

Test Report22-1-0126501T009a

Number of pages:	35	Date of Report:	2023-Dec-20
Testing company:	cetecom advanced GmbH Untertuerkheimer Str. 6-10 66117 Saarbruecken GERMANY	Applicant:	Dryad Networks GmbH
Product: Model:	Wildfire Sensor WILDFIR-14		
FCC ID:	2BAH4WILDFIR-14	IC:	30127-WILDFIR14
Testing has been carried out in accordance with:	Title 47 CFR, Chapter I FCC Regulations, Subchapter A Subpart C: § 15.247 Operation within the bands 902–928 MHz, 2400–2483.5 MHz, and 5725– 5850 MHz ISED-Regulations Radio Standards Specification RSS-Gen, Issue 5 General Requirements for Compliance of Radio Apparatus RSS-247, Issue 3 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Device Deviations, modifications or clarifications (if any) to above mentioned documents are written in each section under "Test method and limit".		
Tested Technology:	915 MHz LoRa		
Test Results:	☑ The EUT complies with the require the test. The test results relate only to devices		
Signatures:	B.Eng. Martin Nunier Lab Manager Authorization of test report		Timo Franke Test Manager Responsible of test report

Table of Contents

Tabl	le of <i>i</i>	Annex	3
1	Ge	neral information	4
1	.1	Disclaimer and Notes	4
1	2	Attestation	4
1	.3	Summary of Test Results	5
1	4	Summary of Test Methods	6
2	Ad	ministrative Data	7
2	2.1	Identification of the Testing Laboratory	7
2	2.2	General limits for environmental conditions	7
2	2.3	Test Laboratories sub-contracted	7
2	2.4	Organizational Items	7
2	2.5	Applicant's details	7
2	2.6	Manufacturer's details	7
2	2.7	Equipment under Test (EUT)	8
2	2.8	Untested Variant (VAR)	8
2	2.9	Auxiliary Equipment (AE)	8
2	2.10	Connected cables (CAB)	8
2	2.11	Software (SW)	8
2	2.12	EUT set-ups	8
2	2.13	EUT operation modes	9
3	Equ	uipment under test (EUT)	.10
3	8.1	General Data of Main EUT as Declared by Applicant	.10
3	8.2	Detailed Technical data of Main EUT as Declared by Applicant	.10
3	8.3	Modifications on Test sample	.10
4	Me	easurements	.11
4	1.1	Occupied Channel Bandwidth 99%	.11
4	1.2	Minimum Emission Bandwidth 6 dB / 20 dB	.12
4	1.3	Maximum Peak conducted output power	.13
4	1.4	Power spectral density	.15
4	1.5	Conducted Band-Edge emissions	.16
4	1.6	Emissions in non-restricted frequency bands	.17
4	l.7	Carrier Frequency Separation	.19
4	1.8	Number of Hopping Channels	.20
4	1.9	Time of Occupancy	
4	1.10	Radiated field strength emissions below 30 MHz	.22
4	1.11	Radiated field strength emissions 30 MHz – 1 GHz	
4	1.12	Radiated field strength emissions above 1 GHz	

4	1.13	Equipment lists	.31
5	Re	sults from external laboratory	.33
6	Ор	pinions and interpretations	.33
7	Lis	t of abbreviations	.33
8	Me	easurement Uncertainty valid for conducted/radiated measurements	.34
9	Ve	rsions of test reports (change history)	.35

Table of Annex				
Annex No.	Contents	Reference Description	Total Pages	
Annex 1	Test result diagrams	TR22-1-0126501T009a-A1	74	
Annex 2	Internal photographs of EUT	Provided by applicant		
Annex 3	External photographs of EUT	TR22-1-0126501T009a-A3	6	
Annex 4	Test set-up photographs	TR22-1-0126501T009a-A4	7	
The listed attachments are separate documents.				

1 General information

1.1 Disclaimer and Notes

The test results of this test report relate exclusively to the test item specified in this test report as specified in chapter 2.7. cetecom advanced does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of cetecom advanced.

The testing service provided by cetecom advanced has been rendered under the current "General Terms and Conditions for cetecom advanced".

cetecom advanced will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the cetecom advanced test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the cetecom advanced test report include or imply any product or service warranties from cetecom advanced, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by cetecom advanced.

All rights and remedies regarding vendor's products and services for which cetecom advanced has prepared this test report shall be provided by the party offering such products or services and not by cetecom advanced.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

The test report must always be reproduced in full; reproduction of an excerpt only is subject to written approval of the testing laboratory. The documentation of the testing performed on the tested devices is archived for 10 years at cetecom advanced.

Also we refer on special conditions which the applicant should fulfill according §2.927 to §2.948, special focus regarding modification of the equipment and availability of sample equipment for market surveillance tests.

1.2 Attestation

I declare that all measurements were performed by me or under my supervision and that all measurements have been performed and are correct to my best knowledge and belief to Industry Canada standards. All of the above requirements are met in accordance with enumerated standards.

1.3 Summary of Test Results

The EUT integrates 915 MHz LoRa technology. Other implemented wireless technologies were not considered within this test report.

	Reference	Reference	Dece	Domonik	Desult
Test case	Clause FCC 🛛	Clause ISED 🛛	Page	Remark	Result
Maximum Peak conducted output power	§15.247(b)(2) §15.247(b)(3)	RSS-247, Issue 2, §5.4(a)	14		PASSED
Power spectral density	§15.247(e)(f)	RSS-247, Issue 2, §5.2(b) §5.3(a), §5.3(b)	15		PASSED
<u>Emission Bandwidth 20 dB (FHSS)</u> Emission Bandwidth 6 dB (DTS)	§15.247(a)(1)(i) §15.247(a)(2)	RSS-247, Issue 2, §5.1(a)(b) (FHSS) §5.2(a) (DTS)	12		PASSED
Carrier Frequency Separation	§15.247(a)(1)	RSS-247, Issue 2, §5.1(b)	19		PASSED
Number of Hopping Channels	§15.247(a)(1)(i)	RSS-247, Issue 2, §5.1(c)	20		PASSED
Time of Occupancy	§15.247(a)(1)(i) §15.247(f)	RSS-247, Issue 2, §5.1(c)	21		PASSED
Occupied Channel Bandwidth 99%	2.1049(h)	RSS-Gen, Issue 5, §6.7	11		PASSED
Emissions in non-restricted frequency bands	§15.247(d)	RSS-247, §5.5	18		PASSED
Conducted Band-Edge emissions	§15.247(d)	RSS-247, §5.5 RSS-Gen: Issue 5, §8.9 Table 5+6+7	16		PASSED
Radiated field strength emissions below 30 MHz	§15.209(a) §15.205(a)	RSS-Gen: Issue 5 §8.9 Table 6	25		PASSED
Radiated field strength emissions 30 MHz – 1 GHz	§15.209(a) §15.247(d) §15.205(a)	RSS-Gen: Issue 5 §8.9 Table 5+7 RSS-247, Issue 2, §5.5	28		PASSED
Radiated field strength emissions above 1 GHz	§15.209(a) §15.247(d) §15.205(a)	RSS-Gen: Issue 5, §8.9 Table 5+7 RSS-247, Issue 2, §5.5	30		PASSED
AC-Power Lines Conducted Emissions	§15.207	RSS-Gen Issue 5, §8.8, Table 4			N/A

PASSED The EUT complies with the essential requirements in the standard. FAILED

The EUT does not comply with the essential requirements in the standard.

N/A Test case does not apply to the test object. NP

The test was not performed by the cetecom advanced laboratory.

Decision Rule: cetecom advanced GmbH follows ILAC G8:2019 chapter 4.2.1 (Simple Acceptance Rule).

1.4 Summary of Test Methods

Test case	Test method
Maximum Peak conducted output power	ANSI C63.10:2020, §7.8.5, §11.9
Power spectral density	ANSI C63.10:2020, §11.10
Emission Bandwidth	ANSI C63.10:2020, §11.8
Occupied Channel Bandwidth 99%	ANSI C63.10:2020, §6.9.3
Carrier Frequency Separation	ANSI C63.10:2020, §7.8.2
Number of Hopping Channels	ANSI C63.10:2020, §7.8.3
Time of Occupancy	ANSI C63.10:2020, §7.8.4
Emissions in non-restricted frequency bands	ANSI C63.10:2020, §11.11, §6.10.5
Radiated field strength emissions below 30 MHz	ANSI C63.10-2020, §6.3, §6.4
Radiated field strength emissions 30 MHz- 1 GHz	ANSI C63.4-2014, §8.2.3; ANSI C63.10-2020 §6.3, § 6.5
Radiated field strength emissions above 1 GHz	ANSI C63.4-2014 §8.3; ANSI C63.10-2020 §6.3, § 6.6
Band-Edge emissions	ANSI C63.10-2020, §6.10, §7.8.7.2, §11.12
AC-Power Lines Conducted Emissions	ANSI C63.4-2014 §7; ANSI C63.10-2020 § 6.2

2 Administrative Data

2.1 Identification of the Testing Laboratory

Company name:	cetecom advanced GmbH
Address:	Untertuerkheimer Str. 6-10
	66117 Saarbruecken
	Germany
Responsible for testing laboratory:	DiplIng. (FH) Andreas Luckenbill M.Sc.
Accreditation scope:	DAkkS Webpage: <u>FCC ISED</u>
IC Lab company No. / CAB ID:	3462D / DE0005
Test location 1:	Im Teelbruch 116; 45219 Essen
Test location 2:	

2.2 General limits for environmental conditions

Temperature:	22±2 °C
Relative. humidity:	45±15% rH

2.3 Test Laboratories sub-contracted

Company name:	

2.4 Organizational Items

Responsible test manager:	Timo Franke
Receipt of EUT:	2023-May-09
Date(s) of test:	2023-Jul-04 to 2023-Nov-28
Version of template:	23.1101

2.5 Applicant's details

Applicant's name:	Dryad Networks GmbH	
Address:	Eisenbahnstraße 37	
	16225 Eberswalde	
	Brandenburg	
	Germany	
Contact Person:	Carsten Brinkschulte	
Contact Person's Email:	carsten@dryad.net	

2.6 Manufacturer's details

Manufacturer's name:	Dryad Networks GmbH	
Address:	Eisenbahnstraße 37	
	16225 Eberswalde	
	Germany	

2.7 Equipment under Test (EUT)

EUT No.*)	Sample No.	Product	Model	Туре	SN	HW	sw
EUT 1	22-1-01265S34_C01	Wildfire Sensor	WILDFIR-14	SILVANET WILDFIRE SENSOR	C10	WILDFIR-14	1.5.0
EUT 2	22-1-01265S38_C01	Wildfire Sensor	WILDFIR-14	SILVANET WILDFIRE SENSOR	119	WILDFIR- 14_01	1.5.0
EUT 3	22-1-01265S39_C01	Wildfire Sensor	WILDFIR-14	SILVANET WILDFIRE SENSOR	113	WILDFIR-14	1.5.0

*) EUT short description is used to simplify the identification of the EUT in this test report.

2.8 Untested Variant (VAR)

VAR	Sample No.	Product	Model	Туре	SN	нw	SW
No.*)	Sample No.	FIGURE	Widdel	Type	314	1100	300

*) The listed additional untested model variant(s) (VAR) is/are not object of evaluation of compliance. For further information please see Annex 5: Declaration of applicant of model differences.

If the table above does not show any other line than the headline, no untested variants are available.

2.9 Auxiliary Equipment (AE)

AE No.*)	Sample No.	Auxiliary Equipment	Model	SN	нw	sw
AE 1		STLINK	V3SET			
AE 2		Laptop HP	EliteBook		Intel Core I7	Window s 7
AE 3	22-1-01265S30_C01	Wildfire Sensor	WILDFIR-14 (Housing)			

*) AE short description is used to simplify the identification of the auxiliary equipment in this test report. If the table above does not show any other line than the headline, no AE was used during testing nor was taken into account for evaluation

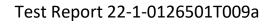
2.10 Connected cables (CAB)

CAB No.*)	Sample No.	Cable Type	Connectors / Details	Length
CAB 1		USB-Cable	Micro USB cable	80 cm

*) CAB short description is used to simplify the identification of the connected cables in this test report. If the table above does not show any other line than the headline, no cable was used during testing nor was taken into account for evaluation

2.11 Software (SW)

SW	Sample No.	SW Name	Description	SW Status
No.*)	Sample No.	Swiname	Description	SVV Status


*) SW short description is used to simplify the identification of the used software in this test report. If the table above does not show any other line than the headline, no SW was used during testing nor was taken into account for evaluation.

2.12 EUT set-ups

set-up no.*)	Combination of EUT and AE	Description
SET. 1	EUT 1 (+ AE 1 + AE 2 + AE 3 + CAB 1) ¹⁾	Used for radiated measurements < 30MHz
SET. 2	EUT 2 (+ AE 1 + AE 2 + AE 3 + CAB 1) ¹⁾	Used for radiated measurements > 30 MHz
SET. 3	EUT 3 + AE 1 + AE 2 + AE 3 + CAB 1 ¹⁾	Used for conducted measurements

*) EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

1) AE 1, AE 2, AE 3 and CAB 1 are just used for setup and are not part of the measurement.

2.13 EUT operation modes

EUT operating mode no.*1)	Operating modes	Additional information
OP. 1	TX on fixed channel in DTS- Mode	EUT was set to a fixed channel with LoRa DTS digital modulation parameter. BW 500 kHz; SF12; PWR setting 14 dBm Firmware used "sylva-cert_2023.08.22_1.bin"
OP. 2	TX on fixed channel in FHSS- Mode	EUT was set to a fixed channel with LoRa FHSS hopping parameter. BW 125 kHz; SF07; PWR setting 14 dBm Firmware used "sylva-cert_2023.08.22_1.bin"
OP. 3	TX with random hopping in FHSS- Mode	EUT was set to FHSS mode with random hopping enabled. Firmware used "EN_Silva_cert_FHSS_debug.bin"

*1) EUT operating mode no. is used to simplify the test report.

3 Equipment under test (EUT)

3.1 General Data of Main EUT as Declared by Applicant

Firmware	□ for normal use	□ for normal use				
Power supply	AC Mains					
	DC Mains *)	5 V DC -				
	Battery	-				
Operational conditions	T _{nom} = 21 °C	T _{min} = -40 °C	T _{max} = +85 °C			
EUT sample type	Pre-Production	Pre-Production				
Weight	0.100 kg	0.100 kg				
Size [LxWxH]	8.5 cm x 1.0 cm	8.5 cm x 1.0 cm				
Interfaces/Ports -						
For further details refer Applican	ts Declaration & following techr	nical documents				
*): EUT is powered by 2 capacitor	· · ·		81 I			

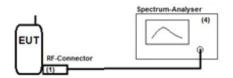
Supply with 5 V DC were connected to the solar cell output to keep the capacitors charged so that the EUT maintain in testmode and not cease operation.

3.2 Detailed Technical data of Main EUT as Declared by Applicant

Frequency Band	902 MHz – 928 MHz					
Type of Modulation Data Rate	LoRa	LoRa				
Number of Channels (USA/Canada -bands)	DTS: 8	FHSS: 64				
Nominal Channel Bandwidth	DTS: 500 kHz	FHSS: 125 kHz				
	UWLAN Bluetooth Classic					
Other installed options	Bluetooth LE (not tested)	l within this report)				
	□ Cellular transceiver (2G/3G/4G/5G/GPS, not tested in this report)					
	⊠ None					
Antenna Type	Integral antenna					
Antenna Gain	Max.: 2.6 dBi					
Rated Output Power	Measured: 10.12 dBm					
EIRP Power (Calculated EIRP)	10.12 dBm + 2.6 dBi= 12.72 dBm					
FCC label attached	No					
Test firmware / software and storage location	EUT					
For further details refer Applicants Declar	ation & following technical	documents				
Description of Reference Document (supp	lied by applicant)	Version	Total Pages			

3.3 Modifications on Test sample

Additions/deviations or exclusions


4 Measurements

4.1 Occupied Channel Bandwidth 99%

4.1.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings of the spectrum-analyzer.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Measurement is made using Rohde & Schwarz TS8997 test system.

4.1.2 Measurement Location

Test site 120910 - Radio Laboratory 1 (TS 8997)

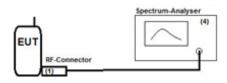
4.1.3 Limit

When the occupied bandwidth limit is not stated in the applicable reference measurement method, the transmitted signal bandwidth shall be reported as the 99% emission bandwidth, as calculated or measured.

4.1.4 Result

Diagram	Mode	Channel	Frequency [MHz]	99% Occupied bandwidth [MHz]
<u>D01 001</u>	OP. 1 / DTS	Low	903	502.198
<u>D01_002</u>	OP. 1 / DTS	Mid	909.4	503.131
<u>D01_003</u>	OP. 1 / DTS	High	914.2	502.994

Diagram	Mode	Channel	Frequency [MHz]	99% Occupied bandwidth [MHz]
D05 001	OP. 2 / FHSS	Low	902.3	125.475
<u>D05_002</u>	OP. 2 / FHSS	Mid	908.7	125.518
<u>D05_003</u>	OP. 2 / FHSS	High	914.9	125.406



4.2 Minimum Emission Bandwidth 6 dB / 20 dB

4.2.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings of the spectrum-analyzer.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

4.2.2 Measurement Location

Test site	120910 - Radio Laboratory 1 (TS 8997)
-----------	---------------------------------------

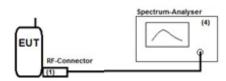
4.2.3 Limit

Limit [kHz]	Mode	Detector	RBW / VBW [kHz]
6 dB BW ≥ 500 kHz	DTS	MaxPeak	10/30
20 dB BW ≤ 500 kHz	FHSS	MaxPeak	3 / 10

4.2.4 Result

Diagram	Mode	Channel	Frequency [MHz]	6 dB bandwidth [kHz]	Result
<u>D01_004</u>	OP. 1 / DTS	Low	903	649.4	Passed
<u>D01 005</u>	OP. 1 / DTS	Mid	909.4	654.3	Passed
<u>D01 006</u>	OP. 1 / DTS	High	914.2	654.3	Passed

Diagram	Mode	Channel	Frequency [MHz]	20 dB bandwidth [kHz]	Result
<u>D05_004</u>	OP. 2 / FHSS	Low	902.3	138	Passed
<u>D05_005</u>	OP. 2 / FHSS	Mid	908.7	138	Passed
<u>D05_006</u>	OP. 2 / FHSS	High	914.9	138	Passed



4.3 Maximum Peak conducted output power

4.3.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to power meter (3) or spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

To at weath a d	Maximum peak conducted output power	
Test method	Integrated band power method(RBW < DTS-bandwidth of the signal)	
Remarks		

The measurement was performed in non-hopping transmission mode with the carrier set to lowest/middle and highest channel.

EUT settings

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate

4.3.2 Measurement Location

Test site	120910 - Radio Laboratory 1 (TS 8997)
-----------	---------------------------------------

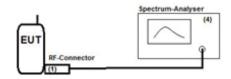
4.3.3 Limit

Frequency Range [MHz]	Mode	Limit [W]	Limit [dBm]	Detector	RBW / VBW
902 - 928	DTS	1	30	RMS	20 / 50 kHz
902 - 928	FHSS	1	30	MaxPeak	1 / 3 MHz

4.3.4 Result

Diagram	Mode	Channel	Frequency [MHz]	Max RMS Power [dBm]	Result
D02 001	DTS	Low	903	9.52	Passed
<u>D02_002</u>	DTS	Mid	909.4	9.56	Passed
<u>D02_003</u>	DTS	High	914.2	9.62	Passed

Diagram	Mode	Channel	Frequency [MHz]	Max Peak Power [dBm]	Result
<u>D09_001</u>	FHSS	Low	902.3	10.01	Passed
<u>D09_002</u>	FHSS	Mid	908.7	10.05	Passed
D09 003	FHSS	High	914.9	10.12	Passed



4.4 Power spectral density

4.4.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings of the spectrum-analyzer.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Measurement is made using Rohde & Schwarz TS8997 test system.

Test method	AVGPSD Method
Remarks	

EUT settings

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions.

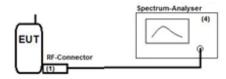
4.4.2 Measurement Location

Test site	120910 - Radio Laboratory 1 (TS 8997)

4.4.3 Limit

Limit [dBm]	Mode	Detector	RBW / VBW [kHz]
≤ 8	DTS	RMS	3

4.4.4 Result


Diagram	Mode	Channel	Frequency	PSD	Result
			[MHz]	[dBm]	
<u>D03 001</u>	OP. 1 / DTS	Low	903	-10.67	Passed
<u>D03_002</u>	OP. 1 / DTS	Mid	909.4	-10.6	Passed
<u>D03_003</u>	OP. 1 / DTS	High	914.2	-10.7	Passed

4.5 Conducted Band-Edge emissions

4.5.1 Description of the general test setup and methodology, see below example:

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 6)

For FHSS-systems hopping mode was switched-off so fixed three different channels could be measured. DTS-system set to a fixed channel.

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

4.5.2 Measurement Location

Test site	120910 - Radio Laboratory 1
	120520 ((dd)0 2000(dt0)) 1

4.5.3 Limit

Frequency Range [MHz]	Pk Limit [dBc]	Detector	RBW / VBW [kHz]
902 - 928	20	Peak	100 / 300
902 - 928	30	Peak	100 / 300

4.5.4 Result

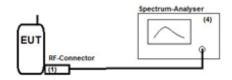
Non-restricted bands near-by

Diagram	Channel	Mode	Peak [dBc]	Result
<u>D04 000</u>	Low	OP. 1 / DTS	37.71	Passed
<u>D04_999</u>	High	OP. 1 / DTS	59.02	Passed

Diagram	Channel	Mode	Peak [dBc]	Result
<u>D10_000</u>	Low	OP. 2 / FHSS	38.80	Passed
<u>D10_999</u>	High	OP.2 / FHSS	59.09	Passed

Diagram	Channel	Mode	Peak [dBc]	Result		
<u>D10 111</u>	Hopping	OP. 3 / FHSS	54.42 ¹⁾	Passed		
Remark: for more information and graphical plot see annex A1TR22-1-0126501T009a-A1						

Remark 1: one diagram only to show low and high band-edge. Only low band-edge listed. High band-edge far away from limit.



4.6 Emissions in non-restricted frequency bands

4.6.1 Description of the general conducted test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings of the spectrum-analyzer.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Measurement is made using Rohde & Schwarz TS8997 test system.

The measurements were performed with the RBW set to 100 kHz & maximum carrier level was indicated with MAX-Hold positive peak detector using markers. Then a frequency line was set 20 or 30 dB below this measured maximum carrier level.

Then using RBW 100 kHz & spectrum analyzer span from 150 kHz to 25 GHz in three steps spurious emissions were measured with MAX-Hold positive peak detector.

The sweep time set as long as necessary to capture the full signal burst per hopping channel. The burst on-period is captured by setting appropriate markers in the rising and falling edges.

EUT settings

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked e.g. data rates which EUT can operate.

4.6.2 Measurement Location

Test site

120910 - Radio Laboratory 1 (TS 8997)

4.6.3 Limit

Frequency Range [MHz]	Mode	Limit [dBc]
0.15 – 9500	DTS	30 ²
0.15 - 9500	FHSS	20 ¹

Remark 1: limit where conducted power measurement complies based on peak detector

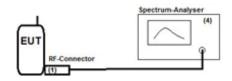
Remark 2: limit where conducted power measurement complies based on RMS detector

4.6.4 Result

Maximum Level Peak [dBc]

Diagram	Mode	Channel	Frequency [MHz]	Maximum level [dBm]	Limit [dBm]	Result
<u>D04_101</u>	DTS	Low			-19.97	Info
<u>D04 102</u>	DTS	Low	1806.25	-45.60		Passed
<u>D04_201</u>	DTS	Mid			-19.91	Info
<u>D04 202</u>	DTS	Mid	1819.25	-46.37		Passed
<u>D04 301</u>	DTS	High			-19.86	Info
<u>D04 302</u>	DTS	High	1828.75	-46.16		Passed

Diagram	Mode	Channel	Frequency [MHz]	Maximum level [dBm]	Limit [dBm]	Result
<u>D10_101</u>	FHSS	Low			-9.98	Info
<u>D10_102</u>	FHSS	Low	1804.75	-45.66		Passed
<u>D10_201</u>	FHSS	Mid			-9.93	Info
<u>D10_202</u>	FHSS	Mid	1817.25	-45.99		Passed
<u>D10_301</u>	FHSS	High			-9.85	Info
<u>D10_302</u>	FHSS	High	1830.00	-46.44		Passed



4.7 Carrier Frequency Separation

4.7.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector. The direct RF-path is connected to the spectrum – analyzer for specific RF-measurements. The specific attenuation losses for both signal paths/branches are determined prior to the measurement within a set-up calibration. These are then taken into account by correcting the measurement readings on the spectrum-analyzer.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 6)

EUT settings

For FHSS-systems hopping mode was switched-on. The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

4.7.2 Measurement Location

Test site	120910 - Radio Laboratory 1	
-----------	-----------------------------	--

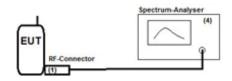
4.7.3 Limit

Limit	Detector [MaxHold]	RBW / VBW [kHz]
≥ 25 kHz or 20 dB bandwidth	MaxPeak	10 / 1000

4.7.4 Result

Diagram	Mode	Channel	Frequency Separation[kHz]	Result
<u>D06 001</u>	OP. 3 / FHSS	Hopping	201.62	Passed

Remark: for more information and graphical plot see annex A1**TR22-1-0126501T009a-A1** Remark 1: hopping mode switched on, no specific channel or frequency selected.



4.8 Number of Hopping Channels

4.8.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector. The direct RF-path is connected to the spectrum – analyzer for specific RF-measurements. The specific attenuation losses for both signal paths/branches are determined prior to the measurement within a set-up calibration. These are then taken into account by correcting the measurement readings on the spectrum-analyzer.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 6)

Measurement is made using Rohde & Schwarz TS8997 test system.

EUT settings

For FHSS-systems hopping mode was switched-on.

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

4.8.2 Measurement Location

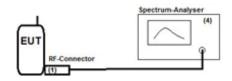
Test site	120910 - Radio Laboratory 1

4.8.3 Limit

20 dB bandwidth of hopping channel	Limit [Number of happing channels]	Detector [MaxHold]	RBW / VBW [kHz]
≤ 250 kHz	≥ 50	MaxPeak	20 / 1000
≥ 250 kHz	≥ 25	MaxPeak	20 / 1000

4.8.4 Result

Diagram	Mode	Number of hopping channels	Result			
<u>D07_001</u>	OP. 3 / FHSS	64	Passed			
Demarky for more information and graphical plat see appay A1TP22 1 01265017000- A1						



4.9 Time of Occupancy

4.9.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector. The direct RF-path is connected to the spectrum – analyzer for specific RF-measurements. The specific attenuation losses for both signal paths/branches are determined prior to the measurement within a set-up calibration. These are then taken into account by correcting the measurement readings on the spectrum-analyzer.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 6)

EUT settings

For FHSS-systems hopping mode was switched-on. The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

4.9.2 Measurement Location

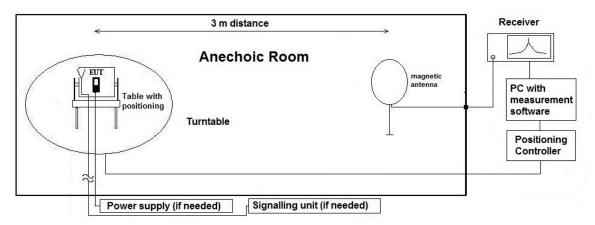
|--|

4.9.3 Limit

20 dB bandwidth of hopping channel	Limit [s]	Detector [MaxHold]	RBW / VBW [kHz]
≤ 250 kHz	≤ 0.4 s over 20 s	MaxPeak	100 / 1000
≥ 250 kHz	≤ 0.4 s over 10 s	MaxPeak	100 / 1000

4.9.4 Result

Diagram	Mode	Time of occupancy [ms]	Result
D08 001	OP. 3 / FHSS 10 s	205.89	Passed
<u>D08_002</u>	OP. 3 / FHSS 20 s	203.89	Passed


4.10 Radiated field strength emissions below 30 MHz

4.10.1 Description of the general test setup and methodology, see below example:

Evaluating the radiated field emissions are done first by an exploratory emission measurement and a final measurement for most critical frequencies determined.

The loop antenna was placed at 1 m height above ground plane and 3 m measurement distance from set-up for investigations. Because of reduced measurement distance, correction data were applied, as stated in chapter "General Limit - Radiated field strength emissions below 30 MHz". The tests are performed in the semi anechoic room recognized by the regulatory commission.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (step 90°, range 0°to 360°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT), the emission spectrum was recorded.

The loop antenna was moved at least to 2-perpendicular axes (antenna vector in direction of EUT and parallel to EUT) in order to maximize the emissions. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a data reduction table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worstcase operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position).

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

$E_{C} = E_{R} + AF + C_{L} + D_{F} - G_{A}$	AF = Antenna factor
	C _L = Cable loss
$M = L_{T} - E_{C}$	D _F = Distance correction factor (if used)
	E _c = Electrical field – corrected value
	E_R = Receiver reading
	G _A = Gain of pre-amplifier (if used)
	L _T = Limit
	M = Margin

All units are dB-units, positive margin means value is below limit.

4.10.2 Sample calculation

Raw- Value [dBuV/m]	Antenna factor	Distance Correction [dB]	Cable Loss	Preamplifier	Resulting correction value [dB]	Final result [dBuV/m]	Remarks
19.83	18.9	-70.75	0.18		-51.67	-31.83	30 to 3 m correction used according ANSI C63.10-2013

Remark: This calculation is based on an example value at 458 kHz

4.10.3 Measurement Location

Test site	120901 - SAC3 - Radiated Emission <1GHz

4.10.4 Correction factors due to reduced meas. distance (f < 30 MHz):

The used correction factors when the measurement distance is reduced compared to regulatory measurement distance, are calculated according Extrapolation formulas valid for EUT's with maximum dimension of 0.625xLambda. Formula 2+3+4 as presented in ANSI C63.10, Chapter 6.4.4 are used for the calculations of proper extrapolation factors

Frequency	f	Lambda	Far-Field	Distance Limit	1st	2nd Condition	Distance
Range	[kHz/MHz]	[m]	Point	accord. 15.209	Condition	(Limit distance	Correction
			[m]	[m]	(dmeas <	bigger dnear-	accord.
			[]	[]	Dnear-field)		Formula
					,	field)	
	9	33333.33	5305.17		fullfilled	not fullfilled	-80.00
	10	30000.00	4774.65		fullfilled	not fullfilled	-80.00
	20	15000.00	2387.33		fullfilled	not fullfilled	-80.00
	30	10000.00	1591.55		fullfilled	not fullfilled	-80.00
	40	7500.00	1193.66		fullfilled	not fullfilled	-80.00
	50	6000.00	954.93		fullfilled	not fullfilled	-80.00
	60	5000.00	795.78		fullfilled	not fullfilled	-80.00
	70	4285.71	682.09	300	fullfilled	not fullfilled	-80.00
	80	3750.00	596.83		fullfilled	not fullfilled	-80.00
	90	3333.33	530.52		fullfilled	not fullfilled	-80.00
kHz	100	3000.00	477.47		fullfilled	not fullfilled	-80.00
	125	2400.00	381.97		fullfilled	not fullfilled	-80.00
	200	1500.00	238.73		fullfilled	fullfilled	-78.02
	300	1000.00	159.16		fullfilled	fullfilled	-74.49
	400	750.00	119.37		fullfilled	fullfilled	-72.00
	490	612.24	97.44		fullfilled	fullfilled	-70.23
	500	600.00	95.49		fullfilled	not fullfilled	-40.00
	600	500.00	79.58		fullfilled	not fullfilled	-40.00
	700	428.57	68.21		fullfilled	not fullfilled	-40.00
	800	375.00	59.68		fullfilled	not fullfilled	-40.00
	900	333.33	53.05		fullfilled	not fullfilled	-40.00
	1.00	300.00	47.75		fullfilled	not fullfilled	-40.00
	1.59	188.50	30.00		fullfilled	not fullfilled	-40.00
	2.00	150.00	23.87		fullfilled	fullfilled	-38.02
	3.00	100.00	15.92		fullfilled	fullfilled	-34.49
	4.00	75.00	11.94		fullfilled	fullfilled	-32.00
	5.00	60.00	9.55		fullfilled	fullfilled	-30.06
	6.00	50.00	7.96		fullfilled	fullfilled	-28.47
	7.00	42.86	6.82		fullfilled	fullfilled	-27.13
	8.00	37.50	5.97		fullfilled	fullfilled	-25.97
	9.00	33.33	5.31		fullfilled	fullfilled	-24.95
	10.00	30.00	4.77	30	fullfilled	fullfilled	-24.04
	10.60	28.30	4.50		fullfilled	fullfilled	-23.53
MHz	11.00	27.27	4.34		fullfilled	fullfilled	-23.21
	12.00	25.00	3.98		fullfilled	fullfilled	-22.45
	13.56	22.12	3.52		fullfilled	fullfilled	-21.39
	15.00	20.00	3.18		fullfilled	fullfilled	-20.51
	15.92	18.85	3.00		fullfilled	fullfilled	-20.00
	17.00	17.65	2.81	4	not fullfilled	fullfilled	-20.00
	18.00	16.67	2.65	4	not fullfilled	fullfilled	-20.00
	20.00	15.00	2.39	4	not fullfilled	fullfilled	-20.00
	21.00	14.29	2.27	4	not fullfilled	fullfilled	-20.00
	23.00	13.04	2.08	4	not fullfilled	fullfilled	-20.00
	25.00	12.00	1.91		not fullfilled	fullfilled	-20.00
	27.00	11.11	1.77		not fullfilled	fullfilled	-20.00
	29.00	10.34	1.65		not fullfilled	fullfilled	-20.00
	30.00	10.00	1.59		not fullfilled	fullfilled	-20.00

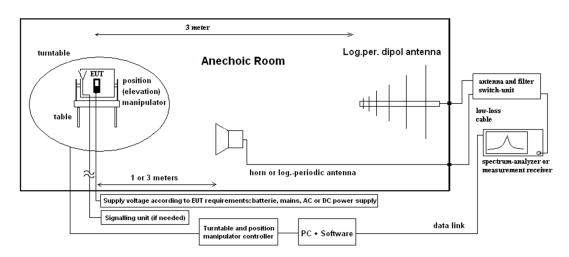
4.10.5 Limit

Radiated emissions limits, (3 meters)							
Frequency Range [MHz]	Limit [µV/m]			Detector	RBW [kHz]		
0.009 - 0.09	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	0.2		
0.09 - 0.11	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Quasi peak	0.2		
0.11 - 0.15	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	0.2		
0.15 – 0.49	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	9		
0.49 - 1.705	24000 / f	87.6 – 20Log(f) (kHz)	30	Quasi peak	9		
	[kHz]						
1.705 - 30	30	29.5	30	Quasi peak	9		

*Remark: In Canada same limits apply, just unit reference is different

4.10.6 Result

Diagram	Channel	Mode	Maximum Level [dBµV/m] Frequency Range	Result
			0.009 – 30 MHz	
<u>2.01a</u>	Low	mode 1 DTS	No peaks >6 dB margin found	Passed
<u>2.01b</u>	Low	mode 1 DTS	No peaks >6 dB margin found	Passed
<u>2.02a</u>	Mid	mode 1 DTS	No peaks >6 dB margin found	Passed
<u>2.02b</u>	Mid	mode 1 DTS	No peaks >6 dB margin found	Passed
<u>2.03a</u>	High	mode 1 DTS	No peaks >6 dB margin found	Passed
<u>2.03b</u>	High	mode 1 DTS	No peaks >6 dB margin found	Passed
<u>2.04a</u>	Low	mode 2 FHSS	No peaks >6 dB margin found	Passed
<u>2.04b</u>	Low	mode 2 FHSS	No peaks >6 dB margin found	Passed
<u>2.05a</u>	Mid	mode 2 FHSS	No peaks >6 dB margin found	Passed
<u>2.05b</u>	Mid	mode 2 FHSS	No peaks >6 dB margin found	Passed
<u>2.06a</u>	High	mode 2 FHSS	No peaks >6 dB margin found	Passed
<u>2.06b</u>	High	mode 2 FHSS	No peaks >6 dB margin found	Passed



4.11 Radiated field strength emissions 30 MHz – 1 GHz

4.11.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 16-1-4:2010 compliant semi anechoic room (SAR) and fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 90°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

Measurement antenna: horizontal and vertical, heights: 1,0 m and 1,82 m as worst-case determined by an exploratory emission measurements. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by main-taining the EUT's worst-case operation mode, cable position, etc. either on 10m OATS or 3m semi-anechoic room.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position). The measurement antenna height between 1 m and 4 m.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out

Formula:

$E_{C} = E_{R} + AF + C_{L} + D_{F} - G_{A}$ (1)	AF = Antenna factor
	C _L = Cable loss
$M = L_T - E_C$ (2)	D _F = Distance correction factor (if used)
	E _c = Electrical field – corrected value
	E _R = Receiver reading
	G _A = Gain of pre-amplifier (if used)
	L _T = Limit
	M = Margin

All units are dB-units, positive margin means value is below limit.

4.11.2 Sample calculation

Raw- Value [dBuV/m]	Antenna factor	Distance Correction [dB]	Cable Loss	Preamplifier	Resulting correction value [dB]	Final result [dBuV/m]	Remarks
32.7	22.25		3.1		25.35	58.05	

Remark: This calculation is based on an example value at 800.4MHz

4.11.3 Measurement Location

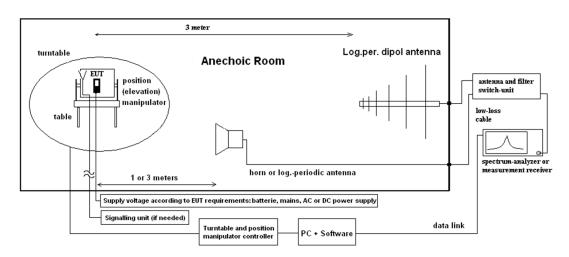
	Test site	120904 - FAC1 - Radiated Emissions
--	-----------	------------------------------------

4.11.4 Limit Spurious

Radiated emissions limits, (3 meters)								
Frequency Range [MHz]	Limit [µV/m]	Limit [dBµV/m]	Detector	RBW / VBW [kHz]				
30 - 88	100	40.0	Quasi peak	100 / 300				
88 - 216	150	43.5	Quasi peak	100 / 300				
216 - 960	200	46.0	Quasi peak	100 / 300				
960 - 1000	500	54.0	Quasi peak	100 / 300				

4.11.5 Result

Diagram	Channel	Mode	Maximum Level [dBµV/m] Frequency Range 30 – 1000 MHz	Result
<u>3.01a</u>	Low	OP. 1 / DTS	No peaks >6 dB margin found	Passed
<u>3.01b</u>	Low	OP. 1 / DTS	No peaks >6 dB margin found	Passed
<u>3.02a</u>	Mid	OP. 1 / DTS	No peaks >6 dB margin found	Passed
<u>3.02b</u>	Mid	OP. 1 / DTS	No peaks >6 dB margin found	Passed
<u>3.03a</u>	High	OP. 1 / DTS	No peaks >6 dB margin found	Passed
<u>3.03b</u>	High	OP. 1 / DTS	No peaks >6 dB margin found	Passed
<u>3.04a</u>	Low	OP.2 / FHSS	No peaks >6 dB margin found	Passed
<u>3.04b</u>	Low	OP.2 / FHSS	No peaks >6 dB margin found	Passed
<u>3.05a</u>	Mid	OP.2 / FHSS	No peaks >6 dB margin found	Passed
<u>3.05b</u>	Mid	OP.2 / FHSS	No peaks >6 dB margin found	Passed
<u>3.06a</u>	High	OP.2 / FHSS	No peaks >6 dB margin found	Passed
<u>3.06b</u>	High	OP.2 / FHSS	No peaks >6 dB margin found	Passed



4.12 Radiated field strength emissions above 1 GHz

4.12.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 18-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.55 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 15°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worstcase operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself over 3orthogonal axis and the height for EUT with large dimensions or three axis scan for portable/small equipment.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

E _C =	E _R +	A _F +	C _L +	D _F -	G_A	(1)

 $M = L_T - E_C$ (2)

- E_{C} = Electrical field corrected value
- E_R = Receiver reading

M = Margin

L_T = Limit

A_F = Antenna factor

 C_L = Cable loss

- D_F = Distance correction factor (if used)
- G_A = Gain of pre-amplifier (if used)

All units are dB-units, positive margin means value is below limit.

4.12.2 Sample calculation

Raw- Value [dBuV/m]	Antenna factor	Distance Correction [dB]	Cable Loss + Preamplifier	Resulting correction value [dB]	Final result [dBuV/m]	Remarks
29.37	41.20	-	24.28	16.92	46.3	CableLoss and PreAmp data in one data correction file

Remark: This calculation is based on an example value at 10 \mbox{GHz}

4.12.3 Measurement Location

Test site 1 – 18 GHz	120904 - FAC1 - Radiated Emissions

4.12.4 Limit

Radiated emissions limits, (3 meters)							
Frequency Range [MHz]	Limit [µV/m]	Limit [dBµV/m]	Detector	RBW / VBW [kHz]			
Above 1000	500	54	Average	1000 / 3000			
Above 1000	5000	74	Peak	1000 / 3000			

4.12.5 Result

Diagram	Channel	Mode	Maximum Level [dBμV/m] Frequency Range 1 – 10 GHz	Result
<u>4.01</u>	Low	mode 1 DTS	No peaks >6 dB margin found	Passed
<u>4.02</u>	Mid	mode 1 DTS	No peaks >6 dB margin found	Passed
<u>4.03</u>	High	mode 1 DTS	No peaks >6 dB margin found	Passed
<u>4.04</u>	Low	mode 2 FHSS	No peaks >6 dB margin found	Passed
<u>4.05</u>	Mid	mode 2 FHSS	No peaks >6 dB margin found	Passed
<u>4.06</u>	High	mode 2 FHSS	No peaks >6 dB margin found	Passed

4.13 Equipment lists

ID	Description 120901 - SAC3 - Radiated Emission <1GHz	Manufacturer	SerNo	CheckType calchk	Last Check cal: 2015-Jul-21	Interval cal: 10Y	Next Check cal: 2025-Jul-21
20442	Semi Anechoic Chamber	ETS-Lindgren Gmbh / Taufkirchen	-	caichk	cal: 2015-Jul-21 cal: -	cal: 10Y cal: -	cal: 2025-Jul-21 cal: -
20112				chin	chk: -	chk: -	chk: -
20482	filter matrix Filter matrix SAR 1	CETECOM GmbH	-	cnn	cal: -	cal: -	cal: -
20574	Biconilog Hybrid Antenna BTA-L	Frankonia GmbH / Heideck	980026L	cal	chk: - cal: 2022-Jun-15	chk: - cal: 36M	chk: - cal: 2025-Jun-15
20620	Test Receiver ESU26	Rohde & Schwarz Messgerätebau GmbH /	100362	cal	cal: 2023-May-24	cal: 12M	cal: 2025-5411-15
		Memmingen					
20885	Power Supply EA3632A	Agilent Technologies Deutschland GmbH	75305850	cnn	cal: -	cal: -	cal: -
25038	Loop Antenna HFH2-Z2	Rohde & Schwarz Messgerätebau GmbH /	879824/13	cal	chk: - cal: 2022-Jul-04	chk: - cal: 24M	chk: · cal: 2024-Jul-04
25050		Memmingen	07 5024/15	car	Cal. 2022 Jul 04	Cul: 24W	Cal. 2024 Jul 04
	120904 - FAC1 - Radiated Emissions			chk			
			9107-3699		chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
20020	Horn Antenna 3115 (Subst 1)	EMCO Elektronik GmbH	9107-3699	calchk	cal: 2021-Aug-17 chk: 2013-Apr-20	cal: 36M chk: 12M	cal: 2024-Aug-17
20066	Notch Filter WRCT 1900/2200-5/40-10EEK	Wainwright Instruments GmbH	5	chk			
					chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
20121	Notch Filter WRCB 1879,5/1880,5EE	Wainwright Instruments GmbH	15	chk	chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
20122	Notch Filter WRCB 1747/1748	Wainwright Instruments GmbH	12	chk	CIIK: 2023-Aug-22	CIIK. 12IVI	CIIK. 2024-Aug-22
					chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
20254	High Pass Filter 5HC 2600/12750-1.5KK	Trilithic	23042	chk			
20207		Adhere here	270440	-61	chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
20287	Pre-Amplifier 25MHz - 4GHz AMF-2D- 100M4G-35-10P	Miteq Inc.	379418	chk	chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
20290	Notch Filter WRCA 901,9/903,1SS	Wainwright Instruments GmbH	3RR	chk			
					chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
20291	High Pass Filter WHJ 2200-4EE	Wainwright Instruments GmbH	14	chk	ably 2022 Aug 22	chk: 12M	ably 2024 Aug 2
20338	Pre-Amplifier 100MHz - 26GHz JS4-00102600-	Miteg Inc.	838697	chk	chk: 2023-Aug-22	CIIK. 12IVI	chk: 2024-Aug-22
	38-5P				chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
20341	Digital Multimeter Fluke 112	Fluke Deutschland GmbH / Glottertal	81650455	cal	cal: 2022-May-18	cal: 24M	cal: 2024-May-18
20448	Notch Filter WRCT 1850.0/2170.0-5/40-10SSK	Wainwright Instruments GmbH	5	chk	-kl- 2022 A 22		-kl- 2024 A 2
20449	Notch Filter WRCT 824.0/894.0-5/40-8SSK	Wainwright Instruments GmbH	1	chk	chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
20445	Noten Filter Witer 824.0/854.0 5/40 855k	wantwight instantients Gribh	-	CIIK	chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
20484	Pre-Amplifier 2,5GHz - 18GHz AMF-5D-	Miteq Inc.	1244554	chk			
	02501800-25-10P				chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
20489	Test Receiver ESU40	Rohde & Schwarz Messgerätebau GmbH / Memmingen	100030	cal	cal: 2023-May-24	cal: 12M	cal: 2024-May-24
20512	Notch Filter WRCA 800/960-02/40-6EEK (GSM	Wainwright Instruments GmbH	24	chk			
	850)	-			chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
20549	Log. Per. Antenna HL025	Rohde & Schwarz Messgerätebau GmbH	1000060	calchk	cal: 2021-Aug-18	cal: 36M	cal: 2024-Aug-18
20558	Fully Anechoic Chamber 1	ETS-Lindgren Gmbh / Taufkirchen		cnn	cal: -	chk: 12M cal: -	cal:
20550	Tully Alection chamber 1			cim	chk: -	chk: -	chk:
20608	Ultrabroadband-Antenna HL562	Rohde & Schwarz Messgerätebau GmbH /	830547/009	cal	cal: 2023-Jul-04	cal: 36M	cal: 2026-Jul-04
		Memmingen					
20611 20690	Power Supply E3632A Spectrum Analyzer FSU	Agilent Technologies Deutschland GmbH Rohde & Schwarz Messgerätebau GmbH /	KR 75305854 100302/026	cpu cal	cal: 2023-May-25	cal: 24M	cal: 2025-May-25
20050	Speetrum Analyzer 150	Memmingen	100302/020	cui	cal. 2025 Way 25	cul: 24W	cal. 2025 Way 25
20720	Measurement Software EMC32 [FAC]	Rohde & Schwarz Messgerätebau GmbH	V10.xx	cnn	cal: -	cal: -	cal:
					chk: -	chk: -	chk:
20868	High Pass Filter AFH-07000	AtlanTecRF	16071300004	chk	chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
20883	Open Switch and control Platform OSP-B200S2	Rohde & Schwarz Messgerätebau GmbH /	101432	chk	child 2020 Hug 22	child 1210	
	Satellite	Memmingen			chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
20884	Open Switch and control Platform OSP320	Rohde & Schwarz Messgerätebau GmbH /	101391	chk			
	120910 - Radio Laboratory 1 (TS 8997)	Memmingen	-	chk	chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
	120910 - Radio Laboratory 1 (13 8997)			CIIK	chk: 2023-Jul-10	chk: 12M	chk: 2024-Jul-10
20559	Vector Signal Generator SMU200A	Rohde & Schwarz Messgerätebau GmbH /	103736	cal	cal: 2023-May-25	cal: 24M	cal: 2025-May-25
		Memmingen					
20691	Open Switch and control Platform OSP157W 8 Port Plus	Rohde & Schwarz Messgerätebau GmbH / Memmingen	100950	cal	cal: 2023-Jun-30	cal: 36M	cal: 2026-Jun-30
20805	Open Switch and control Platform OSP	Rohde & Schwarz Messgerätebau GmbH /	101264	cal	cal: 2023-May-26	cal: 36M	cal: 2026-May-26
	B157WX 40GHz 8Port Switch	Memmingen					
20866	Signal Analyzer FSV3030	Rohde & Schwarz Messgerätebau GmbH /	101247	cal	cal: 2023-Jun-14	cal: 12M	cal: 2024-Jun-14
	NRP-Z81	Memmingen Rohde & Schwarz Messgerätebau GmbH /	104631	cal	cal: 2023-May-23	cal: 12M	cal: 2024-May-2
20971		Memmingen	104031	Cdi	Cdl. 2023-Ividy-25	Cdl: 121VI	Cdl: 2024-1vidy-2:
20871			101831	cal	cal: 2022-May-17	cal: 24M	cal: 2024-May-1
20871 20872	NRX Power Meter	Rohde & Schwarz Messgerätebau GmbH /	101031				
20872	NRX Power Meter	Memmingen					
		-	P3101	cnn	cal: -	cal: -	
20872 20873	NRX Power Meter WTS-80 Schirmbox	Memmingen CETECOM GmbH			cal: - chk: - cal: 2022-Nov-29	chk: -	cal: chk: cal: 2024-Nov-29
20872	NRX Power Meter	Memmingen	P3101	cnn cal	chk: -		

4.13.1 Legend

Note / remarks	Interval of calibration & Verification
12M	12 months
24M	24 months
36M	36 months
10Y	10 Years

Abbreviation Check Type	Description			
cnn	Calibration and verification not necessary			
cal	Calibration			
calchk	Calibration plus intermediate Verification			
chk	Verification			
сри	Verification before usage			

Test Report 22-1-0126501T009a

5 Results from external laboratory

_

-

None

6 Opinions and interpretations

None

7 List of abbreviations

None

8 Measurement Uncertainty valid for conducted/radiated

measurements

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor \mathbf{k} , such that a confidence level of approximately 95% is achieved. For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it contribution to the overall uncertainty according its statistical distribution calculated.

Issue	Measurement type	Reference	Frequency range of measurement		Calculated Uncertainty based on	Remarks
No.	weasurement type	Relefence	Start [MHz]	Stop [MHz]	confidence level of 95.54%	Toniaito
1	Magnetic field strength	EN,FCC,JP,IC	0.009	30	4.86	Magnetic loop antenna, Pre-amp on
2	RF-Output power (eirp) Unwanted emissions (eirp) [dB]	EN,FCC,JP,IC	30 30 100 100 1000 18000 33000 40000 50000 75000 90000 140000 225000	100 1000 1000 18000 33000 50000 60000 75000 110000 140000 225000 325000 500000	4.57 4.91 4.02 4.26 5.23 4.92 4.17 4.69 4.06 4.17 5.49 6.22 7.04 8.84	without Pre-Amp with PreAmp without Pre-Amp with PreAmp with PreAmp with PreAmp Schwarzbeck BBHA9170 (#20302) Antenna set-up non-waveguide antenna) Set-up U-Band (WR-22), non-wave guide antenna Set-up U-Band (WR-15) External Mixer set-up V-Band (WR-15) External Mixer set-up W-Band (WR-8) External Mixer set-up G-Band (WR-8) External Mixer set-up (WR-8)
3	Radiated Blocking [dB]	EN	1000 18000 33000 50000 75000	18000 33000 50000 75000 110000	2.85 4.66 3.48 3.73 4.26	Typical set-up with microwave generator and antenna, value for 7GHz calculated Typical set-up with microwave generator and antenna WR-22 set-up WR-15 set-up WR-6 set-up
4	Frequency Error / UWB+FMCW [kHz]	EN, FCC, JP, ISED	40000 6000	77000 7000	276.19 33.92	calculated for 77 GHz (FMCW) carrier calculated for 6.5GHz UWB Ch.5
	Frequency Error / NFC [Hz]	EN, FCC, JP, ISED	11.00	14.00	20.76	calculated for 13.56MHz NFC carrier
5	TS 8997 conducted Parameters	FCC15/18 / ISED	30 30 30 0.009 2.4 5.18 30 30 30 30	6000 6000 7500 30 2.48 5.825 5.825 5.825 6000 6000 6000	1.11 1.20 1.20 2.56 1.95 ppm 7.180 ppm 0.11561µs 1.85 1.85 1.62	1. Power measurement with Fast-sampling-detector 2. Power measurement with Spectrum-Analyzer 3. Power Spectrum-Density measurement 4. Conducted Spurious emissions: 5. Conducted Spurious emissions: 6a. Bandwidth / 2-Marker Method for 2-4GHz ISM 6b. Bandwidth / 2-Marker Method for 5GHz WLAN 7 Frequency (Marker method) for 5GHz WLAN 8 Medium-Utilization factor / Timing 9 Blocking-Level of companion device 9 Blocking Generator level
6	Conducted emissions	EN, FCC	0.009	30	3.57	general EMI-measurements on AC/DC ports

9 Versions of test reports (change history)

Version	Applied changes	Date of release
	Initial release	2023-Dec-20

End Of Test Report