

	ILSI KLI SI	\ 	
FCC ID:	2BAHU2023002		
Test Report No::	TCT230619E909		
Date of issue::	Jun. 29, 2023		
Testing laboratory:	SHENZHEN TONGCE TESTIN	IG LAB	
Testing location/ address:	2101 & 2201, Zhenchang Facto Subdistrict, Bao'an District, She People's Republic of China	ory Renshan Industrial Zone, Fuhai enzhen, Guangdong, 518103,	
Applicant's name::	DIALN PRODUCTS INC.		
Address::	8312 Page Ave, Saint Louis, M	lissouri 63130, United States	
Manufacturer's name:	SHENZHEN JREN TECHNOLO	OGY CO., LTD	
Address::	B Area, 9/F, A4 Building, Tianrui Industrial Park, No. 35, Fuyuan 1st Road, Zhancheng, Fuhai, Baoan District, Shenzhen, China.		
Standard(s):	FCC CFR Title 47 Part 15 Subpart E Section 15.407 KDB 662911 D01 Multiple Transmitter Output v02r01 KDB 789033 D02 General U-NII Test Procedures New Rules v02r01		
Product Name::	LTE Tablet		
Trade Mark:	DIALN		
Model/Type reference:	X10G, X10M		
Rating(s)::	Refer to EUT description of page	ge 3	
Date of receipt of test item	Jun. 19, 2023		
Date (s) of performance of test:	Jun. 19, 2023 - Jun. 29, 2023		
Tested by (+signature):	Rleo LIU	Pres Gronger	
Check by (+signature):	Beryl ZHAO	Roy(TCT)	
Approved by (+signature):	Tomsin	Tomsies &	

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TABLE OF CONTENTS

1. General Product Information	
1.1. EUT description	3
1.2. Model(s) list	3
1.3. Test Frequency	4
2. Test Result Summary	5
3. General Information	
3.1. Test environment and mode	6
3.2. Description of Support Units	7
4. Facilities and Accreditations	8
4.1. Facilities	8
4.2. Location	
4.3. Measurement Uncertainty	8
5. Test Results and Measurement Data	<u>(</u> ()
5.1. Antenna requirement	9
5.2. Band edge	10
5.3. Unwanted Emissions	24
Appendix B: Photographs of Test Setup	
Appendix C: Photographs of EUT	

1. General Product Information

1.1. EUT description

Product Name:	LTE Tablet	(6)
Model/Type reference:	X10G	
Sample Number:	TCT230619E901-0101	\
Operation Frequency:	Band 1: 5180 MHz ~ 5240 MHz Band 3: 5745 MHz ~ 5825 MHz)
Channel Bandwidth::	802.11a: 20MHz 802.11n: 20MHz, 40MHz 802.11ac: 20MHz, 40MHz, 80MHz	(C)
Modulation Technology:	Orthogonal Frequency Division Multiplexing(OFD	M)
Modulation Type:	256QAM, 64QAM, 16QAM, BPSK, QPSK	
Antenna Type:	PIFA Antenna	
Antenna Gain:	Band 1: -1.44dBi Band 3: -1.32dBi	
Rating(s)::	Adapter Information: MODEL: BOS050200-01A INPUT: AC 100-240V, 50/60Hz, 0.45A OUTPUT: DC 5V, 2000mA Rechargeable Li-ion Battery DC 3.7V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.	Model No.	Tested with
1	X10G	
Other models	X10M	

Note: X10G is tested model, other models are derivative models. The models are identical in circuit and PCB layout, only different on the model names. So the test data of X10G can represent the remaining models.

1.3. Test Frequency

Band 1

20N	1Hz	40MHz		80MHz	
Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180	38	5190	42	5210
40	5200	46	5230		
48	5240				

Band 3

20N	1Hz	40MHz		80MHz	
Channel	Frequency	Channel	Frequency	Channel	Frequency
149	5745	151	5755	155	5775
157	5785	159	5795		
165	5825				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(a)	PASS
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	PASS
Power Spectral Density	§15.407(a)	PASS
Restricted Bands around fundamental frequency	§15.407(b)	PASS
Radiated Emission	§15.407(b)	PASS
Frequency Stability	§15.407(g)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.
- 5. For the band 5.15-5.25GHz,EUT meet the requirements of 15.407(a)(ii).
- 6. Those test results (AC Power Line Conducted Emission, 6dB Emission Bandwidth, 26dB Emission Bandwidth& 99% Occupied Bandwidth, Power Spectral Density, Frequency Stability) was based on FCC ID: 2BAHU2023002; Change product model No. and shell material of EUT.

TESTING CENTRE TECHNOLOGY Report No.: TCT230619E909

3. General Information

3.1. Test environment and mode

Operating Environment:			
Temperature:	25.0 °C		
Humidity:	56 % RH		
Atmospheric Pressure:	1010 mbar		
Test Software:			
Software Information:	Engineering Mode		
Power Level:	16		
Test Mode:			
Engineer mode:	Keep the EUT in continuous transmitting by select channel and modulations with max. duty cycle.		

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6 Mbps
802.11n(HT20)	6.5 Mbps
802.11n(HT40)	13.5 Mbps
802.11ac(VHT20)	6.5 Mbps
802.11ac(VHT40)	13.5 Mbps
802.11ac(VHT80)	29.3 Mbps

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1 (0)	1 (6)) / (6) /	(0)

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 7 of 36

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

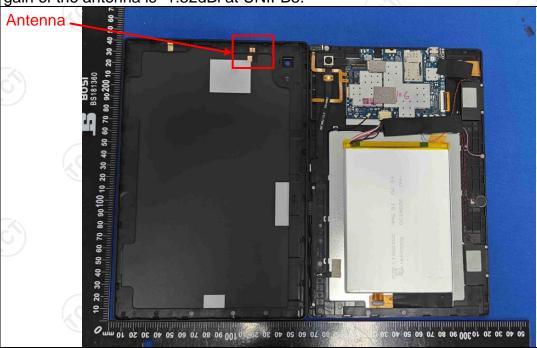
No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Report No.: TCT230619E909

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement:


FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

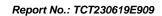
The EUT antenna is PIFA antenna which permanently attached, and the maximum gain of the antenna is -1.32dBi at UNII-B3.

5.2. Band edge

5.2.1. Test Specification

Test Requirement:	FCC CFR47 Pa	rt 15E Sectio	n 15.407	ÇĆ						
Test Method:	ANSI C63.10 20	013								
	In un-restricted ba For Band 1&2A&2 For Band 3:		lz	(0)						
	Frequency (MHz)	Limit (dBm/MHz)	Frequency (MHz)	Limit (dBm/MHz)						
	< 5650	-27	5850~5855	27~15.6						
Limit:	5650~5700	-27~10	5855~5875	15.6~10						
	5700~5720 10~15.6 5875~5925 10~-2 5720~5725 15.6~27 > 5925 -27									
	E[dBµV/m] = EIR In restricted band:	P[dBm] + 95.2								
	Pea		74dBµ							
	AVG		54dBµ							
Test Setup:	88 (Turmania)	Ground Reference Plate Test Receiver 1 1 1 Arrang Controllor								
Test Mode:	Transmitting mo	de with mod	ulation							
Test Procedure:	1. The EUT was meters above the was rotated 360 highest radiation 2. The EUT was interference-received the top of a vari 3. The antenna meters above the value of the field polarizations of measurement. 4. For each sus to its worst case heights from 1 received from 0 demaximum readi 5. The test-received from 5 description and 5 from 1 received from	ne ground at a degrees to degree to degree to degree to degrees to degree to degre	a 3 meter cambed as away from the part of	per. The table position of the position of the mounted on eter to four maximum and vertical ethe pass arranged tuned to table was ad the contact table was additionally and table was additionally						

Report No.: TCT230619E909

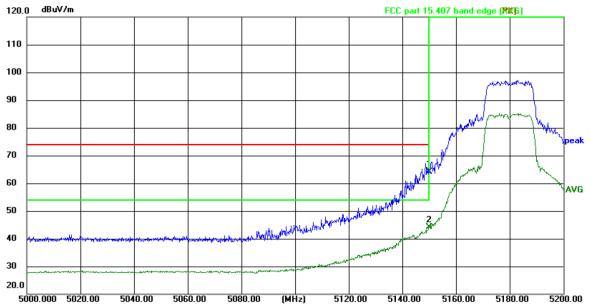


Mode.

Report No.: TCT230619E909

6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be

		reported 10dB m quasipe	stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using p quasipeak or average method as specified and then reported in a data sheet.							
Test	Result:	PASS								



5.2.2. Test Instruments

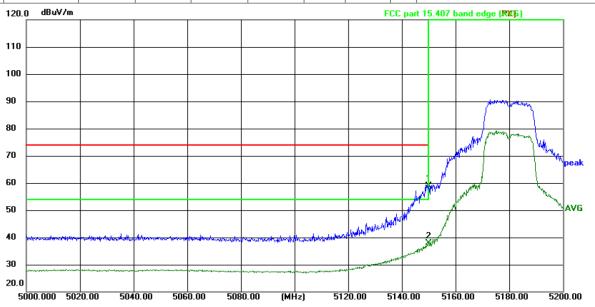
Radiated Emission Test Site (966)											
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due							
EMI Test Receiver	R&S	ESIB7	100197	Jul. 03, 2023							
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 03, 2023							
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023							
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Feb. 20, 2024							
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Feb. 20, 2024							
Pre-amplifier	HP	8447D	2727A05017	Jul. 03, 2023							
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 11, 2024							
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 05, 2023							
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 05, 2023							
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 24, 2024							
Coaxial cable	SKET	RC-18G-N-M) 1	Feb. 24, 2024							
Coaxial cable	SKET	RC_40G-K-M	/	Feb. 24, 2024							
Antenna Mast	Keleto	CC-A-4M	(0)	1 (6)							
EMI Test Software	Shurple Technology	EZ-EMC	/	(6)							

5.2.3. Test Data AC20-5180

Site: #3 3m Anechoic Chamber

Polarization: Horizontal

Temperature: 23.8(°C)


Humidity: 54 %

Report No.: TCT230619E909

Limit: FCC part 15.407 band edge (PK)

Power: DC 3.7 V

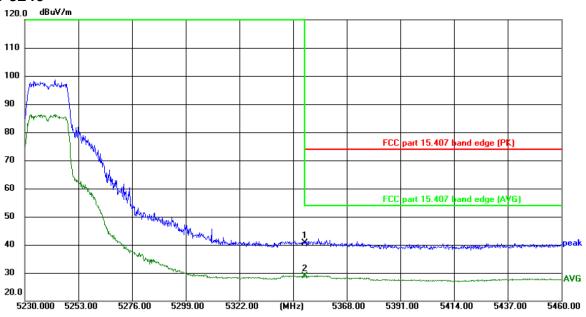
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5150.000	72.83	-8.63	64.20	74.00	-9.80	peak	Р	
2 *	5150.000	52.84	-8.63	44.21	54.00	-9.79	AVG	Р	

Site: #3 3m Anechoic Chamber

Polarization: Vertical

Temperature: 23.8(℃)

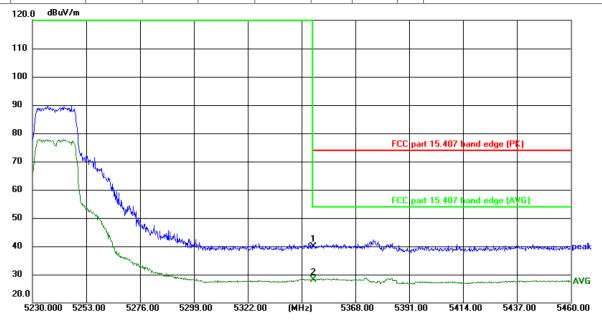
Humidity: 54 %


Limit: FCC part 15.407 band edge (PK)

Power:DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5150.000	67.41	-8.63	58.78	74.00	-15.22	peak	Р	
2	5150.000	46.54	-8.63	37.91	54.00	-16.09	AVG	Р	

AC20-5240



Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 23.8(°C) Humidity: 54 %

Limit: FCC part 15.407 band edge (PK)

Power: DC 3.7 V

	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
	1	5350.000	48.87	-8.22	40.65	74.00	-33.35	peak	Р	
ſ	2 *	5350.000	36.99	-8.22	28.77	54.00	-25.23	AVG	Р	

Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 23.8(°C) Humidity: 54 %

Limit: FCC part 15.407 band edge (PK)

Power:DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5350.000	48.06	-8.22	39.84	74.00	-34.16	peak	Р	
2 *	5350.000	36.39	-8.22	28.17	54.00	-25.83	AVG	Р	

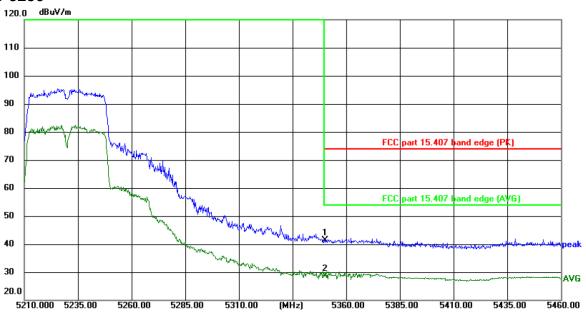
AC40-5190

Site: #3 3m Anechoic Chamber Polarization: *Horizontal* Temperature: 23.8(°C) Humidity: 54 %

Limit: FCC part 15.407 band edge (PK)

Power:DC 3.7 V

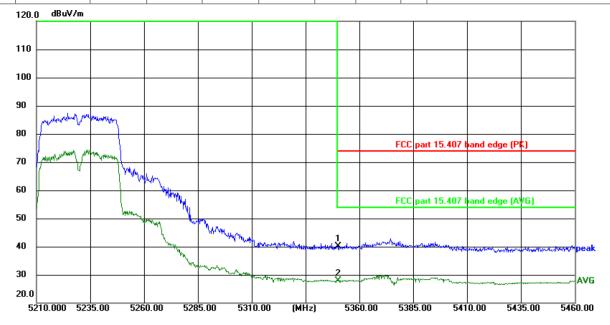
No	Frequency (MHz)	Reading (dBuV)	l .	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	* 5150.000	78.05	-8.63	69.42	74.00	-4.58	peak	Р	
2	5150.000	57.70	-8.63	49.07	54.00	-4.93	AVG	Р	


Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 23.8(℃) Humidity: 54 %

Limit: FCC part 15.407 band edge (PK) Power:DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5150.000	74.08	-8.63	65.45	74.00	-8.55	peak	Р	
2	5150.000	52.67	-8.63	44.04	54.00	-9.96	AVG	Р	

AC40-5230



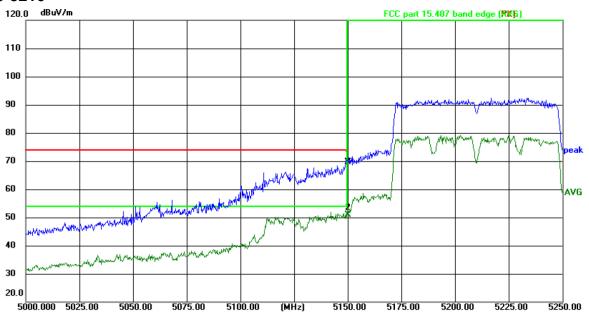
Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 23.8(°C) Humidity: 54 %

Limit: FCC part 15.407 band edge (PK)

Power: DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5350.000	49.51	-8.22	41.29	74.00	-32.71	peak	Р	
2 *	5350.000	36.88	-8.22	28.66	54.00	-25.34	AVG	Р	

Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 23.8(℃) Humidity: 54 %


Limit: FCC part 15.407 band edge (PK)

1	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	5350.000	48.34	-8.22	40.12	74.00	-33.88	peak	Р	
	2 *	5350.000	36.00	-8.22	27.78	54.00	-26.22	AVG	Р	

Power: DC 3.7 V

AC80-5210



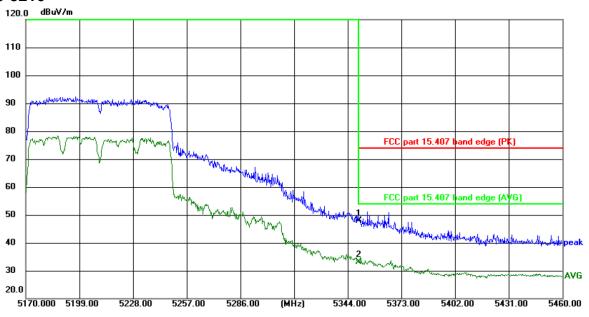
Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 23.8(℃) Humidity: 54 %

Limit: FCC part 15.407 band edge (PK)

Power: DC 3.7 V

- 1		•								
	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	5150.000	78.38	-8.63	69.75	74.00	-4.25	peak	Р	
ľ	2 *	5150 000	59.62	-8.63	50.99	54.00	-3.01	AVG	Р	

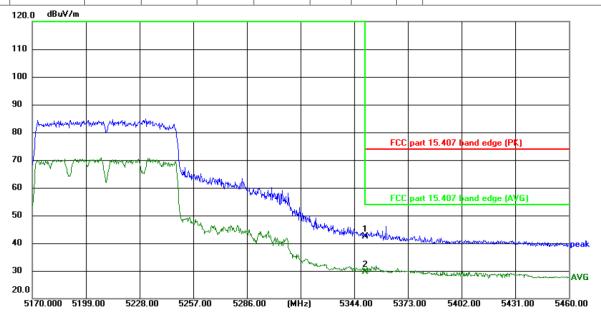
Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 23.8(°C) Humidity: 54 %


Limit: FCC part 15.407 band edge (PK)

Power:DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5150.000	72.61	-8.63	63.98	74.00	-10.02	peak	Р	
2 *	5150.000	54.25	-8.63	45.62	54.00	-8.38	AVG	Р	

AC80-5210



Site: #3 3m Anechoic Chamber Temperature: 23.8(°C) Humidity: 54 % Polarization: Horizontal

Limit: FCC part 15.407 band edge (PK)

Power: DC 3.7 V

- 3		•		- ,						
	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	5350.000	56.19	-8.22	47.97	74.00	-26.03	peak	Р	
	2 *	5350.000	41.23	-8.22	33.01	54.00	-20.99	AVG	Р	

Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 23.8(°C) Humidity: 54 %

Limit: FCC part 15.407 band edge (PK)

Power: DC 3.7 V

No.	Frequency (MHz)			Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5350.000	50.55	-8.22	42.33	74.00	-31.67	peak	Р	
2 *	5350.000	37.97	-8.22	29.75	54.00	-24.25	AVG	Р	

AC20-5745

Site: #3 3m Anechoic Chamber

Polarization: Horizontal

Temperature: 23.8(℃)

Humidity: 54 %

Limit: FCC part 15.407 band edge B3 (PK)

Power: DC 3.7 V

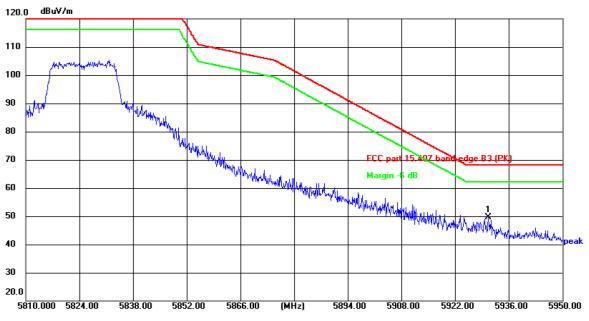
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	l .	Margin (dB)	Detector	P/F	Remark
1 *	5649.120	54.37	-7.56	46.81	68.20	-21.39	peak	Р	

Site: #3 3m Anechoic Chamber

Polarization: Vertical

Temperature: 23.8(°C)

Humidity: 54 %


Limit: FCC part 15.407 band edge B3 (PK)

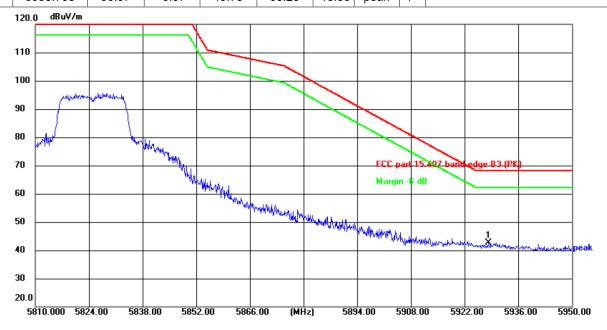
Power:DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5630.800	52.37	-7.61	44.76	68.20	-23.44	peak	Р	

AC20-5825

Site: #3 3m Anechoic Chamber

Polarization: Horizontal


Temperature: 23.8(℃)

Humidity: 54 %

Limit: FCC part 15.407 band edge B3 (PK)

Power: DC 3.7 V

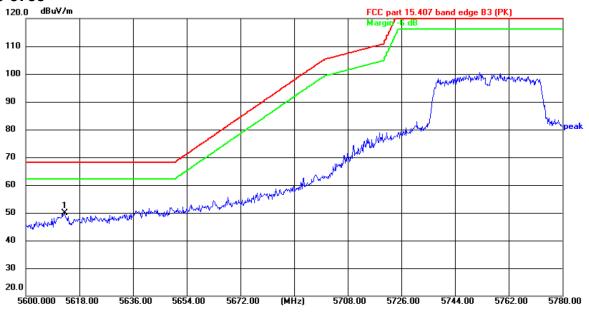
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1 *	5930.750	56.57	-6.87	49.70	68.20	-18.50	peak	Р	

Site: #3 3m Anechoic Chamber

Polarization: Vertical

Temperature: $23.8(^{\circ}C)$

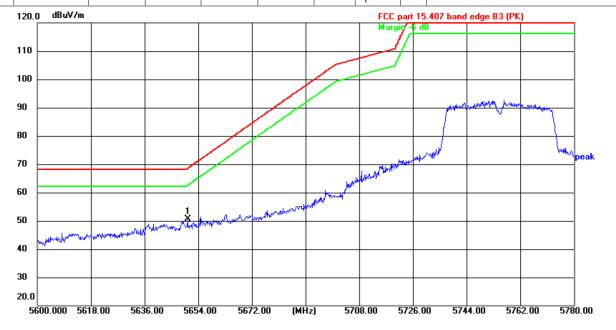
Humidity: 54 %


Limit: FCC part 15.407 band edge B3 (PK)

Power:DC 3.7 V

No.	Frequency (MHz)			Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5928.370	49.40	-6.87	42.53	68.20	-25.67	peak	Р	

AC40-5755

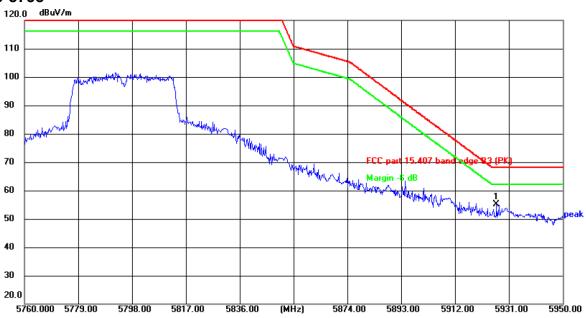


Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 23.8(℃) Humidity: 54 %

Limit: FCC part 15.407 band edge B3 (PK)

Power: DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5612.960	57.45	-7.64	49.81	68.20	-18.39	peak	Р	


Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 23.8(°C) Humidity: 54 %

Limit: FCC part 15.407 band edge B3 (PK) Power:DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5650.490	58.11	-7.55	50.56	68.56	-18.00	peak	Р	

AC40-5795

Site: #3 3m Anechoic Chamber

Polarization: Horizontal

Temperature: 23.8(°C)

Humidity: 54 %

Limit: FCC part 15.407 band edge B3 (PK)

Power:DC 3.7 V

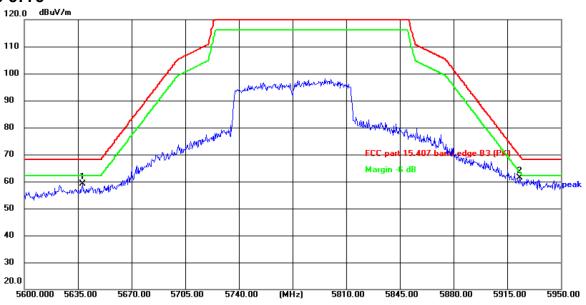
No.	Frequency (MHz)	Reading (dBuV)	l .	Level (dBuV/m)	l .	Margin (dB)	Detector	P/F	Remark
1 *	5926.630	61.98	-6.88	55.10	68.20	-13.10	peak	Р	

Site: #3 3m Anechoic Chamber

Polarization: Vertical

Temperature: 23.8(℃)

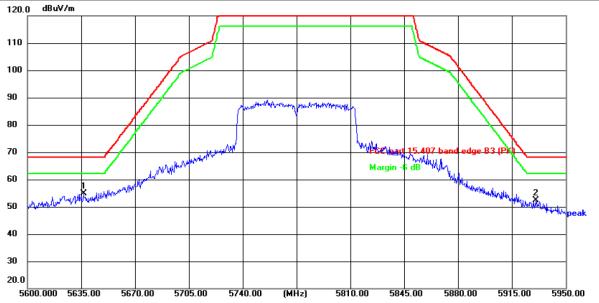
Humidity: 54 %


Limit: FCC part 15.407 band edge B3 (PK)

Power: DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5929.860	54.45	-6.87	47.58	68.20	-20.62	peak	Р	

AC80-5775


Temperature: 23.8(℃) Humidity: 54 % Site: #3 3m Anechoic Chamber Polarization: Horizontal

Limit: FCC part 15.407 band edge B3 (PK)

Limit BuV/m)	Margin (dB)	Detector	P/F	Remark

Frequency Reading Factor Level No. (MHz) (dBuV) (dB/m) (dBuV/m) (dB 5638.150 66.67 -7.58 59.09 1 68.20 -9.11 peak 5923.050 2 * 68.37 -6.89 61.48 69.64 -8.16 peak Ρ

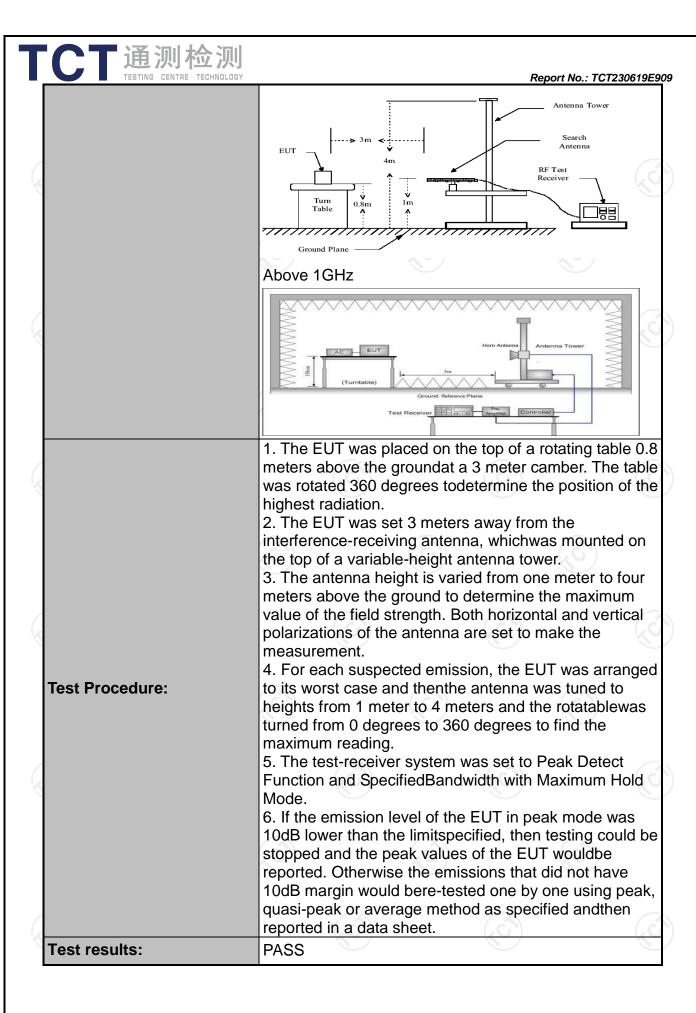
Power: DC 3.7 V

Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 23.8(°C) Humidity: 54 %

Limit: FCC part 15.407 band edge B3 (PK) Power: DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1 *	5636.400	62.49	-7.58	54.91	68.20	-13.29	peak	Р	
2	5930.925	59.35	-6.87	52.48	68.20	-15.72	peak	Р	

Note: All modulation (802.11a, 802.11n, 802.11ac) have been tested, only the worst case in 802.11ac be reported.

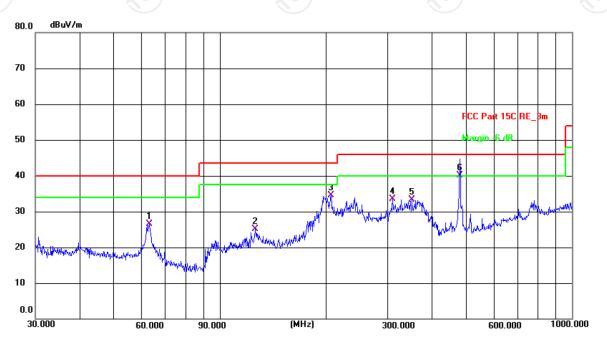

TESTING CENTRE TECHNOLOGY

Report No.: TCT230619E909

5.3. Unwanted Emissions

5.3.1. Test Specification

Test Requirement:	FCC CFR47	Part 15 Se	ection 15.	407 & 1	5.209 & 15.205		
Test Method:	KDB 789033	D02 v02r	01				
Frequency Range:	9kHz to 40G	Hz					
Measurement Distance:	9kHz- 150kHz Quasi-peak 200Hz 1kHz Quasi-peak 150kHz- Quasi-peak 9kHz 30kHz Quasi-peak 30MHz 30MHz Quasi-peak 120KHz 300KHz Quasi-peak 1MHz 3MHz Peak Val						
Antenna Polarization:	Horizontal &						
Operation mode:	Transmitting	mode with	modulat	ion			
Receiver Setup:	9kHz- 150kHz 150kHz- 30MHz 30MHz-1GHz	Quasi-peak Quasi-peak Quasi-peak Peak	200Hz 9kHz 120KHz 1MHz	1kHz 30kHz 300KHz 3MHz	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Peak Value Average Value		
Limit:	per FCC Par	t15.205 shill strength bands:	Detection Pea AVG	y with the torth in t			
Test setup:	For radiated	Distance = 3m Turn table	below 30	OMHz	Computer Pre -Amplifier Receiver		



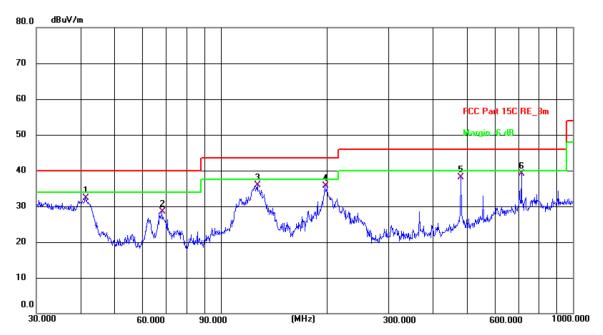
5.3.2. Test Data

Please refer to following diagram for individual

Below 1GHz

Horizontal:

Site #2 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.1(C) Humidity: 54 %


Limit: FCC Part 15C RE_3m Power: DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	63.0915	13.63	12.81	26.44	40.00	-13.56	QP	Р	
2	126.3285	11.53	13.67	25.20	43.50	-18.30	QP	Р	
3	207.1225	23.34	11.15	34.49	43.50	-9.01	QP	Р	
4	309.9977	18.57	15.02	33.59	46.00	-12.41	QP	Р	
5	351.7078	17.53	15.85	33.38	46.00	-12.62	QP	Р	
6 *	480.5276	21.14	18.96	40.10	46.00	-5.90	QP	Р	

Vertical:

Site #2 3m Anechoic Chamber Polarization: Vertical Temperature: 24.1(C) Humidity: 54 %

Limit: FCC Part 15C RE_3m Power: DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	41.2765	18.03	14.22	32.25	40.00	-7.75	QP	Р	
2	68.1514	17.05	11.53	28.58	40.00	-11.42	QP	Р	
3	127.2176	22.31	13.62	35.93	43.50	-7.57	QP	Р	
4	197.8928	24.81	10.85	35.66	43.50	-7.84	QP	Р	
5	480.5276	19.16	18.96	38.12	46.00	-7.88	QP	Р	
6 *	714.1733	15.99	23.09	39.08	46.00	-6.92	QP	Р	

Note: 1.The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

- 2. Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ac(VHT80) and the worst case Mode (Lowest channel and 802.11ac(VHT20)) was submitted only.
- 3.Measurement (dBμV) = Reading level + Correction Factor , correction Factor= Antenna Factor + Cable loss Pre-amplifier.

			١	/lodulation T	Гуре: Band	1			
				11a CH36	: 5180MHz				
Frequency	Ant. Pol. H/V	Peak reading	AV reading	Correctio n Factor (dB/m)	Emission Level		Peak limit		Margin
(MHz)	⊓/ V	(dBµV)	(dBµV)		Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10360	Н	38.36		8.02	46.38		68.2		-21.82
15540	1	38.9	/s	9.87	48.77		74	54	-5.23
	H		40		(())		(, C+-)	
10360	V	38.27		8.02	46.29		68.2		-21.91
15540	V	38.15		9.87	48.02		74	54	-5.98
√C -1	V	(, 6)		(¿C			`C→		(2-6)
					5200MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction n Factor (dB/m)	Emission Peak	on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
		(- - /	(-)	(* ' ,	(dBµV/m)	(dBµV/m)			
10400	Н	39.04		7.97	47.01		68.2		-21.19
15600	Н	38.37		9.83	48.2		74	54	-5.8
	Η			(\(\)				(, \
		(0)					(0)		100
10400	V	40.85		7.97	48.82		68.2		-19.38
15600	V	38.61		9.83	48.44		74	54	-5.56
	V		(X		/				
					5240MHz				
Frequency	Ant. Pol.	. Pol. Peak AV		Correctio	Emission	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	n Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)		(dB)
10480	Н	38.57		7.97	46.54		68.2		-21.66
15720	Н	37.93		9.83	47.76		74	54	-6.24
	H								
	(G)	•	(.G)				•	(G)	
10480	V	38.16		7.97	46.13	<u> </u>	68.2		-22.07
15720	V	36.27		9.83	46.1		74	54	-7.9
	V								
				n(HT20) Ch	136: 5180N	lHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction n Factor		n Level	Peak limit (dBµV/m)		Margin (dB)
(1411 12)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμν/πη)	(ασμν/πι)	(ub)
10360	Н	41.45	-120	8.02	49.47	<u> </u>	68.2	(C_{α})	-18.73
15540	H	37.8		9.87	47.67		74	54	-6.33
	Н								
					Z)				
10360	V	42.74		8.02	50.76		68.2		-17.44
15540	V	37.51		9.87	47.38		74	54	-6.62
	V								

Report No.: TCT230619E909 11n(HT20) CH40: 5200MHz ΑV Peak Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV limit** Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ (dBµV/m) (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 40.48 10400 Η 7.97 48.45 68.2 -19.75 15600 Н 38.02 9.83 47.85 -6.15 74 54 Н ---V 40.27 10400 ---7.97 48.24 68.2 ----19.96 ٧ 15600 37.13 9.83 46.96 74 54 -7.04 11n(HT20) CH48: 5240MHz Peak ΑV Correctio Ant. Pol. **Emission Level** Peak limit **AV limit** Frequency Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ (dBµV/m) (dB) (dBµV) (dBµV) (dB/m) Peak AV (dBµV/m) (dBµV/m) 10480 41.26 Н 7.97 49.23 68.2 -18.9715720 Н 39.83 9.83 74 -4.34 49.66 54 Η ---٧ 10480 40.69 7.97 48.66 68.2 -19.5415720 39.38 9.83 ٧ ---49.21 ---74 54 -4.79٧ -------11n(HT40) CH38: 5190MHz Peak ΑV Correctio Frequency Ant. Pol. **Emission Level** Peak limit **AV** limit Margin reading reading n Factor (MHz) H/V (dBµV/m) (dBµV/m) (dB) AV (dBµV) (dBµV) (dB/m) Peak $(dB\mu V/m)$ $(dB\mu V/m)$ 10380 Η 39.85 7.75 47.6 68.2 -20.6 15570 Η 37.31 ---9.87 47.18 ---74 54 -6.82Η 10380 ٧ 40.72 7.75 68.2 48.47 ----19.73V 15570 37.49 9.87 47.36 74 54 -6.64 ------/---------11n(HT40) CH46: 5230MHz Peak A۷ Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV limit** Margin reading reading n Factor (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak AV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10460 Н 41.92 7.97 49.89 68.2 -18.31 Н 15690 38.03 9.83 47.86 74 54 -6.14 Н ----4-2 1--------------10460 ٧ 41.56 7.97 49.53 68.2 -18.6715690 ٧ 38.71 ---9.83 48.54 74 54 -5.46٧

【通测检测

10380

15570

٧

٧

٧

38.14

38.62

Report No.: TCT230619E909 11ac(VHT20) CH36: 5180MHz ΑV Correctio Peak **Emission Level** Frequency Ant. Pol. Peak limit **AV limit** Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ (dBµV/m) (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 40.27 10360 Η 8.02 48.29 68.2 -19.9115540 Н 37.63 9.87 47.5 74 54 -6.5 Н ------V 10360 38.95 ---8.02 46.97 68.2 ----21.23 ٧ 15540 39.5 9.87 49.37 74 54 -4.63 11ac(VHT20) CH40: 5200MHz Peak ΑV Correctio Ant. Pol. **Emission Level** Peak limit **AV limit** Frequency Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) (dBµV) (dBµV) (dB/m) Peak AV (dBµV/m) (dBµV/m) 10400 7.97 Н 39.27 47.24 68.2 -20.9615600 Н 38.49 9.83 74 48.32 54 -5.68 Η ---٧ 10400 39.62 7.97 47.59 68.2 -20.6115600 38.34 9.83 ٧ ---48.17 ---74 54 -5.83٧ -------11ac(VHT20) CH48:5240 Peak ΑV Correctio Frequency Ant. Pol. **Emission Level** Peak limit **AV** limit Margin reading reading n Factor (MHz) H/V (dBµV/m) (dBµV/m) (dB) AV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) (dBµV/m) 10480 Η 37.6 7.97 45.57 68.2 -22.63 15720 Η 37.91 ---9.83 47.74 ---74 54 -6.26Η 10480 ٧ 38.27 7.97 68.2 46.24 ----21.96 15720 V 38.58 9.83 48.41 74 54 -5.59 ------/------11ac(VHT40) CH38:5190 Peak ΑV Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV limit** Margin reading reading n Factor (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak AV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10380 Н 40.25 7.75 68.2 -20.2 48 Н 15570 39.70 9.87 49.57 74 54 -4.43 Н -4-2 1-----------------

-22.31

-5.51

68.2

74

54

7.75

9.87

45.89

48.49

٧

Report No.: TCT230619E909 11ac(VHT40) CH46:5230 Peak ΑV Correctio Ant. Pol. **Emission Level** Peak limit AV limit Frequency Margin n Factor reading reading (MHz) H/V $(dB\mu V/m)$ (dBµV/m) (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10460 38.24 Η 7.97 46.21 -21.99 68.2 15690 Н 38.37 9.83 48.2 74 -5.8 54 Н ---10460 V 39.45 ---7.97 47.42 68.2 ----20.78 15690 ٧ 37.62 9.83 47.45 74 54 -6.55 11ac(VHT80) CH42:5210 ΑV Peak Correctio Ant. Pol. **Emission Level** Peak limit **AV** limit Frequency Margin reading reading n Factor (MHz) H/V $(dB\mu V/m)$ (dBµV/m) (dB) ΑV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) (dBµV/m) 10420 Н 41.82 7.96 49.78 68.2 ----18.4215630 Н 39.67 9.84 49.51 74 -4.49 54 Η 10420 ٧ 41.39 7.96 49.35 68.2 -18.8515630 ٧ 39.86 9.84 ---49.7 ---74 54 -4.3

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

			N	1odulation 1	Гуре: Band	3			
				11a CH149): 5745MHz				
Frequency	Ant. Pol. H/V	Peak reading	AV reading	Correctio n Factor	Emissio	n Level	Peak limit		Margin
(MHz)		(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	Н	37.49		8.09	45.58		74	54	-8.42
17235	Н	37.86		9.67	47.53		68.2		-20.67
	H		-		((1)			
11490	V	40.37		8.09	48.46		74	54	-5.54
17235	V	38.05		9.67	47.72		68.2		-20.48
	V			(.c	\ \\\				(
				11a CH157	: 5785MHz				
	Arat Dal	Peak	AV	Correctio	Emissis	on Level	Da alı lineit	Λ\ / Ii it	Manain
Frequency	Ant. Pol. H/V	reading	reading	n Factor			Peak limit (dBµV/m)		Margin
(MHz)	□/ V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(ασμν/ιιι)	(dBµV/m)	(dB)
					(dBµV/m)	(dBµV/m)			
11570	H	39.72		8.10	47.82		74	54	-6.18
17355	Н	38.16		9.65	47.81		68.2		-20.39
	Н				<u> </u>				<i></i>
		(20)		KC))		(C)		(20)
11570	V	38.94		8.10	47.04		74	54	-6.96
17355	V	39.05		9.65	48.7		68.2		-19.5
	V								
				11a CH165	: 5825MHz				
Eroguenov	Ant. Pol.	Peak	AV	Correctio	Emissic	n Level	Peak limit	AV limit	Margin
Frequency (MHz)	H/V	reading	reading	n Factor				(dBµV/m)	(dB)
(1711 12)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμ ν/ιιι)	(αΒμ ۷/111)	(ub)
11650	Н	37.68		8.12	45.8		74	54	-8.2
17475	Н	36.13		9.62	45.75		68.2		-22.45
	Н								
11650	V	38.72	1	8.12	46.84)	74	54	-7.16
17475	٧	38.46		9.62	48.08		68.2) !	-20.12
	V								
			11n	(HT20) CH	149: 5745N	ЛHz			
	Ant Dal	Peak	AV	Correctio	Emissis	n Level	Da alı lineit	Λ\ / Ii it	Manain
Frequency (MHz)	Ant. Pol. H/V	reading	reading	n Factor	EIIIISSIC		Peak limit (dBµV/m)		Margin (dB)
(1011-12)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(ασμν/ιιι)	(dBµV/m)	(ub)
					(dBµV/m)	(dBµV/m)			
11490	(H)	38.92	-420	8.09	47.01	Q <u></u>	74	54	-6.99
17235	1	38.54		9.67	48.21	<u></u>	68.2		-19.99
	Н								
<u></u>			1			1		•	
11490	V	39.88		8.09	47.97		74	54	-6.03
17235	V	37.21		9.67	46.88		68.2		-21.32
	V								

			11n	(HT20) CH	157: 5785N	ИНz			
Frequency	Ant. Pol. H/V	Peak reading	AV reading	Correctio n Factor		n Level	Peak limit		Margin (dB)
(MHz)	⊓/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμν/ιιι)	(ασμν/π)	(ub)
11570	Н	38.46		8.10	46.56		74	54	-7.44
17355	Н	39.73		9.65	49.38		68.2		-18.82
	Н.					-,. 		<u></u>	
	(.C)		(, G)			G')		(.c)	
11570	V	38.11		8.10	46.21	J	74	54	-7.79
17355	V	39.59		9.65	49.24		68.2		-18.96
	V								
			11n	(HT20) CH	165: 5825N	ИHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	n Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	K H	38.67	<u> </u>	8.12	46.79	<u> </u>	74	54	-7.21
17475	Н	37.13		9.62	46.75		68.2		-21.45
	Н								
					Ž.			•	
11650	V	38.92		8.12	47.04		74	54	-6.96
17475	V	39.46		9.62	49.08		68.2		-19.12
	V								
			11n	(HT40) CH	151: 5755N	ИHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	ssion Level Peak limit		AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11510	Н	40.03		8.09	48.12		74	54	-5.88
17265	Н	37.16		9.67	46.83		68.2		-21.37
	Н								
								<u> </u>	
11510	V	41.28		8.09	49.37		74	54	-4.63
17265	V	38.94		9.67	48.61)	68.2	(2)	-19.59
	V								
			11n	(HT40) CH	159: 5795N	ИНz			
	Ant Dal	Peak	AV	Correctio	Emissis	n Level	Doole lineit	Λ\ / lime i4	Marain
Frequency (MHz)	Ant. Pol. H/V	reading	reading	n Factor			Peak limit	AV limit (dBµV/m)	Margin (dB)
(111112)	, •	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(35,47,111)	(αΣμ ν/ιιι)	(42)
11590	11	38.53		8.10	46.63		74	54	-7.37
17385	H	38.78	- 1, C	9.65	48.43	G `}	68.2	(-19.77
	H					<u> </u>			
11590	V	38.16		8.10	46.26		74	54	-7.74
17385	V	37.22		9.65	46.87		68.2		-21.33

٧

Report No.: TCT230619E909 11ac(VHT20) CH149: 5745MHz ΑV Correctio Peak **Emission Level** Frequency Ant. Pol. Peak limit **AV limit** Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ (dBµV/m) (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 11490 Η 40.12 8.09 48.21 74 54 -5.7917235 Н 37.48 9.67 -21.05 47.15 68.2 Н ---V 40.29 11490 ---8.09 48.38 -5.6274 54 17235 ٧ 38.61 9.67 48.28 68.2 -19.9211ac(VHT20) CH157: 5785MHz ΑV Peak Correctio Ant. Pol. **Emission Level** Peak limit **AV limit** Frequency Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) (dBµV) (dBµV) (dB/m) Peak AV $(dB\mu V/m) \mid (dB\mu V/m)$ 11570 Н 38.39 8.10 46.49 74 54 -7.51 17355 Н 36.88 9.65 68.2 46.53 -21.67 Η ---٧ 11570 37.57 8.10 45.67 74 54 -8.33 17355 9.65 ٧ 38.91 ---48.56 ---68.2 ----19.64٧ ---11ac(VHT20) CH165: 5825MHz Peak ΑV Correctio Frequency Ant. Pol. **Emission Level** Peak limit **AV limit** Margin n Factor reading reading (MHz) H/V (dBµV/m) (dBµV/m) (dB) AV (dBµV) (dBµV) (dB/m) Peak $(dB\mu V/m) \mid (dB\mu V/m)$ 11650 Η 40.64 8.12 48.76 -5.2474 54 17475 Η 38.13 ---9.62 47.75 ---68.2 ----20.45Η 11650 ٧ 38.72 8.12 46.84 ---74 54 -7.16 17475 V 40.06 9.62 49.68 68.2 -18.52---------/---------11ac(VHT40) CH151: 5755MHz Peak ΑV Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV limit** Margin reading reading n Factor (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak AV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 11510 Н 39.42 8.09 -6.4947.51 74 54 17265 Н 37.85 9.67 47.52 68.2 -20.68 Н -4-1-----------------11510 ٧ 40.77 8.09 48.86 74 54 -5.14 17265 ٧ 36.14 ---9.67 45.81 68.2 ----22.39

Report No.: TCT230619E909 11ac(VHT40) CH159: 5795MHz Peak ΑV Correctio Ant. Pol. **Emission Level AV** limit Frequency Peak limit Margin n Factor reading reading (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 40.36 11590 Η 8.10 48.46 74 54 -5.5417385 Н 37.05 9.65 46.7 68.2 -21.5 Н ---11590 V 39.72 ---8.10 47.82 74 54 -6.18 ٧ 17385 38.49 9.65 -20.06 48.14 68.2 11ac(VHT80) CH155: 5775MHz ΑV Peak Correctio Ant. Pol. **Emission Level** Peak limit **AV** limit Frequency Margin reading reading n Factor (MHz) H/V $(dB\mu V/m)$ (dBµV/m) (dB) AV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) (dBµV/m) 11550 Н 40.61 8.09 48.7 74 54 -5.3 17325 Н 38.99 9.66 68.2 -19.55 48.65 Η ---11550 ٧ 41.00 8.09 49.09 74 54 -4.9117325 ٧ 38.58 9.66 ---48.24 68.2 ----19.96

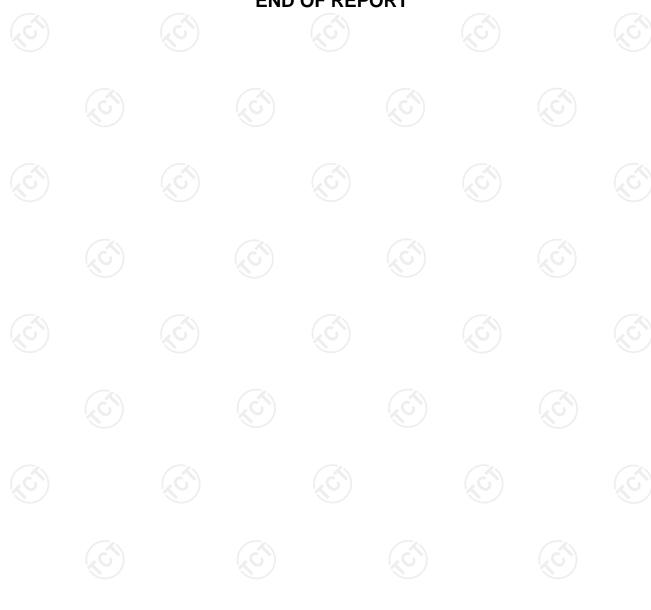
Note:

٧

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.


Appendix B: Photographs of Test Setup

Refer to the test report No. TCT230619E901

Appendix C: Photographs of EUT

Refer to the test report No. TCT230619E901

*****END OF REPORT****

Page 36 of 36

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com