

TEST REPORT

Report No.:	BCTC2402322267-1E
Applicant:	Ecoer, Inc
Product Name:	Ecolink HVAC Gateway(U)
Test Model:	ELG02
Tested Date:	2024-02-27 to 2024-03-18
Issued Date:	2024-03-18
She	enzhen BCTC Testing Co., Ltd.
No.: BCTC/RF-EMC-005	Page: 1 of 43

FCC ID: 2BAPJ-ELG02

Product Name:	Ecolink HVAC Gateway(U)		
Trademark:	N/A		
Model/Type Reference:	ELG02		
Prepared For:	Ecoer, Inc		
Address:	43671 Trade Center Place, Suite 100 Dulles, Virginia, 20166, United States		
Manufacturer:	Yiso (Guangdong) Smart Technology Co.,Ltd		
Address:	One of 501, 5th Floor, No. 18, Xinfa Road, Rongli Community, Ronggui Street, Shunde District, Foshan City, Guangdong Province		
Prepared By:	Shenzhen BCTC Testing Co., Ltd.		
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China.		
Sample Received Date:	2024-02-27		
Sample Tested Date:	2024-02-27 to 2024-03-18		
Issue Date:	2024-03-18		
Report No.:	BCTC2402322267-1E		
Test Standards:	FCC Part15.247 ANSI C63.10-2013		
Test Results:	PASS		
Remark:	This is LoRa radio test report.		

Tested by: Shanshan . Zhang

Shanshan. Zhang / Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

No.: BCTC/RF-EMC-005

Page: 2 of 43

Table Of Content

Test	Report Declaration	Page
1.	Version	5
2.	Test Summary	6
3.	Measurement Uncertainty	7
4.	Product Information And Test Setup	8
4.1	Product Information	
4.2	Test Setup Configuration	9
4.3	Support Equipment	
4.4	Channel List	
4.5	Test Mode	
4.6	Table of parameters of text software setting	
5.	Test Facility And Test Instrument Used	
5.1	Test Facility	
5.2	Test Instrument Used	
6.	Conducted Emissions	
6.1	Block Diagram Of Test Setup	
6.2		
6.3	Limit	
	Test procedure	
6.4	EUT Operating Conditions	
6.5	Test Result	
7.	Radiated Emissions	
7.1	Block Diagram Of Test Setup	
7.2	Limit	
7.3	Test procedure	
7.4	EUT operating Conditions	19
7.5	Test Result	
8.	Radiated Band Emission Measurement And Restricted Bands Of Operat	
8.1	Block Diagram Of Test Setup	
8.2	Limit	
8.3	Test Procedure	
8.4	EUT Operating Conditions	24
8.5	Test Result	25
9.	Power Spectral Density Test	29
9.1	Block Diagram Of Test Setup	29
9.2	Limit Test procedure EUT Operating Conditions Test Result	29
9.3	Test procedure	29
9.4	EUT Operating Conditions	
9.5	Test Result	30
10.	Bandwidth Test	32
10.1	Block Diagram Of Test Setup	
10.2	Bandwidth Test. Block Diagram Of Test Setup. Limit	32
10.2	Test procedure	
10.3	Limit Test procedure EUT operating Conditions	ວະ
10 5		
10.5	Peak Output Power Test	
11.1	Block Diagram Of Test Sotup	ວວ ວຬ
11.1	Block Diagram Of Test Setup	

Page: 3 of 43

Edition: B.1

,TC 3C

PR

еро

11.2 Limit	
11.3 Test Procedure	
11.4 EUT Operating Conditions	35
11.5 Test Result	
12. 100 kHz Bandwidth Of Frequency Band Edge	
12.1 Block Diagram Of Test Setup	
12.2 Limit	
12.3 Test procedure	
12.4 EUT operating Conditions	
12.5 Test Result	37
13. Antenna Requirement	
13.1 Limit	
13.2 Test Result	
14. EUT Photographs	40
15. EUT Test Setup Photographs	

(Note: N/A Means Not Applicable)

No.: BCTC/RF-EMC-005

Page: 4 of 43

Edition: B.1

t Sea

1. Version

Report No.	Issue Date	Description	Approved
BCTC2402322267-1E	2024-03-18	Original	Valid

ΞD

Page: 5 of 43

2. Test Summary

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No.	Results
1	Conducted Emission	15.207	PASS
2	6dB Bandwidth	15.247 (a)(2)	PASS
3	Peak Output Power	15.247 (b)	PASS
4	Radiated Spurious Emission	15.247 (d), 15.205	PASS
5	Power Spectral Density	15.247 (e)	PASS
6	Restricted Band of Operation	15.205	PASS
7	Band Edge (Out of Band Emissions)	15.247(d)	PASS
8	Antenna Requirement	15.203	PASS

3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
2	3m chamber Radiated spurious emission(9KHz-30MHz)	U=3.7dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
5	Conducted Emission (150kHz-30MHz)	U=3.20dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	U=5.3%
10	Temperature uncertainty	U=0.59°C

No.: BCTC/RF-EMC-005

4. Product Information And Test Setup

4.1 Product Information

Model/Type Reference:	ELG02	
Model Differences:	N/A	
Hardware Version:	N/A	
Software Version:	N/A	
Operation Frequency:	908.9-920.9MHz	
Type of Modulation:	LoRa	
Number of Channel	21CH	
Antenna installation:	Spring antenna	
Antenna Gain:	1 dBi	
Ratings:	DC 5V from adapter	
Adapter:	MODEL: YZDZ18-LD-01z INPUT: 100-240V~50/60Hz 0.3A OUTPUT: 5.0V 2.1A tolal	
Remark:	The antenna gain of the product comes from the antenna report provided by the customer, and the test data is affected by the customer information.	1

Page: 8 of 43

Edition: B.1

E

4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission and Radiated Spurious Emission:

E-1	C-1	E-2	AC
EUT		Adapter	

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	Ecolink HVAC Gateway(U)	N/A	ELG02	N/A	EUT
E-2	Router	HUAWEI	WS318	N/A	Auxiliary

ltem	Shielded Type	Ferrite Core	Length	Note
C-1	N/A	N/A	1.0M	DC cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page: 9 of 43

Edition: B.

ТC

PR

ероі

4.4 Channel List

	Channel List				
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	908.9	8	913.1	15	917.3
2	909.5	9	913.7	16	917.7
3	910.1	10	914.3	17	918.5
4	910.7	11	914.9	18	919.1
5	911.3	12	915.5	19	919.7
6	911.9	13	916.1	20	920.3
7	912.5	14	916.7	21	920.9

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

For All Mode	Description	Modulation Type	
Mode 1	CH01		
Mode 2	CH11	LoRa	
Mode 3	CH21		
Mode 4	Link mode (Conducted Emission & Radiated emission)		

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

(2) Fully-charged battery is used during the test

4.6 Table of parameters of text software setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version	FCC_Toolset				
Frequency	908.9 MHz	914.9 MHz	920.9 MHz		
Parameters	DEF DEF		DEF		

No.: BCTC/RF-EMC-005

5. Test Facility And Test Instrument Used

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

FCC Test Firm Registration Number: 712850

A2LA certificate registration number is: CN1212

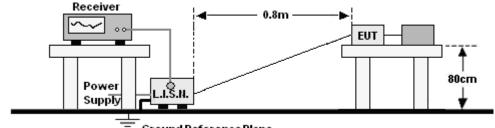
ISED Registered No.: 23583

ISED CAB identifier: CN0017

5.2 Test Instrument Used

Conducted Emissions Test								
Equipment	Equipment Manufacturer Model# Serial# Last Cal. Next							
Receiver	R&S	ESR3	102075	May 15, 2023	May 14, 2024			
LISN	R&S	ENV216	101375	May 15, 2023	May 14, 2024			
Software	Frad	EZ-EMC	EMC-CON 3A1	/	/			
Pulse limiter	Schwarzbeck	VTSD9561-F	01323	Sept. 22, 2023	Sept. 21, 2024			

RF Conducted Test							
Equipment Manufacturer		Model#	Model# Serial#		Next Cal.		
Power Metter	Keysight	E4419	I.	May 15, 2023	May 14, 2024		
Power Sensor (AV)	Keysight	E9300A		May 15, 2023	May 14, 2024		
Signal Analyzer20kH z-26.5GHz	Keysight	N9020A	MY49100060	May 15, 2023	May 14, 2024		
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 15, 2023	May 14, 2024		
Radio frequency control box	MAIWEI	MW100-RFC B		\ \			
Software	MAIWEI	MTS 8310					


Radiated Emissions Test (966 Chamber01)							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
966 chamber	ChengYu	966 Room	966	May 15, 2023	May 14, 2026		
Receiver	R&S	ESR3	102075	May 15, 2023	May 14, 2024		
Receiver	R&S	ESRP	101154	May 15, 2023	May 14, 2024		
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 15, 2023	May 14, 2024		
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	May 29, 2023	May 28, 2024		
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	May 31, 2023	May 30, 2024		
Amplifier	SKET	LAPA_01G18 G-45dB	SK2021040901	May 15, 2023	May 14, 2024		
Horn Antenna	Schwarzbeck	BBHA9120D	1541	May 31, 2023	May 30, 2024		
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 15, 2023	May 14, 2024		
Horn Antenn(18GH z-40GHz)	Schwarzbeck	BBHA9170	00822	May 31, 2023	May 30, 2024		
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 15, 2023	May 14, 2024		
Software	Frad	EZ-EMC	FA-03A2 RE	\	Λ_{j}		

2 60.,175

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

Ground Reference Plane

6.2 Limit

Frequency (MHz)	Limit	(dBuV)
	Quas-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Notes:

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

6.3 Test procedure

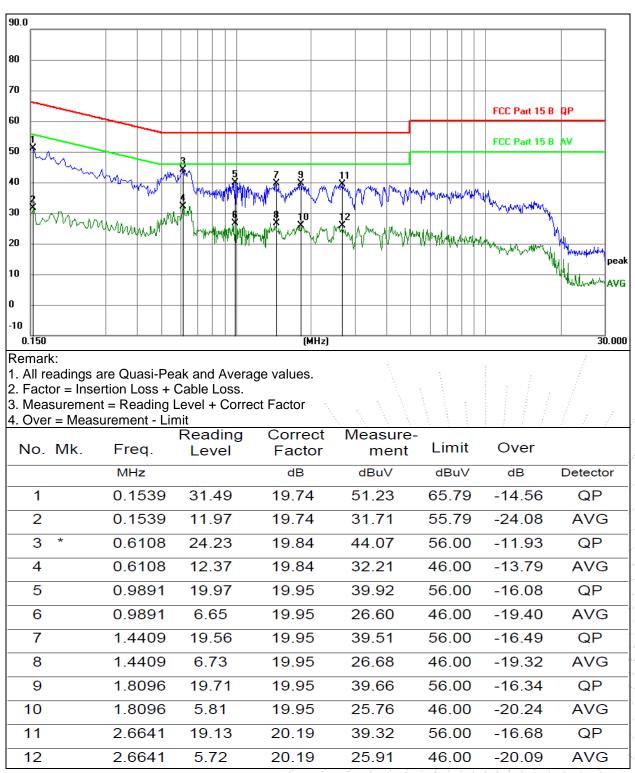
Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

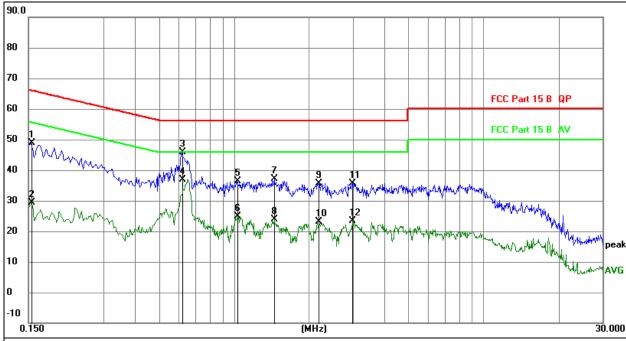
6.4 EUT Operating Conditions


The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

No.: BCTC/RF-EMC-005

6.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage:	AC 120V/60Hz
Test Mode:	Mode 4	Polarization:	L



No.: BCTC/RF-EMC-005

Page: 14 of 43

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage:	AC120V/60Hz
Test Mode:	Mode 4	Polarization :	Ν

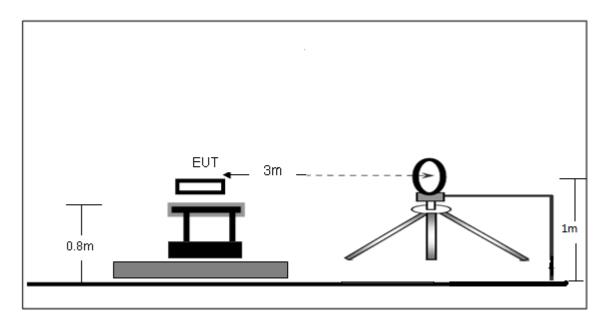
Remark:

All readings are Quasi-Peak and Average values.
Factor = Insertion Loss + Cable Loss.
Measurement = Reading Level + Correct Factor

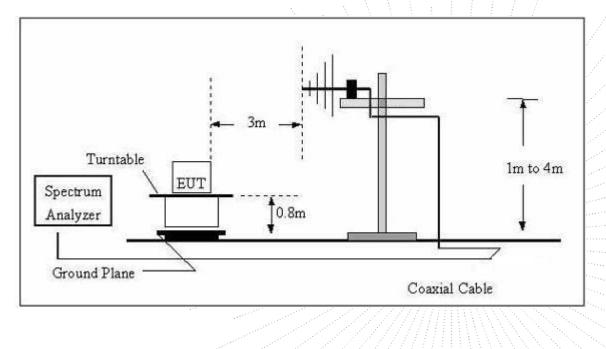
4. Over	= measu	rement - Lir	nit					1
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.1545	29.17	19.74	48.91	65.75	-16.84	QP
2		0.1545	9.76	19.74	29.50	55.75	-26.25	AVG
3		0.6180	26.02	19.84	45.86	56.00	-10.14	QP
4	*	0.6180	16.98	19.84	36.82	46.00	-9.18	AVG
5		1.0275	16.47	19.95	36.42	56.00	-19.58	QP
6		1.0275	4.91	19.95	24.86	46.00	-21.14	AVG
7		1.4550	17.08	19.95	37.03	56.00	-18.97	QP
8		1.4550	3.81	19.95	23.76	46.00	-22.24	AVG
9		2.1795	15.65	20.01	35.66	56.00	-20.34	QP
10		2.1795	3.00	20.01	23.01	46.00	-22.99	AVG
11		2.9805	15.29	20.30	35.59	56.00	-20.41	QP
12		2.9805	2.99	20.30	23.29	46.00	-22.71	AVG

JC JC JC epoi

No.: BCTC/RF-EMC-005

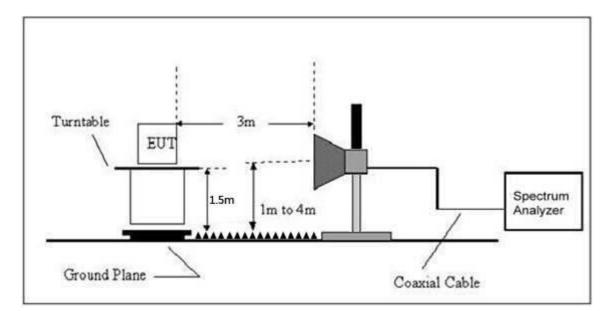

Page: 15 of 43

Edition: B



7. Radiated Emissions

- 7.1 Block Diagram Of Test Setup
 - (A) Radiated Emission Test-Up Frequency Below 30MHz


TE.

T(

t sea

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance		
(MHz)	uV/m	(m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

Limits Of Radiated Emission Measurement (Above 1000MHz)

Frequency (MHz)	Limit (dBuV/m)	(at 3M)
	Peak	Average
Above 1000	74	54

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Frequency Range Of Radiated Measurement

ΞD

(a) For an intentional radiator the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:

(1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

(3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(4) If the intentional radiator operates at or above 95 GHz: To the third harmonic of the highest fundamental frequency or to 750 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(5) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a) (1)through (4) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this section, whichever is the higher frequency range of investigation.

7.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
9kHz~150kHz	RBW 200Hz for QP
150kHz~30MHz	RBW 9kHz for QP
30MHz~1000MHz	RBW 120kHz for QP

Spectrum Parameter	Setting
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak, RBW 1 MHz / VBW 10Hz for Average

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

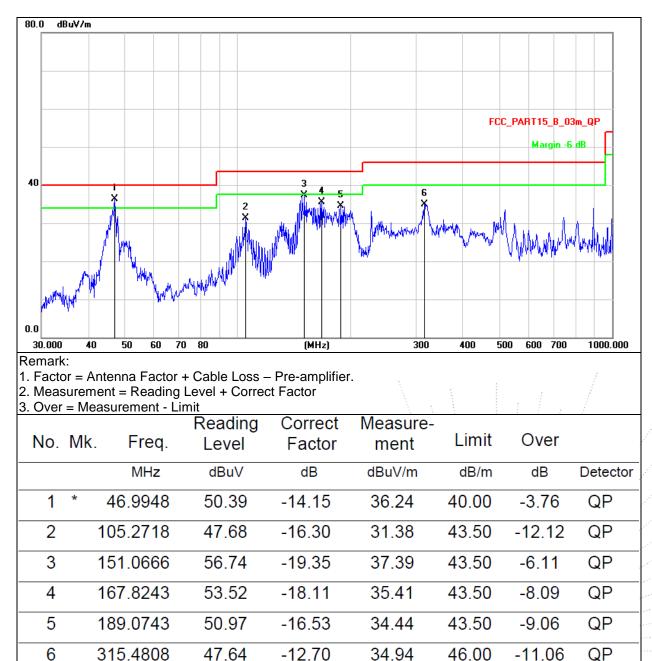
7.5 Test Result

Below 30MHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	- Test Voltage :	AC120V/60Hz
Test Mode:	Mode 4	Test vollage.	AC1200/00H2

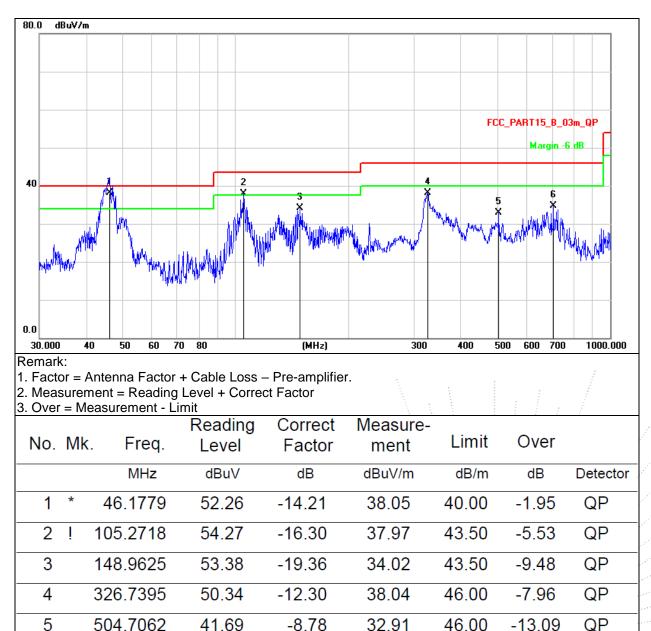
Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
		· · · · · · · · · · · · · · · · · · ·		PASS
				PASS

Note:


The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.

Between 30MHz - 1GHz


Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage:	AC120V/60Hz
Test Mode:	Mode 4	Polarization:	Horizontal

Temperature:	26 ී	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage:	AC120V/60Hz
Test Mode:	Mode 4	Polarization:	Vertical

,TC 3C PR

Por

706.6999

40.28

6

-5.61

34.67

-13.09

-11.33

46.00

QP

QP

Between 1GHz – 25GHz

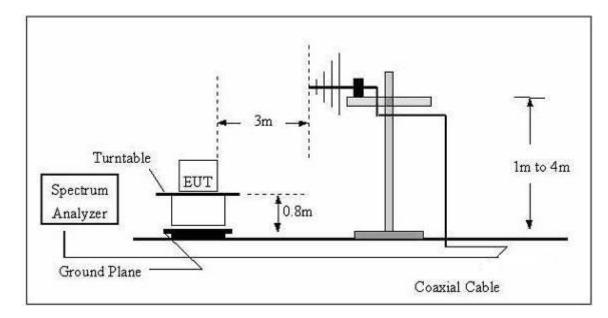
Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			Low chan	nel			
V	1817.80	70.38	-26.65	43.73	74.00	-30.27	PK
V	1817.80	61.59	-26.65	34.94	54.00	-19.06	AV
V	2726.70	63.20	-24.42	38.78	74.00	-35.22	PK
V	2726.70	53.78	-24.42	29.36	54.00	-24.64	AV
Н	1817.80	65.73	-26.65	39.08	74.00	-34.92	PK
Н	1817.80	55.57	-26.65	28.92	54.00	-25.08	AV
Н	2726.70	61.94	-24.42	37.52	74.00	-36.48	PK
Н	2726.70	53.36	-24.42	28.94	54.00	-25.06	AV
			Middle char	nnel			
V	1829.80	67.03	-26.97	40.06	74.00	-33.94	PK
V	1829.80	60.83	-26.97	33.86	54.00	-20.14	AV
V	2744.70	58.26	-23.37	34.89	74.00	-39.11	PK
V	2744.70	48.50	-23.37	25.13	54.00	-28.87	AV
Н	1829.80	63.01	-26.97	36.04	74.00	-37.96	PK
Н	1829.80	52.80	-26.97	25.83	54.00	-28.17	AV
Н	2744.70	56.19	-23.37	32.82	74.00	-41.18	PK
Н	2744.70	47.67	-23.37	24.30	54.00	-29.70	AV
			High chan	nel			
V	1841.80	69.29	-26.95	42.34	74.00	-31.66	PK
V	1841.80	58.37	-26.95	31,42	54.00	-22.58	AV
V	2762.70	61.94	-24.31	37.63	74.00	-36.37	PK
V	2762.70	52.76	-24.31	28.45	54.00	-25.55	AV
Н	1841.80	67.32	-26.95	40.37	74.00	-33.63	PK
Н	1841.80	56.56	-26.95	29.61	54.00	-24.39	AV
Н	2762.70	59.53	-24.31	35.22	74.00	-38.78	PK
Н	2762.70	51.41	-24.31	27.10	54.00	-26.90	AV

Remark:

1. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Cable Loss – Pre-amplifier. Over= Measurement - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


TE,

T(

OV

8. Radiated Band Emission Measurement And Restricted Bands Of Operation

8.1 Block Diagram Of Test Setup

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

No.: BCTC/RF-EMC-005

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance		
(MHz)	uV/m	(m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test Procedure

Receiver Parameter	Setting
Attenuation	Auto
9kHz~150kHz	RBW 200Hz for QP
150kHz~30MHz	RBW 9kHz for QP
30MHz~1000MHz	RBW 120kHz for QP

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

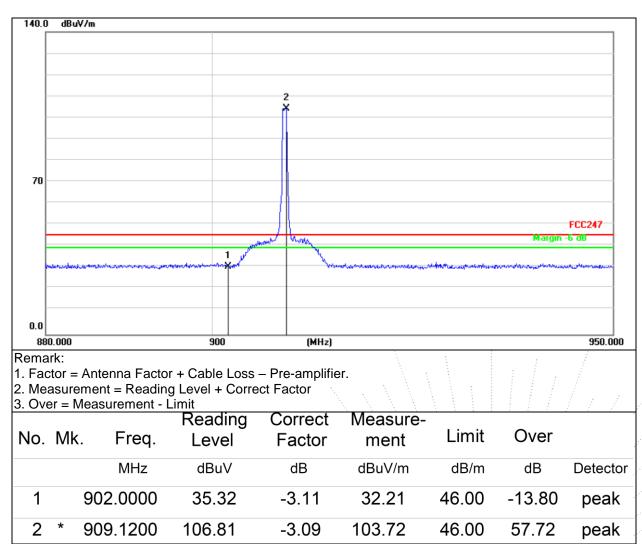
c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

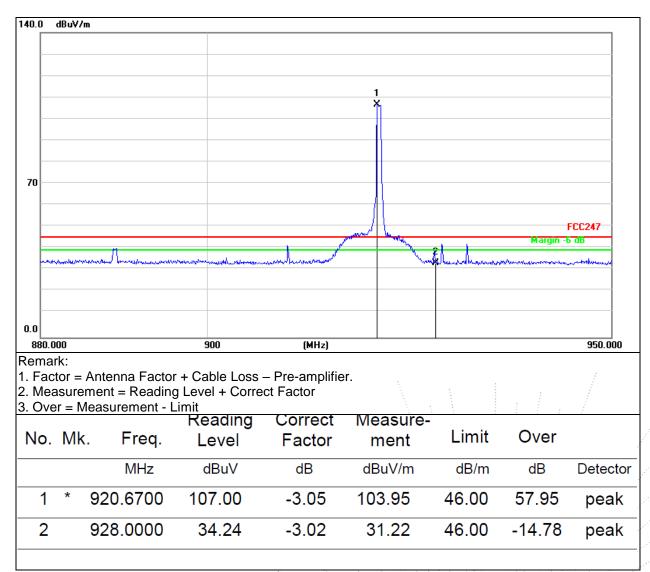
8.4 EUT Operating Conditions


The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

8.5 Test Result

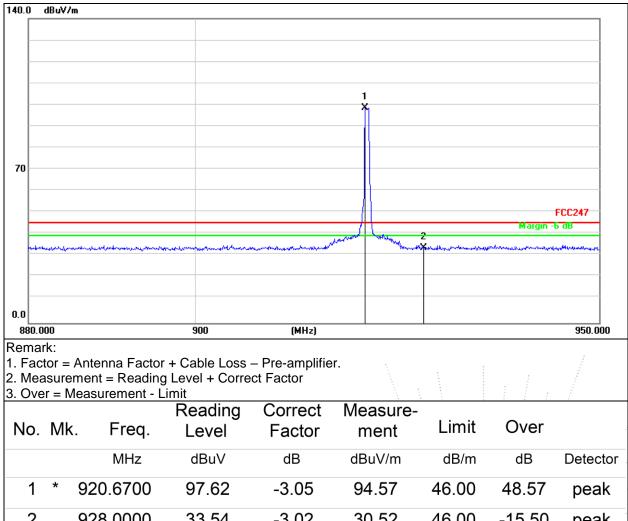
Radiated Band Emission:

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage:	AC120V/60Hz
Test Frequency:	908.9MHz	Polarization:	Horizontal


Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage:	AC120V/60Hz
Test Frequency:	908.9MHz	Polarization:	Vertical

140.0	dBuV	'm						
				2				
				Ť				
70								
								FCC247
			_				Margin	-6 dB
**	mhagana	and the second second second second second	1	and have a second	and at which and a second s	a the state of the	وسيعت المرياد ويروم ومؤلفاتهم	www.www.
_								
_								
0.0								
880 Rema	.000		900	(MHz)				950.000
		Antenna Facto	r + Cable Loss	– Pre-amplifie	r.	:		/
2. Me	asure	ment = Readin	g Level + Corre					
3. Ove	er = N	leasurement - I	Reading	Correct	Measure-			1
No.	Mk	. Freq.	Level	Factor	ment	Limit	Over	
		•						Datastar
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		902.0000	34.05	-3.11	30.94	46.00	-15.10	peak
2	*	909.1200	99.86	-3.09	96.77	46.00	50.77	peak

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage:	AC120V/60Hz
Test Frequency:	920.9MHz	Polarization:	Horizontal



,TC 3C PPR

ероі

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage:	AC120V/60Hz
Test Frequency:	920.9MHz	Polarization:	Vertical

No.	Mk	. Freq.	Level	Factor	ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	920.6700	97.62	-3.05	94.57	46.00	48.57	peak
2		928.0000	33.54	-3.02	30.52	46.00	-15.50	peak

9. Power Spectral Density Test

9.1 Block Diagram Of Test Setup

9.2 Limit

	FCC Part15 (15.247), Subpart C							
Section Test Item		Limit	Frequency Range (MHz)	Result				
15.247	Power Spectral Density	8 dBm (in any 3KHz)	902-928	PASS				

Limits Of Radiated Emission Measurement (Above 1000MHz)

9.3 Test procedure

1. Set analyzer center frequency to DTS channel center frequency.

- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: 3 kHz
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.

9. Use the peak marker function to determine the maximum amplitude level within the RBW.

10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

9.4 EUT Operating Conditions.

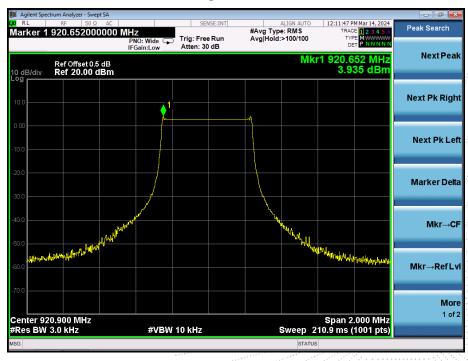
The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

Page: 29 of 4

9.5 Test Result

Temperature:	26 ℃	Relative Hu	Relative Humidity:		54%	
Pressure:	101KPa	Test Voltag	Test Voltage:		//60Hz	
Mode	Frequency (MHz)	Power Spectral Density(dBm/3kHz)			Result	
	908.9	4.381	8		PASS	
LoRa	914.9	4.169	8		PASS	
	920.9	3.935	8		PASS	

Low channel



alyzer - Swept SA 07:24:04 PM Mar 07, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N ALIGN AUTO #Avg Type: RMS Avg|Hold:>100/100 Peak Search Marker 1 914.650875088 MHz Trig: Free Run Atten: 30 dB PNO: Wide CP Next Peak Mkr1 914.650 88 MHz 4.169 dBm Ref Offset 0.5 dB Ref 20.00 dBm 10 dB/div Next Pk Right ana papapapapapapapatra Next Pk Left Marker Delta Mkr→CF No Production and the photon address of AN P . NAME OF A و الماليان و الس Mkr→RefLvl More 1 of 2 Center 914.900 MHz #Res BW 3.0 kHz Span 2.000 MHz Sweep 211.3 ms (10000 pts) #VBW 10 kHz

Middle channel

High channel

10. Bandwidth Test

10.1 Block Diagram Of Test Setup

10.2 Limit

FCC Part15 (15.247), Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(a)(2)	Bandwidth	>= 500KHz (-6dB bandwidth)	902-928	PASS		

10.3 Test procedure

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

10.4 EUT operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

No.: BCTC/RF-EMC-005

Page: 32 of 43

10.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage:	AC120V/60Hz

Mode	Frequency (MHz)	-6dB bandwidth (MHz)	Limit (kHz)	Result
	908.9	0.638	500	Pass
LoRa	914.9	0.639	500	Pass
	920.9	0.641	500	Pass

Low channel

No.: BCTC/RF-EMC-005

,TC 3C

ероі

Middle channel

High channel

11. Peak Output Power Test

11.1 Block Diagram Of Test Setup

11.2 Limit

	FCC Part15 (15.247) , Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	902-928	PASS			

11.3 Test Procedure

a. The EUT was directly connected to the Power meter

11.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing.

Note: Power Spectral Density(dBm)=Reading+Cable Loss

11.5 Test Result

Temperature:	26 ℃	 	Relative Humidity:	54%
Pressure:	101KPa	 	Test Voltage:	AC120V/60Hz

Mode	Frequency(MHz)	Maximum Conducted Output Power(PK) (dBm)	Conducted Output Power Limit(dBm)	
	908.9	10.621	30	
LoRa	914.9	10.508	30	
	920.9	10.768	30	

) ED

12. 100 kHz Bandwidth Of Frequency Band Edge

12.1 Block Diagram Of Test Setup

12.2 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

12.3 Test procedure

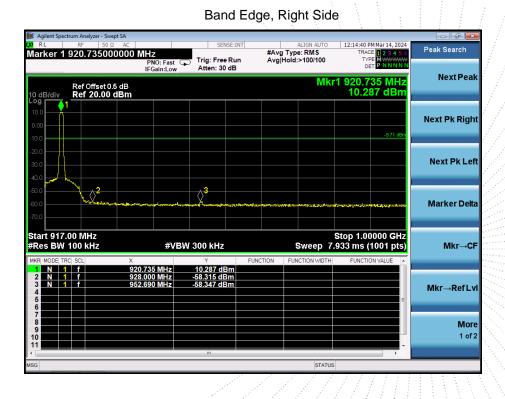
Using the following spectrum analyzer setting:

- a) Set the RBW = 100KHz.
- b) Set the VBW = 300KHz.
- c) Sweep time = auto couple.
- d) Detector function = peak.
- e) Trace mode = max hold.
- f) Allow trace to fully stabilize.

12.4 EUT operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

Page: 36 of 4



12.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage:	AC120V/60Hz

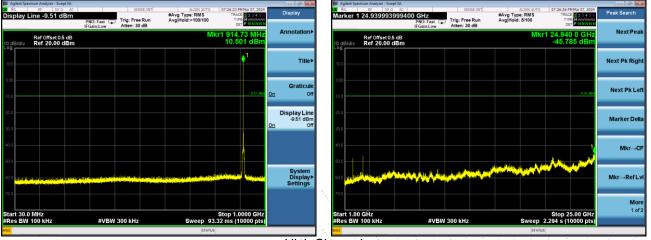
Agilent Spec	trum Analyzer - Swept :	SA				
₹L	RF 50 Ω 908.6750000	AC DOO MHz PNO: Fast	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	10:21:26 AM Mar 19, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N	Peak Search
dB/div	Ref Offset 0.5 o	IFGain:Low	Atten: 30 dB	Mk	r1 908.68 MHz 10.636 dBm	Next Pe
					-8 36 dBm	Next Pk Rig
						Next Pk Lo
	ารูปและเป็นระการที่สารที่สารที่สารที่สารที่สารที่	tangkut ang tang tang tang tang tang tang tang	مى يەرىپىرىيە بەرىپىلەت بىرىغۇ بىلىپ تۇلىلىيە تەرىپىدىنى بىلىپىرىيە تەرىپىدىغى بىلىپىرىغۇ بىلىپىدىنى بىلىپىرىيە يېرىپىرىيە بىرىپىرىيە بىرىپىرىيە بىلىپىرىيە بىلىپىرىيە بىلىپىرىيە بىلىپىرىيە بىلىپىرىيە بىلىپىرىيە بىلىپىرىيە بى	, , , , , , , , , , , , , , , , , , ,		Marker De
	00 MHz 100 kHz	Х		Sweep 11	Stop 915.00 MHz .00 ms (1001 pts)	Mkr→0
N 1 N 1 N 1	f f f	908.68 MHz 902.00 MHz 877.05 MHz	10.636 dBm -58.390 dBm -57.519 dBm		E	Mkr→RefL
						M a 1 o
				STATUS		

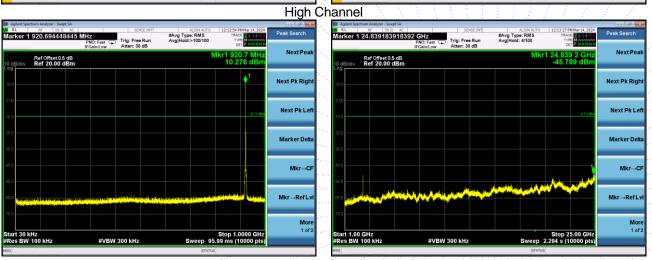
Band Edge Left Side

2 N 12

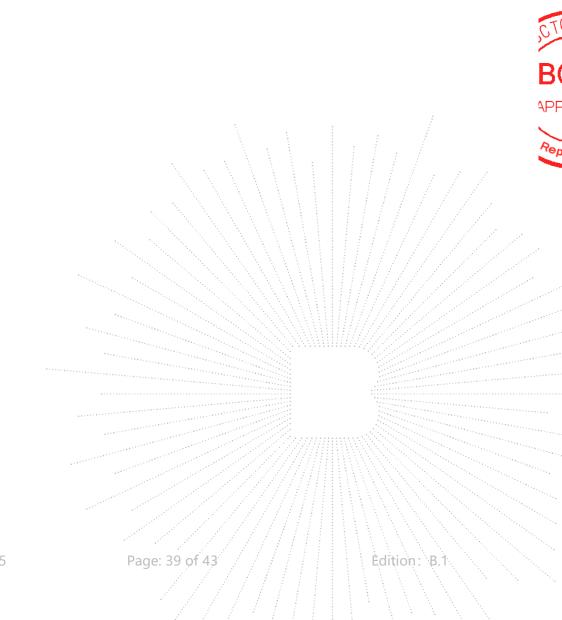
No.: BCTC/RF-EMC-005




More 1 of 2


Conducted Emission Measurement

Low Channel

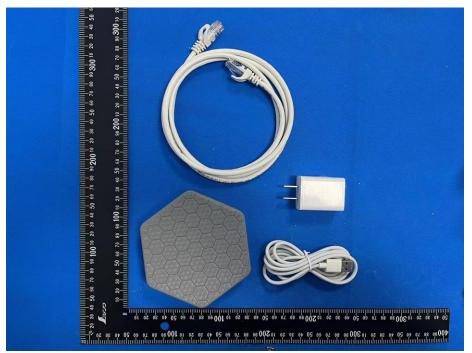

13. Antenna Requirement

13.1 Limit

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

13.2 Test Result

The EUT antenna is Spring antenna, fulfill the requirement of this section.



No.: BCTC/RF-EMC-005

14. EUT Photographs

EUT Photo

NOTE: Appendix-Photographs Of EUT Constructional Details

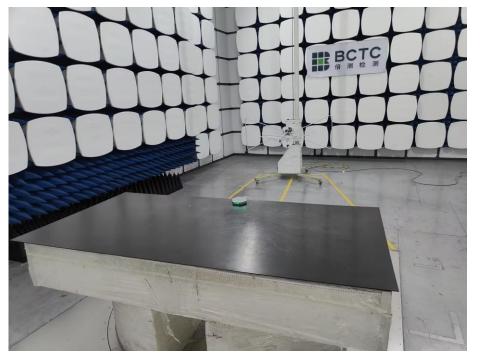
ort

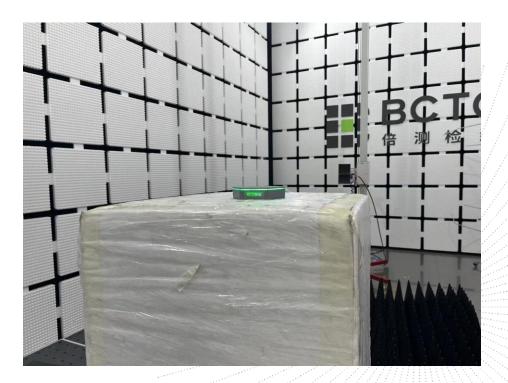
No.: BCTC/RF-EMC-005

Page: 40 of 43

15. EUT Test Setup Photographs

Conducted Measurement Photos





Page: 41 of 43

Radiated Measurement Photos

No.: BCTC/RF-EMC-005

Page: 42 of 43

Edition: B.

; ?

STATEMENT

- 1. The equipment lists are traceable to the national reference standards.
- 2. The test report can not be partially copied unless prior written approval is issued from our lab.
- 3. The test report is invalid without the "special seal for inspection and testing".
- 4. The test report is invalid without the signature of the approver.
- 5. The test process and test result is only related to the Unit Under Test.

6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.

7. The quality system of our laboratory is in accordance with ISO/IEC17025.

8. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

E-Mail: bctc@bctc-lab.com.cn

***** END *****

No.: BCTC/RF-EMC-005

Page: 43 of 43