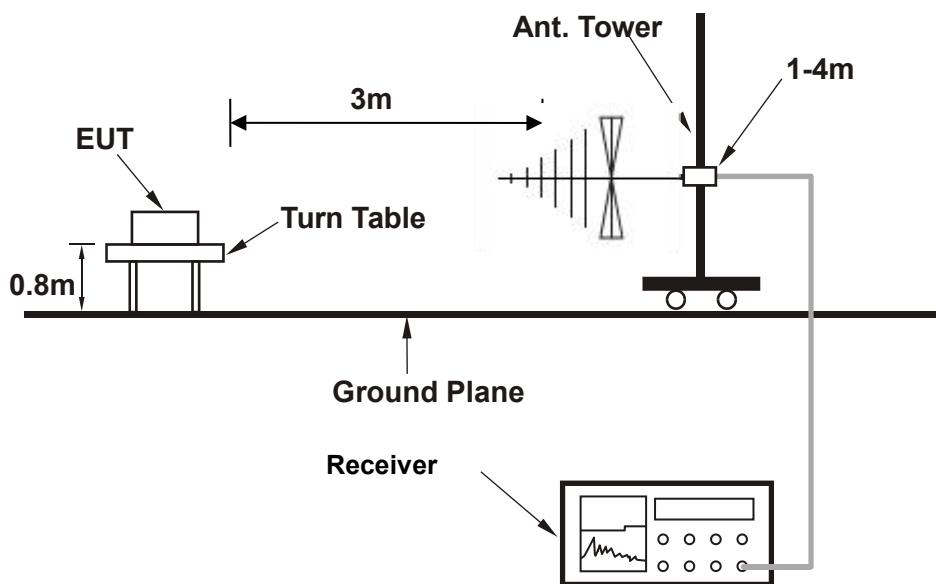
1. The EUT was powered ON and placed on a 80cm high table in the chamber. The antenna of the transmitter was extended to its maximum length.
2. Set the RBW as required by applicable regulations, $VBW \geq 3 \times RBW$, taking record of maximum spurious emission.
3. The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made.
4. Steps 1) to 3) were performed with the EUT and the receive antenna in both vertical and horizontal polarization.
5. The transmitter was then removed and replaced with another antenna. The center of the antenna was approximately at the same location as the center of the transmitter.
6. A signal at the disturbance was fed to the substitution antenna by means of a non-radiating cable. With both the substitution and the receive antennas horizontally polarized, the receive antenna was raised and lowered to obtain a maximum reading at the test receiver. The level of the signal generator was adjusted until the measured field strength level in step 3) is obtained for this set of conditions.
7. The output power into the substitution antenna was then measured.
8. Steps 5) and 6) were repeated with both antennas polarized.
9. Calculate power in dBm by the following formula:
$$ERP(dBm) = Pg(dBm) - \text{cable loss (dB)} + \text{antenna gain (dBd)}$$
Where:
Pg is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to Pg (dBm) – cable loss (dB).
10. The calculated ERP are then compared to the absolute spurious emission limit.

Above 1GHz test procedure as below:

1. The EUT was powered ON and placed on a 150cm high table in the chamber. The antenna of the transmitter was extended to its maximum length.
2. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking record of maximum spurious emission.
3. The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made.
4. Steps 1) to 3) were performed with the EUT and the receive antenna in both vertical and horizontal polarization.
5. The transmitter was then removed and replaced with another antenna. The center of the antenna was approximately at the same location as the center of the transmitter.
6. A signal at the disturbance was fed to the substitution antenna by means of a non-radiating cable. With both the substitution and the receive antennas horizontally polarized, the receive antenna was raised and lowered to obtain a maximum reading at the test receiver. The level of the signal generator was adjusted until the measured field strength level in step 3) is obtained for this set of conditions.
7. The output power into the substitution antenna was then measured.
8. Steps 5) and 6) were repeated with both antennas polarized.
9. Calculate power in dBm by the following formula:

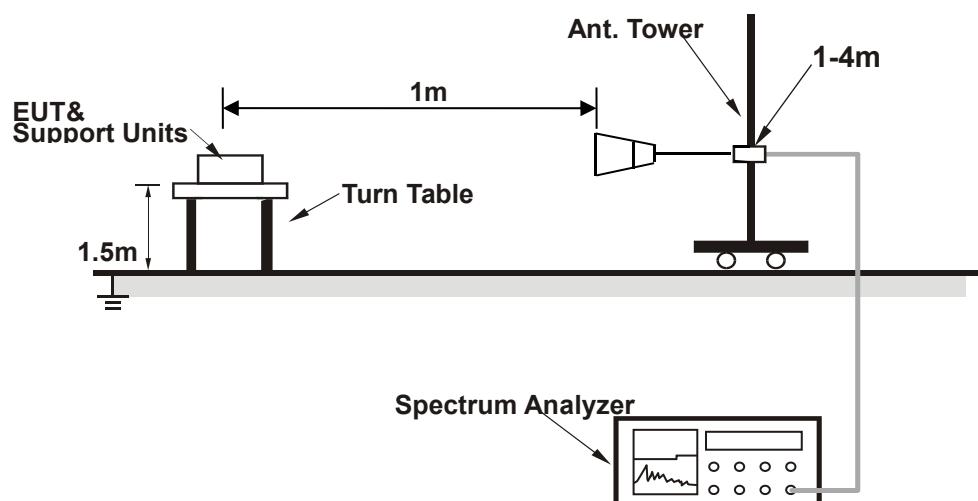

$$\text{EIRP(dBm)} = \text{Pg(dBm)} - \text{cable loss (dB)} + \text{antenna gain (dBi)}$$

Where:


Pg is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to Pg (dBm) – cable loss (dB).
10. The calculated EIRP are then compared to the absolute spurious emission limit.

4.7.3 Test Setup


For radiated test Below 30MHz



For radiated test from 30MHz to 1GHz

For radiated test from 1GHz to 18GHz

For radiated test above 18GHz

4.7.4 Test Results

Please refer to Appendix A of this test report.

Note:

1. The 9K~30MHz amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not reported in the report.
2. For higher frequency (above 18GHz), the emission is too low to be detected.

5 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date
Spectrum Analyzer	R&S	FSV 40	101433	2022-12-26	2023-12-25
Spectrum Analyzer	Keysight	N9010A	MY56070788	2022-12-26	2023-12-25
Base Station	Anritsu	MT8000A	6272498373	2023-04-13	2024-04-12
Base Station	Anritsu	MT8821C	6272524676	2023-04-13	2024-04-12
Thermal Chamber	Howkin	UHL-34	19111801	2022-12-23	2023-12-22
Spectrum Analyzer	R&S	FSV 30	103728	2022-12-26	2023-12-25
Amplifier	Sonoma	310	363917	2022-12-26	2023-12-25
Amplifier	Schwarzbeck	BBV 9718	327	2022-12-27	2023-12-26
Amplifier	Narda	TTA1840-35-HG	2034380	2023-01-04	2024-01-03
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-051	2023-02-12	2026-02-11
Broadband Antenna	Schwarzbeck	VULB 9168	9168-757	2023-09-17	2026-09-16
Bilog Antenna	TeseQ	CBL6112D	23188	2021-04-24	2024-04-23
Horn Antenna	Schwarzbeck	BBHA 9120 D	1677	2023-02-12	2026-02-11
Horn Antenna	Schwarzbeck	BBHA 9120 D	02420	2021-12-26	2024-12-25
Horn Antenna	R&S	9120 D	1285	2021-01-06	2024-01-05
Horn Antenna	COM-POWER	AH-1840	101117	2021-06-05	2024-06-04
Signal Generator (Blocker)	R&S	SMB100A	180717	2022-12-26	2023-12-25
Test Software	Audix	E3	6.111221a	N/A	N/A

Note: N/A is not required for calibration.

6 Uncertainty of Evaluation

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	UNCERTAINTY
Frequency Stability	±24.826Hz
Radiated emissions & Radiated Power (30MHz~1GHz)	±2.49dB
Radiated emissions & Radiated Power (1GHz ~6GHz)	±3.24dB
Radiated emissions (6GHz ~18GHz)	±3.24dB
Radiated emissions (18GHz ~40GHz)	±4.08dB
Conducted emissions	±2.00dB
Occupied Channel Bandwidth	±1.34KHz
Conducted Output power	±0.78dB
Band Edge Measurements	±2.00dB

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

7 Photographs Of Test Setup

Please refer to Report No. EC2310001RF01 for Test Setup photos.

8 Photographs Of EUT

Please refer to Report No. EC2310001RF01 for EUT external and internal photos.

Appendix : Test Results

Band	Test Results
n77(3.7G)	Please refer to Appendix A

-----End of the report-----