

Test Report 22-1-0126501T010a-C1

Number of pages:	18	Date of Report:	2023-Aug-10				
Testing company:	cetecom advanced GmbH Im Teelbruch 116	Applicant:	Dryad Networks GmbH				
	45219 Essen Germany						
	Tel. + 49 (0) 20 54 / 95 19-0 Fax: + 49 (0) 20 54 / 95 19-150						
	100. 1 45 (0) 20 54 / 55 15 150						
Product:	Wildfire Sensor						
Model:	WILDFIR-14						
FCC ID:	2BAH4WILDFIR-14	IC:	30127-WILDFIR14				
Testing has been	FCC Regulations Title 47 CFR, Chapter I, Subchapter A, Part 15						
carried out in accordance with:	Subpart B Unintentional Radiators						
	§ 15.107 Conducted limits						
	§ 15.109 Radiated emission limits						
	ISED-Regulations						
	Radio Standards Specification						
	RSS-Gen, Issue 5 General Requirements for Compliance of Radio Apparatus						
	ICES-003, Issue 7						
	Information Technology Equipment (including	Digital Apparatus)					
Test Results:	☑ The EUT complies with the requirements in respect of all parameters subject to the test.						
	The test results relate only to devices specified in this document						
	Test report 22-1-0126501T10a-C1 is replacing original test report 22-1-0126501T10a, dated						

2023-Apr-26. The replaced test report gets invalid herewith.

Signatures:

W. M

H. Lyoni

Wolfgang Markus Lab Manager Authorization of test report

Hicham Laayouni Test Manager Responsible of test report

Test Report 22-1-0126501T010a-C1

Table of Contents

Та	ble of	Annex	.3
1	Ge	eneral information	.4
	1.1	Disclaimer and Notes	.4
	1.2	Attestation	.4
	1.3	Summary of Test Results	.5
	1.4	Summary of Test Methods	.5
2	Ac	Iministrative Data	.6
	2.1	Identification of the Testing Laboratory	.6
	2.2	General limits for environmental conditions	.6
	2.3	Test Laboratories sub-contracted	.6
	2.4	Organizational Items	.6
	2.5	Applicant's details	.6
	2.6	Manufacturer's details	.6
	2.7	Equipment under Test (EUT)	.7
	2.8	Untested Variant (VAR)	.7
	2.9	Auxiliary Equipment (AE)	.7
	2.10	Connected cables (CAB)	.7
	2.11	Software (SW)	.7
	2.12	EUT set-ups	.7
	2.13	EUT operation modes	.7
3	Eq	uipment under test (EUT)	.8
	3.1	General Data of Main EUT as Declared by Applicant	.8
	3.2	Modifications on Test sample	.8
4	М	easurements	.9
	4.1	Radiated field strength emissions 30 MHz – 1 GHz	.9
	4.2	Radiated field strength emissions above 1 GHz1	.2
5	Re	sults from external laboratory1	.6
6	Op	pinions and interpretations1	.6
7	Lis	st of abbreviations1	.6
8	М	easurement Uncertainty valid for conducted/radiated measurements1	.7
9	Ve	ersions of test reports (change history)1	.8

Table of Annex								
Annex No.	Annex No. Contents Reference Description Total Pages							
Annex 1	Test result diagrams	TR22-1-0126501T010a-A1	4					
Annex 2	Internal photographs of EUT							
Annex 3	External photographs of EUT	TR22-1-0126501T010a-A3	2					
Annex 4	Annex 4Test set-up photographsTR22-1-0126501T010a-A43							
	The listed attachments are separate documents.							

1 General information

1.1 Disclaimer and Notes

The test results of this test report relate exclusively to the test item specified in this test report as specified in chapter 2.7. cetecom advanced does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of cetecom advanced.

The testing service provided by cetecom advanced has been rendered under the current "General Terms and Conditions for cetecom advanced ".

cetecom advanced will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the cetecom advanced test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the cetecom advanced test report include or imply any product or service warranties from cetecom advanced, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by cetecom advanced.

All rights and remedies regarding vendor's products and services for which cetecom advanced has prepared this test report shall be provided by the party offering such products or services and not by cetecom advanced.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

The test report must always be reproduced in full; reproduction of an excerpt only is subject to written approval of the testing laboratory. The documentation of the testing performed on the tested devices is archived for 10 years at cetecom advanced.

Also we refer on special conditions which the applicant should fulfill according §2.927 to §2.948, special focus regarding modification of the equipment and availability of sample equipment for market surveillance tests.

1.2 Attestation

I declare that all measurements were performed by me or under my supervision and that all measurements have been performed and are correct to my best knowledge and belief to Industry Canada standards. All of the above requirements are met in accordance with enumerated standards.

1.3 Summary of Test Results

Test case	Reference	Reference	Reference	Page	Remark	Result
	in FCC 🛛	in ISED 🛛	in RSS-GEN 🛛			
AC-Power Lines Conducted	§15.107	ICES-003,	RSS Gen, Issue 5,			
<u>Emissions</u>		Issue 7	Chapter 8.8			
Radiated field strength emissions	§15.109	ICES-003,	RSS-Gen., Issue 5	9		PASSED
<u> 30 MHz – 1 GHz</u>	§15.33	Issue 7	Chapter 8.9,			
	§15.35		Chapter 7.3			
Radiated field strength emissions	§15.109	ICES-003,	RSS-Gen., Issue 5	10		PASSED
<u>above 1 GHz</u>	§15.33	Issue 7	Chapter 8.9,			
	§15.35		Chapter 7.3			
PASSED The E	UT complies with t	he essential requ	uirements in the standa	ard.	•	•
AILED The E	UT does not compl	y with the essen	tial requirements in th	e standar	d.	
N/A Test o	ase does not apply	to the test obje	ct.			

The test was not performed by the cetecom advanced Laboratory.

Decision Rule: cetecom advanced GmbH follows ILAC G8:2019 chapter 4.2.1 (Simple Acceptance Rule).

1.4 Summary of Test Methods

NP

Test case	Test method
AC-Power Lines Conducted Emissions	ANSI C63.4-2014 chapter 7
Radiated field strength emissions 30 MHz – 1 GHz	ANSI C63.4-2014 chapter 8.2.3
Radiated field strength emissions above 1 GHz	ANSI C63.4-2014 chapter 8.3

2 Administrative Data

2.1 Identification of the Testing Laboratory

Company name:	cetecom advanced GmbH
Address:	Im Teelbruch 116
	45219 Essen - Kettwig
	Germany
Responsible for testing laboratory:	DiplIng. Ninovic Perez
Accreditation scope:	DAkkS Webpage: FCC ISED
IC Lab company No. / CAB ID:	3462D / DE0005
Test location:	cetecom advanced GmbH; Im Teelbruch 116; 45219 Essen

2.2 General limits for environmental conditions

Temperature:	20.0 °C to 20.0 °C
Relative. humidity:	40.0 %rH to 40.0 %rH

2.3 Test Laboratories sub-contracted

Company name:	

2.4 Organizational Items

Responsible test manager:	Hicham Laayouni
Receipt of EUT:	2023-Apr-12
Date(s) of test:	2023-Apr-12 to 2023-Apr-12
Version of template:	22.1201

2.5 Applicant's details

Applicant's name:	Dryad Networks GmbH	
Address:	Eisenbahnstraße 37	
	16225 Eberswalde	
	Germany	
Contact Person:	Carsten Brinkschulte	
Contact Person's Email:	carsten@dryad.net	

2.6 Manufacturer's details

Manufacturer's name:	Dryad Networks GmbH	
Address:	Eisenbahnstraße 37	
	16225 Eberswalde	
	Germany	

2.7 Equipment under Test (EUT)

EUT No.*)	Sample No.	Product	Model	Туре	SN	HW	SW
EUT 1	22-1-01265S14_C01	Wildfire Sensor	WILDFIR-14	SILVANET WILDFIRE SENSOR	N/A	WILDFIR-14	1.5.0

 *) EUT short description is used to simplify the identification of the EUT in this test report.

2.8 Untested Variant (VAR)

No.*)	VAR	Sample No.	Product	Model	Туре	SN	HW	SW
	No.*)							

*) The listed additional untested model variant(s) (VAR) is/are not object of evaluation of compliance. For further information please see Annex 5: Declaration of applicant of model differences.

If the table above does not show any other line than the headline, no untested variants are available.

2.9 Auxiliary Equipment (AE)

AE	Sample No.	Auxiliary Equipment	Model	SN	HW	SW
No.*)						

*) AE short description is used to simplify the identification of the auxiliary equipment in this test report. If the table above does not show any other line than the headline, no AE was used during testing nor was taken into account for evaluation

2.10 Connected cables (CAB)

CAB	Sample No.	Cable Type	Connectors / Details	Length
No.*)				

*) CAB short description is used to simplify the identification of the connected cables in this test report. If the table above does not show any other line than the headline, no cable was used during testing nor was taken into account for evaluation

2.11 Software (SW)

SW	Sample No.	SW Name	Description	SW Status
No.*)				

*) SW short description is used to simplify the identification of the used software in this test report. If the table above does not show any other line than the headline, no SW was used during testing nor was taken into account for evaluation.

2.12 EUT set-ups

set-up no.*)	Combination of EUT and AE	Description
2	EUT 1	Used for Radiated measurements

*) EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

2.13 EUT operation modes

EUT operating mode no.*)	Operating modes	Additional information
	Sensor on	All sensors active during the measuremnts

*) EUT operating mode no. is used to simplify the test report.

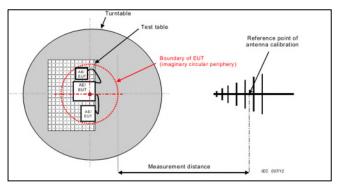
3 Equipment under test (EUT)

3.1 General Data of Main EUT as Declared by Applicant

Firmware	□ for normal use	\Box for normal use \Box Special version for test execution				
Power supply	AC Mains					
	DC Mains					
	Solar panel to charge					
	two 10F capacitors					
Operational conditions	The second seco					
EUT sample type	Engineering Samples					
Weight	0.130 kg					
Size [LxWxH] 19.0 cm x 9.2 cm x 1.2 cm						
nterfaces/Ports						
For further details refer Applicants Decla	For further details refer Applicants Declaration & following technical documents					

3.2 Modifications on Test sample

Additions/deviations or exclusions	


4 Measurements

4.1 Radiated field strength emissions 30 MHz – 1 GHz

4.1.1 Description of the general test setup and methodology, see below example:

Test site: Measurements between 30 MHz and 1 GHz are performed in the NSA compliant Semi Anechoic Chamber (SAC) according to EMC basic standard. The test site is compliant to CISPR 16-1-4:2019 chap. 5.3 and ANSI C63.4:2014 chap. 5.4.2 to 5.4.4.

Schematic below 1 GHz:

Testing method below 1 GHz:

Step 1:

Pre-measurement, variation of turntable positions: The EUT is set in the worst case operating mode determined. The tests are also carried out as a pre-measurement with peak detector (PK), repetitive scan and max-hold mode. Azimuth step of turntable = 90°, antenna heights = 1.0 m & 1.82 m, both polarisations (H/V). If the mounting/usual operating position is defined, the under and the top side of the EUT/test set-up will not be measured. The results are documented in a diagram. The peak values shown in this graphic are not finally maximized. Peak values closer than 6 dB to the limit line are displayed explicitly in a table. If no critical frequencies are found (margin to limit >6 dB) the final measurement will be omitted.

Step 2:

Based on the exploratory measurements, the most critical frequencies are re-measured by main-taining the EUT's worst-case operation mode, cable position, etc. either on 10 m OATS or 5 m or 3 m semi-anechoic room.

Final measurement: For the critical frequencies a maximum search is done with PK and CISPR QP detectors: First a frequency zoom within +/- 1.2 MHz (= 10*IF-BW) of the critical frequencies, then the EUT/test set-up is rotated continuously (if applicable, the EUT orientation will be changed to measure the under and the top side) and the antenna height changed between 1 m & 4 m in order to find the worst case position. The final measurement with the QP detector is carried out in this position and the values are stored in the final result table, which can be found after the diagram.

Formula:

$E_{C} = E_{R} + AF + C_{L} + D_{F} - G_{A} (1)$	AF = Antenna factor
	C _L = Cable loss
$M = L_T - E_C $ (2)	D _F = Distance correction factor (if used)
	E _c = Electrical field – corrected value
	E _R = Receiver reading
	G _A = Gain of pre-amplifier (if used)
	L _T = Limit
	M = Margin

All units are dB-units, positive margin means value is below limit.

Test receiver settings

Detector	Peak	Quasi peak
Min. attenuation	0 dB	0 dB
Resolution bandwidth	120 kHz	120 kHz
Dector Meas-time	10 ms	1 s
Step size	40 kHz	Selected frequencies
Preamp	Off	Off

4.1.2 Measurement Protocol(s)

Measurement No.	P1M1		
Environmental conditions	Temperature: 20.0 °C		
Environmental conditions	Humidity: 40.0% rH		
Test date	2023-Apr-12		
Operator	Hicham Laayouni		
EuT power supply: solar panel to charge two 10F capacitors			
Operating mode	01		
Setup	01		
Remarks			

Diagram	Measurement Details				
		⊠ standing	⊠ laying		
3.01	EUT position	 Mounting position / usual operating position is defined (under and top side of EUT are not measured) Mounting position / usual operating position undefined (under and top side of EUT are measured) 		PASS	
	Critical frequencies found:	 ☑ no, margin to limit > 10 dB (only Step 1 carried out) □ yes, final measurement (Step 2 carried out) 			

Remark: for more information and graphical plot see annex A1 TR22-1-0126501T010a-A1

4.1.3 Limits

Frequency Range [MHz]	Class B 🛛 (3 meters)		Class A	🗌 (10 meters)
	Limit	Limit	Limit	Limit
	[µV/m]	[dBµV/m]	[µV/m]	[dBµV/m]
30 - 88	100	40.0	90	39.0
88 - 216	150	43.5	150	43.5
216 - 960	200	46.0	210	46.4
960 - 1000	500	54.0	300	49.5

4.1.4 Result

Test case	Reference in FCC ⊠	Reference in ISED ⊠	Reference in RSS-GEN 🛛	Remark	Result
Radiated field strength emissions	§15.109	ICES-003,	RSS-Gen., Issue 5		Pass / OK
<u> 30 MHz – 1 GHz</u>	§15.33	Issue 7	Chapter 8.9,		
	§15.35		Chapter 7.3		

1.1.14.1.5 Measurement Location and Equipment list

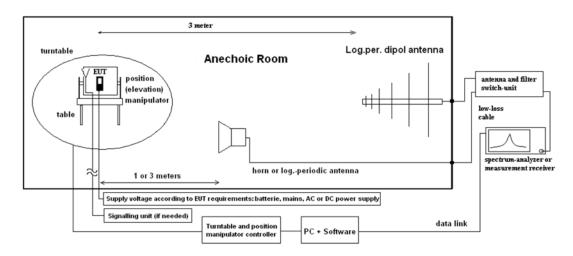
ID	Description	Manufacturer	SerNo	CheckType	Last Check	Interval	Next Check
	120901 - SAC - Radiated Emission <1GHz			calchk	cal: 2015-Jul-21	cal: 10Y	cal: 2025-Jul-21
					chk: 2021-Jul-27	chk: 12M	chk: 2022-Jul-27
20341	Digital Multimeter Fluke 112	Fluke Deutschland GmbH / Glottertal	81650455	cal	cal: 2022-May-18	cal: 24M	cal: 2024-May-18
20442	Semi Anechoic Chamber	ETS-Lindgren Gmbh / Taufkirchen	-	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20482	filter matrix Filter matrix SAR 1	CETECOM GmbH	-	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20574	Biconilog Hybrid Antenna BTA-L	Frankonia GmbH / Heideck	980026L	cal	cal: 2022-Jun-15	cal: 36M	cal: 2025-Jun-15
20620	Test Receiver ESU26	Rohde & Schwarz Messgerätebau GmbH /	100362	cal	cal: 2022-Jun-08	cal: 12M	cal: 2023-Jun-08
		Memmingen					
20885	Power Supply EA3632A	Agilent Technologies Deutschland GmbH	75305850	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
25038	Loop Antenna HFH2-Z2	Rohde & Schwarz Messgerätebau GmbH /	879824/13	cal	cal: 2022-Jul-04	cal: 24M	cal: 2024-Jul-04
		Memmingen					

Tools used in 'P1M1'

4.1.5<u>4.1.6</u> Legend

Note / remarks	nterval of calibration & Verification		
2W	2 weeks		
12M	12 months		
24M	24 months		
36M	36 months		
10Y	10 Years		

Abbreviation Check Type	Description
cnn	Calibration and verification not necessary
cal	Calibration
calchk	Calibration plus intermediate Verification
chk	Verification
сри	Verification before usage



4.2 Radiated field strength emissions above 1 GHz

4.2.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 18-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.55 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 15°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by main-taining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself over 3orthogonal axis and the height for EUT with large dimensions or three axis scan for portable/small equipment.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

$E_{C} = E_{R} + A_{F} + C_{L}$	+ D _F - G _A (1)	E _c = Electrical field – corrected value
		E_R = Receiver reading
$M = L_T - E_C$	(2)	M = Margin
		$L_T = Limit$
		A _F = Antenna factor
		C _L = Cable loss
		D _F = Distance correction factor (if used)

 G_A = Gain of pre-amplifier (if used)

All units are dB-units, positive margin means value is below limit.

4.2.2 Sample calculation

Raw- Value [dBuV/m]	Antenna factor	Distance Correction [dB]	Cable Loss + Preamplifier	Resulting correction value [dB]	Final result [dBuV/m]	Remarks
29.37	41.20		24.28	16.92	46.3	CableLoss and PreAmp data in one data correction file

Remark: This calculation is based on an example value at 10 GHz

4.2.3 Test receiver / spectrum analyzer settings

Detector	Peak	Average	
Min. attenuation	10 dB	10 dB	
Resolution bandwidth	1 MHz	1 MHz	
Dector Meas-time	Pre-measurement 10 ms	Pre-measurement 10 ms	
Dector Meas-time	Final measurement 1 s	Final measurement 1 s	
Ston cito	Pre-measurement: 400 kHz	Pre-measurement: 400 kHz	
Step size	Final measurement: selected frequencies	Final measurement: selected frequencies	
Droomn	Off below 6 GHz	Off below 6 GHz	
Preamp	30 dB above 6 GHz	30 dB above 6 GHz	

4.2.1 Measurement Protocol(s)

Measurement No.	P2M1
	Temperature: 20.0 °C
Environmental conditions	Humidity: 40.0% rH
Test date	2023-Apr-12
Operator	Hicham Laayouni
EuT power supply:	solar panel to charge two 10F capacitors
Operating mode	01
Setup	01
Remarks	

Diagram	Measurement Details				
		⊠ standing	⊠ laying		
4.01	EUT position	(under and top side of E ⊠ Mounting position / usual	Mounting position / usual operating position is defined (under and top side of EUT are not measured) Mounting position / usual operating position undefined (under and top side of EUT are measured)		
	Critical frequencies found:	 □ no, margin to limit > 10 dB (only Step 1 carried out) ⊠ yes, final measurement (Step 2 carried out) 			

Remark: for more information and graphical plot see annex A1 TR22-1-0126501T010a-A1

4.2.2 Limits

Frequency Range [MHz]	Class B	Class B 🛛 (3 meters) Class A 🗆 (3 meters)			
	Limit [µV/m]	Limit [dBµV/m]	Limit Limit [µV/m] [dBµV/m]		Detector
Above 1000	500	54	950	59.5	Average
Above 1000	5000	74	9500	79.5	Peak

4.2.3 Result

Test case	Reference	Reference	Reference	Remark	Result
	in FCC 🛛	in ISED 🛛	in RSS-GEN 🛛		
Radiated field strength emissions	§15.109	ICES-003,	RSS-Gen., Issue 5		Pass / OK
above 1 GHz	§15.33	Issue 7	Chapter 8.9,		
	§15.35		Chapter 7.3		

4.2.4 Measurement Location and Equipment list

ID	Description	Manufacturer	SerNo	CheckType	Last Check	Interval	Next Check
	120907 - FAC2 - Radiated Emissions			chk			
					chk: 2023-Feb-21	chk: 12M	chk: 2024-Feb-2
20005	AC - LISN 50 Ohm/50µH ESH2-Z5	Rohde & Schwarz Messgerätebau GmbH /	861741/005	cal	cal: 2022-May-19	cal: 12M	cal: 2023-May-19
		Memmingen					
20133	Horn Antenna 3115 (Meas 1)	EMCO Elektronik GmbH	9012-3629	cal	cal: 2020-Apr-08	cal: 36M	cal: 2023-Apr-0
20302	Horn Antenna BBHA9170 (Meas 1)	Schwarzbeck Mess-Elektronik OHG / Schönau	155	cpu	-hl- 2020 A-+ 45	chk: 12M	
20412	Fully Apochoic Chamber 2	FTC Linderon Crabb / Touflizebon	without		chk: 2020-Apr-15 cal: -	cnk: 12IVI cal: -	cal:
20412	Fully Anechoic Chamber 2	ETS-Lindgren Gmbh / Taufkirchen	without	cnn	cal: - chk: -	cal: - chk: -	car: chk:
20729	FS-Z140	Dahda 9 Cahuran Masanawita han Cushi	101004	cal	cal: 2020-May-26	cal: 36M	cal: 2023-May-20
20729	FS-Z140 FS-Z110	Rohde & Schwarz Messgerätebau GmbH			,		,
20730	FS-2110 FS-275	Rohde & Schwarz Messgerätebau GmbH	101468 101022	cal	cal: 2020-Jun-19	cal: 36M	cal: 2023-Jun-1
20731	FS-275	Rohde & Schwarz Messgerätebau GmbH /	101022	cal	cal: 2022-May-18	cal: 36M	cal: 2025-May-1
		Memmingen	10.000				
20732	Signal- and Spectrum Analyzer FSW67	Rohde & Schwarz Messgerätebau GmbH /	104023	cal	cal: 2022-Jun-08	cal: 12M	cal: 2023-Jun-0
		Memmingen	101000				
20733	Harmonic Mixer FS-Z220	RPG-Radiometer Physics GmbH	101009	cal	cal: 2021-May-27	cal: 36M	cal: 2024-May-2
20734	Harmonic Mixer FS-Z325	RPG-Radiometer Physics GmbH	101005	cal	cal: 2021-May-27	cal: 36M	cal: 2024-May-2
20765	Pickett-Potter Horn Antenna FH-PP 40-60	RPG-Radiometer Physics GmbH / Meckenheim	010001	cal	cal: 2020-Sep-15	cal: 36M	cal: 2023-Sep-1
20767	Pickett-Potter Horn Antenna FH-PP 140-220	RPG-Radiometer Physics GmbH / Meckenheim	010011	cnn	cal: -	cal: -	cal:
					chk: -	chk: -	chk:
20811	Horn Antenna ASY-SGH-124-SMA	Antenna Systems Solutions S.L	29F14182337	cal	cal: 2021-Oct-20	cal: 36M	cal: 2024-Oct-2
20812	Pickett-Potter Horn Antenna FH-PP-325	RPG-Radiometer Physics GmbH	10024	cnn	cal: -	cal: -	cal:
					chk: -	chk: -	chk:
20813	Pickett-Potter Horn Antenna FH-PP 075	RPG-Radiometer Physics GmbH / Meckenheim	10006	cal	cal: 2020-Sep-09	cal: 36M	cal: 2023-Sep-0
20814	Pickett-Potter Horn Antenna FH-PP 140	RPG-Radiometer Physics GmbH	10008	cnn	cal: -	cal: -	cal:
					chk: -	chk: -	chk:
20815	Pickett-Potter Horn Antenna FH-PP 110	RPG-Radiometer Physics GmbH	10014	cal	cal: 2020-Sep-04	cal: 36M	cal: 2023-Sep-04
20816	SGH Antenna SGH-26-WR10	Anteral S.L.	1144	cnn	cal: -	cal: -	cal:
					chk: -	chk: -	chk:
20817	Waveguide Rectangular Horn Antenna SAR- 2309-22-S2	ERAVAN	13254-01	cal	cal: 2020-Jul-29	cal: 36M	cal: 2023-Jul-2
20836	1-18 GHz Amplifier	Wright Technologies, Inc., Inc. / Roseville	0001	chk			
						chk: 36M	
20877	JS42-08001800-16-8P Verstärker	Miteq Inc.	2079991 / 2079992	chk			
						chk: 6M	
20907	Waveguide WR-15 attenuator STA-30-15-M2	SAGE Millimeter Inc.	13256-01	cnn	cal: -	cal: -	cal:
					chk: -	chk: -	chk:
20908	Waveguide WR 10 attenuator STA-30-10-M2	SAGE Millimeter Inc.	13256-01	cnn	cal: -	cal: -	cal:
					chk: -	chk: -	chk:
20909	Waveguide Horn Antenna PE9881-24	Pasternack Enterprises, Inc.	37/2016	cnn	cal: -	cal: -	cal:
					chk: -	chk: -	chk:
20910	Frequency Multiplier 936VF-10/385	MI-Wave, Millimeter Wave Products Inc.	142	cnn	cal: -	cal: -	cal:
					chk: -	chk: -	chk:
20911	Frequency Multiplier 938WF-10/387	MI-Wave, Millimeter Wave Products Inc.	141	cnn	cal: -	cal: -	cal:
					chk: -	chk: -	chk:
20912	Low noise Amplifier Module 0.5-4GHz	RF-Lambda Europe GmbH	19041200083	cnn	cal: -	cal: -	cal:
		·			chk: -	chk: -	chk:
20913	Phase Amplitude Stable Cable Assembly DC-	RF-Lambda Europe GmbH	AC19040001	cnn	cal: -	cal: -	cal:
-0010	40GHz				chk: -	chk: -	chk:
	400112						

4.2.5 Legend

Note / remarks	Interval of calibration & Verification
2W	2 weeks
12M	12 months
24M	24 months
36M	36 months
10Y	10 Years

Abbreviation Check Type	Description
cnn	Calibration and verification not necessary
cal	Calibration
calchk	Calibration plus intermediate Verification
chk	Verification
сри	Verification before usage

5 Results from external laboratory

None

6 Opinions and interpretations

-

-

None

7 List of abbreviations

None

8 Measurement Uncertainty valid for conducted/radiated measurements

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor **k**, such that a confidence level of approximately 95% is achieved. For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it contribution to the overall uncertainty according its statistical distribution calculated.

Measurement type	Frequence of measure Start [MHz]		Calculated Uncertainty based on confidence level of 95.54%	Remarks
Magnetic field strength	0.009	30	4.86	Magnetic loop antenna, Pre-amp on
	30	100	4.57	without Pre-Amp
	30	100	4.91	with PreAmp
	100	1000	4.02	without Pre-Amp
	100	1000	4.26	with PreAmp
	1000	18000	4.36	without Pre-Amp
	1000	18000	5.23	with PreAmp
RF-Output power (eirp)	18000	33000	4.92	Schwarzbeck BBHA9170 (#20302) Antenna set-up non-waveguide antenna)
Unwanted emissions (eirp)	33000	50000	4.17	Set-up for Q-Band (WR-22), non-wave guide antenna
[dB]	40000	60000	4.69	Set-up U-Band (WR-19), non-waveguide antenna
	50000	75000	4.06	External Mixer set-up V-Band (WR-15)
	75000	110000	4.17	External Mixer set-up W-Band (WR-6)
	90000	140000	5.49	External Mixer set-up F-Band (WR-8)
	140000	225000	6.22	External Mixer set-up G-Band (WR-5)
	225000	325000	7.04	External Mixer set-up (WR-3)
	325000	500000	8.84	External Mixer set-up (WR-2.2)
	1000	18000	2.85	Typical set-up with microwave generator and antenna, value for 7GHz calculated
	18000	33000	4.66	Typical set-up with microwave generator and antenna
Radiated Blocking	33000	50000	3.48	WR-22 set-up
[dB]	50000	75000	3.73	WR-15 set-up
	75000	110000	4.26	WR-6 set-up
	10000	110000	4.20	Will block up
Frequency Error	40000	77000	276.19	calculated for 77 GHz (FMCW) carrier
[kHz]	6000	7000	33.92	calculated for 6.5GHz UWB Ch.5
	30	6000	1.11	1. Power measurement with Fast-sampling-detector
	30	6000	1.20	2. Power measurement with Spectrum-Analyzer
	30	6000	1.20	3. Power Spectrum-Density measurement
	30	7500	1.20	4. Conducted Spurious emissions:
TS 8997	0.009	30	2.56	5. Conducted Spurious emissions:
conducted Parameters	2.4	2.48	1.95 ppm	6a. Bandwidth / 2-Marker Method for 2.4GHz ISM
Conducted Falametels	5.18	5.825	7.180 ppm	6b. Bandwidth / 2-Marker Method for 5GHz WLAN
	5.18	5.825	1.099 ppm	7 Frequency (Marker method) for 5GHz WLAN
	30	6000	0.11561µs	8 Medium-Utilization factor / Timing
	30	6000	1.85	9 Blocking-Level of companion device
	30	6000	1.62	9 Blocking Generator level
	0.000	20	0.57	
Conducted emissions	0.009	30	3.57	

9 Versions of test reports (change history)

Version	Applied changes	Date of release
	Initial release	2023-Apr-26
C1	Change IC	2023-Aug-10

End Of Test Report