

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202410037F01

TEST Report

Applicant: Shenzhen Qishun Innovation Technology Development Co.,

LTD

Address of Applicant: 1906, Block A, RongchuangZhihui Building, Minzhi Street,

Longhua District, Shenzhen

Manufacturer: Shenzhen Qishun Innovation Technology Development Co.,

LTD

Address of 1906, Block A, RongchuangZhihui Building, Minzhi Street,

Manufacturer: Longhua District, Shenzhen

Equipment Under Test (EUT)

Product Name: GAMING MECHANICAL KEYBOARD

Model No.: TF-Crystal 85

Series model: N/A

Trade Mark: TRANSFORMERS

FCC ID: 2BAQF-TF-CRYSTAL85

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Oct. 15, 2024

Date of Test: Oct. 15, 2024 ~ Oct. 21, 2024

Date of report issued: Oct. 21, 2024

Test Result: PASS *

^{*} In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Oct. 21, 2024	Original

Tested/ Prepared By	Heber He	Date:	Oct. 21, 2024
	Project Engineer	_	
Check By:	Bruce Zhu	Date:	Oct. 21, 2024
	Reviewer		
Approved By :	Kevin Yang HT	Date:	Oct. 21, 2024
	Authorized Signature		

2. Contents

	Page
1. VERSION	2
2. CONTENTS	3
3. TEST SUMMARY	4
4. GENERAL INFORMATION	
4.1. GENERAL DESCRIPTION OF EUT 4.2. TEST MODE 4.3. DESCRIPTION OF SUPPORT UNITS 4.4. DEVIATION FROM STANDARDS 4.5. ABNORMALITIES FROM STANDARD CONDITIONS 4.6. TEST FACILITY 4.7. TEST LOCATION 4.8. ADDITIONAL INSTRUCTIONS	
6. TEST RESULTS AND MEASUREMENT DATA	9
6.1. CONDUCTED EMISSIONS 6.2. CONDUCTED OUTPUT POWER 6.3. CHANNEL BANDWIDTH 6.4. POWER SPECTRAL DENSITY 6.5. BAND EDGES 6.5.1 Conducted Emission Method 6.5.2 Radiated Emission Method 6.6. SPURIOUS EMISSION 6.6.1 Conducted Emission Method 6.6.2 Radiated Emission Method 6.6.2 Radiated Emission Method 6.7. ANTENNA REQUIREMENT	
7. TEST SETUP PHOTO	30
8 FUT CONSTRUCTIONAL DETAILS	30

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	3.45 dB	(1)
Radiated Emission	1~6GHz	3.54 dB	(1)
Radiated Emission	6~40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.66 dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.

4. General Information

4.1. General Description of EUT

Till Golloral Booolipholi of E	~ .
Product Name:	GAMING MECHANICAL KEYBOARD
Model No.:	TF-Crystal 85
Series model:	N/A
Test sample(s) ID:	HTT202410037-1(Engineer sample) HTT202410037-2(Normal sample)
Operation frequency	2402~2480 MHz
Number of Channels	40
Modulation Type	GFSK
Channel separation	2MHz
Antenna Type:	PCB Antenna
Antenna Gain:	3.85 dBi
Power Supply:	DC 3.7V/4000mAh From Battery and DC 5V From External Circuit
Adapter Information (Auxiliary test provided by the lab):	Mode: GS-0500200 Input: AC100-240V, 50/60Hz, 0.3A max
	Output: DC 5V, 2A

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been accredited on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

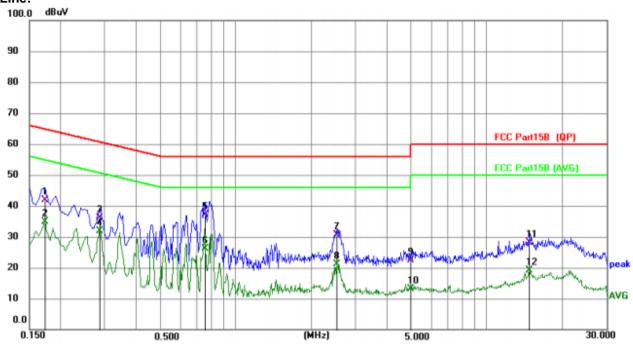
Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

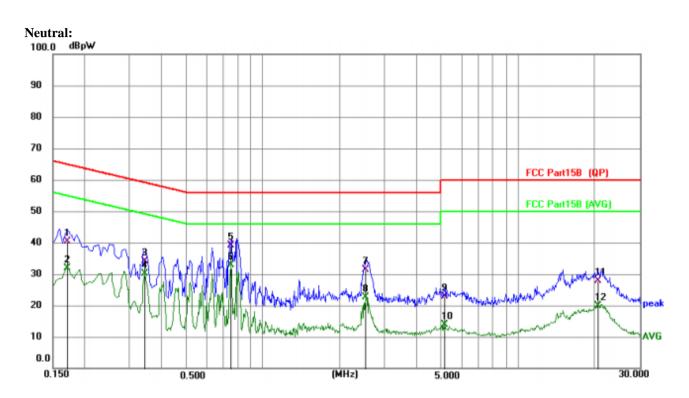
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2024	Aug. 09 2027
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2024	Aug. 09 2027
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	Apr. 26 2024	Apr. 25 2025
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	Apr. 26 2024	Apr. 25 2025
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	Apr. 26 2024	Apr. 25 2025
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	Apr. 26 2024	Apr. 25 2025
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	Apr. 26 2024	Apr. 25 2025
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	Apr. 26 2024	Apr. 25 2025
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May. 21 2024	May. 20 2025
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May. 20 2024	May. 19 2025
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Apr. 26 2024	Apr. 25 2025
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Apr. 26 2024	Apr. 25 2025
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	Apr. 26 2024	Apr. 25 2025
14	high-frequency Amplifier	HP	8449B	HTT-E014	Apr. 26 2024	Apr. 25 2025
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	Apr. 26 2024	Apr. 25 2025
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	Apr. 26 2024	Apr. 25 2025
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May. 23 2024	May. 22 2025
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May. 23 2024	May. 22 2025
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	Apr. 26 2024	Apr. 25 2025
20	Attenuator	Robinson	6810.17A	HTT-E007	Apr. 26 2024	Apr. 25 2025
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	Apr. 26 2024	Apr. 25 2025
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	Aug. 10 2024	Aug. 09 2027
23	DC power supply	Agilent	E3632A	HTT-E023	Apr. 26 2024	Apr. 25 2025
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	Apr. 26 2024	Apr. 25 2025
25	Analog signal generator	Agilent	N5181A	HTT-E025	Apr. 26 2024	Apr. 25 2025
26	Vector signal generator	Agilent	N5182A	HTT-E026	Apr. 26 2024	Apr. 25 2025
27	Power sensor	Keysight	U2021XA	HTT-E027	Apr. 26 2024	Apr. 25 2025
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	Apr. 28 2024	Apr. 27 2025
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

6. Test results and Measurement Data

6.1. Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207	•		
Test Method:	ANSI C63.10:2013			
Test Frequency Range:	150KHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto		
Limit:	Frequency range (MHz)	Limit	(dBuV)	
		Quasi-peak	Aver	
	0.15-0.5	66 to 56*	56 to	
	0.5-5	56	40	
	5-30 * Decreases with the logarithm	60	50	J
Test setup:				
Test procedure:	Reference Plane LISN			
Test Instruments:	Refer to section 6.0 for details	3		
Test mode:	Refer to section 5.2 for details	3		
Test environment:	Temp.: 25 °C Hun	nid.: 52%	Press.:	1012mbar
Test voltage:	AC 120V, 60Hz			
Test results:	PASS			
	•			

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.


Measurement data:

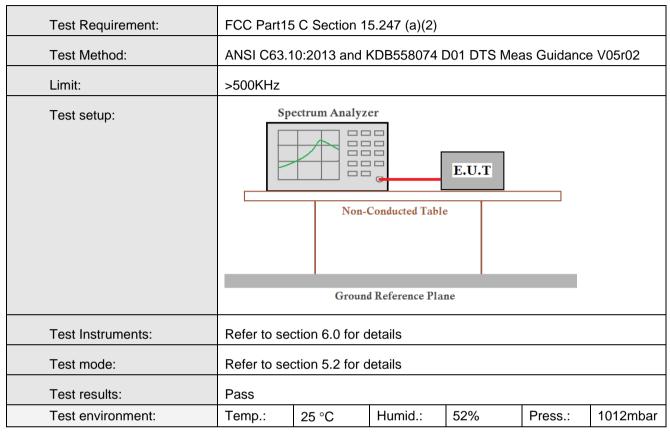
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1	0.1723	31.76	10.18	41.94	64.85	-22.91	QP
2	0.1723	24.72	10.18	34.90	54.85	-19.95	AVG
3	0.2850	25.91	10.23	36.14	60.67	-24.53	QP
4 *	0.2850	21.62	10.23	31.85	50.67	-18.82	AVG
5	0.7530	26.82	10.35	37.17	56.00	-18.83	QP
6	0.7530	15.70	10.35	26.05	46.00	-19.95	AVG
7	2.5260	20.05	10.46	30.51	56.00	-25.49	QP
8	2.5260	10.64	10.46	21.10	46.00	-24.90	AVG
9	4.9785	11.66	10.61	22.27	56.00	-33.73	QP
10	4.9785	2.62	10.61	13.23	46.00	-32.77	AVG
11	14.8020	16.99	11.05	28.04	60.00	-31.96	QP
12	14.8020	7.99	11.05	19.04	50.00	-30.96	AVG

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBpW	dBpW	dB	Detector
1	0.1703	30.27	10.18	40.45	64.95	-24.50	QP
2	0.1703	21.71	10.18	31.89	54.95	-23.06	AVG
3	0.3435	23.88	10.24	34.12	59.12	-25.00	QP
4	0.3435	20.01	10.24	30.25	49.12	-18.87	AVG
5	0.7485	28.64	10.38	39.02	56.00	-16.98	QP
6 *	0.7485	22.41	10.38	32.79	46.00	-13.21	AVG
7	2.5304	21.07	10.43	31.50	56.00	-24.50	QP
8	2.5304	12.25	10.43	22.68	46.00	-23.32	AVG
9	5.1495	12.37	10.58	22.95	60.00	-37.05	QP
10	5.1495	3.22	10.58	13.80	50.00	-36.20	AVG
11	20.5034	16.60	11.31	27.91	60.00	-32.09	QP
12	20.5034	8.69	11.31	20.00	50.00	-30.00	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

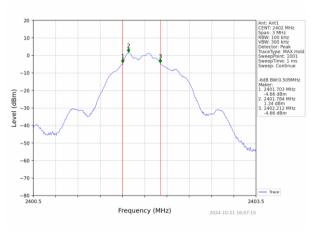
6.2. Conducted Output Power


Test Requirement: Test Method:		C Section 1		DO1 DTS Mor	as Guidano	. V/05r02			
rest Method.	ANSI Cos. I	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02							
Limit:	30dBm								
Test setup:	Power Mi	Non-Conducted Tabl Ground Reference Pla							
Test Instruments:	Refer to sec	ction 6.0 for d	etails						
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

Measurement Data

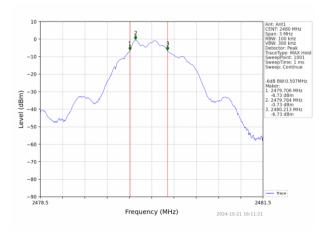
Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	1.33		
Middle	0.67	30.00	Pass
Highest	-0.72		

6.3. Channel Bandwidth



Measurement Data


Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.509		
Middle	0.504	>500	Pass
Highest	0.507		

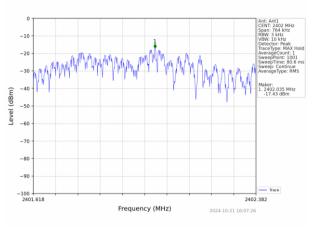

Test plot as follows:

Lowest channel

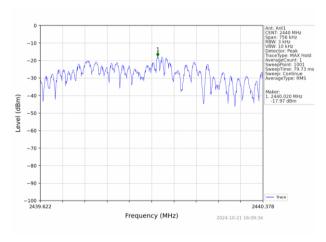
Middle channel

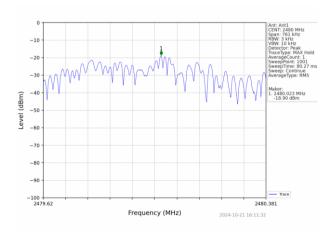
Highest channel

6.4. Power Spectral Density


Test Requirement:	FCC Part15 C Section 15.247 (e)								
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02								
Limit:	8dBm/3kHz								
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar								

Measurement Data

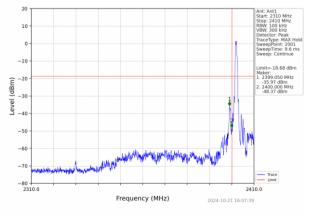

Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result
Lowest	-17.43		
Middle	-17.97	8.00	Pass
Highest	-18.90		

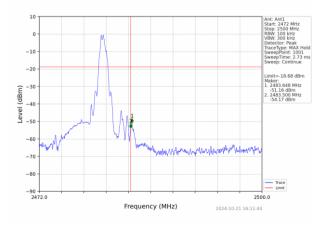

Test plot as follows:

Lowest channel

Middle channel

Highest channel




6.5. Band edges

6.5.1 Conducted Emission Method

	0.5.1 Conducted Linission Method									
Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (d)								
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02									
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.									
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane									
Test Instruments:	Refer to see	ction 6.0 for d	letails							
Test mode:	Refer to section 5.2 for details									
Test results:	Pass									
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar				

Test plot as follows:

Lowest channel

Highest channel

6.5.2 Radiated Emission Method

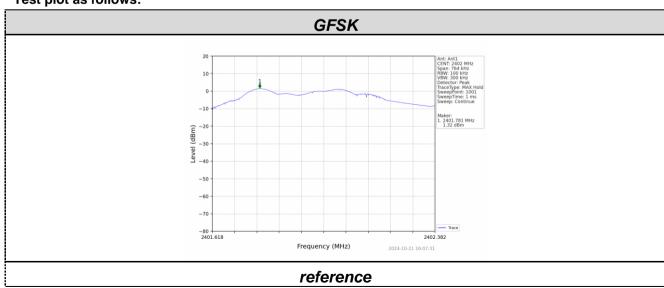
Test Requirement:	FCC Part15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10:20	ANSI C63.10:2013							
Test Frequency Range:	All of the restrict 2500MHz) data		tested, only	the worst b	pand's (2310MHz to				
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Value				
		Peak	1MHz	3MHz	Peak				
	Above 1GHz	RMS	1MHz	3MHz	Average				
Limit:	Freque		Limit (dBuV/		Value				
		•	54.0		Average				
	Above 1	GHZ	74.0		Peak				
Test setup:	Tum Table	< 3m	Test Antenna < 1m 4m >	?					
To d Door of Lor					4.5				
Test Procedure:	the ground a determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measuremen. 4. For each sus and then the and the rotathe maximum. 5. The test-recesspecified Ba. 6. If the emission the limit specified Ba. 6. If the rotathe limit specified Ba. 7. The radiation And found the the set of the EUT we have 10 the set.	t a 3 meter can be position of the set 3 meters ch was mounted theight is varied termine the mad vertical polar at. I pected emission antenna was to table was turned reading. Ever system was not level of the Edified, then testing and be reported to the seriould to the seri	nber. The tale highest race away from the don the top of from one naximum value izations of the top, the EUT uned to heigh as set to Peal aximum Hole EUT in peaking could be ed. Otherwise re-tested or specified are sare performaning which is	ole was rotadiation. The interference of a variable enter to four the field the antennal was arranged this from 1 rigrees to 360 at Detect Full Mode, mode was atopped and the emissione by one und then reported in X, Y, t is worse of the interference of the enter the emissione of the emissione o	r meters above the distrength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find function and 10dB lower than and the peak values sions that did not using peak, quasi-				

Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to see	Refer to section 5.2 for details						
Test results:	Pass							
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar							

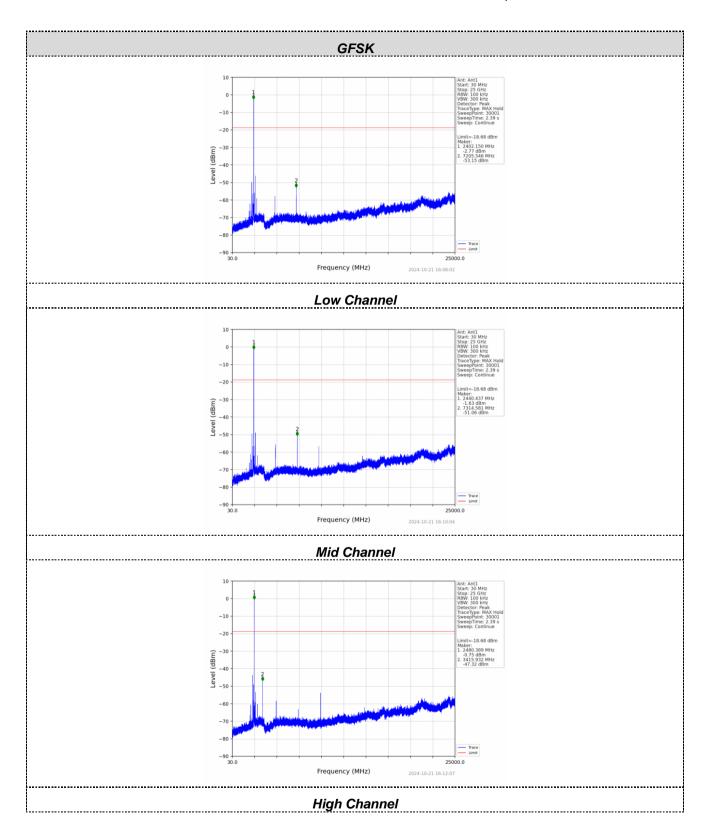
Measurement Data

Operation Mode: GFSK

Freque	ncy(MHz)	:	24	02	Pola	arity:	Н	ORIZONTA	\L
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.90	PK	74	14.10	61.29	27.2	4.31	32.9	-1.39
2390.00	45.88	AV	54	8.12	47.27	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	58.36	PK	74	15.64	59.75	27.2	4.31	32.9	-1.39
2390.00	46.80	AV	54	7.20	48.19	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	80	P olarity:		н	ORIZONTA	۱L
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	57.10	PK	74	16.90	58.03	27.4	4.47	32.8	-0.93
2483.50	45.79	AV	54	8.21	46.72	27.4	4.47	32.8	-0.93
Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	55.13	PK	74	18.87	56.06	27.4	4.47	32.8	-0.93
2483.50	45.14	AV	54	8.86	46.07	27.4	4.47	32.8	-0.93

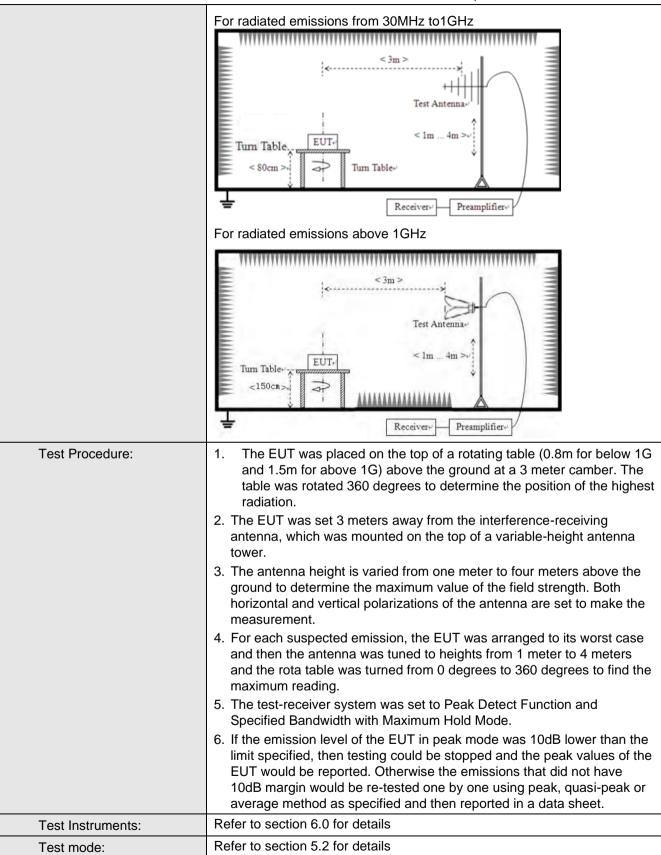


6.6. Spurious Emission


6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (d)								
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02									
Limit:	spread spe- power that below that i highest leve	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:	Sp	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to see	ction 6.0 for c	letails							
Test mode:	Refer to section 5.2 for details									
Test results:	Pass									
Test environment:	Temp.:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar								

Test plot as follows:



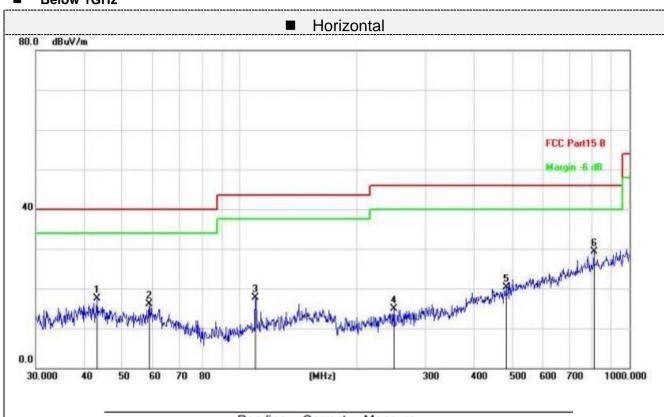
6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency Detector F		RBW		VBW	/ Value			
	9KHz-150KHz	Qi	ıasi-peak	2001	Hz	600Hz	z Quasi-peak		
	150KHz-30MHz	Q	ıasi-peak	9KF	Ηz	30KH	z Quasi-peak		
	30MHz-1GHz	Q	ıasi-peak	120K	Ήz	300KH	Iz Quasi-peak		
	Above 1GHz		Peak	1MF	Ηz	3MHz	z Peak		
	Above 1G112		Peak	1MF	Ηz	10Hz	z Average		
Limit:	Frequency		Limit (u\	//m)	>	'alue	Measurement Distance		
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP	300m		
	0.490MHz-1.705M	Hz	24000/F(I	KHz)		QP	30m		
	1.705MHz-30MH	Z	30			QP	30m		
	30MHz-88MHz		100			QP			
	88MHz-216MHz		150	150		QP			
	216MHz-960MH		200			QP	3m		
	960MHz-1GHz		500					QP	.
	Above 1GHz		500	Ave		Average		_	
			5000		F	Peak			
Test setup:	For radiated emission	ns fr	< 3m >	*******					

Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 60Hz					
Test results:	Pass					

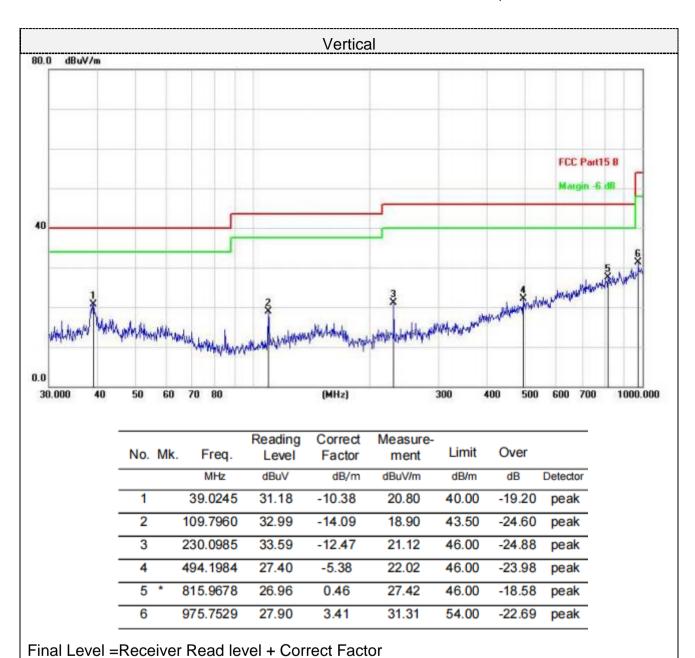
Measurement data:

Remark:


Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.



■ Below 1GHz

No.	Mk. Freq.		Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		43.0505	27.85	-10.25	17.60	40.00	-22.40	peak
2		58.6126	27.77	-11.59	16.18	40.00	-23.82	peak
3		109.7960	31.79	-14.09	17.70	43.50	-25.80	peak
4		248.5519	26.37	-11.54	14.83	46.00	-31.17	peak
5		482.2156	26.36	-6.02	20.34	46.00	-25.66	peak
6	*	810.2654	28.93	0.37	29.30	46.00	-16.70	peak

■ Above 1-25GHz

Frequency(MHz):			2402		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	58.39	PK	74	15.61	52.69	31	6.5	31.8	5.7
4804.00	42.14	AV	54	11.86	36.44	31	6.5	31.8	5.7
7206.00	54.69	PK	74	19.31	42.04	36	8.15	31.5	12.65
7206.00	44.75	AV	54	9.25	32.10	36	8.15	31.5	12.65

Frequency(MHz):			2402		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	59.41	PK	74	14.59	53.71	31	6.5	31.8	5.7
4804.00	43.08	AV	54	10.92	37.38	31	6.5	31.8	5.7
7206.00	52.22	PK	74	21.78	39.57	36	8.15	31.5	12.65
7206.00	43.36	AV	54	10.64	30.71	36	8.15	31.5	12.65

Frequency(MHz):			2440		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	59.45	PK	74	14.55	53.29	31.2	6.61	31.65	6.16
4880.00	43.37	AV	54	10.63	37.21	31.2	6.61	31.65	6.16
7320.00	53.62	PK	74	20.38	40.67	36.2	8.23	31.48	12.95
7320.00	44.20	AV	54	9.80	31.25	36.2	8.23	31.48	12.95

Frequency(MHz):			2440		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level		Limit Margin (dBuV/m) (dB)	Raw Value	Antenna Factor	Cable Factor	Pre- amplifier	Correction Factor	
(1711-12)	(dBu	V/m)	(ubu v/III)	(ub)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4880.00	61.15	PK	74	12.85	54.99	31.2	6.61	31.65	6.16
4880.00	42.32	AV	54	11.68	36.16	31.2	6.61	31.65	6.16
7320.00	52.95	PK	74	21.05	40.00	36.2	8.23	31.48	12.95
7320.00	44.59	AV	54	9.41	31.64	36.2	8.23	31.48	12.95

Frequency(MHz):			2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	62.59	PK	74	11.41	55.93	31.4	6.76	31.5	6.66
4960.00	42.87	AV	54	11.13	36.21	31.4	6.76	31.5	6.66
7440.00	54.62	PK	74	19.38	41.32	36.4	8.35	31.45	13.3
7440.00	46.07	AV	54	7.93	32.77	36.4	8.35	31.45	13.3

Frequency(MHz):			2480		Polarity:		VERTICAL		
F	Emission		Limit	Morgin	Raw	Antenna	Cable	Pre-	Correction
Frequency	Level		Margin	Value	Factor	Factor	amplifier	Factor	
(MHz)	(dBuV/m)		(dBuV/m)	(dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4960.00	63.01	PK	74	10.99	56.35	31.4	6.76	31.5	6.66
4960.00	43.87	AV	54	10.13	37.21	31.4	6.76	31.5	6.66
7440.00	53.95	PK	74	20.05	40.65	36.4	8.35	31.45	13.3
7440.00	44.55	AV	54	9.45	31.25	36.4	8.35	31.45	13.3

Remark:

⁽¹⁾ Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

⁽²⁾ When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

6.7. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 3.85 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

