

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202405574F01

TEST Report

Applicant: Shenzhen Qishun Innovation Technology

Development Co., LTD

Address of Applicant: 1906, Block A, RongchuangZhihui Building,

Minzhi Street, Longhua District, Shenzhen

Manufacturer: Shenzhen Qishun Innovation Technology

Development Co., LTD

Address of 1906, Block A, RongchuangZhihui Building, Manufacturer: Minzhi Street, Longhua District, Shenzhen

Equipment Under Test (EUT)

Product Name: True Wireless BT Earphones

Model No.: TF-T01 Pro

Series model: N/A

Trade Mark: TRANSFORMERS

FCC ID: 2BAQF-TF-T01PRO

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: May. 24, 2024

Date of Test: May. 24, 2024 ~ May. 30, 2024

Date of report issued: May. 30, 2024

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	May. 30, 2024	Original

Tested/ Prepared By	Heber He	Date:	May. 30, 2024	
	Project Engineer			
Check By:	Bruce Zhu	Date:	May. 30, 2024	
	Reviewer	_		
Approved By :	Kevin Young HT	Date:	May. 30, 2024	
	Authorized Signature			

2. Contents

	Page
1. VERSION	2
2. CONTENTS	3
3. TEST SUMMARY	4
4. GENERAL INFORMATION	
4.1. GENERAL DESCRIPTION OF EUT	
4.2. TEST MODE	
4.4. Deviation from Standards	
4.5. ABNORMALITIES FROM STANDARD CONDITIONS	7
4.6. TEST FACILITY	
4.7. TEST LOCATION	
5. TEST INSTRUMENTS LIST	_
6. TEST RESULTS AND MEASUREMENT DATA	9
6.1. CONDUCTED EMISSIONS	
6.2. CONDUCTED PEAK OUTPUT POWER	
6.3. 20DB EMISSION BANDWIDTH	
6.4. FREQUENCIES SEPARATION	
6.6. DWELL TIME	-
6.7. BAND EDGE	
6.7.1. Conducted Emission Method	
6.7.2. Radiated Emission Method	
6.8.1. Conducted Emission Method	
6.8.2. Radiated Emission Method	
6.9. Antenna Requirement	44
7. TEST SETUP PHOTO	45
8. EUT CONSTRUCTIONAL DETAILS	45

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	30~1000MHz	3.45 dB	(1)		
Radiated Emission	1~18GHz	3.54 dB	(1)		
Radiated Emission	18-40GHz	5.38 dB	(1)		
Conducted Disturbance 0.15~30MHz 2.66 dB (1					
Note (1): The measurement unce	rtainty is for coverage factor of k	=2 and a level of confidence of 9	95%.		

4. General Information

4.1. General Description of EUT

The Contral Decemperate of 201	
Product Name:	True Wireless BT Earphones
Model No.:	TF-T01 Pro
Series model:	N/A
Test sample(s) ID:	HTT202405574-1(Engineer sample) HTT202405574-2(Normal sample)
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	Chip Antenna
Antenna gain:	2.70 dBi
Power Supply:	DC 3.7V From Battery and DC 5V From External Circuit
Adapter Information (Auxiliary test provided by the lab):	Mode: GS-0500200 Input: AC100-240V, 50/60Hz, 0.3A max Output: DC 5V, 2A

Operation	Frequency each	n of channel					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been accredited on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

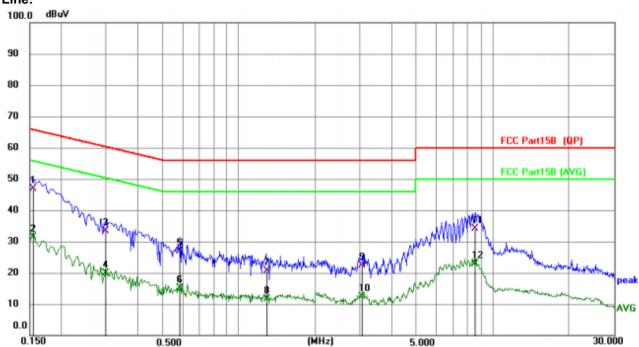
Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2021	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2021	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	Apr. 26 2024	Apr. 25 2025
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	Apr. 26 2024	Apr. 25 2025
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	Apr. 26 2024	Apr. 25 2025
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	Apr. 26 2024	Apr. 25 2025
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	Apr. 26 2024	Apr. 25 2025
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	Apr. 26 2024	Apr. 25 2025
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May. 21 2024	May. 20 2025
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May. 20 2024	May. 19 2025
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Apr. 26 2024	Apr. 25 2025
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Apr. 26 2024	Apr. 25 2025
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	Apr. 26 2024	Apr. 25 2025
14	high-frequency Amplifier	HP	8449B	HTT-E014	Apr. 26 2024	Apr. 25 2025
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	Apr. 26 2024	Apr. 25 2025
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	Apr. 26 2024	Apr. 25 2025
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May. 23 2024	May. 22 2025
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May. 23 2024	May. 22 2025
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	Apr. 26 2024	Apr. 25 2025
20	Attenuator	Robinson	6810.17A	HTT-E007	Apr. 26 2024	Apr. 25 2025
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	Apr. 26 2024	Apr. 25 2025
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	Aug. 10 2021	Aug. 09 2024
23	DC power supply	Agilent	E3632A	HTT-E023	Apr. 26 2024	Apr. 25 2025
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	Apr. 26 2024	Apr. 25 2025
25	Analog signal generator	Agilent	N5181A	HTT-E025	Apr. 26 2024	Apr. 25 2025
26	Vector signal generator	Agilent	N5182A	HTT-E026	Apr. 26 2024	Apr. 25 2025
27	Power sensor	Keysight	U2021XA	HTT-E027	Apr. 26 2024	Apr. 25 2025
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	Apr. 28 2024	Apr. 27 2025
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

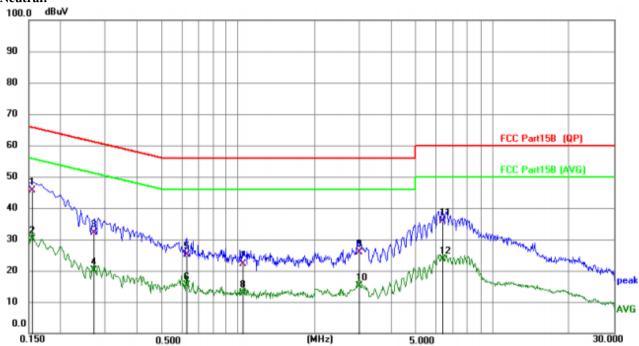
6. Test results and Measurement Data

6.1. Conducted Emissions

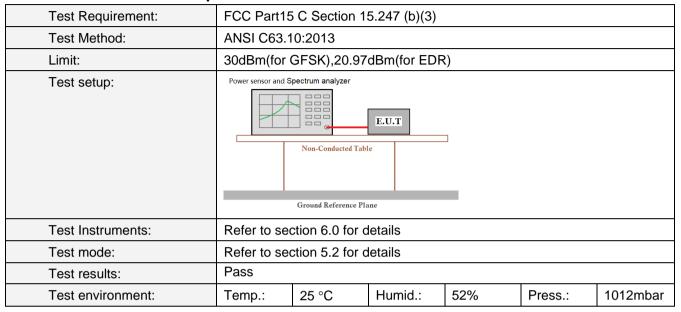

	-				
Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B RBW=9KHz, VBW=30KHz, Sweep time=auto				
Receiver setup:					
Limit:	Frequency range (MHz)	Limit	(dBuV)		
		Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	* Decreases with the logarithm	60	50		
Test setup:					
Test procedure:	Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark EU.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative				
	according to ANSI C63.10:		neasurement.		
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details	1	1		
Test environment:	Temp.: 25 °C Hun	nid.: 52%	Press.: 1012n	nbar	
Test voltage:	AC 120V, 60Hz				
Test results:	Pass				

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:



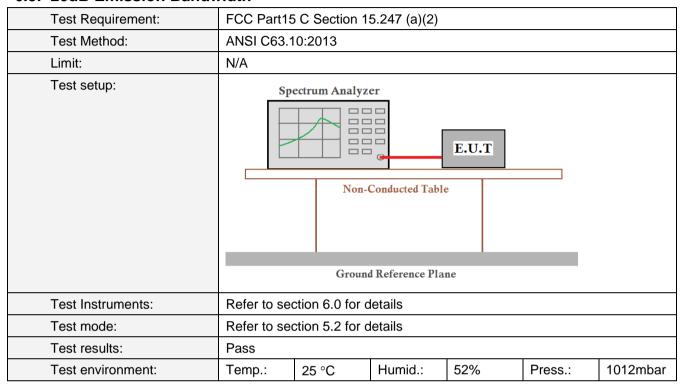
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1 *	0.1544	36.76	10.16	46.92	65.76	-18.84	QP
2	0.1544	21.13	10.16	31.29	55.76	-24.47	AVG
3	0.2985	23.07	10.24	33.31	60.28	-26.97	QP
4	0.2985	9.70	10.24	19.94	50.28	-30.34	AVG
5	0.5865	16.57	10.31	26.88	56.00	-29.12	QP
6	0.5865	4.76	10.31	15.07	46.00	-30.93	AVG
7	1.2977	10.15	10.41	20.56	56.00	-35.44	QP
8	1.2977	1.26	10.41	11.67	46.00	-34.33	AVG
9	3.0770	11.82	10.51	22.33	56.00	-33.67	QP
10	3.0770	1.82	10.51	12.33	46.00	-33.67	AVG
11	8.5130	23.37	10.66	34.03	60.00	-25.97	QP
12	8.5130	12.21	10.66	22.87	50.00	-27.13	AVG


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1 *	0.1544	35.35	10.16	45.51	65.76	-20.25	QP
2	0.1544	20.08	10.16	30.24	55.76	-25.52	AVG
3	0.2714	21.93	10.23	32.16	61.07	-28.91	QP
4	0.2714	9.91	10.23	20.14	51.07	-30.93	AVG
5	0.6273	14.77	10.35	25.12	56.00	-30.88	QP
6	0.6273	5.15	10.35	15.50	46.00	-30.50	AVG
7	1.0475	11.70	10.32	22.02	56.00	-33.98	QP
8	1.0475	2.55	10.32	12.87	46.00	-33.13	AVG
9	3.0126	15.42	10.45	25.87	56.00	-30.13	QP
10	3.0126	4.65	10.45	15.10	46.00	-30.90	AVG
11	6.3602	25.12	10.66	35.78	60.00	-24.22	QP
12	6.3602	13.03	10.66	23.69	50.00	-26.31	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

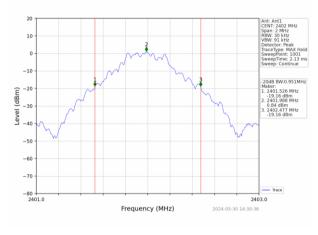
6.2. Conducted Peak Output Power



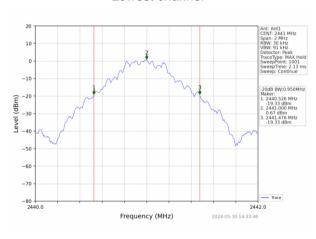
Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
	Lowest	3.41			
GFSK	Middle	3.20	30.00	Pass	
	Highest	3.01			
π/4-DQPSK	Lowest	5.25			
	Middle	5.00	20.97	Pass	
	Highest				
	Lowest	5.78			
8-DPSK	Middle	5.59	20.97	Pass	
	Highest	5.37			

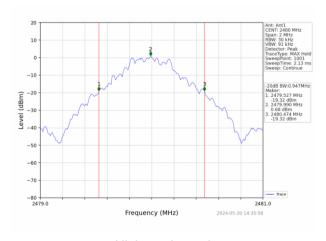
6.3. 20dB Emission Bandwidth


Measurement Data

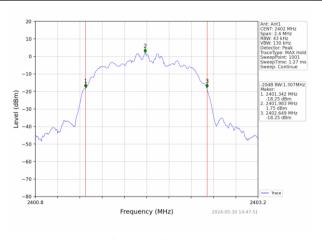
Mode	Test channel	20dB Emission Bandwidth (MHz)	Result	
	Lowest	0.951		
GFSK	Middle	0.950	Pass	
	Highest	0.947	1	
π/4-DQPSK	Lowest	1.307		
	OQPSK Middle 1.296		Pass	
	Highest	1.292		
	Lowest	1.313		
8-DPSK	Middle	1.311	Pass	
	Highest	1.310		



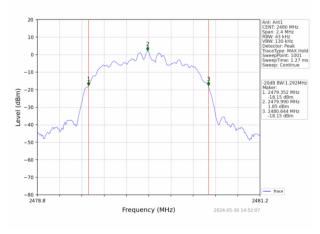
Test plot as follows:


Test mode: GFSK mode

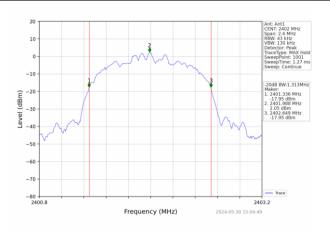
Lowest channel

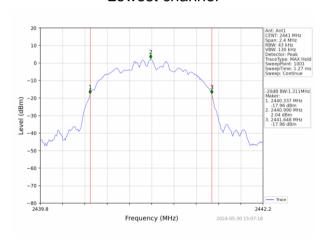

Middle channel

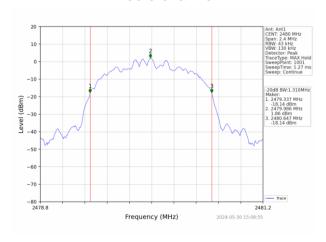
Highest channel


Test mode: $\pi/4$ -DQPSK mode

Lowest channel


Middle channel


Highest channel


Test mode: 8-DPSK mode

Lowest channel

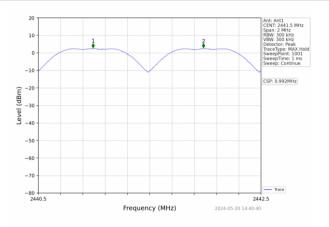
Middle channel

Highest channel

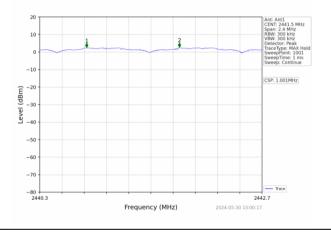
6.4. Frequencies Separation

Test Requirement:	FCC Part1	5 C Section 1	5.247 (a)(1)							
Test Method:	ANSI C63.	ANSI C63.10:2013								
Receiver setup:	RBW=100k	RBW=100KHz, VBW=300KHz, detector=Peak								
Limit:		GFSK: 20dB bandwidth π/4-DQPSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)								
Test setup:	Sp									
Test Instruments:	Refer to se	ction 6.0 for	details							
Test mode:	Refer to section 5.2 for details									
Test results:	Pass									
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar				

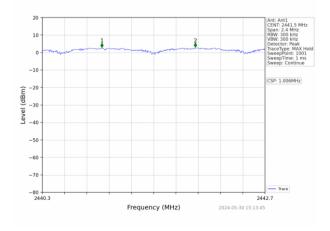
Measurement Data


weasurement Data	a			
Mode	Test channel	Frequencies Separation (MHz)	Limit (kHz)	Result
			25KHz or	
GFSK	Middle	0.992	2/3*20dB	Pass
			bandwidth	
			25KHz or	
π/4-DQPSK	Middle	1.001	2/3*20dB	Pass
			bandwidth	
			25KHz or	
8-DPSK	Middle	1.006	2/3*20dB	Pass
			bandwidth	

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle



Test plot as follows:

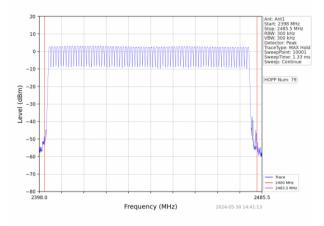

Modulation mode: GFSK

Test mode: $\pi/4$ -DQPSK

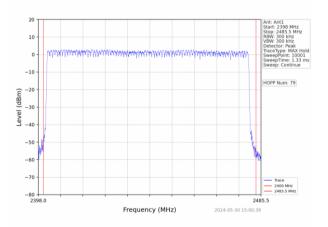
Modulation mode: 8-DPSK

6.5. Hopping Channel Number

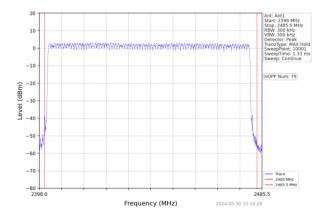
Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (a)(1)(iii)							
Test Method:	ANSI C63.1	ANSI C63.10:2013							
Receiver setup:		RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak							
Limit:	15 channels	S							
Test setup:	Spe			Z.U.T					
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			


Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79		Pass
π/4-DQPSK	79	≥15	Pass
8-DPSK	79		Pass



Test plot as follows:


Test mode: GFSK

Test mode: $\pi/4$ -DQPSK

Test mode: 8-DPSK

6.6. Dwell Time

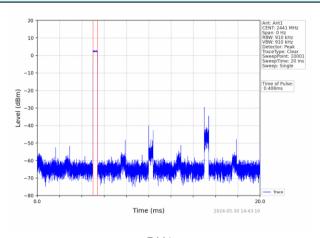
Test Requirement:	FCC Part1	5 C Section 1	5.247 (a)(1)(i	ii)						
Test Method:	ANSI C63.	ANSI C63.10:2013								
Receiver setup:	RBW=1MH	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak								
Limit:	0.4 Second	0.4 Second								
Test setup:	Sp									
Test Instruments:	Refer to section 6.0 for details									
Test mode:	Refer to se	Refer to section 5.2 for details								
Test results:	Pass	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar				

Measurement Data

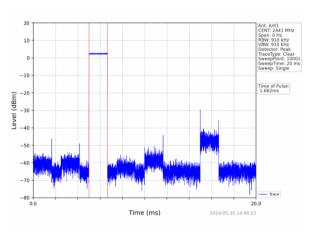
Modulation	Packet	Burst time (ms)	Dwell time (ms)	Limit (ms)	Result
	DH1	0.406	129.108		
GFSK	DH3	1.662	270.906	400	Pass
	DH5	2.914	317.626		
	2-DH1	0.420	133.980		
π/4DQPSK	2-DH3	1.672	280.896	400	Pass
	2-DH5	2.922	271.746		
	3-DH1	0.416	132.704		
8DPSK	PSK 3-DH3 1.666		263.228	400	Pass
	3-DH5	2.920	309.520		

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

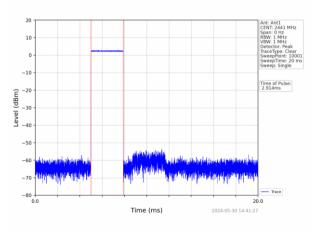
Dwell time=Pulse time (ms) \times (1600 \div 2 \div 79) \times 31.6 Second for DH1, 2-DH1, 3-DH1

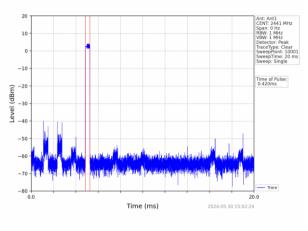

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

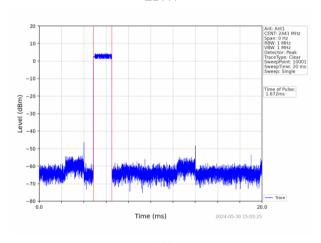


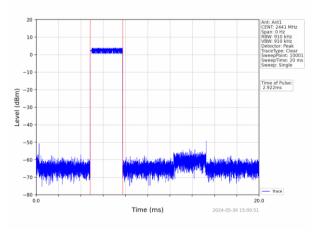
Test plot as follows:


GFSK mode

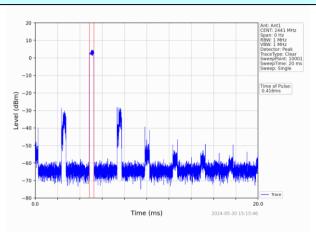


DH3



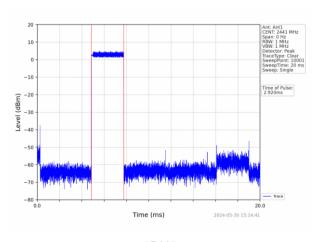

π/4-DQPSK mode

2DH1



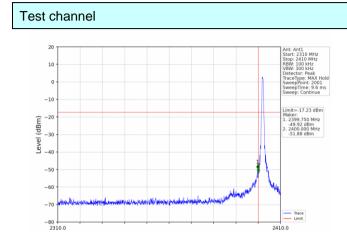
2DH3



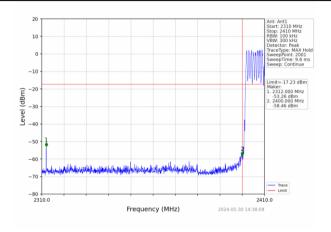

8-DPSK mode

3DH1

3DH3

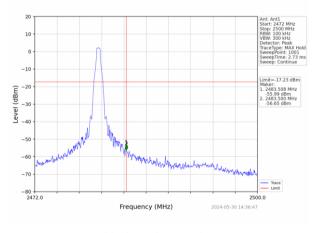

6.7. Band Edge

6.7.1. Conducted Emission Method


spectrum intentional radiator is operating, the radio frequency power that									
Receiver setup: RBW=100kHz, VBW=300kHz, Detector=Peak Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that it the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Test setup: Spectrum Analyzer Non-Conducted Table	Test Requirement:	FCC Part15 C Section 15.247 (d)							
Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that it the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Test setup: Spectrum Analyzer Non-Conducted Table	Test Method:	ANSI C63.10:2013							
spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that it the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Test setup: Spectrum Analyzer Non-Conducted Table	Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak							
Non-Conducted Table	Limit:	the desired power, based on either an RF conducted or a radiated							
	Test setup:	Non-Conducted Table							
Test Instruments: Refer to section 6.0 for details	Test Instruments:	Refer to section 6.0 for details							
Test mode: Refer to section 5.2 for details	Test mode:	Refer to section 5.2 for details							
Test results: Pass	Test results:	Pass							
Test environment: Temp.: 25 °C Humid.: 52% Press.: 1012mb	Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar							

Test plot as follows: GFSK Mode:

Lowest channel

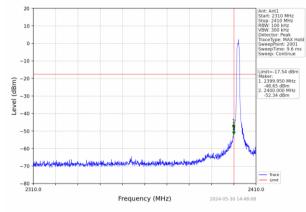


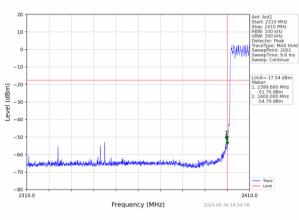
No-hopping mode

Hopping mode

Test channel:

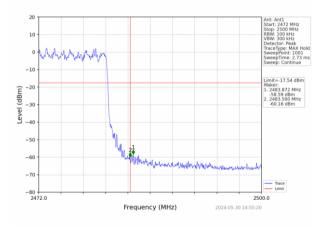
Highest channel


No-hopping mode


Hopping mode

π/4-DQPSK Mode:

Test channel Lowest channel

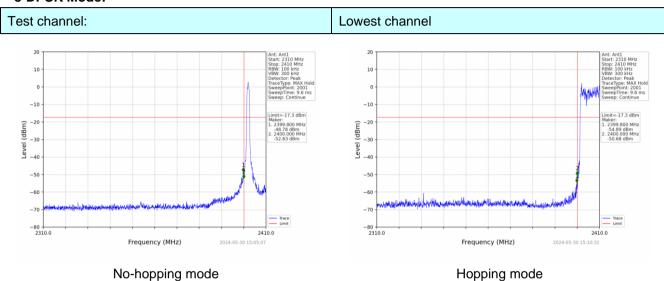

No-hopping mode

Hopping mode

Test channel:

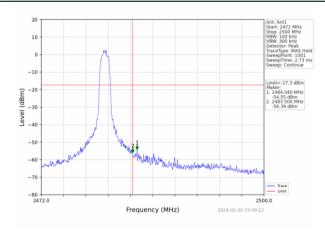
20 Am. Ant. 1 San. 2472 MHz Stop: 2500 MHz Stop: 2500 MHz Stop: 2500 MHz Stop: 2500 MHz Detector Peak Trace Type: MAX Hold Sweep/Continue Maker 1, 2463 928 MHz 2, 2463 500 MHz 2, 2463 500 MHz Stop: 2500 MHz Sweep Continue Maker 1, 2463 928 MHz 2, 2463 500 MHz Stop: 2500 MH

Highest channel

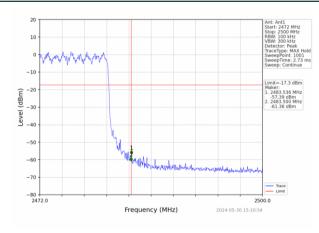


No-hopping mode

Hopping mode



8-DPSK Mode:



Test channel:

Highest channel

Hopping mode

6.7.2. Radiated Emission Method

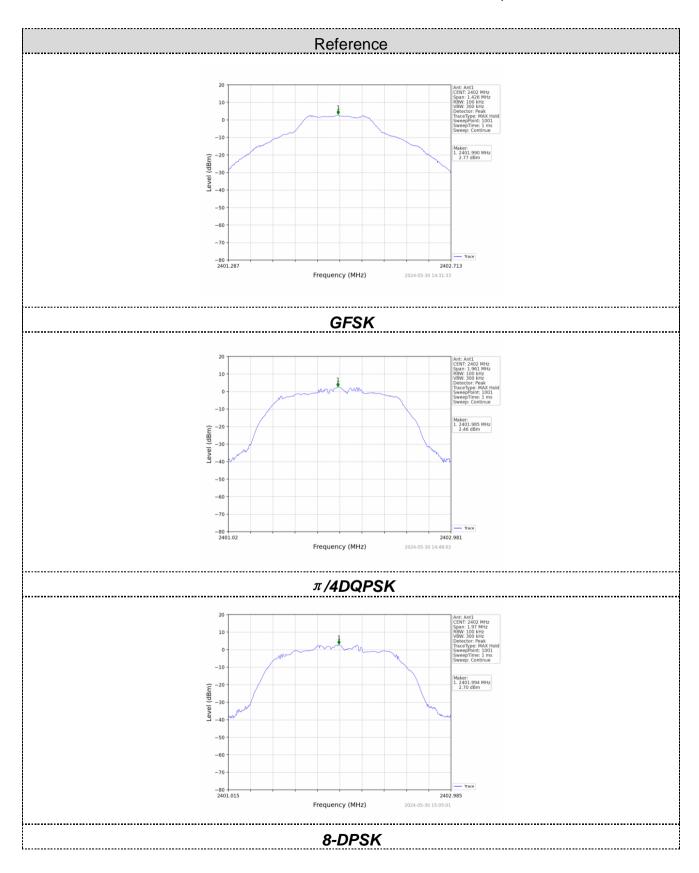
6.7.2. Radiated Effission Wethod								
Test Requirement:	FCC Part15	C Section 1	5.209 a	and 15.205	5			
Test Method:	ANSI C63.1	0:2013						
Test Frequency Range:		estrict bands lata was sho		tested, on	ly the wo	orst band's (2	2310MHz to	
Test site:	Measureme	nt Distance:	3m					
Receiver setup:	Frequenc	y Detec	ctor	RBW	VBV	V Re	emark	
·	Above 1GI	Hz Pea		1MHz 1MHz	3MH 10H		k Value ge Value	
Limit:	Frequency Limit (dBuV/m @3m) Remark							
	Abo	ve 1GHz		54. 74.			ge Value k Value	
Test setup:	Tum Table- <150cm>	7 1 1	< 3m :	Test Anten	?			
Test Procedure:	1. The EUT	was placed				ole 1.5 meter	s above the	
	determine 2. The EUT antenna, tower. 3. The anter ground to horizonta measurer 4. For each and then and then and the re maximum 5. The test- Specified 6. If the emi limit spec EUT wou 10dB ma	e the position was set 3 m which was none man height is determine to determine to determine to determine to determine to the antenna ota table was reading. The receiver system is a Bandwidth was soon level of the determine to determine the	varied he max l polariz mission was turned em was turned the Elsting ced. Other ere-tes	from one cimum value ations of the EUT ned to heid from 0 described by the EUT in peal ould be steed one between the extent one to the extent of the extent of the extent one to the extent of the	meter to ue of the anter to ue of the anter was arraghts from egrees to eak Detect Mode wopped an emissior y one usi	erence-receivriable-height four meters affield strength anged to its van 1 meter to 40 360 degrees et Function and vas 10dB lowed the peak van that did not ing peak, qual in a data she	ving antenna above the a. Both o make the vorst case a meters is to find the alues of the ot have asi-peak or	
Test Instruments:		tion 6.0 for c						
Test mode:	Refer to sec	tion 5.2 for c	letails					
Test results:	Pass		-					
Test environment:	Temp.:	25 °C	Humi	d.: 52	%	Press.:	1012mbar	

Measurement Data

Remark: GFSK, Pi/4 DQPSK,8-DPSK all have been tested, only worse case GFSK is reported.

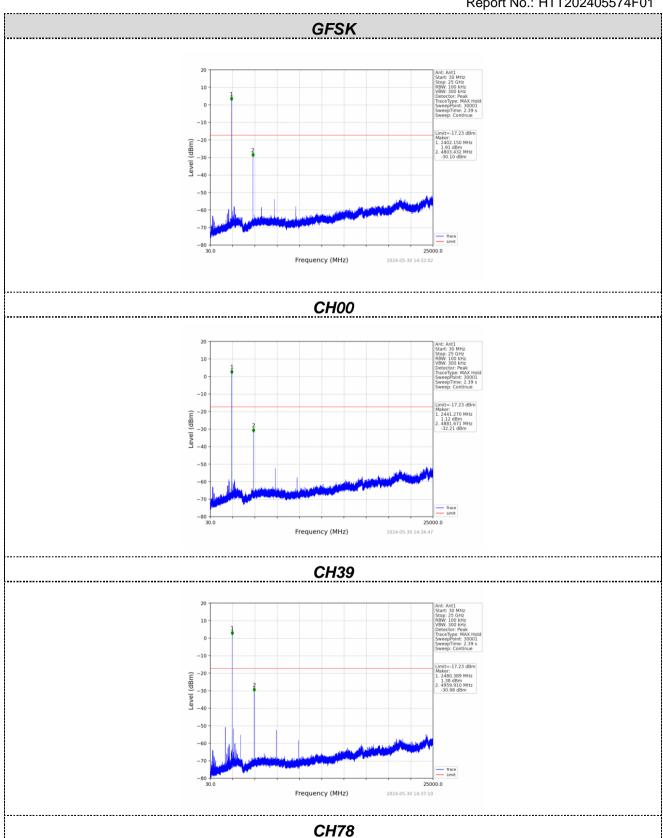
Operation Mode: GFSK

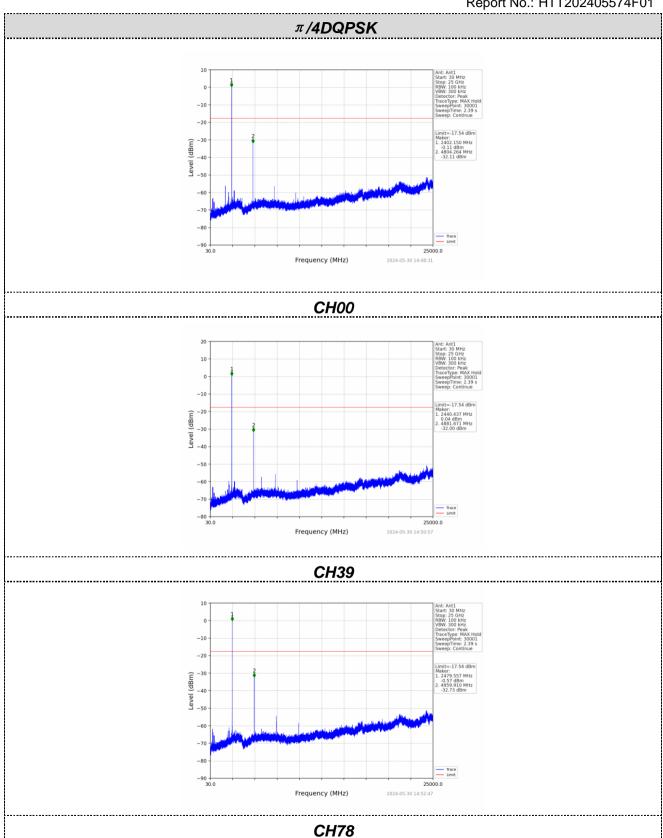
Freque	ncy(MHz)	:	24	02	Pola	arity:	Н	IORIZONTA	۱L
Frequency (MHz)	Emis Le ^v (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	60.68	PK	74	13.32	62.07	27.2	4.31	32.9	-1.39
2390.00	45.09	AV	54	8.91	46.48	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le ^v (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.72	PK	74	14.28	61.11	27.2	4.31	32.9	-1.39
2390.00	46.63	AV	54	7.37	48.02	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	80	P ola	arity:	н	IORIZONTA	۸L
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	56.88	PK	74	17.12	57.81	27.4	4.47	32.8	-0.93
2483.50	44.85	AV	54	9.15	45.78	27.4	4.47	32.8	-0.93
Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	55.24	PK	74	18.76	56.17	27.4	4.47	32.8	-0.93
2483.50	44.09	AV	54	9.91	45.02	27.4	4.47	32.8	-0.93

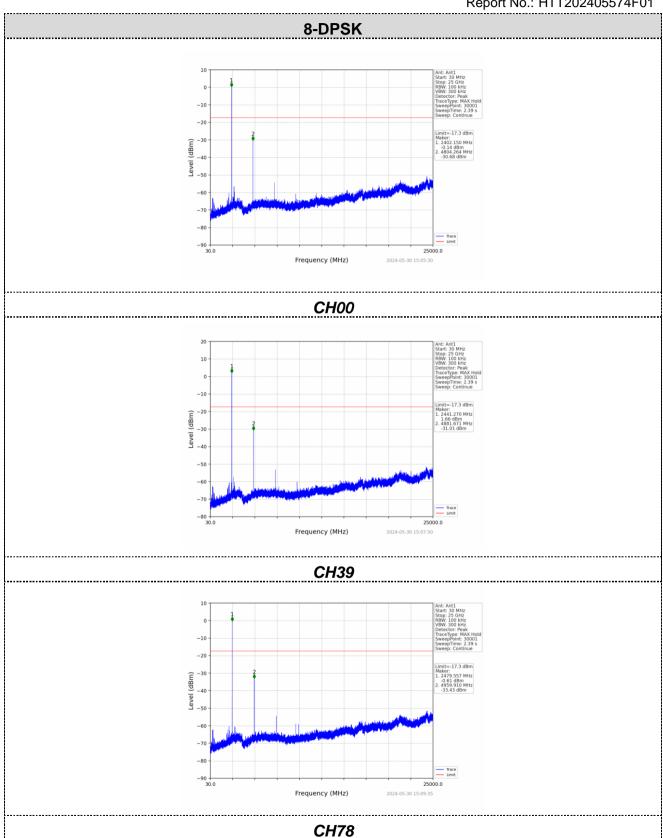


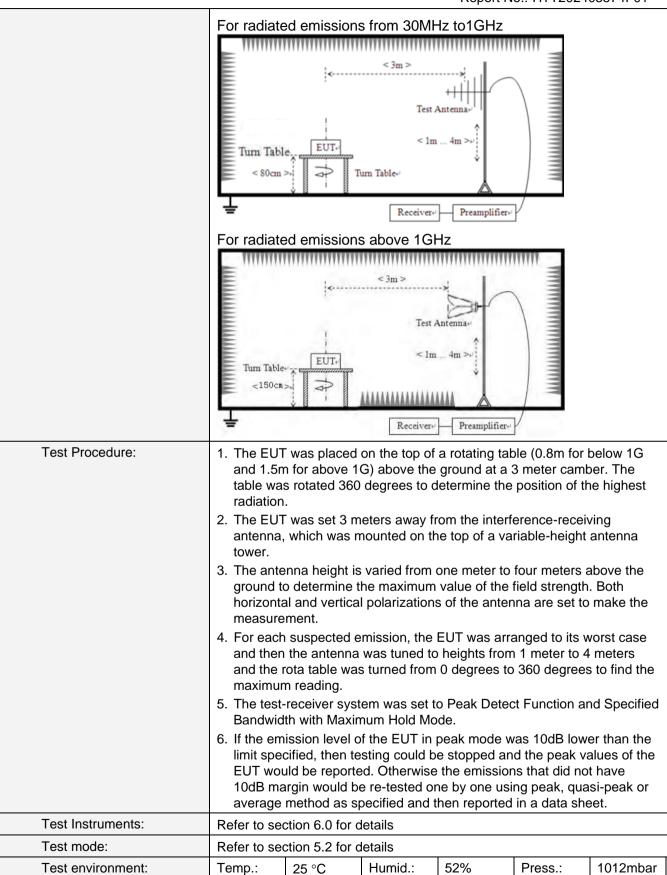
6.8. Spurious Emission

6.8.1. Conducted Emission Method


Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (d)									
Test Method:	ANSI C63.1	0:2013									
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.										
Test setup:	Spo	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane									
Test Instruments:	Refer to section 6.0 for details										
Test mode:	Refer to section 5.2 for details										
Test results:	Pass										
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar					







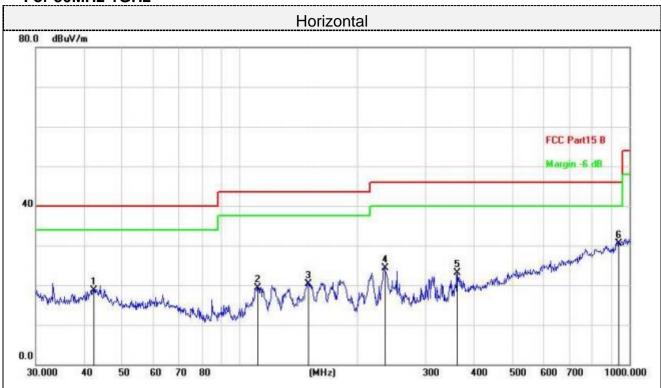
6.8.2. Radiated Emission Method

	mosion wethou									
Test Requirement:	FCC Part15 C Section	on 15	5.209							
Test Method:	ANSI C63.10:2013									
Test Frequency Range:	9kHz to 25GHz									
Test site:	Measurement Distar	nce: 3	3m							
Receiver setup:	Frequency		Detector RB\		N VBW		'	Value		
	9KHz-150KHz	Qι	ıasi-peak	200F	Ιz	600H	z	Quasi-peak		
	150KHz-30MHz	Qi	ıasi-peak	9KH	z	30KH	z	Quasi-peak		
	30MHz-1GHz	Qi	ıasi-peak	120K	Hz	300KF	lz	Quasi-peak		
	Above 1GHz		Peak	1M⊢	lz	3MHz	2	Peak		
	Above 1GHZ		Peak	1M⊢	lz	10Hz	_	Average		
Limit:	Frequency		Limit (u\	//m)	V	alue	Λ	leasurement Distance		
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP		300m		
	0.490MHz-1.705M	Hz	24000/F(I	KHz)	-	QP		30m		
	1.705MHz-30MH	Z	30		QP		30m			
	30MHz-88MHz		100		QP					
	88MHz-216MHz	<u>'</u>	150			QP				
	216MHz-960MH	-960MHz 200				QP		3m		
	960MHz-1GHz		500		-	QP		3111		
	Above 1GHz	500				Average				
	7.5576 151.12		5000		F	Peak				
Test setup:	For radiated emiss	ions	from 9kH	z to 30	MH	Z				
	Tum Table Im Tum Table Receiver									

Test voltage:	AC 120V, 60Hz
Test results:	Pass

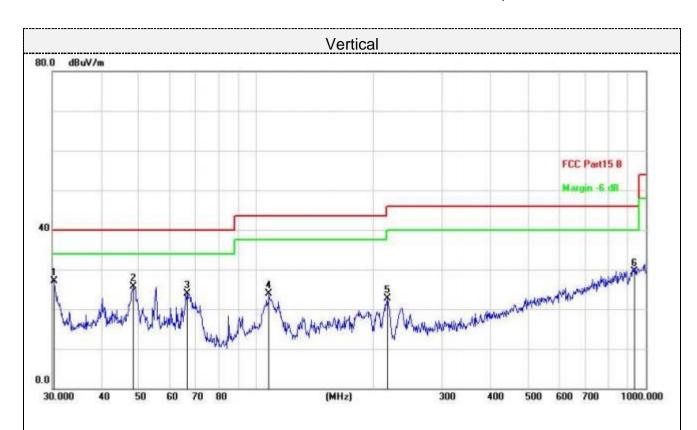
Measurement data:

Remarks:


- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


For 30MHz-1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m dB/m		dB	Detector
1		42.3021	28.87	-10.26	18.61	40.00	-21.39	QP
2		111.3468	33.32	-13.95	19.37	43.50	-24.13	QP
3		150.0107	30.81	-10.56	20.25	43.50	-23.25	QP
4		235.8164	36.39	-12.11	24.28	46.00	-21.72	QP
5		361.7139	32.74	-9.62	23.12	46.00	-22.88	QP
6	*	938.8324	27.66	2.76	30.42	46.00	-15.58	QP

Final Level = Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1	*	30.3173	39.34	-12.15	27.19	40.00	-12.81	QP
2		48.5016	36.72	-11.03	25.69	40.00	-14.31	QP
3		66.4989	36.69	-12.74	23.95	40.00	-16.05	QP
4		107.8877	38.04	-14.23	23.81	43.50	-19.69	QP
5		217.5443	36.02	-13.24	22.78	46.00	-23.22	QP
6		929.0082	27.07	2.39	29.46	46.00	-16.54	QP

Final Level =Receiver Read level + Correct Factor

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK,Pi/4 DQPSK and 8-DPSK were test at Low, Middle, and High channel; only the worst result of GFSK was reported as below:

Freque	Frequency(MHz):			2402		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Le [,] (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	60.13	PK	74	13.87	54.43	31	6.5	31.8	5.7	
4804.00	41.71	AV	54	12.29	36.01	31	6.5	31.8	5.7	
7206.00	54.34	PK	74	19.66	41.69	36	8.15	31.5	12.65	
7206.00	44.85	AV	54	9.15	32.20	36	8.15	31.5	12.65	

Freque	Frequency(MHz):			2402		Polarity:		VERTICAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	59.70	PK	74	14.30	54.00	31	6.5	31.8	5.7	
4804.00	42.58	AV	54	11.42	36.88	31	6.5	31.8	5.7	
7206.00	52.69	PK	74	21.31	40.04	36	8.15	31.5	12.65	
7206.00	43.11	AV	54	10.89	30.46	36	8.15	31.5	12.65	

Freque	Frequency(MHz):			2440		Polarity:		HORIZONTAL		
Frequency Emission (MHz) Level (dBuV/m		Limit	Margin	Raw Value	Antenna Factor	Cable Factor	Pre- amplifier	Correction Factor		
	(dBuV/m)		(dBuV/m)	(dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)	
4882.00	59.99	PK	74	14.01	53.83	31.2	6.61	31.65	6.16	
4882.00	44.74	AV	54	9.26	38.58	31.2	6.61	31.65	6.16	
7323.00	53.56	PK	74	20.44	40.61	36.2	8.23	31.48	12.95	
7323.00	44.29	AV	54	9.71	31.34	36.2	8.23	31.48	12.95	

Freque	Frequency(MHz):			2440		Polarity:		VERTICAL			
Frequency	Emission Level		Limit		Raw Value	Antenna Factor	Cable Factor	Pre- amplifier	Correction Factor		
(IVITZ)	(MHz) (dBuV/m) (dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)					
4882.00	61.62	PK	74	12.38	55.46	31.2	6.61	31.65	6.16		
4882.00	42.57	AV	54	11.43	36.41	31.2	6.61	31.65	6.16		
7323.00	54.04	PK	74	19.96	41.09	36.2	8.23	31.48	12.95		
7323.00	43.46	AV	54	10.54	30.51	36.2	8.23	31.48	12.95		

Freque	Frequency(MHz):			2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Le		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4960.00	61.85	PK	74	12.15	55.19	31.4	6.76	31.5	6.66	
4960.00	42.20	AV	54	11.80	35.54	31.4	6.76	31.5	6.66	
7440.00	53.31	PK	74	20.69	40.01	36.4	8.35	31.45	13.3	
7440.00	45.69	AV	54	8.31	32.39	36.4	8.35	31.45	13.3	

Frequency(MHz):			2480		Polarity:		VERTICAL		
Frequency	Emission		Limais	Morgin	Raw	Antenna	Cable	Pre-	Correction
Frequency	Le	vel	Limit	Margin	Value	Factor	Factor	amplifier	Factor
(MHz)	(dBuV/m)		(dBuV/m)	(dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4960.00	64.06	PK	74	9.94	57.40	31.4	6.76	31.5	6.66
4960.00	42.18	AV	54	11.82	35.52	31.4	6.76	31.5	6.66
7440.00	55.35	PK	74	18.65	42.05	36.4	8.35	31.45	13.3
7440.00	44.05	AV	54	9.95	30.75	36.4	8.35	31.45	13.3

Remark:

⁽¹⁾ Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

⁽²⁾ When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

6.9. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 2.70 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

-----End-----