

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202312393F01

TEST Report

Applicant: Shenzhen Qishun Innovation Technology Development Co.,

LTD

Address of Applicant: 1906, Block A, RongchuangZhihui Building, Minzhi Street,

Longhua District Shenzhen China

Manufacturer: Shenzhen Qishun Innovation Technology Development Co.,

LTD

Address of 1906, Block A, RongchuangZhihui Building, Minzhi Street,

Manufacturer: Longhua District Shenzhen China

Equipment Under Test (EUT)

Product Name: BT speaker

Model No.: TF-Y01

Series model: N/A

Trade Mark: TRANSFORMERS

FCC ID: 2BAQF-TF-Y01

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Dec. 25, 2023

Date of Test: Dec. 15, 2023~Dec. 25, 2023

Date of report issued: Dec. 25, 2023

Test Result: PASS *

^{*} In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Dec. 25, 2023	Original

Tested/ Prepared By	Heber He	Date:	Dec. 25, 2023
	Project Engineer		
Check By:	Bruce 2hu	Date:	Dec. 25, 2023
	Reviewer		
Approved By :	Kein Your HT	Date:	Dec. 25, 2023
	Authorized Signature		

2. Contents

	Page
1. VERSION	2
2. CONTENTS	3
3. TEST SUMMARY	
4. GENERAL INFORMATION	
4.1. GENERAL DESCRIPTION OF EUT	5
4.2. Test mode	
4.3. DESCRIPTION OF SUPPORT UNITS	7
4.4. DEVIATION FROM STANDARDS	
4.5. ABNORMALITIES FROM STANDARD CONDITIONS	
4.6. TEST FACILITY	
4.7. TEST LOCATION	
4.8. Additional Instructions	7
5. TEST INSTRUMENTS LIST	8
6. TEST RESULTS AND MEASUREMENT DATA	9
6.1. CONDUCTED EMISSIONS	9
6.2. CONDUCTED PEAK OUTPUT POWER	
6.3. 20DB EMISSION BANDWIDTH	13
6.4. FREQUENCIES SEPARATION	16
6.5. HOPPING CHANNEL NUMBER	18
6.6. DWELL TIME	-
6.7. BAND EDGE	
6.7.1. Conducted Emission Method	
6.7.2. Radiated Emission Method	
6.8. Spurious Emission	
6.8.1. Conducted Emission Method	
6.8.2. Radiated Emission Method	
6.9. Antenna Requirement	40
7. TEST SETUP PHOTO	41
8 FUT CONSTRUCTIONAL DETAILS	41

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Frequency Range Measurement Uncertainty			
Radiated Emission	30~1000MHz	3.45 dB	(1)		
Radiated Emission	1~6GHz	3.54 dB	(1)		
Radiated Emission	6~40GHz	5.38 dB	(1)		
Conducted Disturbance 0.15~30MHz 2.66 dB (1)					
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.					

4. General Information

4.1. General Description of EUT

<u> </u>	
Product Name:	BT speaker
Model No.:	TF-Y01
Series model:	N/A
Test sample(s) ID:	HTT202312393-1(Engineer sample)
	HTT202312393-2(Normal sample)
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK
Antenna Type:	PCB Antenna
Antenna gain:	-0.58dBi
Power Supply:	DC 3.7V From Battery and DC 5V From External Circuit
Adapter Information	Mode: GS-0500200
(Auxiliary test provided by the lab):	Input: AC100-240V, 50/60Hz, 0.3A max
	Output: DC 5V, 2A

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been accredited on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

5. Test Instruments list

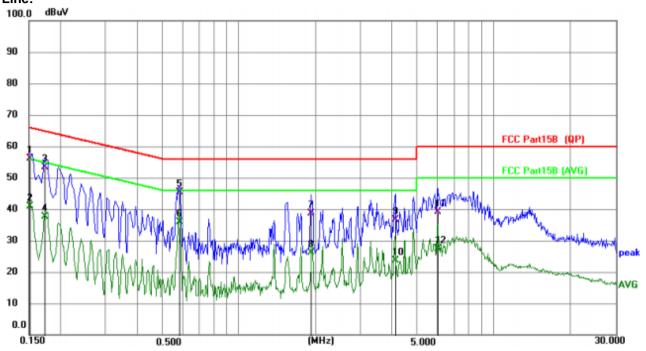
<u>J.</u>	rest mstrume					1
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2021	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2021	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	Apr. 26 2023	Apr. 25 2024
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	Apr. 26 2023	Apr. 25 2024
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	Apr. 26 2023	Apr. 25 2024
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	Apr. 26 2023	Apr. 25 2024
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	Apr. 26 2023	Apr. 25 2024
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	Apr. 26 2023	Apr. 25 2024
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May. 21 2023	May. 20 2024
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May. 20 2023	May. 19 2024
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Apr. 26 2023	Apr. 25 2024
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Apr. 26 2023	Apr. 25 2024
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	Apr. 26 2023	Apr. 25 2024
14	high-frequency Amplifier	HP	8449B	HTT-E014	Apr. 26 2023	Apr. 25 2024
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	Apr. 26 2023	Apr. 25 2024
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	Apr. 26 2023	Apr. 25 2024
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May. 23 2023	May. 22 2024
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May. 23 2023	May. 22 2024
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	Apr. 26 2023	Apr. 25 2024
20	Attenuator	Robinson	6810.17A	HTT-E007	Apr. 26 2023	Apr. 25 2024
	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	Apr. 26 2023	Apr. 25 2024
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	Aug. 10 2021	Aug. 09 2024
23	DC power supply	Agilent	E3632A	HTT-E023	Apr. 26 2023	Apr. 25 2024
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	Apr. 26 2023	Apr. 25 2024
25	Analog signal generator	Agilent	N5181A	HTT-E025	Apr. 26 2023	Apr. 25 2024
26	Vector signal generator	Agilent	N5182A	HTT-E026	Apr. 26 2023	Apr. 25 2024
27	Power sensor	Keysight	U2021XA	HTT-E027	Apr. 26 2023	Apr. 25 2024
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	Apr. 28 2023	Apr. 27 2024
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

Shenzhen HTT Technology Co.,Ltd.

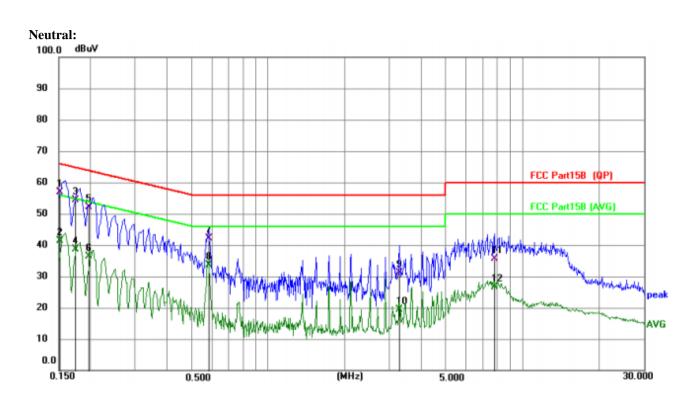
Tel: 0755-23595200 Fax: 0755-23595201

6. Test results and Measurement Data

6.1. Conducted Emissions


	<u> </u>				
Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz Class B				
Class / Severity:					
Receiver setup:	RBW=9KHz, VBW=30KHz, S	Sweep time=auto			
Limit:	Fraguescy range (MHz)	Limit	(dBuV)		
	Frequency range (MHz)		rage		
	0.15-0.5	66 to 56*	+	46*	
	0.5-5	56		6	
	5-30 * Decreases with the logarith	m of the frequency	5	0	
Test setup:	Reference Plan				
Test procedure:	Remark E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power thr line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipmen				
	LISN that provides a 50oh termination. (Please refer photographs). 3. Both sides of A.C. line are interference. In order to fir positions of equipment an according to ANSI C63.10	to the block diagram of the maximum emised all of the interface cannot be the control of the control of the cannot be the cannot	of the test se m conducted sion, the rela ables must b	tup and ative e changed	
Test Instruments:	Refer to section 6.0 for detail	S			
Test mode:	Refer to section 5.2 for detail	S			
Test environment:	Temp.: 25 °C Hu	mid.: 52%	Press.:	1012mbar	
Test voltage:	AC 120V, 60Hz	1		'	
Test results:	Pass				

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.


Measurement data:

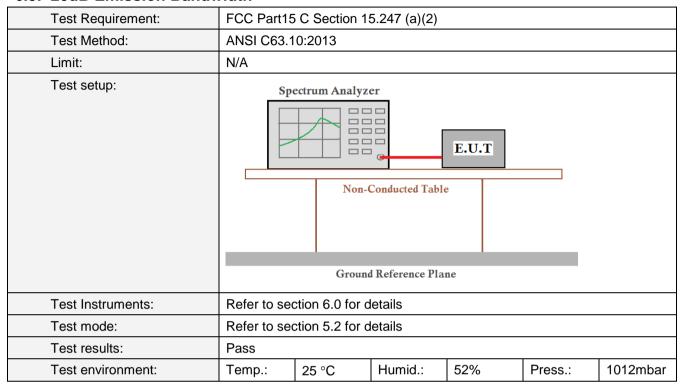
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1 *	0.1521	45.99	10.16	56.15	65.88	-9.73	QP
2	0.1521	30.73	10.16	40.89	55.88	-14.99	AVG
3	0.1727	43.32	10.18	53.50	64.83	-11.33	QP
4	0.1727	27.56	10.18	37.74	54.83	-17.09	AVG
5	0.5876	34.99	10.31	45.30	56.00	-10.70	QP
6	0.5876	25.47	10.31	35.78	46.00	-10.22	AVG
7	1.9258	28.30	10.40	38.70	56.00	-17.30	QP
8	1.9258	15.68	10.40	26.08	46.00	-19.92	AVG
9	4.1086	26.05	10.60	36.65	56.00	-19.35	QP
10	4.1086	12.95	10.60	23.55	46.00	-22.45	AVG
11	6.0289	28.60	10.61	39.21	60.00	-20.79	QP
12	6.0289	16.85	10.61	27.46	50.00	-22.54	AVG

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1 *	0.1522	46.77	10.16	56.93	65.88	-8.95	QP
2	0.1522	31.10	10.16	41.26	55.88	-14.62	AVG
3	0.1747	44.28	10.18	54.46	64.73	-10.27	QP
4	0.1747	28.40	10.18	38.58	54.73	-16.15	AVG
5	0.1970	41.94	10.21	52.15	63.74	-11.59	QP
6	0.1970	26.15	10.21	36.36	53.74	-17.38	AVG
7	0.5864	31.88	10.32	42.20	56.00	-13.80	QP
8	0.5864	23.31	10.32	33.63	46.00	-12.37	AVG
9	3.2826	20.62	10.46	31.08	56.00	-24.92	QP
10	3.2826	8.82	10.46	19.28	46.00	-26.72	AVG
11	7.7585	24.86	10.74	35.60	60.00	-24.40	QP
12	7.7585	15.97	10.74	26.71	50.00	-23.29	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

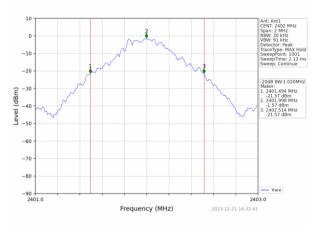
6.2. Conducted Peak Output Power


Test Requirement:	FCC Part15 C Section 15.247 (b)(3)							
Test Method:	ANSI C63.1	0:2013						
Limit:	30dBm(for	GFSK),20.97	dBm(for EDF	₹)				
Test setup:	Power sensor and Spectrum analyzer Non-Conducted Table							
Test Instruments:	Refer to see	ction 6.0 for d	letails					
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

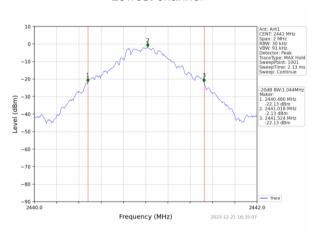
Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
	Lowest	0.75			
GFSK	Middle	0.38	30.00	Pass	
	Highest	0.14			
	Lowest	1.15			
π/4-DQPSK	Middle	0.79	20.97	Pass	
	Highest	0.69			

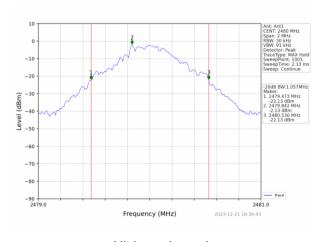
6.3. 20dB Emission Bandwidth


Measurement Data

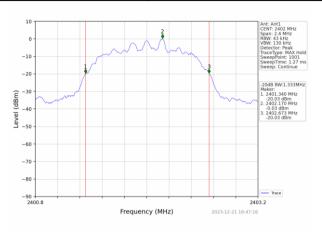
Mode	Test channel	20dB Emission Bandwidth (MHz)	Result
	Lowest	1.020	
GFSK	Middle	1.044	Pass
	Highest	1.057	
	Lowest	1.333	
π/4-DQPSK	Middle	1.341	Pass
	Highest	1.362	

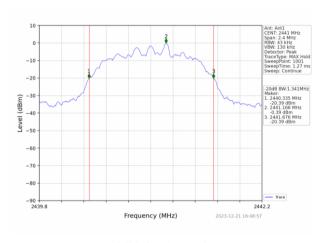


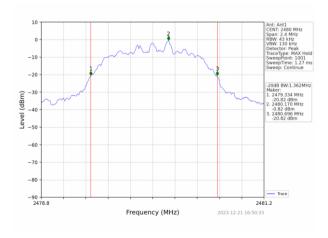
Test plot as follows:


Test mode: GFSK mode

Lowest channel


Middle channel


Highest channel


Test mode: $\pi/4$ -DQPSK mode

Lowest channel

Middle channel

Highest channel

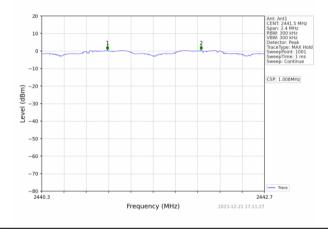
6.4. Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)								
Test Method:		ANSI C63.10:2013							
Receiver setup:		RBW=100KHz, VBW=300KHz, detector=Peak							
Limit:		GFSK: 20dB bandwidth π/4-DQPSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)							
Test setup:	Sp								
Test Instruments:	Refer to se	ction 6.0 for o	details						
Test mode:	Refer to se	ction 5.2 for o	details						
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

Measurement Data


Micasarcinent Bate	4			
Mode	Test channel	Frequencies Separation (MHz)	Limit (kHz)	Result
			25KHz or	
GFSK	Middle	1.000	2/3*20dB	Pass
			bandwidth	
			25KHz or	
π/4-DQPSK	Middle	1.001	2/3*20dB	Pass
			bandwidth	

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle



Test plot as follows:

Modulation mode: GFSK

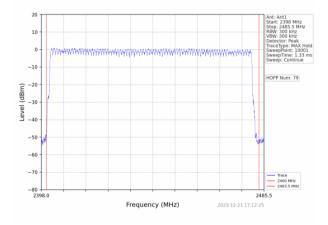
Test mode: $\pi/4$ -DQPSK

6.5. Hopping Channel Number

Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (a)(1)(iii)						
Test Method:	ANSI C63.1	ANSI C63.10:2013						
Receiver setup:		RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak						
Limit:	15 channels	S						
Test setup:	Spe	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to se	ction 6.0 for d	letails					
Test mode:	Refer to se	Refer to section 5.2 for details						
Test results:	Pass	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		


Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79	\1 E	Pass
π/4-DQPSK	79	≥15	Pass



Test plot as follows:

Test mode: GFSK

Test mode: $\pi/4$ -DQPSK

6.6. Dwell Time

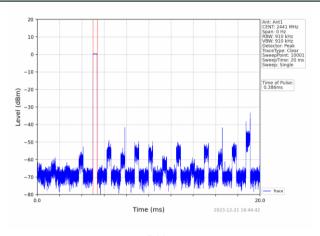
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)							
Test Method:	ANSI C63.10	ANSI C63.10:2013						
Receiver setup:	RBW=1MHz	, VBW=1MH	lz, Span=0Hz	z, Detector=P	eak			
Limit:	0.4 Second							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to sect	tion 6.0 for d	etails					
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

Measurement Data

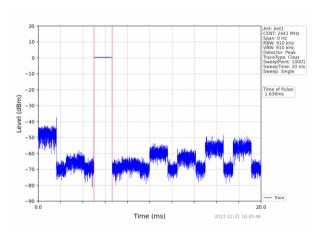
Modulation	Packet	Burst time (ms)	Dwell time (ms)	Limit (ms)	Result	
	DH1	0.386	122.748			
GFSK	DH3	1.636	256.852	400	Pass	
	DH5	2.884	288.400			
	2-DH1	0.390	124.410			
π/4DQPSK	2-DH3	1.648	270.272	400	Pass	
	2-DH5	2.892	294.984			

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

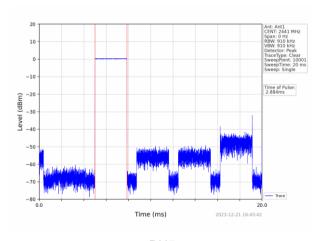
Dwell time=Pulse time (ms) \times (1600 \div 2 \div 79) \times 31.6 Second for DH1, 2-DH1

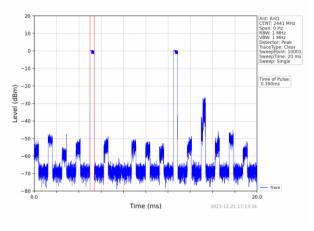

Dwell time=Pulse time (ms) x (1600 \div 4 \div 79) x31.6 Second for DH3, 2-DH3

Dwell time=Pulse time (ms) x (1600 \div 6 \div 79) x31.6 Second for DH5, 2-DH5

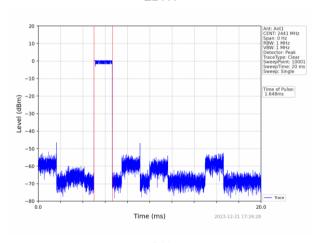


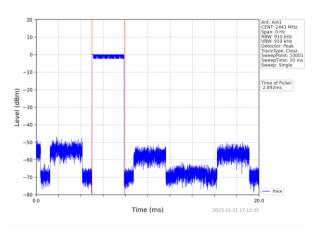
Test plot as follows:


GFSK mode



DH3

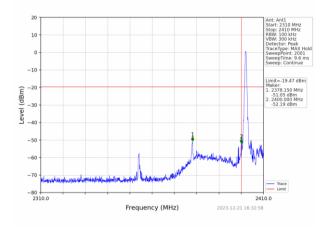


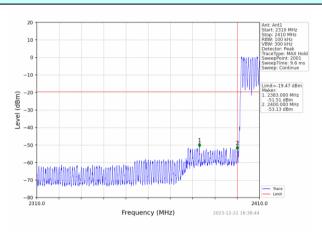

π/4-DQPSK mode

2DH1

2DH3

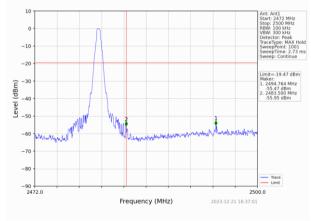
6.7. Band Edge


6.7.1. Conducted Emission Method

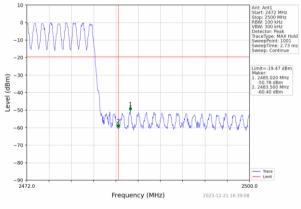

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013						
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar						

Test plot as follows: GFSK Mode:

Test channel Lowest channel

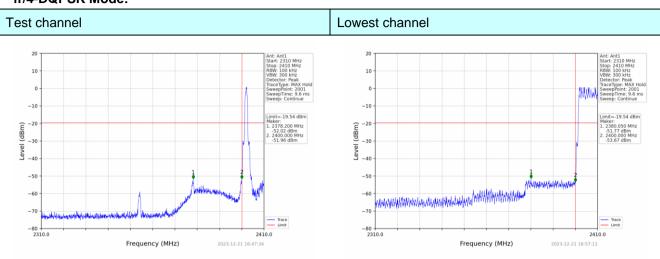


No-hopping mode


Hopping mode

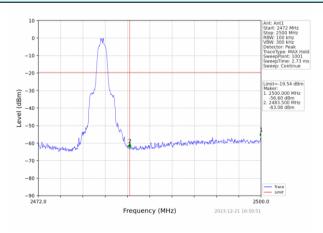
Test channel:

Highest channel

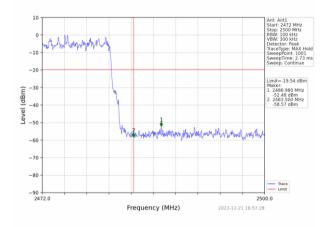


Hopping mode

π/4-DQPSK Mode:



No-hopping mode


Hopping mode

Test channel:

Highest channel

No-hopping mode

Hopping mode

6.7.2. Radiated Emission Method

0.7.2. Radiated Linission Metriod								
Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10	ANSI C63.10:2013						
Test Frequency Range:		All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.						
Test site:	Measureme	nt Distance:	3m					
Receiver setup:	Frequenc			RBW	VBW		emark	
	Above 1Gh	Hz Pea		1MHz 1MHz	3MHz 10Hz		k Value ige Value	
Limit:	Fre	quency	L	imit (dBuV			emark	
	Abov	ve 1GHz		54.0 74.0			ige Value k Value	
Test setup:		Test Antenna+ Company Company						
Test Procedure:	1 The FLIT	was nlaced	100			le 1.5 meter	s ahove the	
	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or 							
Test Instruments:	Refer to sec	tion 6.0 for c	letails					
Test mode:	Refer to section 5.2 for details							
Test results:	Pass	Pass						
Test environment:	Temp.:	25 °C	Humi	d.: 52%	, D	Press.:	1012mbar	

Shenzhen HTT Technology Co.,Ltd.

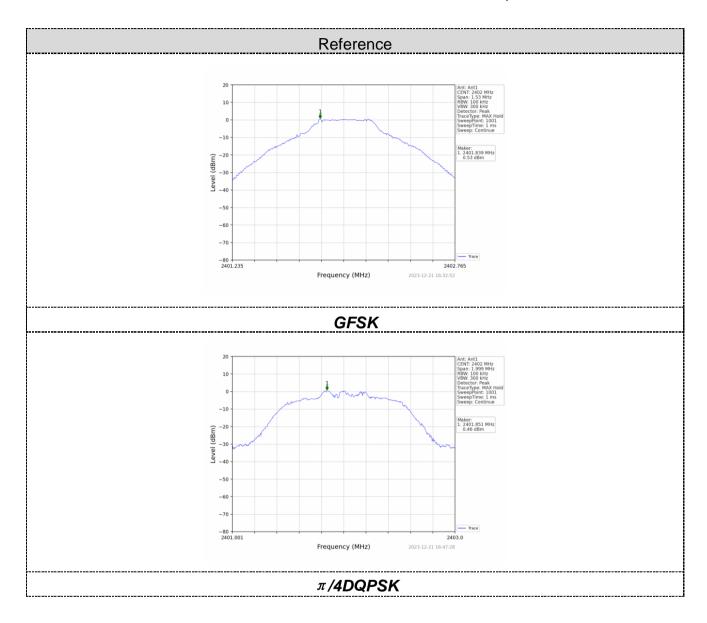
Tel: 0755-23595200 Fax: 0755-23595201

Measurement Data

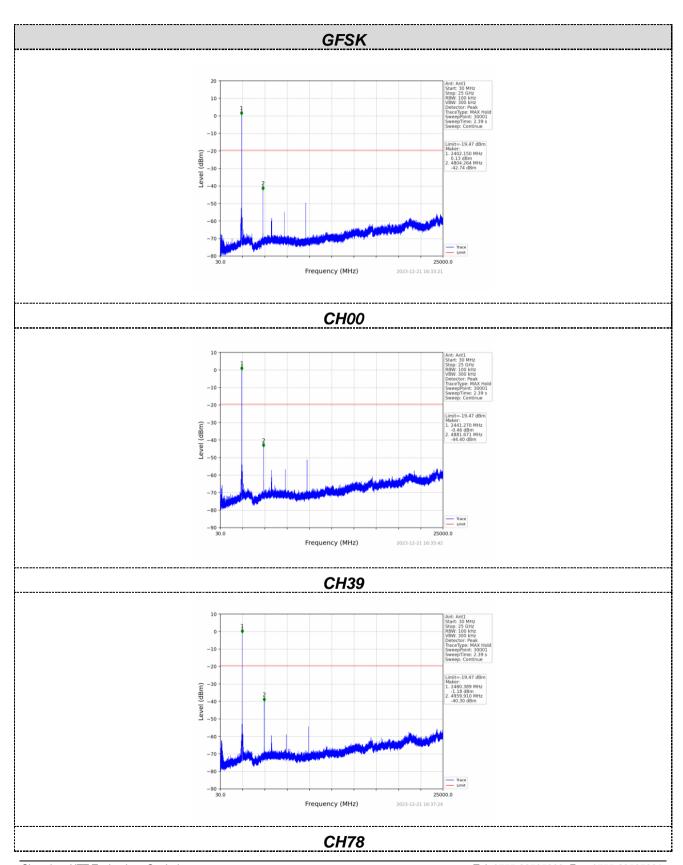
Remark: GFSK, Pi/4 DQPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK

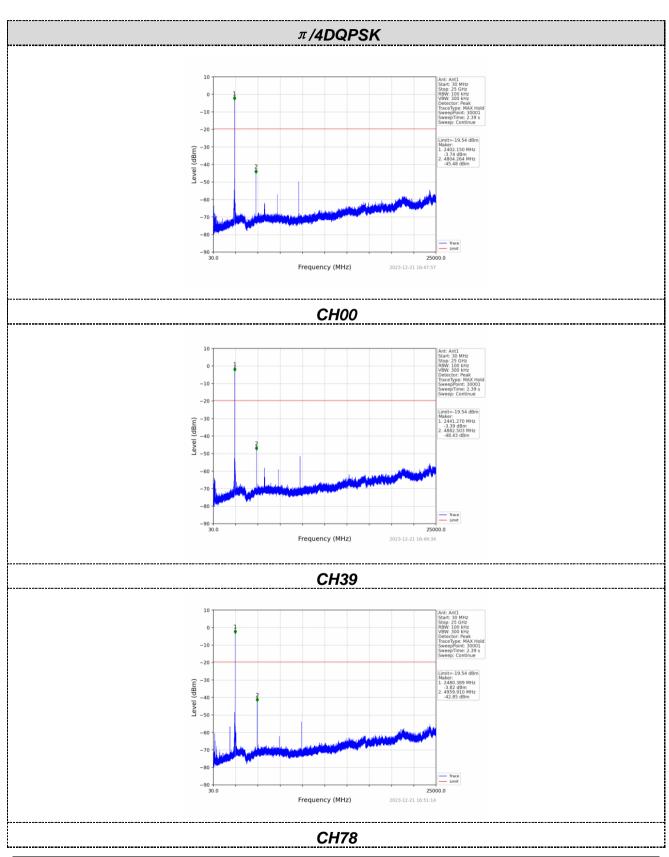
Freque	ncy(MHz)	:	24	02	Pola	arity:	H	ORIZONTA	L
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.29	PK	74	14.71	60.68	27.2	4.31	32.9	-1.39
2390.00	44.59	AV	54	9.41	45.98	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.39	PK	74	14.61	60.78	27.2	4.31	32.9	-1.39
2390.00	45.56	AV	54	8.44	46.95	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	80	P ola	arity:	Н	IORIZONTA	۸L
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	55.28	PK	74	18.72	56.21	27.4	4.47	32.8	-0.93
2483.50	44.99	AV	54	9.01	45.92	27.4	4.47	32.8	-0.93
Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	54.40	PK	74	19.60	55.33	27.4	4.47	32.8	-0.93
2483.50	43.49	AV	54	10.51	44.42	27.4	4.47	32.8	-0.93



6.8. Spurious Emission


6.8.1. Conducted Emission Method

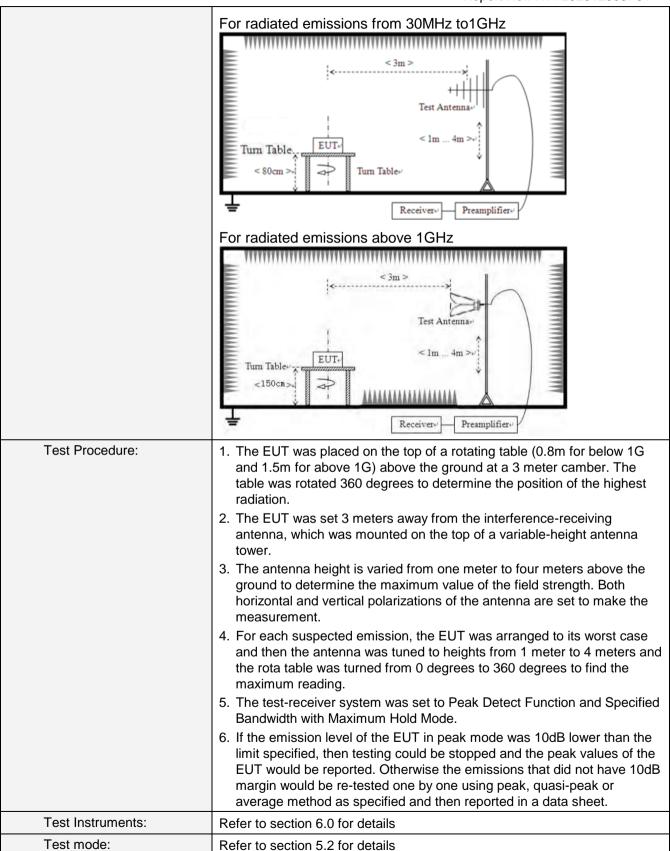
Test Requirement:	FCC Part15	C Section 1	5.247 (d)							
Test Method:	ANSI C63.1	0:2013								
Limit:	spectrum in produced by 100 kHz ba	kHz bandwidt tentional radi y the intentior ndwidth withi wer, based on ent.	ator is operatinal radiator sl nal radiator sl n the band th	ting, the radionall be at leas at contains the	o frequency p st 20 dB belov ne highest lev	ower that is w that in the				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane									
Test Instruments:	Refer to section 6.0 for details									
Test mode:	Refer to sec	ction 5.2 for d	letails							
Test results:	Pass									
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar									



Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

Shenzhen HTT Technology Co.,Ltd.


Tel: 0755-23595200 Fax: 0755-23595201

6.8.2. Radiated Emission Method

Test Requirement:	FCC Part15 C Section	on 15	5.209							
Test Method:	ANSI C63.10:2013									
Test Frequency Range:	9kHz to 25GHz									
Test site:	Measurement Distar	ice: 3	3m							
Receiver setup:	Frequency		Detector	RB\	N	VBW	'	Value		
	9KHz-150KHz	Qı	ıasi-peak	200H	Ηz	600H	z	Quasi-peak		
	150KHz-30MHz	ıasi-peak	9KF	łz	30KH	z	Quasi-peak			
	30MHz-1GHz	Qı	ıasi-peak	120K	Hz	300KF	lz	Quasi-peak		
	Above 1GHz		Peak	1MF	Ιz	3MHz	<u>z</u>	Peak		
	Above 1GH2		Peak	1MF	Ηz	10Hz	<u>'</u>	Average		
Limit:	Frequency		Limit (u\	//m)	٧	'alue	M	leasurement Distance		
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP		300m		
	0.490MHz-1.705M	Hz	24000/F(KHz)		QP		30m		
	1.705MHz-30MH	Z	30			QP		30m		
	30MHz-88MHz		100		QP					
	88MHz-216MHz	<u>'</u>	150			QP				
	216MHz-960MH	Z	200			QP		3m		
	960MHz-1GHz		500		QP			Om		
	Above 1GHz		500		Av	erage				
	7,5000 10112		5000		F	Peak				
Test setup:	For radiated emiss	ions	from 9kH	z to 30	MH	Z				
	Tum Table Im Receiver									

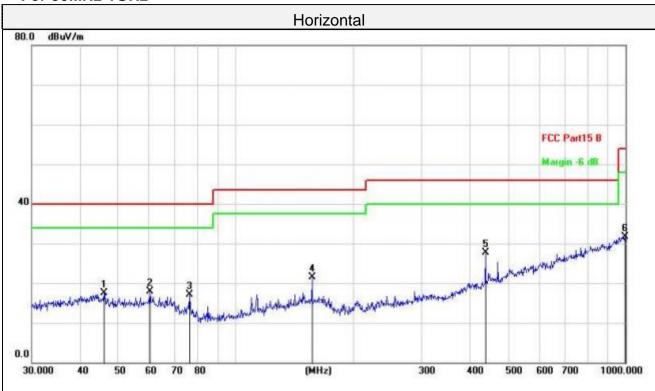
Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	
Test voltage:	AC 120V, 60Hz						
Test results:	Pass						

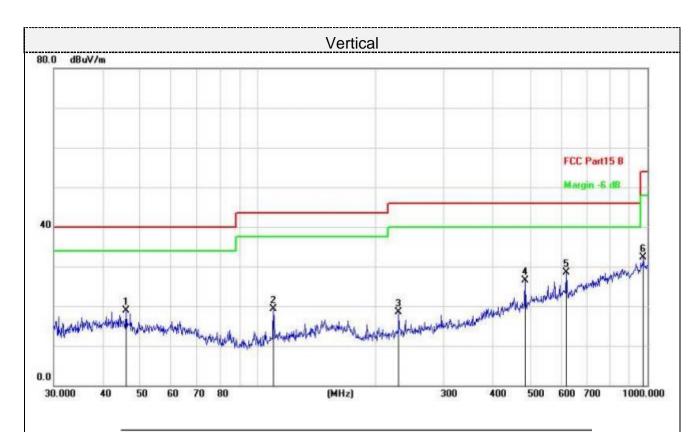
Measurement data:

Remarks:


- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


For 30MHz-1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		46.0164	27.98	-10.50	17.48	40.00	-22.52	QP
2		60.2801	29.55	-11.66	17.89	40.00	-22.11	QP
3		76.2442	31.39	-14.38	17.01	40.00	-22.99	QP
4		157.0074	32.00	-10.59	21.41	43.50	-22.09	QP
5	*	437.1199	34.43	-6.67	27.76	46.00	-18.24	QP
6		996.4996	27.87	3.77	31.64	54.00	-22.36	QP

Final Level = Receiver Read level + Correct Factor

MHz dBuV dB/m dBuV/m dB/m dB/m dB Detector 1 46.0164 29.38 -10.50 18.88 40.00 -21.12 QP 2 109.7960 33.38 -14.09 19.29 43.50 -24.21 QP 3 230.0985 31.12 -12.57 18.55 46.00 -27.45 QP 4 485.6093 32.31 -5.76 26.55 46.00 -19.45 QP 5 618.5369 31.58 -3.10 28.48 46.00 -17.52 QP 6 975.7529 28.64 3.58 32.22 54.00 -21.78 QP	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
2 109.7960 33.38 -14.09 19.29 43.50 -24.21 QP 3 230.0985 31.12 -12.57 18.55 46.00 -27.45 QP 4 485.6093 32.31 -5.76 26.55 46.00 -19.45 QP 5 * 618.5369 31.58 -3.10 28.48 46.00 -17.52 QP			MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
3 230.0985 31.12 -12.57 18.55 46.00 -27.45 QP 4 485.6093 32.31 -5.76 26.55 46.00 -19.45 QP 5 * 618.5369 31.58 -3.10 28.48 46.00 -17.52 QP	1		46.0164	29.38	-10.50	18.88	40.00	-21.12	QP
4 485.6093 32.31 -5.76 26.55 46.00 -19.45 QP 5 * 618.5369 31.58 -3.10 28.48 46.00 -17.52 QP	2		109.7960	33.38	-14.09	19.29	43.50	-24.21	QP
5 * 618.5369 31.58 -3.10 28.48 46.00 -17.52 QP	3		230.0985	31.12	-12.57	18.55	46.00	-27.45	QP
	4		485.6093	32.31	-5.76	26.55	46.00	-19.45	QP
6 975.7529 28.64 3.58 32.22 54.00 -21.78 QP	5	*	618.5369	31.58	-3.10	28.48	46.00	-17.52	QP
	6		975.7529	28.64	3.58	32.22	54.00	-21.78	QP

Final Level =Receiver Read level + Correct Factor

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK,Pi/4 DQPSK were test at Low, Middle, and High

channel; only the worst result of GFSK was reported as below:

Freque	Frequency(MHz):			2402		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	60.05	PK	74	13.95	54.35	31	6.5	31.8	5.7	
4804.00	42.33	AV	54	11.67	36.63	31	6.5	31.8	5.7	
7206.00	53.95	PK	74	20.05	41.30	36	8.15	31.5	12.65	
7206.00	43.56	AV	54	10.44	30.91	36	8.15	31.5	12.65	

Freque	Frequency(MHz):			2402		Polarity:		VERTICAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
4804.00	59.32	PK	74	14.68	53.62	31	6.5	31.8	5.7		
4804.00	43.93	AV	54	10.07	38.23	31	6.5	31.8	5.7		
7206.00	52.56	PK	74	21.44	39.91	36	8.15	31.5	12.65		
7206.00	44.07	AV	54	9.93	31.42	36	8.15	31.5	12.65		

Freque	Frequency(MHz):			2440		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4882.00	59.49	PK	74	14.51	53.33	31.2	6.61	31.65	6.16	
4882.00	43.93	AV	54	10.07	37.77	31.2	6.61	31.65	6.16	
7323.00	53.19	PK	74	20.81	40.24	36.2	8.23	31.48	12.95	
7323.00	43.79	AV	54	10.21	30.84	36.2	8.23	31.48	12.95	

Freque	Frequency(MHz):			2440		Polarity:		VERTICAL			
Frequency (MHz)	Emission Level		Limit (dBuV/m)	Margin (dB)	Raw Value	Antenna Factor	Cable Factor	Pre- amplifier	Correction Factor		
(1711 12)	(dBu	V/m)	(4247711)	(==)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)		
4882.00	62.24	PK	74	11.76	56.08	31.2	6.61	31.65	6.16		
4882.00	43.57	AV	54	10.43	37.41	31.2	6.61	31.65	6.16		
7323.00	54.15	PK	74	19.85	41.20	36.2	8.23	31.48	12.95		
7323.00	43.30	AV	54	10.70	30.35	36.2	8.23	31.48	12.95		

Freque	Frequency(MHz):			2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4960.00	62.17	PK	74	11.83	55.51	31.4	6.76	31.5	6.66	
4960.00	42.04	AV	54	11.96	35.38	31.4	6.76	31.5	6.66	
7440.00	54.82	PK	74	19.18	41.52	36.4	8.35	31.45	13.3	
7440.00	46.06	AV	54	7.94	32.76	36.4	8.35	31.45	13.3	

Freque	Frequency(MHz):			2480		Polarity:		VERTICAL			
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre-	Correction		
	Le	Level	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor		
(MHz)	(dBuV/m)		(ubu V/III)	(ub)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)		
4960.00	63.06	PK	74	10.94	56.40	31.4	6.76	31.5	6.66		
4960.00	42.88	AV	54	11.12	36.22	31.4	6.76	31.5	6.66		
7440.00	55.10	PK	74	18.90	41.80	36.4	8.35	31.45	13.3		
7440.00	44.37	AV	54	9.63	31.07	36.4	8.35	31.45	13.3		

Remark:

⁽¹⁾ Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

⁽²⁾ When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

6.9. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was -0.58dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

-----End-----