# ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT INTENTIONAL RADIATOR CERTIFICATION TO FCC PART 15 SUBPART C REQUIREMENT 

OF<br>Wi-Fi Stick<br>Model No.:<br>\section*{EESW-BU00, EESW-BU01, EESW-BU02, EESW-BU03, EESW-BU04, EESW-BU05, EESW-BU06, EESW-BU07, EESW-B400, EESW-B401}

FCC ID: 2BAGJ-EESWBU05
Trademark: 5 E-LINTER
Report No.: E01A23021023F00302
Issue Date: March 21, 2023

Prepared for
Chengdu E-LINTER Information Technology Co., Ltd.
Floor 9, Building 10, No. 399 West Section of Fucheng Aven. , Chengdu, Sichuan, China

Prepared by
Dong Guan Anci Electronic Technology Co., Ltd.
1-2 Floor, Building A, No.11, Headquarters 2 Road, Songshan, Lake Hi-tech Industrial Development Zone, Dongguan City, Guangdong Pr., China.

This report shall not be reproduced, except in full, without the written approval of Dong Guan Anci Eleaactronic Technology Co., Ltd.

## VERIFICATION OF COMPLIANCE

| Applicant: | Chengdu E-LINTER Information Technology Co., Ltd. <br> Floor 9, Building 10, No.399 West Section of Fucheng Aven. , <br> Chengdu, Sichuan, China. |
| :--- | :--- |
| Manufacturer: | Chengdu E-LINTER Information Technology Co., Ltd. <br> Floor 9, Building 10, No.399 West Section of Fucheng Aven. , <br> Chengdu, Sichuan, China |
| Product Description: | Wi-Fi Stick |
| Model/Type <br> reference: | EESW-BU00, EESW-BU01, EESW-BU02, EESW-BU03, <br> EESW-BU04, EESW-BU05, EESW-BU06, EESW-BU07, <br> EESW-B400, EESW-B401 (There is no difference except for the <br> model name, so we performed on the model EESW-BU05) |
| Trade Mark: | ᄃ E-LINTER |
| Model Number: | EESW-BU05 |
| Sample number: | A23021023 018 |

## We hereby certify that:

The above equipment was tested by Dong Guan Anci Electronic Technology Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10-2013 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.247(2022).

Date of Test :

Prepared by :

Reviewer \& Authorized Signer :

March 2, 2023 +a March 15, 2023


Tiger Xu/ Supervisor

## Modified Information

| Versio <br> n | Summary | Revision Date | Report No. |
| :--- | :---: | :---: | :---: |
| Ver.1.0 | Original Report | $/$ | E01A23021023F00302 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## Table of Contents

1. GENERAL INFORMATION .....  5
1.1 Product Description ..... 5
1.2 Test Methodology ..... 6
2. SYSTEM TEST CONFIGURATION ..... 7
2.1 EUT CONFIGURATION .....  7
2.2 EUT ExERCISE .....  7
2.3 Test Procedure ..... 7
2.4 Configuration of Tested System ..... 7
3. DESCRIPTION OF TEST MODES ..... 9
4. SUMMARY OF TEST RESULTS ..... 17
5. TEST FACILITY ..... 18
6. CONDUCTED EMISSIONS TEST ..... 19
6.1 Measurement Procedure: ..... 19
6.2 Test SET-UP (Block Diagram of Configuration) ..... 19
6.3 Measurement Equipment Used: ..... 19
6.4 Conducted Emission Limit ..... 19
6.5 Measurement Result: ..... 20
7. RADIATED EMISSION TEST ..... 22
7.1 Measurement Procedure ..... 22
7.2 Test SET-UP (Block Diagram of Configuration) ..... 23
7.3 Measurement Equipment Used ..... 24
7.4 Radiated Emission Limit ..... 25
7.5 Measurement Result ..... 26
8. 6DB BANDWIDTH TEST ..... 31
8.1 Measurement Procedure ..... 31
8.2 TEST SET-UP (BLock Diagram of Configuration) ..... 31
8.3 Measurement Equipment Used ..... 31
8.4 MEASUREMENT RESULTS ..... 31
9. MAXIMUM PEAK OUTPUT POWER TEST ..... 39
9.1 Measurement Procedure ..... 39
9.2 Test SET-UP (Block Diagram of Configuration) ..... 39
9.3 Measurement Equipment Used ..... 39
9.4 Peak Power output limit ..... 39
9.5 Measurement Results ..... 39
10. BAND EDGE TEST ..... 40
10.1 Measurement Procedure ..... 40
10.2 Test SET-UP (Block Diagram of Configuration) ..... 41
10.3 Measurement Equipment Used ..... 41
10.4 Measurement Results ..... 41
11. POWER DENSITY ..... 51
11.1 TESt Equipment ..... 51
11.2 Measuring Instruments and Setting ..... 51
11.3 Test Procedures ..... 51
11.4 Block Diagram of Test Setup ..... 51
11.5 LIMIT ..... 51
11.6 Test Result ..... 52
12. ANTENNA PORT EMISSION ..... 53
TRF No.: 01-R001-3A-WIFIGlobal Testing, Great Quality.
12.1 TEST EqUIPMENT59
12.2 Measuring Instruments and Setting ..... 59
12.3 Test Procedures ..... 59
12.4 Block Diagram of Test setup ..... 59
12.5 Test Result ..... 59
13. ANTENNA APPLICATION ..... 73
13.1 ANTENNA REQUIREMENT ..... 73
13.2 Result ..... 73
14. PHOTOS OF EUT ..... 74

## 1. General Information

### 1.1 Product Description

| Characteristics | Description |
| :--- | :--- |
| Product Name | Wi-Fi Stick |
| Model number | EESW-BU05 |
| Power Supply | DC 5V |
| Test Power Supply | DC 5V from PC |
| Modulation | $802.11 \mathrm{~b}:$ DSSS(DBPSK/DQPSK/CCK) <br> $802.11 \mathrm{~g} / \mathrm{n}: ~ O F D M(B P S K / Q P S K / 16 Q A M / 64 Q A M) ~$ |
| Operating Frequency | $2412-2462 \mathrm{MHz}$ for 802.11b/g; <br> $2412-2462 \mathrm{MHz} \mathrm{for} \mathrm{802.11n(HT20);}$ <br> Range |
| Number of Channels | 11 channels for 802.11b/g; <br> 11 channels for 802.11n(HT20); <br> 7 channels for 802.11n(HT40); |
|  | $802.11 \mathrm{~b}: 12.72 \mathrm{dBm}$ <br> $802.11 \mathrm{~g}: 10.99 \mathrm{dBm}$ <br> 802.11n(HT20): 10.97dBm <br> $802.11 \mathrm{n}(\mathrm{HT40}): 10.43 \mathrm{dBm}$ |
| Transmit Power Max | Internal PCB antenna |
| Antenna Type | 3.75 dBi |
| Antenna Gain | March 2, 2023 |
| Sample receipt date |  |

Note: for more details, please refer to the User's manual of the EUT.

### 1.2 Test Methodology

All the test program has follow FCC new test procedure KDB 558074 D01 15.247 Meas Guidance v05r02 and in accordance with the procedures given in ANSI C63.10-2013.

## 2. System Test Configuration

### 2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

### 2.2 EUT Exercise

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

### 2.3 Test Procedure

### 2.1.2 Conducted Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

### 2.3.2 Radiated Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. Emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013.

### 2.4 Configuration of Tested System

Fig. 2-1 Configuration of Tested System


Table 2-1 Equipment Used in Tested System

| Item | Equipment | Trademark | Model No. | FCC ID | Note |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | Wi-Fi Stick | E-LINTER | EESW-BU05 | 2BAGJ-EESWBU05 | EUT |
| 2 | PC | N/A | PC-1Q9JRC | N/A | Support <br> EUT |

## Note:

(1) Unless otherwise denoted as EUT in『Remark』column, device(s) used in tested system is a support equipment.

## 3. Description of Test Modes

The EUT has been tested under its typical operating condition and Only the worst case data were reported. The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.
Those data rates (802.11b: 1 Mbps ; 802.11g: $6 \mathrm{Mbps} ; 802.11 \mathrm{n}$ (HT20 ): MCS0; 802.11n (HT40 ): MCS0) were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting mode is programmed. EUT is connected by com port, and transimit the control instruction via test software(SecureCRT V8.1.4).

Frequency and Channel list for $802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n}$ (HT20):

| Channel | Frequency <br> $(\mathrm{MHz})$ | Channel | Frequency <br> $(\mathrm{MHz})$ | Channel | Frequency <br> $(\mathrm{MHz})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2412 | 5 | 2432 | 9 | 2452 |
| 2 | 2417 | 6 | 2437 | 10 | 2457 |
| 3 | 2422 | 7 | 2442 | 11 | 2462 |
| 4 | 2427 | 8 | 2447 |  |  |

Frequency and Channel list for 802.11 n (HT40):

| Channel | Frequency <br> $(\mathrm{MHz})$ | Channel | Frequency <br> $(\mathrm{MHz})$ | Channel | Frequency <br> $(\mathrm{MHz})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 2422 | 5 | 2432 | 8 | 2447 |
| 4 | 2427 | 6 | 2437 | 9 | 2452 |
|  |  | 7 | 2442 |  |  |

Test Frequency and Channel for 802.11 b/g/n (HT20):

| Lowest Frequency |  | Middle Frequency |  | Highest Frequency |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Channel | Frequency <br> $(\mathrm{MHz})$ | Channel | Frequency <br> $(\mathrm{MHz})$ | Channel | Frequency <br> $(\mathrm{MHz})$ |
| 1 | 2412 | 6 | 2437 | 11 | 2462 |

Test Frequency and channel for 802.11 n (HT40):

| Lowest Frequency |  | Middle Frequency |  | Highest Frequency |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Channel | Frequency <br> $(\mathrm{MHz})$ | Channel | Frequency <br> $(\mathrm{MHz})$ | Channel | Frequency <br> $(\mathrm{MHz})$ |
| 3 | 2422 | 6 | 2437 | 9 | 2452 |

Operated Mode for Worst Duty cycle:
Duty Cycle:

| NVNT | b | 2412 | Ant1 | 100 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NVNT | b | 2437 | Ant1 | 100 | 0 | 0 |
| NVNT | b | 2462 | Ant1 | 100 | 0 | 0 |
| NVNT | g | 2412 | Ant1 | 100 | 0 | 0 |
| NVNT | g | 2437 | Ant1 | 100 | 0 | 0 |
| NVNT | g | 2462 | Ant1 | 100 | 0 | 0 |
| NVNT | n20 | 2412 | Ant1 | 100 | 0 | 0 |
| NVNT | n20 | 2437 | Ant1 | 100 | 0 | 0 |
| NVNT | n20 | 2462 | Ant1 | 100 | 0 | 0 |
| NVNT | n40 | 2422 | Ant1 | 100 | 0 | 0 |
| NVNT | n40 | 2437 | Ant1 | 100 | 0 | 0 |
| NVNT | n40 | 2452 | Ant1 | 100 | 0 | 0 |

All the modulation modes were tested, the data of the mode are recorded in the following pages:







## 4. Summary of Test Results

| FCC Rules | Description Of Test | Result |
| :--- | :---: | :---: |
| $\S 15.247(\mathrm{a})(2)$ | 6dB bandwidth | Pass |
| $\S 15.247(\mathrm{~b})(3)$ | Max Peak output Power test | Pass |
| $\S 15.247(\mathrm{e})$ | Power density | Pass |
| $\S 15.247(\mathrm{~d})$ | Band edge test | Pass |
| $\S 15.207$ | AC Power Conducted <br> Emission | Pass |
| $\S 15.247(\mathrm{~d}), \S 15.209$ | Radiated Emission | Pass |
| $\S 15.247(\mathrm{~d})$ | Antenna Port Emission | Pass |
| $\S 15.247(\mathrm{~b}) \& \$ 15.203$ | Antenna Application | Pass |
| N/A (Not Applicable). |  |  |

## 5. Test Facility

Site Description
EMC Lab. : Accredited by FCC, May 30, 2019
Designation Number: CN1230
Test Firm Registration Number: 991798

| Name of Firm | $:$ Dong Guan Anci Electronic Technology Co., Ltd. |
| :--- | :---: |
| Site Location | $:$ 1-2 Floor, Building A, No.11, Headquarters 2 Road, |
|  | Songshan, Lake Hi-tech Industrial Development |
|  | Zone, Dongguan City, Guangdong Pr., China. |

## 6. Conducted Emissions Test

### 6.1 Measurement Procedure:

1. The EUT was placed on a table, which is 0.8 m above ground plane.
2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
3. Repeat above procedures until all frequency measured was complete.

### 6.2 Test SET-UP (Block Diagram of Configuration)


6.3 Measurement Equipment Used:

| Item | EQUIPMENT <br> TYPE | MFR | MODEL <br> NUMBER | SERIAL <br> NUMBER | Calibrated until |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1. | LISN | ROHDE\&SCHWAR <br> $Z$ | ENV216 | 101413 | $2023-10-07$ |
| 2. | RF Cable | N/A | ZT06S-NJ-NJ- <br> $2.5 M$ | 19044022 | $2023-05-12$ |
| 3. | EMI Test Receiver | ROHDE\&SCHWAR <br> $Z$ | ESCI | 101358 | $2023-05-12$ |
| 4. | $1 \#$ Shielded Room | chengyu | $8 m * 4 m * 3.3 m$ | N/A | $2025-11-21$ |
| 5. | Test Software | Farad | EZ-EMC <br> $($ Ver.ANCI-3A1 <br> $)$ | N/A | N/A |

### 6.4 Conducted Emission Limit

(7) Conducted Emission

Frequency(MHz)
0.15-0.5
0.5-5.0
5.0-30.0

Quasi-peak 66-56

56
60

Average
56-46
46
50

## Note:

1. The lower limit shall apply at the transition frequencies
2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz .

### 6.5 Measurement Result:

All the modulation modes were tested the data of the worst mode (802.11 b TX2412) are recorded in the following pages and the others modulation methods do not exceed the limits. Please refer to following pages.


| Site: | 843 |
| :--- | :--- |
| Limit: | FCC PART 15C Conduction(QP) |
| EUT: | Wi-Fi Stick |
| M/N.: | EESW-BU05 |
| Mode: | WIFI TX2412 |
| Note: |  |
|  |  |

Phase:L1
Test Time:
Power Rating:
Test Engineer:

Temperature(C):23.5(C)
Humidity(\%):52.6\%
2023-03-15 21:18:44
DC 5V
Sunshine

| No. | Frequency <br> $(\mathbf{M H z})$ | Reading <br> Level(dBuV) | Factor <br> $(\mathbf{d B})$ | Measure- <br> ment(dBuV) | Limit <br> $(\mathbf{d B u V})$ | Over <br> $(\mathbf{d B})$ | Detector | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1^{*}$ | 0.1500 | 45.54 | 9.83 | 55.37 | 66.00 | -10.63 | QP |  |
| 2 | 0.1500 | 27.98 | 9.83 | 37.81 | 56.00 | -18.19 | AVG |  |
| 3 | 0.2100 | 34.17 | 9.97 | 44.14 | 63.21 | -19.07 | QP |  |
| 4 | 0.2100 | 25.92 | 9.97 | 35.89 | 53.21 | -17.32 | AVG |  |
| 5 | 0.4140 | 23.66 | 10.66 | 34.32 | 57.57 | -23.25 | QP |  |
| 6 | 0.4140 | 10.87 | 10.66 | 21.53 | 47.57 | -26.04 | AVG |  |
| 7 | 1.1100 | 19.57 | 9.96 | 29.53 | 56.00 | -26.47 | QP |  |
| 8 | 1.1100 | 5.40 | 9.96 | 15.36 | 46.00 | -30.64 | AVG |  |
| 9 | 3.9900 | 24.48 | 9.80 | 34.28 | 56.00 | -21.72 | QP |  |
| 10 | 3.9900 | 11.65 | 9.80 | 21.45 | 46.00 | -24.55 | AVG |  |
| 11 | 10.2739 | 27.24 | 10.01 | 37.25 | 60.00 | -22.75 | QP |  |
| 12 | 10.2739 | 19.84 | 10.01 | 29.85 | 50.00 | -20.15 | AVG |  |

*:Maximum data $x:$ Over limit !:over margin
TRF No.: 01-R001-3A-WIFI
Global Testing, Great Quality.


| Site: | 843 | Phase:N | Temperature(C):23.5(C) |
| :--- | :--- | :--- | :--- |
| Limit: | FCC PART 15C Conduction(QP) |  | Humidity(\%):52.6\% |
| EUT: | Wi-Fi Stick | Test Time: | 2023-03-15 21:17:16 |
| M/N.: | EESW-BU05 | Power Rating: | DC 5V |
| Mode: | WIFI TX2412 | Test Engineer: | Sunshine |
| Note: |  |  |  |


| No. | Frequency <br> $(\mathbf{M H z})$ | Reading <br> Level(dBuV) | Factor <br> $(\mathbf{d B})$ | Measure- <br> ment(dBuV) | Limit <br> $(\mathbf{d B u V})$ | Over <br> $(\mathbf{d B})$ | Detector | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1^{*}$ | 0.1539 | 44.74 | 9.82 | 54.56 | 65.79 | -11.23 | QP |  |
| 2 | 0.1539 | 25.83 | 9.82 | 35.65 | 55.79 | -20.14 | AVG |  |
| 3 | 0.2140 | 36.53 | 9.99 | 46.52 | 63.05 | -16.53 | QP |  |
| 4 | 0.2140 | 28.06 | 9.99 | 38.05 | 53.05 | -15.00 | AVG |  |
| 5 | 0.3700 | 26.95 | 10.40 | 37.35 | 58.50 | -21.15 | QP |  |
| 6 | 0.3700 | 18.47 | 10.40 | 28.87 | 48.50 | -19.63 | AVG |  |
| 7 | 1.7620 | 21.82 | 9.95 | 31.77 | 56.00 | -24.23 | QP |  |
| 8 | 1.7620 | 10.35 | 9.95 | 20.30 | 46.00 | -25.70 | AVG |  |
| 9 | 3.5580 | 27.28 | 9.94 | 37.22 | 56.00 | -18.78 | QP |  |
| 10 | 3.5580 | 12.13 | 9.94 | 22.07 | 46.00 | -23.93 | AVG |  |
| 11 | 4.6380 | 28.04 | 9.96 | 38.00 | 56.00 | -18.00 | QP |  |
| 12 | 4.6380 | 11.00 | 9.96 | 20.96 | 46.00 | -25.04 | AVG |  |

*:Maximum data x:Over limit !:over margin

## 7. Radiated Emission Test

### 7.1 Measurement Procedure

1. Below 1000 MHz , The EUT was placed on a turn table which is 0.8 m above ground plane, And above 1000 MHz , The EUT was placed on a styrofoam table which is 1.5 m above ground plane.
2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
4. Repeat above procedures until all frequency measured was complete.

When spectrum scanned from 30 MHz to 1 GHz setting resolution bandwidth 120 KHz and video bandwidth 300 KHz :

| EMI Test Receiver | Setting |
| :--- | :--- |
| Attenuation | Auto |
| RB | 120 KHz |
| VB | 300 KHz |
| Detector | QP |
| Trace | Max hold |

When spectrum scanned above 1 GHz setting resolution bandwidth 1 MHz , video bandwidth 3 MHz :

| EMI Test Receiver | Setting |
| :--- | :--- |
| Attenuation | Auto |
| RB | 1 MHz |
| VB | 3 MHz |
| Detector | Peak |
| Trace | Max hold |

When spectrum scanned above 1 GHz setting resolution bandwidth 1 MHz , video bandwidth 10 Hz :

| EMI Test Receiver | Setting |
| :--- | :--- |
| Attenuation | Auto |
| RB | 1 MHz |
| VB | 10 Hz |
| Detector | Peak |
| Trace | Max hold |

### 7.2 Test SET-UP (Block Diagram of Configuration)

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000 MHz


### 7.3 Measurement Equipment Used

| Item | Equipment | Manufacturer | Model No. | Serial No. | Calibrated until |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6. | EMI Test Receiver | Rohde \& Schwarz | ESPI7 | 100502 | 2023-10-07 |
| 7. | Pre-Amplifier | Anritsu | MH648A | M57886 | 2023-05-12 |
| 8. | Bilog Antenna | Schwarzbeck | VULB9163 | VULB9163-1290 | 2023-12-11 |
| 9. | RF Cable | N/A | $\begin{gathered} \hline \text { ZT06S-NJ-NJ- } \\ 11 \mathrm{M} \end{gathered}$ | 19060398 | 2023-05-12 |
| 10. | RF Cable | N/A | $\begin{gathered} \hline \text { ZT06S-NJ-NJ- } \\ 0.5 \mathrm{M} \end{gathered}$ | 19060400 | 2023-05-12 |
| 11. | RF Cable | N/A | $\begin{gathered} \hline \text { ZT06S-NJ-NJ- } \\ 2.5 \mathrm{M} \\ \hline \end{gathered}$ | 19060404 | 2023-05-12 |
| 12. | Spectrum Analyzer | Rohde \& Schwarz | FSV40 | 101413 | 2023-10-07 |
| 13. | Low noise Amplifiers | A-INFO | LA1018N4009 | $\begin{gathered} \hline \mathrm{J} 101313052400 \\ 1 \\ \hline \end{gathered}$ | 2023-05-12 |
| 14. | Horn antenna | A-INFO | LB-10180-SF | $\begin{gathered} \mathrm{J} 203109061212 \\ 3 \end{gathered}$ | 2024-05-14 |
| 15. | RF Cable | N/A | $\begin{gathered} \hline \text { ZT26-NJ-NJ-1 } \\ 1 \mathrm{M} \\ \hline \end{gathered}$ | 19060401 | 2023-05-12 |
| 16. | RF Cable | N/A | $\begin{gathered} \hline \text { ZT26-NJ-NJ-2 } \\ .5 \mathrm{M} \\ \hline \end{gathered}$ | 19060402 | 2023-05-12 |
| 17. | RF Cable | N/A | $\begin{gathered} \hline \text { ZT26-NJ-NJ-0 } \\ .5 \mathrm{M} \\ \hline \end{gathered}$ | 19060403 | 2023-05-12 |
| 18. | $3 m$ Semi-anechoic Chamber | chengyu | 9m*6m*6m | N/A | 2024-11-12 |
| 19. | Test Software | Farad | $\begin{gathered} \hline \text { EZ-EMC } \\ \text { (Ver.FA-03A2 } \\ \text { RE) } \end{gathered}$ | N/A | N/A |

### 7.4 Radiated Emission Limit

The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table 15.209(a):

| Frequencies <br> $(\mathbf{M H z})$ | Field Strength <br> (micorvolts/meter) | Measurement Distance <br> (meters) |
| :---: | :---: | :---: |
| $0.009 \sim 0.490$ | $2400 / F(\mathrm{KHz})$ | 300 |
| $0.490 \sim 1.705$ | $24000 / \mathrm{F}(\mathrm{KHz})$ | 30 |
| $1.705 \sim 30.0$ | 30 | 30 |
| $30 \sim 88$ | 100 | 3 |
| $88 \sim 216$ | 150 | 3 |
| $216 \sim 960$ | 200 | 3 |
| Above 960 | 500 | 3 |

15.205 Restricted bands of operation

| MHz | MHz | MHz | GHz |
| :---: | :---: | :---: | :---: |
| $0.090-0.110$ | $16.42-16.423$ | $399.9-410$ | $4.5-5.15$ |
| ${ }^{1} 0.495-0.505$ | $16.69475-16.69525$ | $608-614$ | $5.35-5.46$ |
| $2.1735-2.1905$ | $16.80425-16.80475$ | $960-1240$ | $7.25-7.75$ |
| $4.125-4.128$ | $25.5-25.67$ | $1300-1427$ | $8.025-8.5$ |
| $4.17725-4.17775$ | $37.5-38.25$ | $1435-1626.5$ | $9.0-9.2$ |
| $4.20725-4.20775$ | $73-74.6$ | $1645.5-1646.5$ | $9.3-9.5$ |
| $6.215-6.218$ | $74.8-75.2$ | $1660-1710$ | $10.6-12.7$ |
| $6.26775-6.26825$ | $108-121.94$ | $1718.8-1722.2$ | $13.25-13.4$ |
| $6.31175-6.31225$ | $123-138$ | $2200-2300$ | $14.47-14.5$ |
| $8.291-8.294$ | $149.9-150.05$ | $2310-2390$ | $15.35-16.2$ |
| $8.362-8.366$ | $156.52475-156.52525$ | $2483.5-2500$ | $17.7-21.4$ |
| $8.37625-8.38675$ | $156.7-156.9$ | $2690-2900$ | $22.01-23.12$ |
| $8.41425-8.41475$ | $162.0125-167.17$ | $3260-3267$ | $23.6-24.0$ |
| $12.29-12.293$ | $167.72-173.2$ | $3332-3339$ | $31.2-31.8$ |
| $12.51975-12.52025$ | $240-285$ | $3345.8-3358$ | $36.43-36.5$ |
| $12.57675-12.57725$ | $322-335.4$ | $3600-4400$ | $\left({ }^{2}\right)$ |

Remark 1. Emission level in $\mathrm{dBuV} / \mathrm{m}=20 \log (\mathrm{uV} / \mathrm{m})$
: 2. Measurement was performed at an antenna to the closed point of EUT distance of meters.
3. Only spurious frequency is permitted to locate within the Restricted Bands specified in provision of $\xi 15.205$, and the emissions located in restricted bands also comply with 15.209 limit.

### 7.5 Measurement Result

## Below 30MHz:

All the modulation modes were tested the data of the test mode are recorded in the following pages.

| Operation Mode: | TX Mode | Test Date: | $2023-03-13$ |
| :--- | :--- | :--- | :--- |
| Frequency Range: | 9KHz~30MHz | Temperature : | $25.0^{\circ} \mathrm{C}$ |
| Test Result: | PASS | Humidity: | $54.1 \%$ |
| Measured Distance: | 3 m | Test By: | Big |


| Freq. <br> $(\mathrm{MHz})$ | Ant.Pol. <br> $\mathrm{H} / \mathrm{V}$ | Emission Level <br> $(\mathrm{dBuV} / \mathrm{m})$ | Limit 3m <br> $(\mathrm{dBuV} / \mathrm{m})$ | Over <br> $(\mathrm{dB})$ |
| :---: | :---: | :---: | :---: | :---: |
| -- | -- | -- | -- | -- |

Note: the amplitude of spurious emission that is attenuated by more than 20 dB below the permissible limit has no need to be reported.
Distance extrapolation factor $=40 \log$ (Specific distance/ test distance)( dB);
Limit line=Specific limits(dBuV) + distance extrapolation factor.

## Below 1000MHz:

All the modulation modes were tested the data of the worst mode (TX 802.11b 2412MHz) are recorded in the following pages and the others modulation methods do not exceed the limits.

Please refer to the following test plots:


| Site: | LAB |  |
| :--- | :--- | :--- |
| Limit: | FCC Part 15 | C 3m Radiation |
| EUT: | Wi-Fi Stick |  |
| M/N.: | EESW-BU05 |  |
| Mode: | TX2412 |  |


| Antenna::Horizontal | Temperature(C):25.0(C) <br> Humidity(\%):54.1\% |
| :--- | :--- |
| Test Time: | 2023/03/13 19:25:10 |
| Power Rating: | DC 5V |
| Test Engineer: | Sunshine |

Note:

| No. | Frequency <br> $(\mathbf{M H z})$ | Reading <br> $(\mathbf{d B u V})$ | Factor <br> $(\mathbf{d B} / \mathbf{m})$ | Level <br> $(\mathbf{d B u V / m})$ | Limit <br> $(\mathbf{d B u V / m})$ | Margin <br> $(\mathbf{d B})$ | Det. | Remark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 51.6616 | 25.89 | -9.32 | 16.57 | 40.00 | -23.43 | QP |  |
| 2 | 56.9912 | 25.56 | -9.15 | 16.41 | 40.00 | -23.59 | QP |  |
| 3 | 63.7588 | 25.99 | -9.07 | 16.92 | 40.00 | -23.08 | QP |  |
| $4^{*}$ | 81.7833 | 29.72 | -12.37 | 17.35 | 40.00 | -22.65 | QP |  |
| 5 | 108.6470 | 26.72 | -11.63 | 15.09 | 43.50 | -28.41 | QP |  |
| 6 | 175.0368 | 28.17 | -11.24 | 16.93 | 43.50 | -26.57 | QP |  |

Note: 1. Result Level = Read Level+ Antenna Factor+ Cable Loss- Amp. Factor


| No. | Frequency <br> $(\mathbf{M H z})$ | Reading <br> $(\mathbf{d B u V})$ | Factor <br> $(\mathbf{d B} / \mathbf{m})$ | Level <br> $(\mathbf{d B u V / m})$ | Limit <br> $(\mathbf{d B u V / m})$ | Margin <br> $(\mathbf{d B})$ | Det. | Remark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 50.5860 | 26.40 | -9.50 | 16.90 | 40.00 | -23.10 | QP |  |
| 2 | 59.8588 | 27.56 | -9.06 | 18.50 | 40.00 | -21.50 | QP |  |
| 3 | 75.9773 | 31.05 | -11.25 | 19.80 | 40.00 | -20.20 | QP |  |
| $4^{*}$ | 82.0706 | 38.65 | -12.35 | 26.30 | 40.00 | -13.70 | QP |  |
| 5 | 132.6850 | 29.99 | -11.79 | 18.20 | 43.50 | -25.30 | QP |  |
| 6 | 183.8440 | 29.92 | -11.10 | 18.82 | 43.50 | -24.68 | QP |  |

Note: 1. Result Level = Read Level+ Antenna Factor+ Cable Loss- Amp. Factor

## Above 1GHz:

All the modulation modes were tested the data of the worst mode (TX 802.11b) are recorded in the following pages and the others modulation methods do not exceed the limits. The frequency range from 1 GHz to 25 GHz is investigated.

| Operation Mode: | 802.11b | Lowest | Test Date: |
| :--- | :--- | :--- | :--- |
| Test Voltage: | DC 5V |  | Test by: |


| Freq. | Ant. Pol. |  | Emission Level(dBuV/m) |  | Limit 3m(dBuV/m) |  | Over(dB) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(\mathrm{MHz})$ | $\mathrm{H} / \mathrm{V}$ | PK | AV | PK | AV | PK | AV |  |
| 4824 | V | 63.25 | 43.14 | 74 | 54 | -10.75 | -10.86 |  |
| 7236 | V | 63.34 | 42.01 | 74 | 54 | -10.66 | -11.99 |  |
| 9648 | V | 59.37 | 41.31 | 74 | 54 | -14.63 | -12.69 |  |
| 12060 | V | 58.34 | 40.24 | 74 | 54 | -15.66 | -13.76 |  |
| 14472 | V | 56.97 | 36.37 | 74 | 54 | -17.03 | -17.63 |  |
| 16884 | V | 55.67 | 37.65 | 74 | 54 | -18.33 | -16.35 |  |
| 4824 | H | 63.28 | 43.67 | 74 | 54 | -10.72 | -10.33 |  |
| 7236 | H | 62.38 | 43.76 | 74 | 54 | -11.62 | -10.24 |  |
| 9648 | H | 61.34 | 42.37 | 74 | 54 | -12.66 | -11.63 |  |
| 12060 | H | 60.31 | 40.85 | 74 | 54 | -13.69 | -13.15 |  |
| 14472 | H | 58.64 | 39.58 | 74 | 54 | -15.36 | -14.42 |  |
| 16884 | H | 57.61 | 37.54 | 74 | 54 | -16.39 | -16.46 |  |

Operation Mode:
Test Voltage:
802.11b Middle

DC 5V

Test Date: 2023-03-15
Test by: Big

| Freq. | Ant. Pol. |  | Emission Level(dBuV/m) |  | Limit 3m(dBuV/m) |  | Over(dB) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(\mathrm{MHz})$ | $\mathrm{H} / \mathrm{V}$ | PK | AV | PK | AV | PK | AV |  |
| 4874 | V | 64.58 | 44.69 | 74 | 54 | -9.42 | -9.31 |  |
| 7311 | V | 62.58 | 42.15 | 74 | 54 | -11.42 | -11.85 |  |
| 9688 | V | 60.84 | 41.36 | 74 | 54 | -13.16 | -12.64 |  |
| 12185 | V | 58.28 | 38.64 | 74 | 54 | -15.72 | -15.36 |  |
| 14622 | V | 57.21 | 37.58 | 74 | 54 | -16.79 | -16.42 |  |
| 17059 | V | 56.28 | 37.29 | 74 | 54 | -17.72 | -16.71 |  |
| 4874 | H | 64.25 | 44.37 | 74 | 54 | -9.75 | -9.63 |  |
| 7311 | H | 61.29 | 41.69 | 74 | 54 | -12.71 | -12.31 |  |
| 9688 | H | 59.58 | 40.67 | 74 | 54 | -14.42 | -13.33 |  |
| 12185 | H | 58.05 | 39.21 | 74 | 54 | -15.95 | -14.79 |  |
| 14622 | H | 56.34 | 36.86 | 74 | 54 | -17.66 | -17.14 |  |
| 17059 | H | 56.86 | 37.58 | 74 | 54 | -17.14 | -16.42 |  |

Operation Mode: 802.11b Highest
Test Voltage: DC 5V

Test Date : 2023-03-15
Test by: Big

| $(\mathrm{MHz})$ | $\mathrm{H} / \mathrm{V}$ | PK | AV | PK | AV | PK | AV |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4924 | V | 63.35 | 43.26 | 74 | 54 | -10.65 | -10.74 |
| 7386 | V | 61.69 | 41.38 | 74 | 54 | -12.31 | -12.62 |
| 9848 | V | 59.67 | 41.06 | 74 | 54 | -14.33 | -12.94 |
| 12310 | V | 59.66 | 39.21 | 74 | 54 | -14.34 | -14.79 |
| 14772 | V | 56.47 | 38.36 | 74 | 54 | -17.53 | -15.64 |
| 17234 | V | 55.64 | 37.31 | 74 | 54 | -18.36 | -16.69 |
| 4924 | H | 62.35 | 42.58 | 74 | 54 | -11.65 | -11.42 |
| 7386 | H | 60.85 | 42.63 | 74 | 54 | -13.15 | -11.37 |
| 9848 | H | 59.25 | 41.35 | 74 | 54 | -14.75 | -12.65 |
| 12310 | H | 58.96 | 39.68 | 74 | 54 | -15.04 | -14.32 |
| 14772 | H | 58.63 | 39.25 | 74 | 54 | -15.37 | -14.75 |
| 17234 | H | 56.36 | 36.38 | 74 | 54 | -17.64 | -17.62 |

All emissions not reported were more than 20dB below the specified limit or in the noise floor.

No others harmonics emissions are higher than 20 dB below the limits of 47 CFR Part 15.247.

Note: (1) All Readings are Peak Value and AV.
(2) Emission Level= Reading Level+Probe Factor +Cable Loss.
(3) Data of measurement within this frequency range shown " - " in the table above means the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.

## 8. 6dB Bandwidth Test

### 8.1 Measurement Procedure

The EUT was operating in IEEE 802.11b, 802.11g, 802.11n(HT20) mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function. The testing follows the Measurement Procedure of FCC KDB No. 558074 D01 15.247 Meas Guidance v05r02 .

1. Set resolution bandwidth $($ RBW $)=100 \mathrm{kHz}$.
2. Set the video bandwidth (VBW) $\geq 3 \times$ RBW.
3. Detector $=$ Peak.
4. Trace mode = max hold.
5. Sweep = auto couple.
6. Allow the trace to stabilize.
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequency) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

### 8.2 Test SET-UP (Block Diagram of Configuration)


8.3 Measurement Equipment Used

| EQUIPMENT <br> TYPE | MFR | MODEL <br> NUMBER | SERIAL <br> NUMBER | CALIBRATED <br> UNTIL |
| :---: | :---: | :---: | :---: | :---: |
| Spectrum Analyzer | KEYSIGHT | N9020A | MY61250185 | $2023-10-07$ |
| RF Test Software | MWRF-test | MTS 8310 | N/A | N/A |
| Radio Frequency <br> control box | MWRF-test | MW200-RFCB | MW220111ANCI | $2023-05-12$ |

### 8.4 Measurement Results

6db Bandwidth Test Data Chart:
Refer to attached data chart.

| Spectrum Detector: | PK | Test Date : | $2023-03-15$ |
| :--- | :--- | :--- | :--- |
| Test By: | Big | Temperature : | $26^{\circ} \mathrm{C}$ |
| Humidity : | $60 \%$ |  |  |


| Condition | Mode | Frequency (MHz) | Antenna | -6 dB Bandwidth (MHz) | Limit -6 dB Bandwidth (MHz) | Verdict |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NVNT | b | 2412 | Ant1 | 9.522 | 0.5 | Pass |
| NVNT | b | 2437 | Antl | 9.351 | 0.5 | Pass |
| NVNT | b | 2462 | Antl | 9.099 | 0.5 | Pass |
| NVNT | g | 2412 | Ant1 | 16.386 | 0.5 | Pass |
| NVNT | g | 2437 | Ant1 | 16.398 | 0.5 | Pass |
| NVNT | g | 2462 | Ant1 | 16.422 | 0.5 | Pass |
| NVNT | n20 | 2412 | Ant1 | 17.319 | 0.5 | Pass |
| NVNT | n20 | 2437 | Antl | 17.301 | 0.5 | Pass |
| NVNT | n20 | 2462 | Ant1 | 17.313 | 0.5 | Pass |
| NVNT | n40 | 2422 | Ant1 | 33.708 | 0.5 | Pass |
| NVNT | n40 | 2437 | Ant1 | 34.176 | 0.5 | Pass |
| NVNT | n40 | 2452 | Ant1 | 33.54 | 0.5 | Pass |








## 9. Maximum Peak Output Power Test

### 9.1 Measurement Procedure

1. The testing follows the Measurement Procedure of FCC KDB No. 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
2. Set to the maximum power setting and enable the EUT transmit continuously.
3. Measure the conducted output power and record the results in the test report.

### 9.2 Test SET-UP (Block Diagram of Configuration)

| EUT | 10dB ATTENUATION | Power meter |
| :---: | :---: | :---: |

### 9.3 Measurement Equipment Used

| EQUIPMENT <br> TYPE | MFR | MODEL <br> NUMBER | SERIAL <br> NUMBER | CALIBRATED <br> UNTIL |
| :---: | :---: | :---: | :---: | :---: |
| USB RF Power sensor | RadiPower | RPR3006W | 17100015 NNO88 | 2023-10-07 |
| RF Test Software | MAIWEI | MTS 8310 | N/A | N/A |
| Radio Frequency <br> control box | MWRF-test | MW200-RFCB | MW220111ANCI | $2023-05-12$ |
| Radio Frequency <br> control box | MWRF-test | MW200-RFCB <br> $2 \#$ | $/$ | $2023-05-12$ |

### 9.4 Peak Power output limit

The maximum peak power shall be less 1Watt.

### 9.5 Measurement Results

| Spectrum Detector: | PK | Test Date : | 2023-03-15 |
| :--- | :--- | :--- | :--- |
| Test By: | Big | Temperature : | $26^{\circ} \mathrm{C}$ |
| Test Result: | PASS | Humidity : | $60 \%$ |


| Test Channel | Peak Output Power (dBm) |  |  |  | Limit(dBm) | Result |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 802.11b | 802.11 g | 802.11n(HT20) | 802.11n(HT40) |  |  |
| Lowest | 12.72 | 10.99 | 10.97 | 10.43 | 30 | Pass |
| Middle | 12.47 | 10.81 | 10.67 | 10.21 |  |  |
| Highest | 12.44 | 10.84 | 10.76 | 10.35 |  |  |

## 10.Band Edge Test

### 10.1 Measurement Procedure

## For Conducted Test

1. The testing follows FCC KDB Publication No. 5558074 D01 15.247 Meas Guidance v05r02.
2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Set RBW $=100 \mathrm{kHz}, \mathrm{VBW}=300 \mathrm{kHz}$, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. Measure and record the results in the test report.
5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

## For Radiated emission Test

1. The testing follows FCC KDB Publication No. 5558074 D01 15.247 Meas Guidance v05r02.
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m ) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
3. The EUT was placed on a turntable with 0.8 meter above ground.
4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
5. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor $=$ Level.
6. For measurement below 1 GHz , If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
7. Repeat above procedures until all frequency measured were complete.

When spectrum scanned above 1 GHz setting resolution bandwidth 1 MHz , video bandwidth 3 MHz .

| EMI Test Receiver | Setting |
| :--- | :--- |
| Attenuation | Auto |
| RB | 1 MHz |
| VB | 3 MHz |
| Detector | Peak |
| Trace | Max hold |

When spectrum scanned above 1 GHz setting resolution bandwidth 1 MHz , video bandwidth 10 Hz .

| EMI Test Receiver | Setting |
| :--- | :--- |
| Attenuation | Auto |
| RB | 1 MHz |
| VB | 10 Hz |
| Detector | AVG |
| Trace | Max hold |

### 10.2Test SET-UP (Block Diagram of Configuration)

EUT $\quad$ Spectrum Analyzer

### 10.3 Measurement Equipment Used

| EQUIPMENT <br> TYPE | MFR | MODEL <br> NUMBER | SERIAL <br> NUMBER | CALIBRATED <br> UNTIL |
| :---: | :---: | :---: | :---: | :---: |
| Spectrum Analyzer | KEYSIGHT | N9020A | MY61250185 | $2023-10-07$ |
| RF Test Software | MWRF-test | MTS 8310 | N/A | N/A |
| Radio Frequency <br> control box | MWRF-test | MW200-RFCB | MW220111ANCI | $2023-05-12$ |

### 10.4 Measurement Results

1. Conducted Test

Please refer to the following pages.

| Spectrum Detector: | PK | Test Date : | $2023-03-15$ |
| :--- | :--- | :--- | :--- |
| Test By: | Big | Temperature : | $26^{\circ} \mathrm{C}$ |
| Test Result: | PASS | Humidity : | $60 \%$ |


| Condition | Mode | Frequency (MHz) | Antenna | Max Value (dBc) | Limit (dBc) | Verdict |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NVNT | b | 2412 | Ant1 | -45.06 | -20 | Pass |
| NVNT | b | 2462 | Ant1 | -56.62 | -20 | Pass |
| NVNT | g | 2412 | Ant1 | -32.18 | -20 | Pass |
| NVNT | g | 2462 | Ant1 | -45.53 | -20 | Pass |
| NVNT | n20 | 2412 | Ant1 | -31.94 | -20 | Pass |
| NVNT | n20 | 2462 | Ant1 | -45.39 | -20 | Pass |
| NVNT | n40 | 2422 | Ant1 | -32.67 | -20 | Pass |
| NVNT | n40 | 2452 | Ant1 | -38.81 | -20 | Pass |










## 2. Radiated emission Test

Spectrum Detector:
Test By:
Humidity :

PK/AV
Big 65 \%

Test Date :
Temperature :

2023-03-15
$28{ }^{\circ} \mathrm{C}$

| IEEE 802.11b SISO |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Freq. | Ant. <br> Pol. | ReadingLevel(dBuV/m) |  | Correct Factor | EmissionLevel(dBuV/m) |  | Limit$3 \mathrm{~m}(\mathrm{dBuV} / \mathrm{m}$ |  | Margin(dB) |  |
| (MHz) | H/V | PK | AV | dB | PK | AV | PK | AV | PK | AV |
| <2400 | H | 86.65 | 68.41 | -26.3 | 60.35 | 42.11 | 74 | 54 | -13.65 | -11.89 |
| <2400 | V | 85.65 | 65.59 | -26.1 | 59.55 | 39.49 | 74 | 54 | -14.45 | -14.51 |
| >2483.5 | H | 88.09 | 67.52 | -26.3 | 61.79 | 41.22 | 74 | 54 | -12.21 | -12.78 |
| >2483.5 | V | 86.46 | 65.18 | -26.1 | 60.36 | 39.08 | 74 | 54 | -13.64 | -14.92 |


| IEEE 802.11g SISO |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Freq. | Ant. <br> Pol. | Reading Level(dBuV/m) |  | Correct Factor | EmissionLevel(dBuV/m) |  | $\begin{gathered} \text { Limit } \\ 3 \mathrm{~m}(\mathrm{dBuV} / \mathrm{m} \end{gathered}$ |  | Margin(dB) |  |
| (MHz) | H/V | PK | AV | dB | PK | AV | PK | AV | PK | AV |
| <2400 | H | 90.45 | 70.55 | -26.3 | 64.15 | 44.25 | 74 | 54 | -9.85 | -9.75 |
| <2400 | V | 86.79 | 66.79 | -26.1 | 60.69 | 40.69 | 74 | 54 | -13.31 | -13.31 |
| >2483.5 | H | 87.89 | 67.78 | -26.3 | 61.59 | 41.48 | 74 | 54 | -12.41 | -12.52 |
| >2483.5 | V | 86.43 | 68.89 | -26.1 | 60.33 | 42.79 | 74 | 54 | -13.67 | -11.21 |


| IEEE 802.11n(HT20) SISO |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Freq. | Ant. <br> Pol. | Reading <br> Level $(\mathrm{dBuV} / \mathrm{m})$ |  | Correct <br> Factor | Emission <br> Level $(\mathrm{dBuV} / \mathrm{m})$ | Limit <br> $3 \mathrm{~m}(\mathrm{dBuV} / \mathrm{m}$ |  | Margin(dB) |  |  |
| $(\mathrm{MHz})$ | $\mathrm{H} / \mathrm{V}$ | PK | AV | dB | PK | AV | PK | AV | PK | AV |
| $<2400$ | H | 89.27 | 70.32 | -26.3 | 62.97 | 44.02 | 74 | 54 | -11.03 | -9.98 |
| $<2400$ | V | 86.21 | 68.25 | -26.1 | 60.11 | 42.15 | 74 | 54 | -13.89 | -11.85 |
| $>2483.5$ | H | 88.76 | 68.64 | -26.3 | 62.46 | 42.34 | 74 | 54 | -11.54 | -11.66 |
| $>2483.5$ | V | 87.46 | 67.74 | -26.1 | 61.36 | 41.64 | 74 | 54 | -12.64 | -12.36 |


| IEEE 802.11n(HT40) SISO |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Freq. | Ant. Pol. | Reading Level(dBuV/m) |  | Correct Factor | Emission Level(dBuV/m) |  | Limit $3 \mathrm{~m}(\mathrm{dBuV} / \mathrm{m}$ |  | Margin(dB) |  |
| (MHz) | H/V | PK | AV | dB | PK | AV | PK | AV | PK | AV |
| <2400 | H | 89.99 | 69.84 | -26.3 | 63.69 | 43.54 | 74 | 54 | -10.31 | -10.46 |
| <2400 | V | 86.26 | 68.21 | -26.1 | 60.16 | 42.11 | 74 | 54 | -13.84 | -11.89 |
| >2483.5 | H | 87.25 | 66.99 | -26.3 | 60.95 | 40.69 | 74 | 54 | -13.05 | -13.31 |
| >2483.5 | V | 85.98 | 66.35 | -26.1 | 59.88 | 40.25 | 74 | 54 | -14.12 | -13.75 |

TRF No.: 01-R001-3A-WIFI

## 11.Power Density

### 11.1 Test Equipment

| EQUIPMENT <br> TYPE | MFR | MODEL <br> NUMBER | SERIAL <br> NUMBER | CALIBRATED <br> UNTIL |
| :---: | :---: | :---: | :---: | :---: |
| Spectrum Analyzer | KEYSIGHT | N9020A | MY61250185 | 2023-10-07 |
| RF Test Software | MWRF-test | MTS 8310 | N/A | N/A |
| Radio Frequency <br> control box | MWRF-test | MW200-RFCB | MW220111ANCI | 2023-05-12 |

### 11.2 Measuring Instruments and Setting

The following table is the setting of spectrum analyzer.

| Spectrum analyzer | Setting |
| :--- | :--- |
| Attenuation | Auto |
| Span Frequency | Set the span to 1.5 times the DTS bandwidth. |
| RB | 3 kHz |
| VB | 10 KHz |
| Detector | Peak |
| Trace | Max hold |
| Sweep Time | Automatic |

### 11.3Test Procedures

The testing follows the Measurement Procedure of FCC KDB No. 558074 D01 15.247 Meas Guidance v05r02.
a. The transmitter output (antenna port) was connected to the spectrum analyzer.
b. Set analyzer center frequency to DTS channel center frequency.
c. Set the analyzer span to a minimum of 1.5 times the DTS bandwidth.
d. Set the RBW $\geq 3 \mathrm{kHz}$. Set the VBW $\geq 3 \times R B W$.
e. Detector = peak.
f. Sweep time = auto couple.
g. Trace mode = max hold.
h. Allow trace to fully stabilize.
i. Use the peak marker function to determine the maximum amplitude level.

### 11.4Block Diagram of Test Setup



### 11.5Limit

The transmitted power density averaged over any 1 second interval shall not be greater +8 dBm in any 3 kHz bandwidth.
TRF No.: 01-R001-3A-WIFI
Global Testing, Great Quality.

### 11.6Test Result

| Spectrum Detector: | PK | Test Date : | $2023-03-15$ |
| :--- | :--- | :--- | :--- |
| Test By: | Big | Temperature : | $26^{\circ} \mathrm{C}$ |
| Test Result: | PASS | Humidity : | $60 \%$ |


| Condition | Mode | Frequency (MHz) | Antenna | $\begin{gathered} \text { Conducted PSD } \\ (\mathrm{dBm} / 3 \mathrm{kHz}) \end{gathered}$ | Duty Factor (dB) | $\begin{gathered} \text { Total PSD } \\ (\mathrm{dBm} / 3 \mathrm{kHz}) \end{gathered}$ | $\begin{gathered} \text { Limit } \\ (\mathrm{dBm} / 3 \mathrm{kHz}) \end{gathered}$ | Verdict |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NVNT | b | 2412 | Antl | -11.32 | 0 | -11.32 | 8 | Pass |
| NVNT | b | 2437 | Antl | 4.01 | 0 | 4.01 | 8 | Pass |
| NVNT | b | 2462 | Antl | -11.37 | 0 | -11.37 | 8 | Pass |
| NVNT | g | 2412 | Ant1 | -2.99 | 0 | -2.99 | 8 | Pass |
| NVNT | g | 2437 | Antl | -17.6 | 0 | -17.6 | 8 | Pass |
| NVNT | g | 2462 | Antl | -17.46 | 0 | -17.46 | 8 | Pass |
| NVNT | n20 | 2412 | Antl | -16.98 | 0 | -16.98 | 8 | Pass |
| NVNT | n20 | 2437 | Antl | -17.19 | 0 | -17.19 | 8 | Pass |
| NVNT | n20 | 2462 | Ant1 | -16.93 | 0 | -16.93 | 8 | Pass |
| NVNT | n40 | 2422 | Antl | -18.24 | 0 | -18.24 | 8 | Pass |
| NVNT | n40 | 2437 | Antl | -18.48 | 0 | -18.48 | 8 | Pass |
| NVNT | n40 | 2452 | Ant1 | -18.23 | 0 | -18.23 | 8 | Pass |



Date: 15.MAR. 2023 14:19:07


[^0]
Date: 15.MAR.2023 14:23:52


[^1]
Date: 15.MAR. 2023 14:28:59


[^2]


## 12. Antenna Port Emission

12.1 Test Equipment

| EQUIPMENT <br> TYPE | MFR | MODEL <br> NUMBER | SERIAL <br> NUMBER | CALIBRATED <br> UNTIL |
| :---: | :---: | :---: | :---: | :---: |
| Spectrum Analyzer | KEYSIGHT | N9020A | MY61250185 | $2023-10-07$ |
| RF Test Software | MWRF-test | MTS 8310 | N/A | N/A |
| Radio Frequency <br> control box | MWRF-test | MW200-RFCB | MW220111ANCI | 2023-05-12 |

### 12.2 Measuring Instruments and Setting

The following table is the setting of spectrum analyzer.

| Spectrum analyzer | Setting |
| :--- | :--- |
| Attenuation | Auto |
| RB | 100 kHz |
| VB | 300 kHz |
| Detector | Peak |
| Trace | Max hold |

### 12.3Test Procedures

The testing follows the Measurement Procedure of FCC KDB No. 558074 D01 15.247 Meas Guidance v05r02 .

The conducted spurious emissions were measured conducted using a spectrum analyzer at low, Middle, and high channels, the limit was determined by attenuation 20 dB of the RF peak power output.

### 12.4Block Diagram of Test setup



### 12.5Test Result

PASS.
Please refer to following pages.

| Spectrum Detector: | PK |
| :--- | :--- |
| Test By: | Big |
| Test Result: | PASS |

Test Date : 2023-03-15
Temperature : $26^{\circ} \mathrm{C}$
Humidity: 60\%

| Condition | Mode | Frequency (MHz) | Antenna | Max Value (dBc) | Limit (dBc) | Verdict |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NVNT | b | 2412 | Ant1 | -54.24 | -20 | Pass |
| NVNT | b | 2437 | Ant1 | -53.56 | -20 | Pass |
| NVNT | b | 2462 | Ant1 | -54.25 | -20 | Pass |
| NVNT | g | 2412 | Ant1 | -47.41 | -20 | Pass |
| NVNT | g | 2437 | Ant1 | -46.91 | -20 | Pass |
| NVNT | g | 2462 | Ant1 | -47.12 | -20 | Pass |
| NVNT | n 20 | 2412 | Ant1 | -47.16 | -20 | Pass |
| NVNT | n20 | 2437 | Ant1 | -47.23 | -20 | Pass |
| NVNT | n20 | 2462 | Antl | -46.31 | -20 | Pass |
| NVNT | n40 | 2422 | Ant1 | -44.17 | -20 | Pass |
| NVNT | n40 | 2437 | Ant1 | -44.18 | -20 | Pass |
| NVNT | n40 | 2452 | Antl | -44.47 | -20 | Pass |














## 13. Antenna Application

### 13.1 Antenna Requirement

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

### 13.2Result

The EUT'S antenna is an internal PCB antenna. The antenna's gain is 3.75 dBi and meets the requirement.

## 14. Photos of EUT





---The end of report---


[^0]:    Date: 15.MAR. 2023 14:25:44

[^1]:    Date: 15.MAR. 2023 14:21:26

[^2]:    Date: 15.MAR. 2023 14:31:36

