

Page 1 of 55 Report No.: EED32P80677901

TEST REPORT

Wireless Headphone **Product**

Trade mark boAt

Rockerz 551ANC, NIRVANAA 551ANC Neo, Model/Type reference

> NIRVANAA 551ANC Pro, NIRVANAA 553ANC, NIRVANAA 553ANC Neo, NIRVANAA 553ANC Pro,

NIRVANAA 558ANC, NIRVANAA 558ANC Neo,

NIRVANAA 558ANC Pro

Serial Number N/A

EED32P80677901 **Report Number**

FCC ID 2BARQ-002ROCKERZ551

Date of Issue Jul. 08, 2023

Test Standards : 47 CFR Part 15 Subpart C

Test result **PASS**

Prepared for:

Imagine Marketing Ltd.

E Wing, 2nd Floor, Corporate Avenue, AG Road, Opp. Satellite Gazebo Andheri East, Mumbai, India

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

mark chen

Reviewed by:

Date:

Tom Chen

Jul. 08, 2023

Aaron Ma

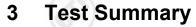
Check No.: 9035110523

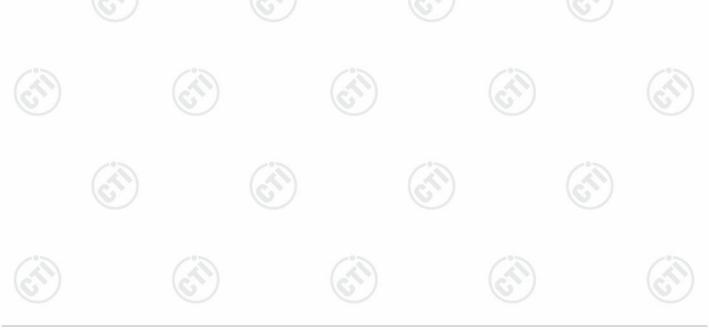
Page 2 of 55

1	Contents			Page
1 C	ONTENTS			•
	ERSION			
	EST SUMMARY			
	ENERAL INFORMATION			
	1.1 CLIENT INFORMATION			
	4.3 PRODUCT SPECIFICATION OF LOT			
4	.4 TEST CONFIGURATION			7
	5.5 TEST ENVIRONMENT			
	6.6 DESCRIPTION OF SUPPORT UNITS			_
5 T	EST RESULTS AND MEASUREMENT I	DATA	••••••	12
	5.1 ANTENNA REQUIREMENT			
	5.2 MAXIMUM CONDUCTED OUTPUT POWER			
	5.3 20DB EMISSION BANDWIDTH			
	5.5 NUMBER OF HOPPING CHANNEL			
	5.6 TIME OF OCCUPANCY			
	5.7 BAND EDGE MEASUREMENTS			
	5.8 CONDUCTED SPURIOUS EMISSIONS 5.9 PSEUDORANDOM FREQUENCY HOPPING			
	5.10 RADIATED SPURIOUS EMISSION & RES			
6 A	PPENDIX BT CLASSIC			44
	OTOGRAPHS OF TEST SETUP			
	OTOGRAPHS OF EUT CONSTRUCTIO			
PH	DIOGRAPHS OF EUT CONSTRUCTIO	NAL DETAILS		47

Version

Version No.	Date	6	Description)
00	Jul. 08, 2023		Original	
			(1)	




Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	N/A
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS

N/A: When the EUT charging, BT will not work, So Not Applicable. Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model No.: Rockerz 551ANC, NIRVANAA 551ANC Neo, NIRVANAA 551ANC Pro, NIRVANAA 553ANC, NIRVANAA 553ANC Neo, NIRVANAA 553ANC Pro, NIRVANAA 558ANC, NIRVANAA 558ANC Neo, NIRVANAA 558ANC Pro

Only the model Rockerz 551ANC was tested, their electrical circuit design, layout, components used and internal wiring are identical, only the color of the appearance, Bluetooth pairing name, logo is different.

Page 5 of 55

General Information

4.1 **Client Information**

Applicant:	Imagine Marketing Ltd.
Address of Applicant:	E Wing, 2nd Floor, Corporate Avenue, AG Road, Opp. Satellite Gazebo Andheri East, Mumbai, India
Manufacturer:	Shen Zhen Lighkeep Co., Limited
Address of Manufacturer:	No 19, Baotong South Road, Xikeng Community,Longgang Zone, Shenzhen City,Guangdong Province, China
Factory:	Shen Zhen Lighkeep Co., Limited
Address of Factory:	No 19, Baotong South Road, Xikeng Community,Longgang Zone, Shenzhen City,Guangdong Province, China

4.2 **General Description of EUT**

<u> </u>	
Product Name:	Wireless Headphone
Model No.(EUT):	Rockerz 551ANC, NIRVANAA 551ANC Neo, NIRVANAA 551ANC Pro, NIRVANAA 553ANC, NIRVANAA 553ANC Neo, NIRVANAA 558ANC Pro, NIRVANAA 558ANC, NIRVANAA 558ANC Neo, NIRVANAA 558ANC Pro
Test Model No.:	Rockerz 551ANC
Trade mark:	boAt
Product Type:	☐ Mobile ☐ Portable ☐ Fix Location
Test software of EUT:	Non Signaling Test Tool
Power Supply:	Battery DC 3.7V
Test Voltage:	DC 3.7V
Sample Received Date:	May 11, 2023
Sample tested Date:	May 11, 2023 to Jun. 09, 2023

Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz		
Modulation Technique:	Frequency Hopping Spread	Spectrum(FHSS)	
Modulation Type:	GFSK, π/4DQPSK, 8DPSK		7
Number of Channel:	79		
Hopping Channel Type:	Adaptive Frequency Hopping	g systems	
Antenna Type:	Chip Antenna		
Antenna Gain:	3.59dBi	(6)	(6,2)

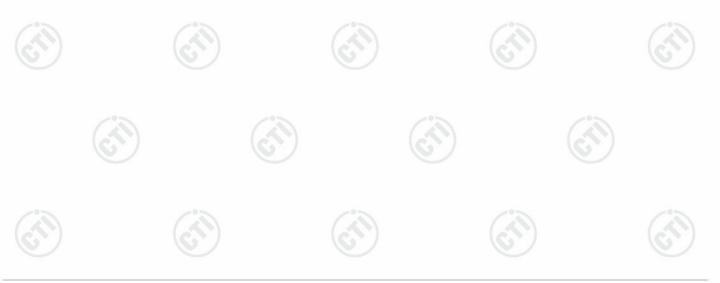
	Pag	ie 6	o 6	f 5	55
--	-----	------	-----	-----	----

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz



4.4 **Test Configuration**

EUT Test Software Settings	S:		
Software:	Non Signaling Test Tool		
EUT Power Grade:	Class2 (Power level is built-in set paran selected)	neters and cannot be changed and	
Use test software to set the letransmitting of the EUT.	owest frequency, the middle frequency and	the highest frequency keep	
Mode	Channel	Frequency(MHz)	
	CH0	2402	
DH1/DH3/DH5	CH39	2441	
(63)	CH78	2480	
	CH0	2402	
2DH1/2DH3/2DH5	CH39	2441	
	CH78	2480	
	СНО	2402	
3DH1/3DH3/3DH5	CH39	2441	
	CH78	2480	

4.5 **Test Environment**

Operating Environment	Operating Environment:						
Radiated Spurious Emissions:							
Temperature:	22~25.0 °C						
Humidity:	50~55 % RH	(62)	(6,7,				
Atmospheric Pressure:	1010mbar						
RF Conducted:							
Temperature:	22~25.0 °C						
Humidity:	50~55 % RH		*)				
Atmospheric Pressure:	1010mbar		/				

4.6 **Description of Support Units**

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Notebook	DELL	DELL 3490	FCC&CE	СТІ

4.7 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

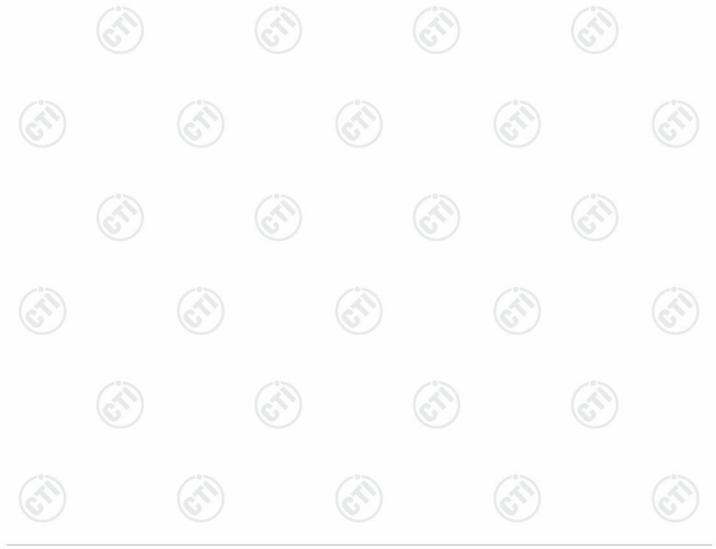
Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	DE nower conducted	0.46dB (30MHz-1GHz)	
	RF power, conducted	0.55dB (1GHz-40GHz)	
(5)	(6,5)	3.3dB (9kHz-30MHz)	
3	Dedicted Spurious emission test	4.3dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)	
		3.4dB (18GHz-40GHz)	
4	Temperature test	0.64°C	
5	Humidity test	3.8%	
6	DC power voltages	0.026%	

4.9 Equipment List


		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-23-2022	12-22-2023
Signal Generator	Keysight	N5182B	MY53051549	12-19-2022	12-18-2023
Signal Generator	Agilent	N5181A	MY46240094	12-19-2022	12-18-2023
DC Power	Keysight	E3642A	MY56376072	12-19-2022	12-18-2023
Wi-Fi 7GHz Band	JS Tonscend	TS-WF7U2	2206200002	06-11-2022 06-09-2023	06-10-2023 06-08-2024
RF control unit	JS Tonscend	JS0806-2	158060006	12-23-2022	12-22-2023
Communication test	R&S	CMW500	120765	12-23-2022	12-22-2023
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-19-2022	12-18-2023
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-01-2022	06-15-2023
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518	(<u>- (1)</u>

	D 40 - 555
	Page 10 of 55

Control of the Control		and the second s	and the latest	The state of the s	N American Company
3M Semi-anechoic Chamber (2)- Radiated disturbance Test					
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date
3M Chamber & Accessory Equipment	TDK	SAC-3		05-22-2022	05-21-2025
Receiver	R&S	ESCI7	100938-003	09-28-2022	09-27-2023
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05-22-2022 05-21-2023	05-21-2023 05-20-2024
Multi device Controller	maturo	NCD/070/10711112			
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04-15-2021	04-14-2024
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-17-2021	04-16-2024
Microwave Preamplifier	Agilent	8449B	3008A02425	06-20-2022	06-19-2023
Test software	Fara	EZ-EMC	EMEC-3A1-Pre	(61)-	-(3

Page 11 of 5	5
--------------	---

11.28.38.391		3M full-anechoid	Chamber	1.0.5	
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-	Cal. Due date
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		_
Receiver Spectrum Analyzer	Keysight Keysight	N9038A N9020B	MY57290136 MY57111112	02-27-2023 02-21-2023	02-26-2024 02-20-2024
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-21-2023	02-20-2024
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	04-13-2023	04-12-2024
Preamplifier	EMCI	EMC001330	980563	03-28-2023	03-27-2024
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-29-2022	07-28-2023
Communication test set	R&S	CMW500	102898	12-23-2022	12-22-2023
Temperature/	biaozhi	GM1360	EJ1611459	02-15-2023	02-14-2024
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	<i></i>	
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	/	(0,)
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		
Cable line	Times	EMC104-NMNM-1000	SN160710	-(3)	
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	6,	
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	·	
Cable line	Times	HF160-KMKM-3.00M	393493-0001		(0)

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

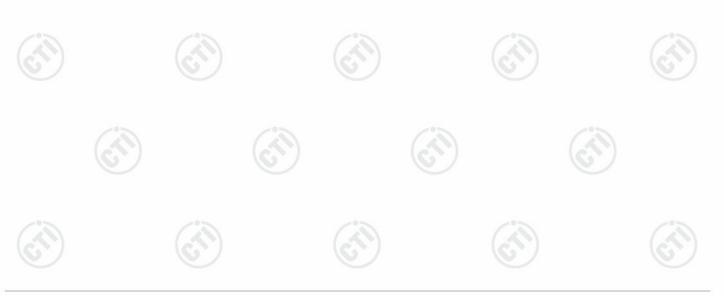

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

The antenna is Chip antenna. The best case gain of the antenna is 3.59dBi.

5.2 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	RF test Control Computer Power Supply Table Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
Limit:	21dBm
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Test Results:	Refer to Appendix BT Classic
T. Al. 71	




Report No.: EED32P80677901 Page 14 of 55

5.3 20dB Emission Bandwidth

7 - 44 - 4 1	1 10 21
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup: Test Procedure:	RF test System Instrument Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth
	measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. 4. Measure and record the results in the test report.
Limit:	NA NA
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Test Results:	Refer to Appendix BT Classic

5.4 Carrier Frequency Separation

	1 62 21	1 (6.7)
	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
16.30.0	Test Setup:	Control Computer Power Supply Power Supply Table RF test System System Instrument Instrument
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
	Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
	Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type
10	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
3	Test Results:	Refer to Appendix BT Classic
الاند		

5.5 Number of Hopping Channel

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)				
Test Method:	ANSI C63.10:2013				
Test Setup:	Control Compoular Power Power Pool Table RF test System System Instrument				
	Remark: Offset=Cable loss+ attenuation factor.				
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report. 				
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.				
Test Mode:	Hopping transmitting with all kind of modulation				
Test Results:	Refer to Appendix BT Classic				

5.6 Time of Occupancy

 Time of Good pulley	
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Control Control Power Power Supply Temperature cabnet Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
Test Results:	Refer to Appendix BT Classic

5.7 Band edge Measurements

/ 4 1 1	
Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Computer Power Supply Attenuator Instrument Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Test Results:	Refer to Appendix BT Classic

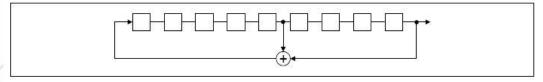
5.8 Conducted Spurious Emissions

	Test Requirement:	47 CFR Part 15C Section 15.247 (d)					
	Test Method:	ANSI C63.10:2013					
	Test Setup:	Control Computer Power Supply Power Supply Table RF test System System Instrument Table					
		Remark: Offset=Cable loss+ attenuation factor.					
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 					
	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type					
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.					
	Test Results:	Refer to Appendix BT Classic					
_	10.4.7	(Car)					

47 CFR Part 15C Section 15.247 (a)(1), (h) requirement: Test Requirement:

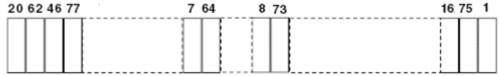
The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a ninestage shift register whose 5th and 9th stage


outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

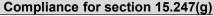
- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

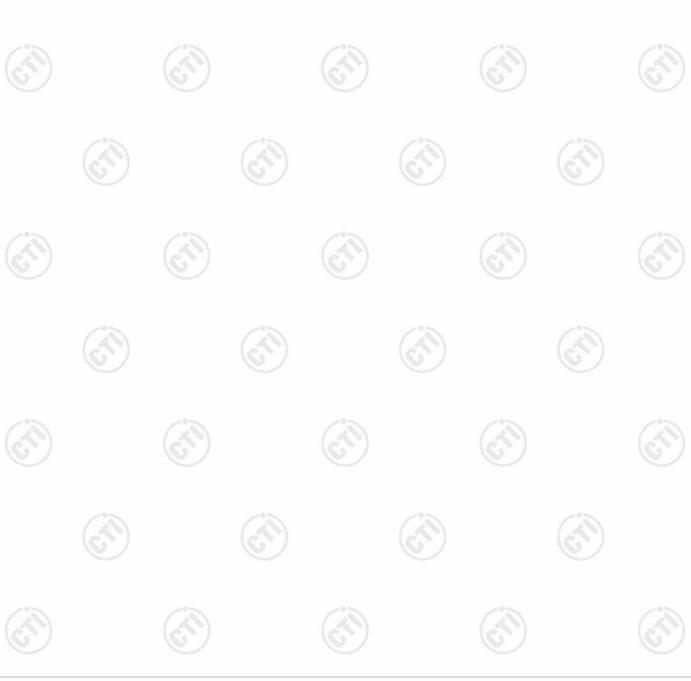
Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.



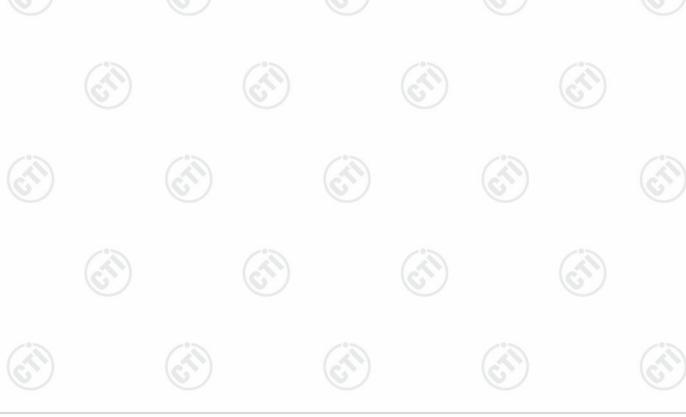


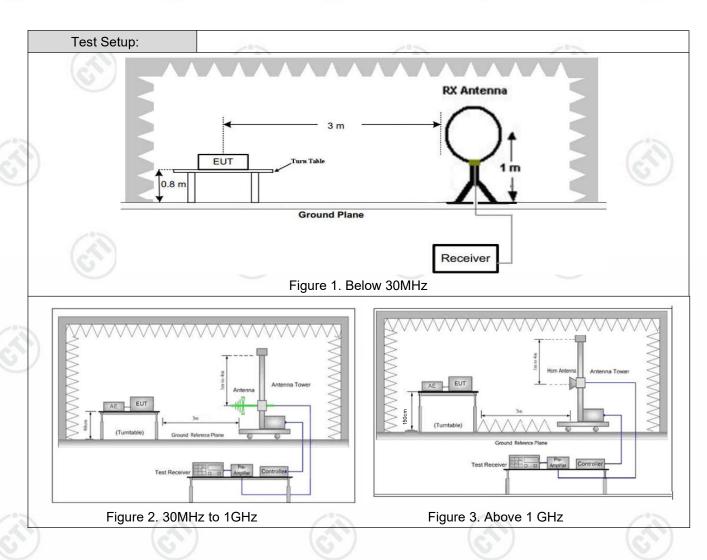
According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.




5.10 Radiated Spurious Emission & Restricted bands

			a builds				
Test Requirement:	47 CFR Part 15C Secti	ion 15	.209 and 15.	205	(67)	")	
Test Method:	ANSI C63.10: 2013				6		
Test Site:	Measurement Distance	e: 3m ((Semi-Anech	oic Cham	ber)		
	Frequency		Detector RBW		VBW	Remark	
	0.009MHz-0.090MH	lz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MH	lz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MH	lz	Quasi-peak	10kHz	30kHz	Quasi-peak	
Receiver Setup:	0.110MHz-0.490MH	lz	Peak	10kHz	30kHz	Peak	
Neceivei Setup.	0.110MHz-0.490MH	lz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	<u>.</u>	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz		Peak	100 kH	z 300kHz	Peak	
	Above 1GHz		Peak	1MHz	3MHz	Peak	
			Peak	1MHz	10kHz	Average	
	Frequency		d strength ovolt/meter)	Limit (dBuV/m)	Remark	Measuremen distance (m)	
	0.009MHz-0.490MHz	240	00/F(kHz)	-	-	300	
	0.490MHz-1.705MHz	240	00/F(kHz)	-00	-	30	
	1.705MHz-30MHz	10)	30	(-	30	
	30MHz-88MHz		100	40.0	Quasi-peak	3	
	88MHz-216MHz		150	43.5	Quasi-peak	3	
Limit:	216MHz-960MHz		200	46.0	Quasi-peak	3	
	960MHz-1GHz		500	54.0	Quasi-peak		
	Above 1GHz		500	54.0	Average	3	
	Note: 15.35(b), Unless emissions is 20dE applicable to the peak emission lev	B abov equipr	ve the maxim ment under to	ium permi est. This p	tted average	emission limit	

ort No.: EED32P806	7901 Page 24 of 55	
Test Procedure:	a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. Note: For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EU	n of
	Non-hopping transmitting mode with all kind of modulation and all kind of	4

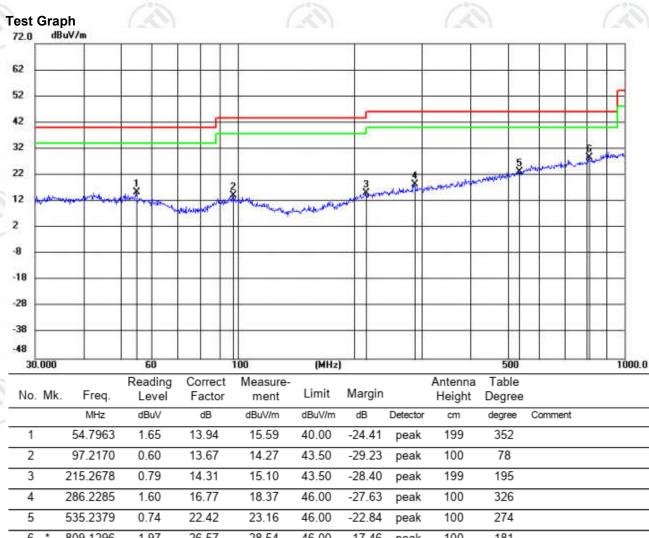
Exploratory Test Mode:

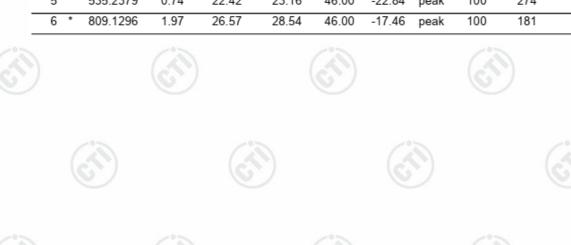
Test Results:

Non-hopping transmitting mode with all kind of modulation and all kind of

data type.

Pass

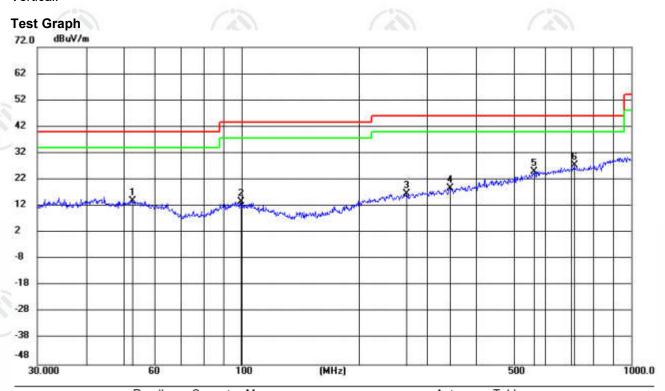



Page 25 of 55

Radiated Spurious Emission below 1GHz:

During the test, the Radiated Spurious Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of DH5 for GFSK was recorded in the report.

Horizontal:



Vertical:

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
-			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	1		52.4097	-0.07	14.10	14.03	40.00	-25.97	peak	100	290	
	2		99.8602	-0.39	14.03	13.64	43.50	-29.86	peak	200	360	
•	3		265.3498	0.60	16.05	16.65	46.00	-29.35	peak	100	352	
]	4		342.2787	0.72	18.15	18.87	46.00	-27.13	peak	200	346	
	5		563.0571	1.91	23.11	25.02	46.00	-20.98	peak	100	352	
	6	*	715.8030	2.42	25.01	27.43	46.00	-18.57	peak	200	171	

Radiated Spurious Emission above 1GHz

Mode	:		GFSK Transmit	tting		Channel:		2402 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1433.2433	1.41	39.59	41.00	74.00	33.00	Pass	Н	PK
2	1983.4984	4.46	38.54	43.00	74.00	31.00	Pass	Н	PK
3	4353.0902	-17.14	53.34	36.20	74.00	37.80	Pass	Н	PK
4	6000.2	-12.96	51.93	38.97	74.00	35.03	Pass	Н	PK
5	9214.4143	-7.89	48.37	40.48	74.00	33.52	Pass	Н	PK
6	13821.7214	-1.71	45.86	44.15	74.00	29.85	Pass	Н	PK
7	1216.0216	0.85	39.14	39.99	74.00	34.01	Pass	V	PK
8	1782.2782	3.22	38.13	41.35	74.00	32.65	Pass	V	PK
9	4217.0811	-17.89	52.31	34.42	74.00	39.58	Pass	V	PK
10	6000.2	-12.96	54.48	41.52	74.00	32.48	Pass	V	PK
11	9262.4175	-7.92	48.13	40.21	74.00	33.79	Pass	V	PK
12	15340.8227	-0.16	45.70	45.54	74.00	28.46	Pass	V	PK

Mode	:		GFSK Transmit	ting		Channel:		2441 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1331.0331	1.16	42.99	44.15	74.00	29.85	Pass	Н	PK
2	2078.9079	4.81	38.01	42.82	74.00	31.18	Pass	Н	PK
3	4856.1237	-16.21	52.50	36.29	74.00	37.71	Pass	Н	PK
4	7358.2906	-11.58	49.70	38.12	74.00	35.88	Pass	Н	PK
5	10736.5158	-6.38	47.84	41.46	74.00	32.54	Pass	Н	PK
6	15378.8253	0.28	45.13	45.41	74.00	28.59	Pass	Н	PK
7	1252.8253	0.93	39.16	40.09	74.00	33.91	Pass	V	PK
8	2077.5078	4.81	37.85	42.66	74.00	31.34	Pass	V	PK
9	4361.0907	-17.12	51.60	34.48	74.00	39.52	Pass	V	PK
10	6000.2	-12.96	55.24	42.28	74.00	31.72	Pass	V	PK
11	9262.4175	-7.92	48.17	40.25	74.00	33.75	Pass	V	PK
12	14410.7607	1.07	44.12	45.19	74.00	28.81	Pass	V	PK



Page 28 of 55	Pag	e 28	of 55
---------------	-----	------	-------

Mode	:		GFSK Transmit	ting		Channel:		2480 MHz	2480 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1327.6328	1.15	39.41	40.56	74.00	33.44	Pass	Н	PK	
2	1740.074	3.07	38.41	41.48	74.00	32.52	Pass	Н	PK	
3	4324.0883	-17.19	52.45	35.26	74.00	38.74	Pass	Н	PK	
4	6000.2	-12.96	51.31	38.35	74.00	35.65	Pass	Н	PK	
5	9245.4164	-7.91	47.94	40.03	74.00	33.97	Pass	Н	PK	
6	13674.7116	-1.74	45.16	43.42	74.00	30.58	Pass	Н	PK	
7	1333.2333	1.17	39.96	41.13	74.00	32.87	Pass	V	PK	
8	1939.4939	4.23	38.53	42.76	74.00	31.24	Pass	V	PK	
9	4847.1231	-16.22	52.03	35.81	74.00	38.19	Pass	V	PK	
10	6000.2	-12.96	55.51	42.55	74.00	31.45	Pass	V	PK	
11	9125.4084	-8.49	48.15	39.66	74.00	34.34	Pass	V	PK	
12	11329.5553	-6.48	48.43	41.95	74.00	32.05	Pass	V	PK	

Mode	:		π/4DQPSK Tra	nsmitting		Channel:		2402 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1331.0331	1.16	40.51	41.67	74.00	32.33	Pass	Н	PK
2	1961.6962	4.35	38.69	43.04	74.00	30.96	Pass	Н	PK
3	4804.1203	-16.23	55.80	39.57	74.00	34.43	Pass	Н	PK
4	6000.2	-12.96	51.33	38.37	74.00	35.63	Pass	Н	PK
5	8985.399	-8.58	48.60	40.02	74.00	33.98	Pass	Н	PK
6	13770.718	-1.67	45.87	44.20	74.00	29.80	Pass	Н	PK
7	1327.2327	1.15	39.73	40.88	74.00	33.12	Pass	V	PK
8	1900.29	4.03	38.07	42.10	74.00	31.90	Pass	V	PK
9	4804.1203	-16.23	52.15	35.92	74.00	38.08	Pass	V	PK
10	6000.2	-12.96	54.63	41.67	74.00	32.33	Pass	V	PK
11	6657.2438	-12.63	51.24	38.61	74.00	35.39	Pass	V	PK
12	12518.6346	-4.70	47.77	43.07	74.00	30.93	Pass	V	PK

Mode	:		π/4DQPSK Tra	nsmitting		Channel:		2441 MHz	2
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1239.4239	0.90	39.39	40.29	74.00	33.71	Pass	Н	PK
2	1961.2961	4.34	37.97	42.31	74.00	31.69	Pass	Н	PK
3	4389.0926	-17.07	52.68	35.61	74.00	38.39	Pass	Н	PK
4	6026.2017	-13.01	50.81	37.80	74.00	36.20	Pass	Н	PK
5	9186.4124	-7.99	48.18	40.19	74.00	33.81	Pass	Н	PK
6	11925.595	-5.68	48.14	42.46	74.00	31.54	Pass	Н	PK
7	1191.8192	0.80	39.18	39.98	74.00	34.02	Pass	V	PK
8	2067.1067	4.77	37.86	42.63	74.00	31.37	Pass	V	PK
9	4405.0937	-17.04	52.16	35.12	74.00	38.88	Pass	V	PK
10	6000.2	-12.96	55.15	42.19	74.00	31.81	Pass	V	PK
11	9302.4202	-7.95	47.93	39.98	74.00	34.02	Pass	V	PK
12	13904.727	-1.95	45.69	43.74	74.00	30.26	Pass	V	PK

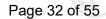
Mode	:		π/4DQPSK Tra	nsmitting		Channel:		2480 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1151.0151	0.82	39.62	40.44	74.00	33.56	Pass	Н	PK
2	1747.2747	3.10	37.98	41.08	74.00	32.92	Pass	Н	PK
3	5367.1578	-14.63	51.08	36.45	74.00	37.55	Pass	Н	PK
4	6000.2	-12.96	53.12	40.16	74.00	33.84	Pass	Н	PK
5	10277.4852	-6.61	47.56	40.95	74.00	33.05	Pass	Н	PK
6	12470.6314	-4.79	48.53	43.74	74.00	30.26	Pass	Н	PK
7	1238.4238	0.90	39.87	40.77	74.00	33.23	Pass	V	PK
8	1702.6703	2.95	37.65	40.60	74.00	33.40	Pass	V	PK
9	4220.0813	-17.86	54.64	36.78	74.00	37.22	Pass	V	PK
10	6000.2	-12.96	56.19	43.23	74.00	30.77	Pass	V	PK
11	9208.4139	-7.88	48.21	40.33	74.00	33.67	Pass	V	PK
12	14385.7591	0.99	44.06	45.05	74.00	28.95	Pass	V	PK

Page 30 of 55

_										
1	Mode	:		8DPSK Transm	nitting		Channel:		2402 MHz	<u>z</u>
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1266.0266	0.98	39.22	40.20	74.00	33.80	Pass	Н	PK
è	2	1988.6989	4.50	37.65	42.15	74.00	31.85	Pass	Н	PK
9	3	4539.1026	-16.85	51.94	35.09	74.00	38.91	Pass	Н	PK
1	4	6000.2	-12.96	51.05	38.09	74.00	35.91	Pass	Н	PK
	5	7374.2916	-11.56	50.87	39.31	74.00	34.69	Pass	Н	PK
Ī	6	9287.4192	-7.94	48.26	40.32	74.00	33.68	Pass	Н	PK
	7	1199.4199	0.80	39.61	40.41	74.00	33.59	Pass	V	PK
	8	1788.6789	3.25	38.58	41.83	74.00	32.17	Pass	V	PK
	9	3806.0537	-19.24	53.22	33.98	74.00	40.02	Pass	V	PK
Ī	10	6000.2	-12.96	55.98	43.02	74.00	30.98	Pass	V	PK
•	11	9029.402	-8.54	47.61	39.07	74.00	34.93	Pass	V	PK
9	12	11357.5572	-6.35	48.64	42.29	74.00	31.71	Pass	V	PK

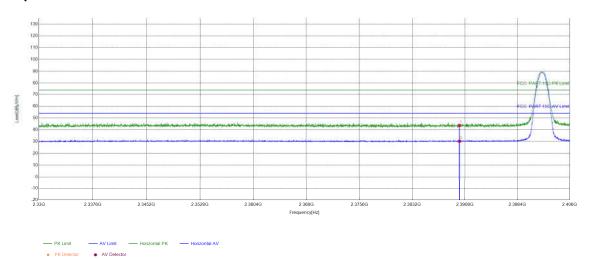
Mode	: :		8DPSK Transm	nitting		Channel:		2441 MHz	<u>z</u>
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1201.4201	0.80	39.14	39.94	74.00	34.06	Pass	Н	PK
2	1904.2904	4.05	37.80	41.85	74.00	32.15	Pass	Н	PK
3	3810.054	-19.22	54.63	35.41	74.00	38.59	Pass	Н	PK
4	6000.2	-12.96	51.21	38.25	74.00	35.75	Pass	Н	PK
5	9272.4182	-7.93	48.14	40.21	74.00	33.79	Pass	Н	PK
6	12595.6397	-4.14	47.44	43.30	74.00	30.70	Pass	Н	PK
7	1231.6232	0.88	39.08	39.96	74.00	34.04	Pass	V	PK
8	1896.4896	4.01	37.83	41.84	74.00	32.16	Pass	V	PK
9	3397.0265	-20.19	55.65	35.46	74.00	38.54	Pass	V	PK
10	6000.2	-12.96	56.26	43.30	74.00	30.70	Pass	V	PK
11	10152.4768	-7.07	47.50	40.43	74.00	33.57	Pass	V	PK
12	15566.8378	0.78	43.78	44.56	74.00	29.44	Pass	V	PK




_										
	Mode	:		8DPSK Transr	mitting		Channel:		2480 MHz	2
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1159.2159	0.82	39.08	39.90	74.00	34.10	Pass	Н	PK
è	2	1796.4796	3.27	39.23	42.50	74.00	31.50	Pass	Н	PK
9	3	4356.0904	-17.13	52.41	35.28	74.00	38.72	Pass	Н	PK
	4	6000.2	-12.96	50.81	37.85	74.00	36.15	Pass	Н	PK
	5	9225.415	-7.90	48.49	40.59	74.00	33.41	Pass	Н	PK
	6	11989.5993	-5.31	48.01	42.70	74.00	31.30	Pass	Н	PK
	7	1225.6226	0.87	39.13	40.00	74.00	34.00	Pass	V	PK
	8	1835.6836	3.55	38.75	42.30	74.00	31.70	Pass	V	PK
	9	3503.0335	-20.03	54.91	34.88	74.00	39.12	Pass	V	PK
	10	6000.2	-12.96	55.31	42.35	74.00	31.65	Pass	V	PK
0	11	8831.3888	-9.38	48.29	38.91	74.00	35.09	Pass	V	PK
1	12	12565.6377	-4.36	47.66	43.30	74.00	30.70	Pass	V	PK

Remark:

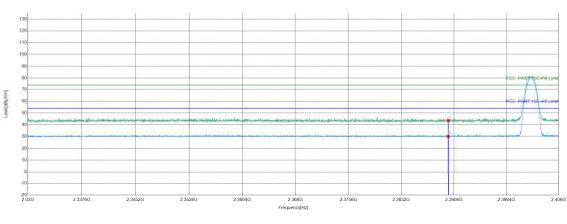
- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

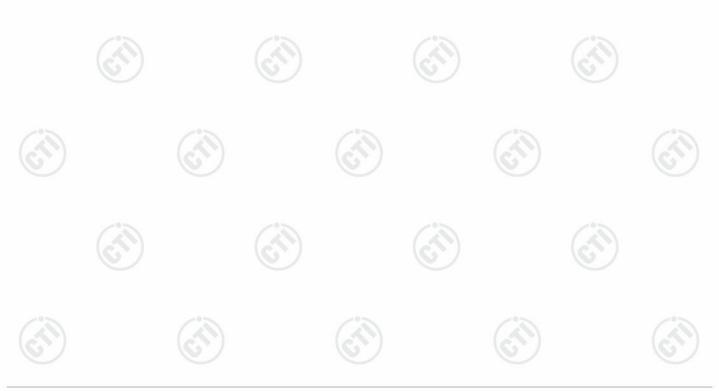


Restricted bands:

Test plot as follows:

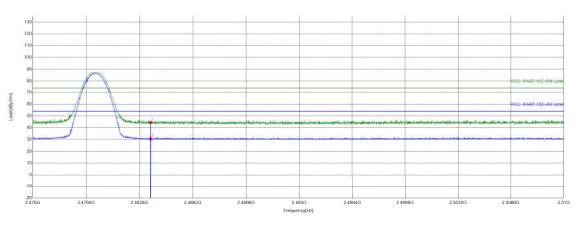
Mode:	GFSK Transmitting	Channel:	2402MHz
Remark:	·) (c.f.1)	(64)) (


Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	5.77	38.04	43.81	74.00	30.19	PASS	Horizontal	PK
2	2390	5.77	24.48	30.25	54.00	23.75	PASS	Horizontal	AV


Page 33 of 55	Page	33	of	55
---------------	------	----	----	----

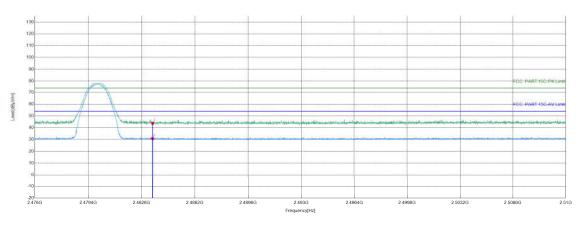
Mode:	GFSK Transmitting	Channel:	2402MHz
Remark:			

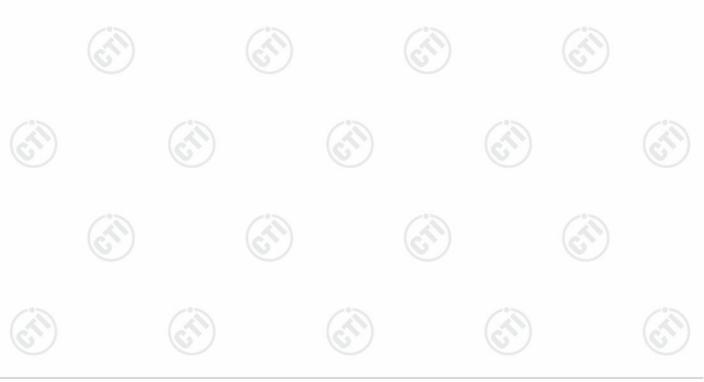
PK Limit	AV Limit	Vertical PK	Vertical AV
→ DV Detector	₩ AV/ Detects		


	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
9 -	1	2390	5.77	37.89	43.66	74.00	30.34	PASS	Vertical	PK
١	2	2390	5.77	24.27	30.04	54.00	23.96	PASS	Vertical	AV

Page 34 of 55

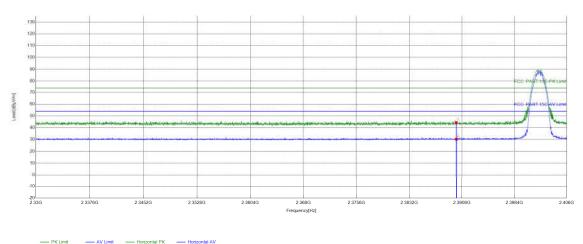
Mode:	GFSK Transmitting	Channel:	2480MHz
Remark:			


	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1	2483.5	6.57	37.93	44.50	74.00	29.50	PASS	Horizontal	PK
1	2	2483.5	6.57	23.93	30.50	54.00	23.50	PASS	Horizontal	AV



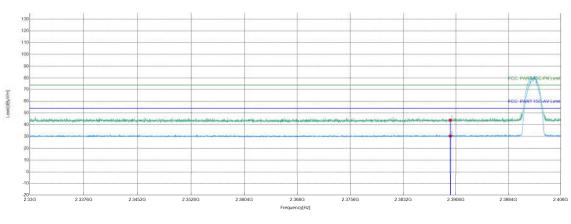
Page	35	of	55
ı ugu	\circ	\sim .	\circ

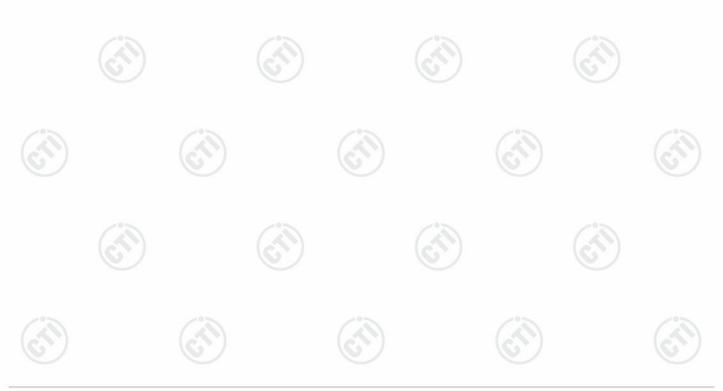
Mode:	GFSK Transmitting	Channel:	2480MHz
Remark:			



Suspecte	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2483.5	6.57	37.26	43.83	74.00	30.17	PASS	Vertical	PK	
2	2483.5	6.57	24.20	30.77	54.00	23.23	PASS	Vertical	AV	

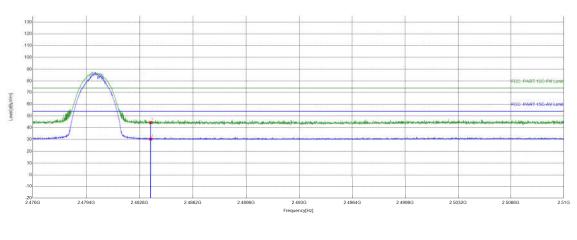
Mode:	π/4DQPSK Transmitting	Channel:	2402MHz
Remark:		·	


	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1	2390	5.77	38.55	44.32	74.00	29.68	PASS	Horizontal	PK
1	2	2390	5.77	24.49	30.26	54.00	23.74	PASS	Horizontal	AV



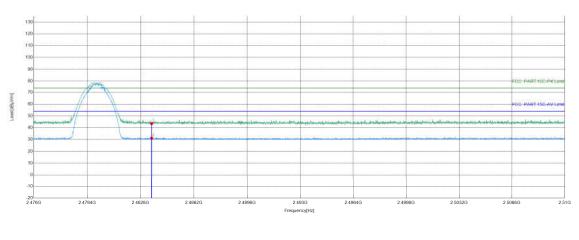
Page 37 of 55

(4.3)	(45 %)	1.4	/ 60
Mode:	π/4DQPSK Transmitting	Channel:	2402MHz
Remark:			•


	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
2	1	2390	5.77	38.21	43.98	74.00	30.02	PASS	Vertical	PK
9	2	2390	5.77	24.68	30.45	54.00	23.55	PASS	Vertical	AV

rage so of ss	Page	38	of	55
---------------	------	----	----	----

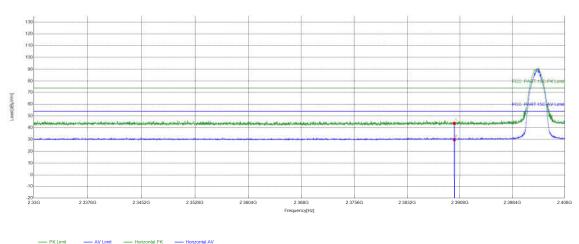
Mode:	π/4DQPSK Transmitting	Channel:	2480MHz
Remark:			


	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1	2483.5	6.57	37.81	44.38	74.00	29.62	PASS	Horizontal	PK
1	2	2483.5	6.57	23.84	30.41	54.00	23.59	PASS	Horizontal	AV

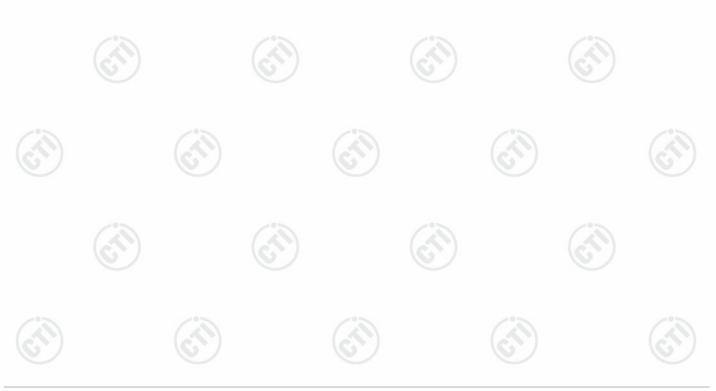


Page 39	9 of	55
---------	------	----

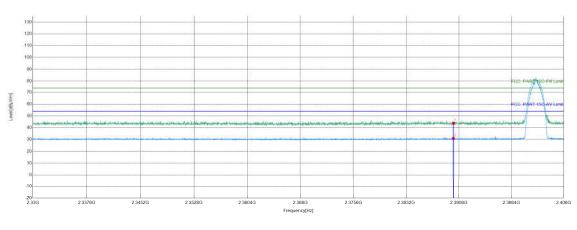
(4.3)	(-63)	1.46	
Mode:	π/4DQPSK Transmitting	Channel:	2480MHz
Remark:		•	

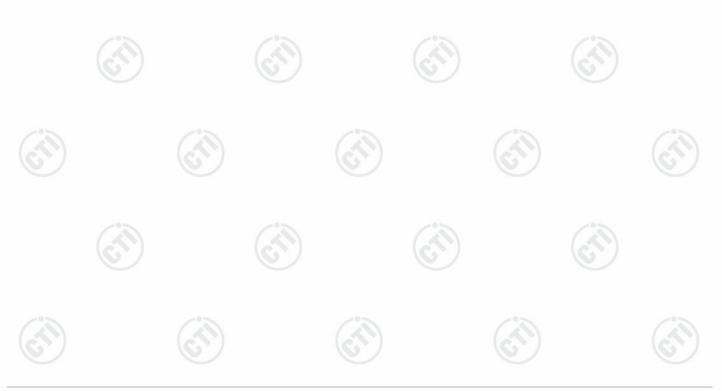


	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1	2483.5	6.57	37.09	43.66	74.00	30.34	PASS	Vertical	PK
1	2	2483.5	6.57	24.54	31.11	54.00	22.89	PASS	Vertical	AV



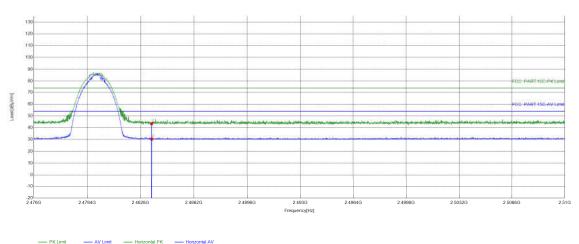
Mode:	8DPSK Transmitting	Channel:	2402MHz
Remark:		·	

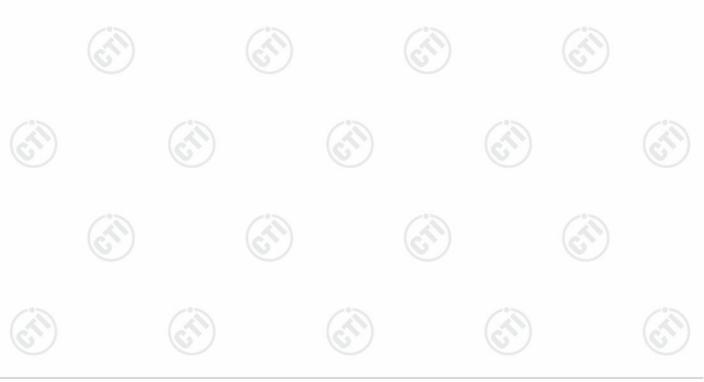

Suspecte	Suspected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	5.77	37.94	43.71	74.00	30.29	PASS	Horizontal	PK
2	2390	5.77	24.14	29.91	54.00	24.09	PASS	Horizontal	AV



Page 41 of 55

Mode:	8DPSK Transmitting	Channel:	2402MHz
Remark:		·	

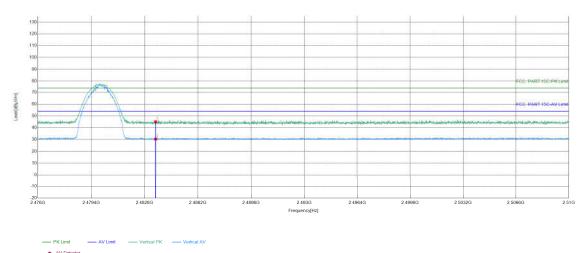

	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
2	1	2390	5.77	38.10	43.87	74.00	30.13	PASS	Vertical	PK
	2	2390	5.77	25.11	30.88	54.00	23.12	PASS	Vertical	AV



Page	42	of	55
------	----	----	----

Mode:	8DPSK Transmitting	Channel:	2480MHz
Remark:			

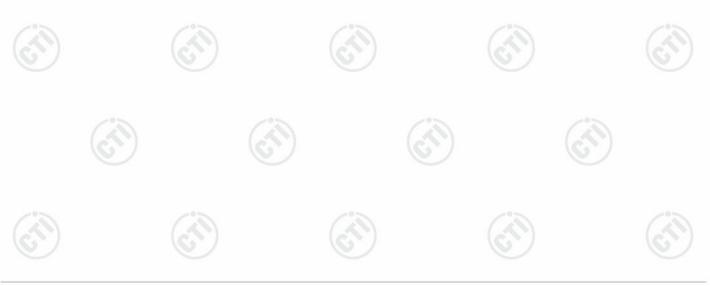
	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1	2483.5	6.57	36.89	43.46	74.00	30.54	PASS	Horizontal	PK
1	2	2483.5	6.57	23.81	30.38	54.00	23.62	PASS	Horizontal	AV



Page	43	of	55
------	----	----	----

-431	(.53)		1.50
Mode:	8DPSK Transmitting	Channel:	2480MHz
Remark:			

Test Graph


Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	6.57	38.54	45.11	74.00	28.89	PASS	Vertical	PK
2	2483.5	6.57	23.81	30.38	54.00	23.62	PASS	Vertical	AV

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

6 Appendix BT Classic

Refer to Appendix: Bluetooth Classic of EED32P80677901.

