

Report No.: TCT230811E034

Ref: ACR.256.12.15.STU.A

7.1 <u>HEAD LIQUID MEASUREMENT</u>

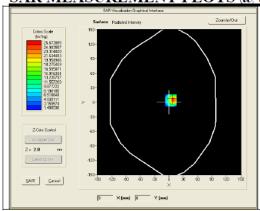
Frequency MHz	Relative per	mittivity (ε _r ')	Conductivi	ity (σ) S/m
	required	required measured		measured
5000	36.2 ±10 %		4.45 ±10 %	
5100	36.1 ±10 %		4.56 ±10 %	
5200	36.0 ±10 %	PASS	4.66 ±10 %	PASS
5300	35.9 ±10 %		4.76 ±10 %	
5400	35.8 ±10 %	PASS	4.86 ±10 %	PASS
5500	35.6 ±10 %		4.97 ±10 %	
5600	35.5 ±10 %	PASS	5.07 ±10 %	PASS
5700	35.4 ±10 %		5.17 ±10 %	
5800	35.3 ±10 %	PASS	5.27 ±10 %	PASS
5900	35.2 ±10 %		5.38 ±10 %	
6000	35.1 ±10 %		5.48 ±10 %	

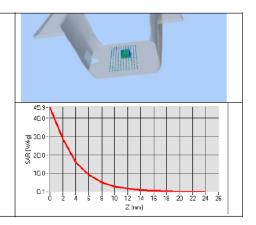
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

At those frequencies, the target SAR value can not be generic. Hereunder is the target SAR value defined by MVG, within the uncertainty for the system validation. All SAR values are normalized to 1 W net power. In bracket, the measured SAR is given with the used input power.

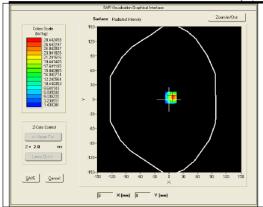
Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values 5200 MHz: eps': 36.62 sigma: 4.93 Head Liquid Values 5400 MHz: eps': 35.95 sigma: 5.18 Head Liquid Values 5600 MHz: eps': 36.08 sigma: 5.60 Head Liquid Values 5800 MHz: eps': 34.73 sigma: 5.74
Distance between dipole waveguide and liquid	0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=4mm/dy=4m/dz=2mm
Frequency	5200 MHz 5400 MHz 5600 MHz 5800 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

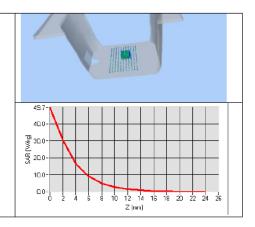
Page: 7/13




Ref: ACR.256.12.15.SATU.A

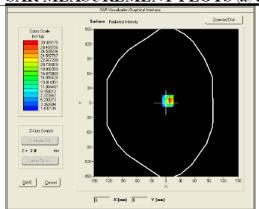
Report No.: TCT230811E034

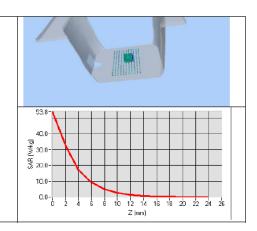

Frequency (MHz)	1 g SAR	R (W/kg)	10 g SAR (W/kg)		
	required	measured	required	measured	
5200	159.00	163.88 (16.39)	56.90	57.29 (5.73)	
5400	166.40	172.23 (17.22)	58.43	59.16 (5.92)	
5600	173.80	181.28 (18.13)	59.97	61.57 (6.16)	
5800	181.20	188.95 (18.90)	61.50	63.45 (6.35)	


SAR MEASUREMENT PLOTS @ 5200 MHz

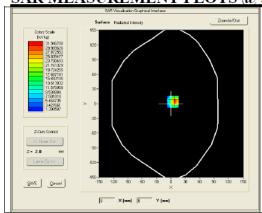
SAR MEASUREMENT PLOTS @ 5400 MHz

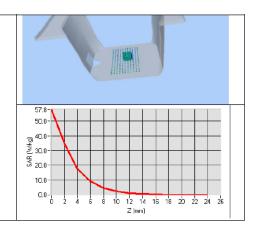
Page: 8/13





Report No.: TCT230811E034


Ref: ACR.256.12.15.SATU.A


SAR MEASUREMENT PLOTS @ 5600 MHz

SAR MEASUREMENT PLOTS @ 5800 MHz

Page: 9/13

Report No.: TCT230811E034

Ref: ACR.256.12.15.SATU.A

7.3 BODY LIQUID MEASUREMENT

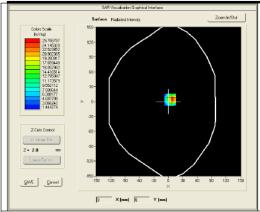
Frequency MHz	Relative per	mittivity (ε _r ')	Conductivity (σ) S/m		
	required	measured	required	measured	
5200	49.0 ±10 %	PASS	5.30 ±10 %	PASS	
5300	48.9 ±10 %		5.42 ±10 %		
5400	48.7 ±10 %	PASS	5.53 ±10 %	PASS	
5500	48.6 ±10 %		5.65 ±10 %		
5600	48.5 ±10 %	PASS	5.77 ±10 %	PASS	
5800	48.2 ±10 %	PASS	6.00 ±10 %	PASS	

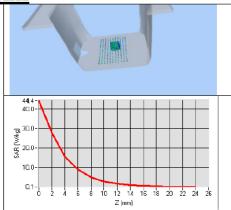
7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values 5200 MHz: eps' :50.69 sigma : 4.98 Body Liquid Values 5400 MHz: eps' :48.45 sigma : 5.82 Body Liquid Values 5600 MHz: eps' :50.57 sigma : 6.37 Body Liquid Values 5800 MHz: eps' :48.19 sigma : 6.45
Distance between dipole waveguide and liquid	0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=4mm/dy=4m/dz=2mm
Frequency	5200 MHz 5400 MHz 5600 MHz 5800 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

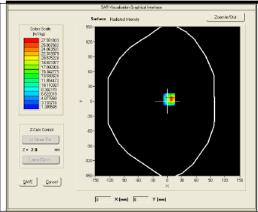
Frequency (MHz)	1 g SAR (W/kg)	10 g SAR (W/kg)
	measured	measured
5200	158.49 (15.85)	55.40 (5.54)
5400	167.20 (16.72)	57.39 (5.74)
5600	175.65 (17.57)	59.48 (5.95)
5800	183.06 (18.31)	61.62 (6.16)

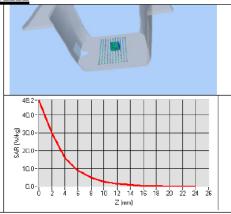
Page: 10/13

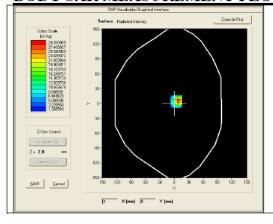

TESTING CENTRE TECHNOLOGY

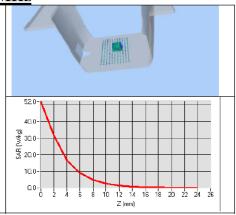

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Ref: ACR.256.12.15.SATU.A


Report No.: TCT230811E034

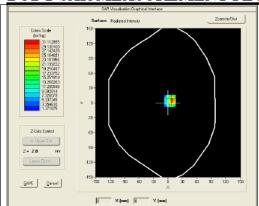

BODY SAR MEASUREMENT PLOTS @ 5200 MHz

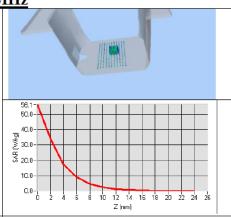



BODY SAR MEASUREMENT PLOTS @ 5400 MHz

BODY SAR MEASUREMENT PLOTS @ 5600 MHz

Page: 11/13





Ref: ACR.256.12.15.SATU.A

Report No.: TCT230811E034

BODY SAR MEASUREMENT PLOTS @ 5800 MHz

Page: 12/13

Ref: ACR.256.12.15.SATU.A

Report No.: TCT230811E034

8 LIST OF EQUIPMENT

	Equipment Summary Sheet									
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date						
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.						
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.						
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2023	02/2026						
Calipers	Carrera	CALIPER-01	01/2023	01/2026						
Reference Probe	MVG	EPG122 SN 18/11	10/2022	10/2023						
Multimeter	Keithley 2000	1188656	01/2023	01/2026						
Signal Generator	Agilent E4438C	MY49070581	01/2020	01/2023						
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.						
Power Meter	HP E4418A	US38261498	01/2023	01/2026						
Power Sensor	HP ECP-E26A	US37181460	01/2023	01/2026						
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.						
Temperature and Humidity Sensor	Control Company	150798832	10/2022	10/2023						

Appendix E: SAR SYSTEM VALIDATION

Per FCC KDB 865664 D02v01, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01 v01 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

SAR System Validation Summary

(C_1)			$\cdot C_1 \cap C_2 \cap C_3 \cap C_4 \cap C_5 \cap C_4 \cap C_5 \cap C_5 \cap C_5 \cap C_6 \cap C_$	SAR Sy	stem vai	idation Sum	mary	(.c.)			.C. `
			Ties	COND. PERM.	COND. PERM.	CW	/ Validation	١	Мс	d. Valida	tion
Date	Freq. [MHz]	Probe S/N	Tissu e type	(σ)	(εr)	sensitivity	Probe linearity	Probe isotropy	Mod. type	Duty factor	Peak to average power ratio
08/10/2023	835	SN 25/22 EPGO 375	Head	42.3	0.89	PASS	PASS	PASS	GMSK	PASS	N/A
08/10/2023	1800	SN 25/22 EPGO 375	Head	40.57	1.36	PASS	PASS	PASS	GMSK	PASS	N/A
08/10/2023	1900	SN 25/22 EPGO 375	Head	40.31	1.38	PASS	PASS	PASS	GMSK	PASS	N/A
08/10/2023	2450	SN 25/22 EPGO 375	Head	38.99	1.88	PASS	PASS	PASS	OFDM	PASS	N/A
08/10/2023	2600	SN 25/22 EPGO 375	Head	39.00	1.96	PASS	PASS	PASS	OFDM	PASS	N/A
08/10/2023	5G	SN 25/22 EPGO 375	Head	36.68	4.45 ~ 5.08	PASS	PASS	PASS	OFDM	PASS	N/A

NOTE: While the probes have been calibrated for both a CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as OFDM according to KDB 865664.

Page 240 of 242

Report No.: TCT230811E034

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Report No.: TCT230811E034

Appendix F: The Check Data of Impedance and Return Loss

The information are included in the SAR report to qualify for the three-year extended calibration interval;

Impedance in head liquid								
Temp	Dipole	Impedance Re(z) Dipole Impedar			ipole Impedance I	ice Im(z)		
(°C)	measured	Target	\triangle (\pm 5 Ω)	measured	Target	△ (±5Ω)		
22	52.30	51.60	0.7	2.30	1.70	0.6		
22	46.50	48.60	-2.1	0.60	-0.50	1.1		
22	50.30	51.70	-1.4	4.20	4.90	-0.7		
22	45.90	46.50	-0.6	-0.36	-0.20	-0.1		
22	54.70	55.10	-0.4	5.00	5.10	-0.1		
22	36.06	35.30	0.76	4.44	5.27	-0.83		
	(°C) 22 22 22 22 22 22	measured 22 52.30 22 46.50 22 50.30 22 45.90 22 54.70	Temp (°C) Dipole Impedant measured Target 22 52.30 51.60 22 46.50 48.60 22 50.30 51.70 22 45.90 46.50 22 54.70 55.10	Temp (°C)Dipole Impedance Re(z)measuredTarget \triangle ($\pm 5\Omega$)2252.3051.600.72246.5048.60-2.12250.3051.70-1.42245.9046.50-0.62254.7055.10-0.4	Temp (°C) Dipole Impedance Re(z) D measured Target \triangle ($\pm 5\Omega$) measured 22 52.30 51.60 0.7 2.30 22 46.50 48.60 -2.1 0.60 22 50.30 51.70 -1.4 4.20 22 45.90 46.50 -0.6 -0.36 22 54.70 55.10 -0.4 5.00	Temp (°C) Dipole Impedance Re(z) Dipole Impedance Impedanc		

		Return loss in hea	Return loss in head liquid		
From (MIII-)	Temp		Return loss(dB)		
Freq. (MHz)	(°C)	measured	Target	△ (±20%)	
835	22	-30.35	-32.78	-7.41	
1800	22	-37.89	-36.92	2.63	
1900	22	-24.33	-25.64	-5.11	
2450	22	-30.95	-29.05	6.54	
2600	22	-22.01	-22.81	-3.51	
5G	22	-21.87	-22.80	0.93	



TCT通测检测
TESTING CENTRE TECHNOLOGY

Report No.: TCT230811E034 Freq. Temp εr / relative permittivity $\sigma(s/m)$ / conductivity liquid (MHz) (°C) (kg/m3) measured △(±5%) △ (±5%) Target measured Target 22 1000 835 42.30 41.50 1.93 0.90 -1.11 0.89 40.00 1000 1800 22 40.50 1.25 1.36 1.40 -2.86 40.00 1000 1900 22 40.31 0.78 1.38 1.40 -1.43 Head 1000 2450 22 38.99 39.20 -0.541.88 1.80 4.44 1000 2600 22 38.85 39.00 -0.38 1.93 1.96 -1.53 5G 22 36.06 35.30 0.76 4.44 5.27 -0.83 1000

				Calibration		
Test Equipment	Manufacturer	Model	Serial Number	Calibration Date (D.M.Y)	Calibration Due (D.M.Y)	
Signal Generator	Angilent	N5182A	MY47070282	Jun. 29, 2023	Jun. 28, 2024	
Multimeter	Keithley	Multimeter 2000	4078275	Jun. 29, 2023	Jun. 28, 2024	
Network Analyzer	Agilent	8753E	US38432457	Feb. 24, 2023	Feb. 23, 2024	
Power Meter	Agilent	E4418B	GB43312526	Jun. 29, 2023	Jun. 28, 2024	
Power Sensor	Agilent	E9301A	MY41497725	Jun. 29, 2023	Jun. 28, 2024	
Power Amplifier	PE	PE15A4019	112342	N/A	N/A	
Temperature / Humidity Sensor	Control company	TH101B	152470214	Jun. 29, 2023	Jun. 28, 2024	

*****END OF REPORT****

