Project No.: ZKT-220321L0835 Page 1 of 24

FCC TEST REPORT FCC ID: 2BALN-F-MBZ1

Report Number.....: ZKT-220321L0835

Date of Test.....: Mar. 14, 2023 - Mar. 22, 2023

Date of issue: Mar. 22, 2023

Total number of pages: 23

Test Result : PASS

Testing Laboratory.....: Shenzhen ZKT Technology Co., Ltd.

Applicant's name: Shenzhen Feyree Technology Co.,Ltd

Room 201-202, the 2th Floor, Block 2A, ZhongHaiXin Industrial

Address Park, 2nd ShengBao Road, NanWan Street, LongGang District,

ShenZhen, China

Manufacturer's name: Shenzhen Feyree Technology Co.,Ltd

Room 201-202, the 2th Floor, Block 2A, ZhongHaiXin Industrial

Address Park, 2nd ShengBao Road, NanWan Street, LongGang District,

ShenZhen, China

Test specification:

Standard FCC CFR Title 47 Part 15 Subpart C Section 15.225 ANSI C63.10:2013

Test procedure.....: : /

Non-standard test method: N/A

Test Report Form No.: TRF-EL-108_V0

Test Report Form(s) Originator: ZKT Testing

Master TRF Dated: 2020-01-06

This device described above has been tested by ZKT, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of ZKT, this document may be altered or revised by ZKT, personal only, and shall be noted in the revision of the document.

Product name: Household EV Charging Station

Trademark:

Model/Type reference: F-MBZ1-AC-1P32, F-MBZ1-AC-1P40, F-MBZ1-AC-1P50,

F-MBZ2-AC-1P32, F-MBZ2-AC-1P40, F-MBZ2-AC-1P50,

F-MBZ3-AC-1P32, F-MBZ3-AC-1P40, F-MBZ3-AC-1P50,

F-MBZ4-AC-1P32, F-MBZ4-AC-1P40, F-MBZ4-AC-1P50, F-OBZ1-AC-1P32, F-OBZ1-AC-3P16, F-OBZ1-AC-3P32,

F-MBZ2-AC-1P32, F-MBZ2-AC-3P16, F-MBZ2-AC-3P32,

F-MBZ3-AC-1P32, F-MBZ3-AC-3P16, F-MBZ3-AC-3P32,

F-MBZ4-AC-1P32, F-MBZ4-AC-3P16, F-MBZ4-AC-3P32

Ratings.....: AC120V 50/60Hz

Project No.: ZKT-220321L0835 Page 2 of 24

Testing procedure and testing location:	
Testing Laboratory: Address	Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China
Tested by (name + signature):	Aren. Ne
Reviewer (name + signature):	Joe. Lin
Approved (name + signature):	Approved 5

Project No.: ZKT-220321L0835 Page 3 of 24

Table of Contents	Page
1. VERSION	4
2. SUMMARY OF TEST RESULTS	5
3.1GENERAL INFORMATION	6
3.1 GENERAL DESCRIPTION OF EUT	6
3.2 DESCRIPTION OF TEST MODES	6
3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	6
3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	7
3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	8
4. EMC EMISSION TEST	9
4.1 CONDUCTED EMISSION MEASUREMENT	9
4.1.4 TEST SETUP	9
4.2 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION LIMITS 4.2.2 TEST PROCEDURE 4.2.3 TEST SETUP 4.2.4 EUT OPERATING CONDITIONS 4.2.5 TEST RESULT	12 12 13 14 14 15
5. BANDWIDTH OF THE OPERATION FREQUENCY 5.1 APPLIED PROCEDURES / LIMIT 5.2 TEST PROCEDURE 5.3 DEVIATION FROM STANDARD 5.4 TEST SETUP 5.5 EUT OPERATION CONDITIONS 5.6 TEST RESULT	19 19 19 19 19 19
6. FREQUENCY STABILITY	21
8. ANTENNA REQUIREMENT	22
9. TEST SETUP PHOTO	23
10. EUT CONSTRUCTIONAL DETAILS	24

Project No.: ZKT-220321L0835 Page 4 of 24

1. VERSION

Report No.	Version	Description	Approved
ZKT-220321L0835	Rev.01	Initial issue of report	Mar. 22, 2023

Page 5 of 24

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.225), Subpart C			
Standard Section	Test Item	Judgment	Remark
15.207	Conducted Emission	PASS	
15.225	Fundamental Emission Measurement	PASS	
15.225(d)&15.209	Radiated Emission Measurement	PASS	
2.1049	20dB Bandwidth	PASS	
15.225(e)	Frequency Stability	PASS	
15.203	Antenna Requirement	PASS	

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

2.1 TEST FACILITY

Shenzhen ZKT Technology Co., Ltd.

Add.: 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an

District, Shenzhen, China

FCC Test Firm Registration Number: 692225

Designation Number: CN1299 IC Registered No.: 27033

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	3m camber Radiated spurious emission (9KHz – 30MHz)	U=3.1dB
2	3m camber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	Conducted Adjacent channel power	U=1.38dB
5	Conducted output power uncertainty Above 1G	U=1.576dB
6	Conducted output power uncertainty below 1G	U=1.28dB
7	humidity uncertainty	U=5.3%
8	Temperature uncertainty	U=0.59℃
9	Radiated disturbance(30MHz- 1000MHz)	U=4.8dB
10	Radiated disturbance(1GHz-6GHz)	U=4.9dB
11	Radiated disturbance(1GHz- 18GHz)	U=5.0dB

Page 6 of 24

3.错误!未指定书签。GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Household EV Charging Station
Trade Name	非尔雷 [®] feyree [®]
Model Name	F-MBZ1-AC-1P32,
Serial Model	F-MBZ1-AC-1P40, F-MBZ1-AC-1P50, F-MBZ2-AC-1P32, F-MBZ2-AC-1P40, F-MBZ2-AC-1P50, F-MBZ3-AC-1P32, F-MBZ3-AC-1P40, F-MBZ3-AC-1P50, F-MBZ4-AC-1P32, F-MBZ4-AC-1P40, F-MBZ4-AC-1P50, F-OBZ1-AC-1P32, F-OBZ1-AC-3P16, F-OBZ1-AC-3P32, F-MBZ2-AC-1P32, F-MBZ2-AC-3P16, F-MBZ2-AC-3P32, F-MBZ3-AC-1P32, F-MBZ3-AC-3P16, F-MBZ3-AC-3P32, F-MBZ4-AC-1P32, F-MBZ4-AC-3P16, F-MBZ4-AC-3P32
Test sample	Sample S/N code is 22U1071P32AEN01
Hardware version	V1.0
Software version	V1.0
Operation Frequency:	13.56MHz
Modulation Type:	ASK
Antenna Type:	Induction coil Antenna
Antenna Gain:	1
Ratings	AC120V 50/60Hz

3.2 DESCRIPTION OF TEST MODES

	For All Emission
Final Test Mode	Description
Transmitting mode	Keep the EUT in continuously transmitting mode

Note:

(1) Fully-charged battery is used during the test

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED Conducted Emission Test

AC POWER EUT

Radiated Emission

AC POWER EUT

AC POWER EUT

Spurious Emissions

Page 7 of 24

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	NFC card	Shenzhen Feyree Technology Co.,Ltd	/	/	SDOC
E-2					

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>FLength</code> <code>_</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

Project No.: ZKT-220321L0835 Page 8 of 24

3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last	Calibrated
1	Spectrum Analyzer	KEYSIGHT	9020A	MY55370835	calibration Oct. 18, 2022	until Oct. 17, 2023
	(9kHz-26.5GHz)	TLE TOTOTTT	002071	101100070000	001. 10, 2022	Oot. 17, 2020
2	Spectrum Analyzer (1GHz-40GHz)	R&S	FSQ	100363	Oct. 17, 2022	Oct. 16, 2023
3	EMI Test Receiver (9kHz-7GHz)	R&S	ESCI7	101169	Oct. 18, 2022	Oct. 17, 2023
4	Bilog Antenna (30MHz-1500MHz)	Schwarzbeck	VULB9168	N/A	Oct. 17, 2022	Oct. 16, 2023
5	Horn Antenna (1GHz-18GHz)	Agilent	AH-118	071145	Oct. 17, 2022	Oct. 16, 2023
6	Loop Antenna	TESEQ	HLA6121	58357	Oct. 17, 2022	Oct. 16, 2023
7	Amplifier (30-1000MHz)	EM Electronics	EM330 Amplifier	060747	Oct. 17, 2022	Oct. 16, 2023
8	Amplifier (1GHz-26.5GHz)	Agilent	8449B	3008A00315	Oct. 18, 2022	Oct. 17, 2023
9	RF cables1 (9kHz-30MHz)	N/A	9kHz-30MHz	N/A	Oct. 18, 2022	Oct. 17, 2023
10	RF cables2 (30MHz-1GHz)	N/A	30MHz-1GHz	N/A	Oct. 18, 2022	Oct. 17, 2023
11	RF cables3 (1GHz-40GHz)	N/A	1GHz-40GHz	N/A	Oct. 18, 2022	Oct. 17, 2023
12	ESG Signal Generator	Agilent	E4421B	N/A	Oct. 18, 2022	Oct. 17, 2023
13	Signal Generator	Agilent	N5182A	N/A	Oct. 22, 2022	Oct. 21, 2023
14	Magnetic Field Probe Tester	Narda	ELT-400	0-0344	Oct. 17, 2022	Oct. 16, 2023
15	MWRF Power Meter Test system	MW	MW100-RPCB	N/A	Oct. 22, 2022	Oct. 21, 2023
16	Power sensor	KEYSIGHT	U200H	MY51190005	Oct. 22, 2022	Oct. 21, 2023
17	D.C. Power Supply	LongWei	TPR-6405D	N/A	\	\
18	EMC Software	Frad	EZ-EMC	Ver.EMC-CON 3A1.1	\	\
19	RF Software	MW	MTS8310	V2.0.0.0	\	\
20	Turntable	MF	MF-7802BS	N/A	\	\
21	Antenna tower	MF	MF-7802BS	N/A	\	\

Conduction Test equipment

	ididiotion Tool oquipinoi	••				
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	LISN	R&S	ENV216	101471	Oct. 22, 2022	Oct. 21, 2023
2	LISN	CYBERTEK	EM5040A	E1850400149	Oct. 22, 2022	Oct. 21, 2023
3	Test Cable	N/A	C01	N/A	Oct. 18, 2022	Oct. 17, 2023
4	Test Cable	N/A	C02	N/A	Oct. 18, 2022	Oct. 17, 2023
5	EMI Test Receiver	R&S	ESCI3	101393	Oct. 17, 2022	Oct. 16, 2023
6	EMC Software	Frad	EZ-EMC	Ver.EMC-CON 3A1.1	\	\

Page 9 of 24

4. EMC EMISSION TEST

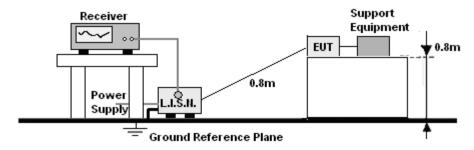
4.1 CONDUCTED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.207& RSS-Gen [8.8]
Test Method:	ANSI C63.10:2013 and RSS-Gen
Test Frequency Range:	150KHz to 30MHz
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

4.1.1 POWER LINE CONDUCTED EMISSION Limits

	Lir	Limit (dBuV)			
FREQUENCY (MHz)	Quasi-peak	Average	Standard		
0.15 -0.5	66 - 56 *	56 - 46 *	FCC		
0.50 -5.0	56.00	46.00	FCC		
5.0 -30.0	60.00	50.00	FCC		

Note: (1) *Decreases with the logarithm of the frequency.

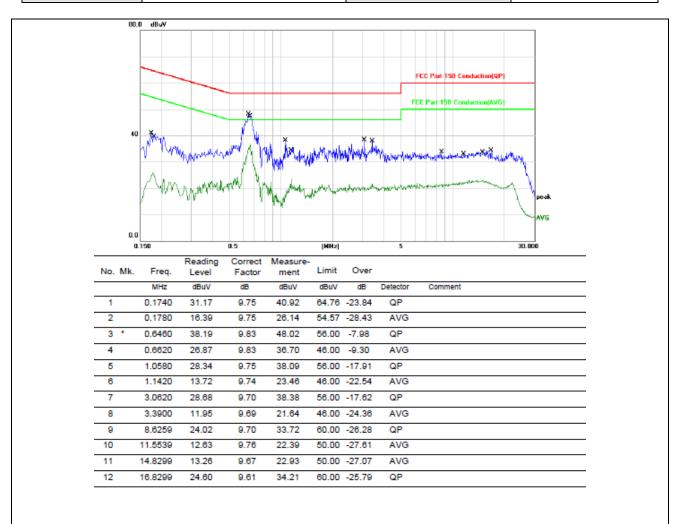

4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.1 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

No deviation

4.1.4 TEST SETUP

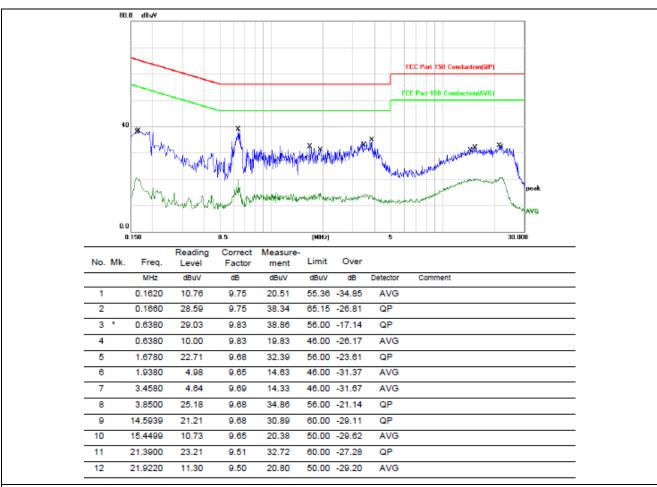

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

4.1.6 TEST RESULT

Project No.: ZKT-220321L0835 Page 10 of 24

Temperature:	26℃	Relative Humidity:	54%
Pressure:	101kPa	Phase:	L
Test Voltage:	AC 120V/60Hz		



Notes:

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor

Project No.: ZKT-220321L0835 Page 11 of 24

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase:	N
Test Voltage:	AC 120V/60Hz		

Notes:

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor

Page 12 of 24

4.2 RADIATED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.209						
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013					
Test Frequency Range:	9kHz to 25GHz						
Test site:	Measurement Dista	ince: 3m					
Receiver setup:	Frequency Detector RBW VBW Value						
	9KHz-150KHz Quasi-peak 200Hz 600Hz Quasi-peak				Quasi-peak		
	150KHz-30MHz Quasi-peak 9KHz 30KHz Quasi-peak						
	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak						
	Above 1GHz Peak 1MHz 3MHz Peak						
	710070 10112	Peak	1MHz	10Hz	Average		

4.2.1 RADIATED EMISSION LIMITS

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.231(b) limit in the table below has to be followed.

Frequencies(MHz)	Field Strength(micorvolts/meter)	Measurement Distance(meters)
0.009~0.490 2400/F(KHz)		300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT

FREQUENCY (MHz)	Limit (dBu'	Limit (dBuV/m) (at 3M)	
FREQUENCT (MITZ)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

FUNDAMENTAL AND HARMONICS EMISSION LIMITS

Fundamental Frequency	Field Strength of Fundamental	Field Strength of Spurious Emissions
(MHz)	(microvolts/meter)	(microvolts/meter)
40.66 - 40.70	2,250	225
70 - 130	1,250	125
130 - 174	1,250 to 3,750 **	125 to 375 **
174 - 260	3,750	375
260 - 470	3,750 to 12,500 **	375 to 1,250 **
Above 470	12,500	1,250

^{**} linear interpolations

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, μ V/m at 3 meters = 56.81818(F) - 6136.3636; for the band 260-470 MHz, μ V/m at 3 meters = 41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

Page 13 of 24

FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

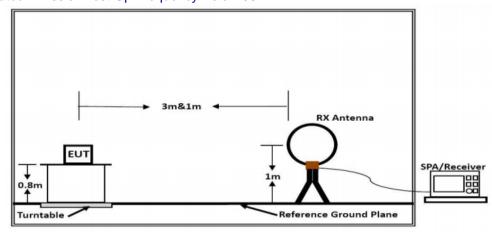
Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW setting 1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average	

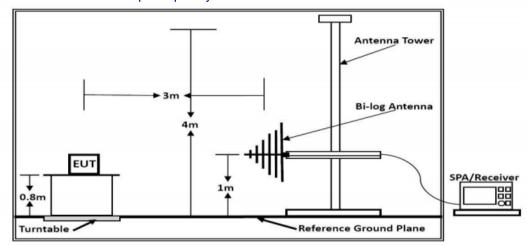
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

4.2.2 TEST PROCEDURE

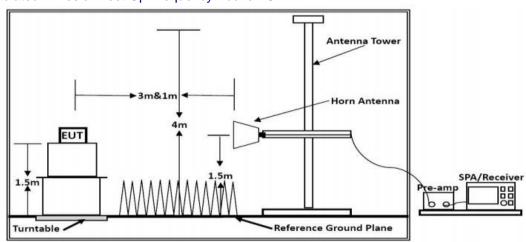
- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.


Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case was X axis and the emissions were reported


Project No.: ZKT-220321L0835 Page 14 of 24

4.2.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.2.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Page 15 of 24

4.2.5 TEST RESULT

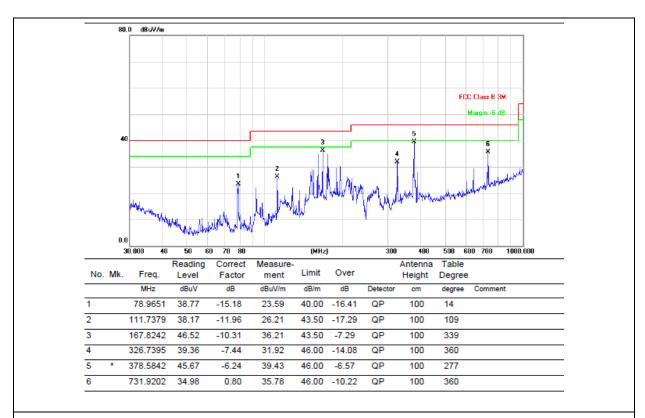
Radiated Spurious Emission (Below 9KHz - 30MHz)

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101 kPa	Polarization :	
Test Voltage :	AC120V 60Hz		
Test Mode :	TX Mode		

Fre. MHz	Reading dBuV	Factor dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark
0.56				92.64		
2.48	29.85	20.75	50.6	69.5	-18.9	QP
6.43	29.94	20.78	50.72	69.5	-18.78	QP
13.56	37.28	20.64	57.92	124.0	-66.08	QP
21.08	26.37	20.78	47.15	69.5	-22.35	QP
23.05	27.12	20.41	47.53	69.5	-21.97	QP
25.84	25.32	20.41	45.73	69.5	-23.77	QP

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

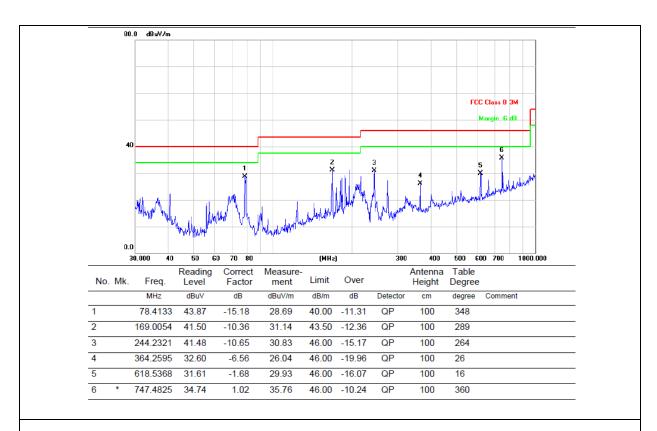

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Page 16 of 24

Radiated Spurious Emission (Between 30MHz - 1GHz)

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101 kPa	Polarization :	Horizontal
Test Voltage :	AC120V 60Hz		
Test Mode :	TX Mode		



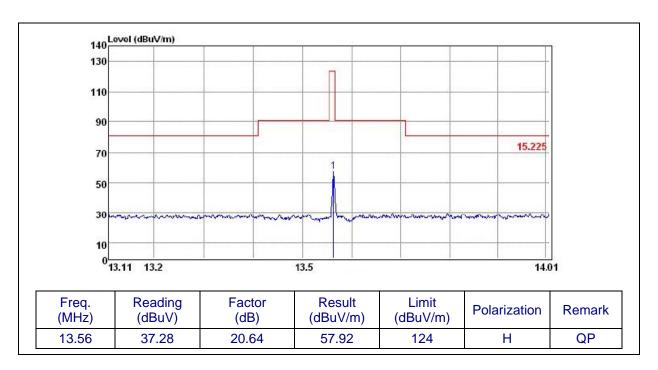
Remarks:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

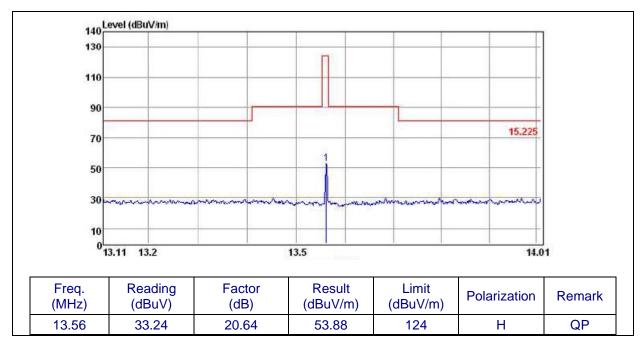
Page 17 of 24

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101 kPa	Polarization :	Vertical
Test Voltage :	AC120V 60Hz		
Test Mode :	TX Mode		

Remarks:


1.Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.


Page 18 of 24

Field Strength of Fundamental Emissions and Mask Measurement

Temperature :	26 ℃	Relative Humidity:	54%	
Pressure :	101 kPa	Polarization :	Horizontal(90degree)	
Test Voltage :	AC120V 60Hz	Test Mode :	TX Mode	

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101 kPa	Polarization :	Horizontal(0degree)
Test Voltage :	AC120V 60Hz	Test Mode :	TX Mode

Notes: Factor=Antenna Factor + Cable Loss

Emission level (dBuV/m) = 20 log Emission level(uV/m)

Measured distance is 3m

Page 19 of 24

5. BANDWIDTH OF THE OPERATION FREQUENCY

5.1 APPLIED PROCEDURES / LIMIT

Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emissions in the specific band (13.553~ 13.567MHz).

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	50KHz
RBW	3KHz
VBW	VBW>=RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

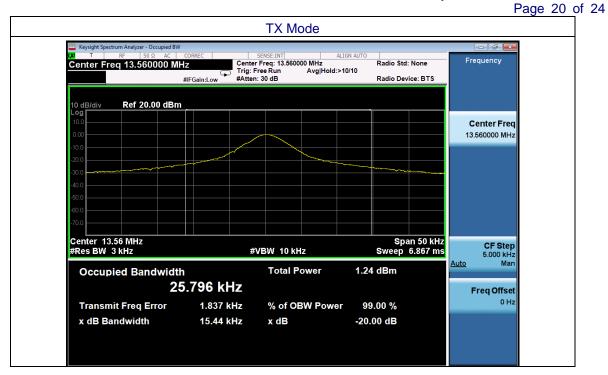
5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 3KHz, VBW≥ RBW, Sweep time = Auto.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP


5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULT

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Test Voltage :	AC120V
Test Mode:	TX Mode		

Erogueney	20dB Bandwidth	Limit	Result	
Frequency	(kHz)	(MHz)		
13.56MHz	15.44	1	PASS	

Page 21 of 24

6. FREQUENCY STABILITY

6.1 Standard Applicable

The frequency tolerance of the carrier signal shall be maintained within +/-0.01% (100ppm) of the operating frequency over a temperature variation of-20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall beperformed using a full charged battery.

6.2 Test Results

Voltage vs. Frequency Stability

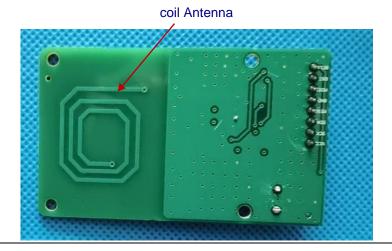
٠.	itage ver requeriey etablity					
	Voltage(V)	Measurement	Deviation	Deviation	Limit	
		frequency(MHz)	(KHz)	(ppm)	(ppm)	
	AC120	13.56050	0.50	36.56	100	
	AC102	13.56039	0.39	28.67	100	
	AC138	13.56046	0.46	33.89	100	

Temperature vs. Frequency Stability

temperature(°C)	Measurement	Deviation	Deviation	Limit
	frequency(MHz)	(KHz)	(ppm)	(ppm)
-20	13.055	0.55	40.70	100
-10	13.033	0.33	24.30	100
0	13.047	0.47	34.59	100
10	13.050	0.50	37.15	100
20	13.047	0.47	34.95	100
30	13.059	0.59	43.62	100
40	13.035	0.35	25.55	100
50	13.053	0.53	38.75	100

Page 22 of 24

8. ANTENNA REQUIREMENT


Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antennas is Induction coil Antenna, the best case gain of the antennas are 0dBi, reference to the EUT photos.

Project No.: ZKT-220321L0835 Page 23 of 24

9. TEST SETUP PHOTO

Project No.: ZKT-220321L0835 Page 24 of 24

10. EUT CONSTRUCTIONAL DETAILS

Please refer to externa file and internal photo file

**** END OF REPORT ****