

# **TEST REPORT**



**Report Reference Number:** E10959-2301\_Bitstrata\_Libra\_FCC\_ISED\_Rev1.0

Total Number of Pages: 5

Date of Issue: August 22, 2023

EMC Test Laboratory: QAI Laboratories Ltd.

Address: 3980 North Fraser Way, Burnaby, BC, V5J 5K5 Canada

Phone: (604) 527-8378 Fax: (604) 527-8368

# Laboratory Accreditations (per ISO/IEC 17025:2017)



This report has been completed in accordance with the requirements of ISO/IEC 17025.

Test results contained in this report are within QAI Laboratories ISO/IEC 17025 accreditations.

QAI Laboratories authorizes the applicant to reproduce this report, provided it is reproduced in its entirety and for the use by the company's employees only.

Manufacturer: Bitstrata Systems Inc.

**Address:** 101-116 Research Drive

Saskatoon, SK S7N 3R3

Equipment Tested: Libra Module

Model Number(s): M1000

FCC ID: 2BAFL-GC848354 ISED ID: 30137-GC848354

FVIN: 2.2.7



Manufacturer: Bitstrata Systems Inc.



### REVISION HISTORY

| Date                                                                                                                 | Report<br>Number                            | Details       | Author's<br>Initials |  |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------|----------------------|--|
| August 18, 2023                                                                                                      | E10959-2301_Bitstrata_Libra_FCC_ISED_Rev0.0 | Initial draft | АН                   |  |
| August 18, 2023                                                                                                      | E10959-2301_Bitstrata_Libra_FCC_ISED_Rev0.1 | Draft         | АН                   |  |
| August 22, 2023 E10959-2301_Bitstrata_Libra_FCC_ISED_Rev1.0 Final AH                                                 |                                             |               |                      |  |
| All previous versions of this report have been superseded by the latest dated revision as listed in the above table. |                                             |               |                      |  |
| Please dispose of all previous electronic and paper printed revisions accordingly.                                   |                                             |               |                      |  |

# REPORT AUTHORIZATION

The data documented in this report is for the test equipment provided by the manufacturer and the results relate only to the item tested. The tests were conducted on the sample equipment as requested by the manufacturer for the purpose of demonstrating compliance with the standards outlined in Section I of this report as agreed upon by the Manufacturer under the quote 23RH02073R2.

The Manufacturer is responsible for the tested product configurations, continued product compliance, and for the appropriate auditing of subsequent products as required.

This report may comprise a partial list of tests that are required for FCC and ISED. A Declaration of Conformity can only be produced by the manufacturer. This is to certify that the following report is true and correct to the best of our knowledge.

This report is the confidential property of the client addressed. The report may only be reproduced in full. Publication of extracts from this report is not permitted without written approval from QAI. Any liability attached thereto is limited to the fee charged for the individual project file referenced. The results of this report pertain only to the specific items tested, calibrated, or sampled. Unless specifically stated or identified otherwise, QAI has utilized a simple acceptance rule to make conformity decisions on testing results contained in this report as applicable.

Testing Performed by
Alec Hope
Senior RF/EMC Engineer

Report Prepared by
Alec Hope
Senior RF/EMC Engineer

Report Reviewed by
Parminder Singh
Vice President EMC

Andr Shah

Manufacturer: Bitstrata Systems Inc.



# **QAI FACILITIES**

**British Columbia** 

QAI Laboratories Inc. Main Laboratory/Headquarters

3980 North Fraser Way, Burnaby, BC V5J Canada

California

**QAI Laboratories Ltd.** 8385 White Oak Avenue Rancho Cucamonga, CA 91730 USA Ontario

**QAI** Laboratories Inc.

25 Royal Group Crescent #3, Vaughan,

ON L4H 1X9 Canada

Oklahoma

QAI Laboratories Ltd.

5110 North Mingo Road Tulsa, OK 74117, USA Virginia

**QAI** Laboratories Ltd.

1047 Zachary Taylor Hwy, Suite A Huntly, VA 22640 USA

Miami

QAI Laboratories Ltd.

8148 NW 74th Ave, Medley, FL 33166 USA China

**QAI Laboratories Ltd** 

Room 408, No. 228, Jiangchang 3<sup>rd</sup> Road Jing'An District, Shanghai, China 200436

**South Korea** 

**QAI Laboratories Ltd** 

#502, 8, Sanbon-ro 324beon-gil Gunpo-si, Gyeonggi-do, 15829, South Korea

# **QAI EMC ACCREDITATION**

QAI EMC is your one-stop regulatory compliance partner for electromagnetic compatibility (EMC) and electromagnetic interference (EMI). Products are tested to the latest and applicable EMC/EMI requirements for domestic and international markets. QAI EMC goes above and beyond being a testing facility—we are your regulatory compliance partner. QAI EMC has the capability to perform RF Emissions and Immunity for all types of electronics manufacturing including Industrial, Scientific, Medical, Information Technology, Telecom, Wireless, Automotive, Marine and Avionics.

| EMC Laboratory      | FCC Designation | IC Registration | A2LA        |
|---------------------|-----------------|-----------------|-------------|
| Location            | (3m SAC)        | (3m SAC)        | Certificate |
| Burnaby, BC, Canada | CA9543          | 9543A           | 3657.02     |

# EMC Facility Burnaby BC, Canada



Manufacturer: Bitstrata Systems Inc.



# TABLE OF CONTENTS

|   | REVIS | ION HISTORY                            |    |
|---|-------|----------------------------------------|----|
|   |       | RT AUTHORIZATION                       |    |
|   |       | ACILITIES                              |    |
|   |       | MC ACCREDITATION                       |    |
|   |       |                                        |    |
| 1 | EXI   | ECUTIVE SUMMARY                        |    |
|   | 1.1   | Purpose                                | ,  |
|   | 1.2   | SCOPE                                  |    |
|   | 1.3   | SUMMARY OF RESULTS                     |    |
|   |       |                                        |    |
| 2 | GE    | NERAL INFORMATION                      | 9  |
|   | 2.1   | PRODUCT DESCRIPTION                    | (  |
|   | 2.1   | ENVIRONMENTAL CONDITIONS               |    |
|   | 2.3   | MEASUREMENT UNCERTAINTY                |    |
|   | 2.4   | WORST TEST CASE                        |    |
|   | 2.5   | SAMPLE CALCULATIONS OF EMISSIONS DATA. |    |
|   | 2.6   | TEST EQUIPMENT LIST                    |    |
|   |       |                                        |    |
| 3 | DA    | TA & TEST RESULTS                      | 14 |
|   | 3.1   | Antenna Requirements                   | 1. |
|   | 3.2   | RF PEAK OUTPUT POWER AND EIRP          | 14 |
|   | 3.3   | POWER SPECTRAL DENSITY (PSD)           |    |
|   | 3.4   | 20 pB Bandwidth                        |    |
|   | 3.5   | DUTY CYCLE                             |    |
|   | 3.6   | OUT-OF-BAND EMISSIONS (BAND EDGE)      |    |
|   | 3.7   | RADIATED EMISSIONS: RX MODE            |    |
|   | 3.8   | RADIATED SPURIOUS EMISSIONS            |    |
|   |       |                                        |    |
| A | PPENE | DIX A: TEST SETUP PHOTOS               | 47 |
| Δ | PPENI | DIX B. ARREVIATIONS                    | 50 |
|   |       |                                        |    |



# LIST OF FIGURES

| Figure 1: EUT                                                                     |    |
|-----------------------------------------------------------------------------------|----|
| Figure 2: Peak Output Power – Lowest Frequency                                    | 16 |
| Figure 3: Peak Output Power - Middle Frequency                                    | 17 |
| Figure 4: Peak Output Power - Highest Frequency                                   | 17 |
| Figure 5: Power Spectral Density – Lowest Frequency                               | 19 |
| Figure 6: Power Spectral Density - Middle Frequency                               | 19 |
| Figure 7: Power Spectral Density - Highest Frequency                              | 20 |
| Figure 8: 20 dB Bandwidth – Low Channel                                           | 22 |
| Figure 9: 20 dB Bandwidth - Middle Channel                                        | 22 |
| Figure 10: 20 dB Bandwidth - High Channel                                         | 23 |
| Figure 11: Duty Cycle – Lowest Frequency                                          | 24 |
| Figure 12: Duty Cycle - Middle Frequency                                          | 25 |
| Figure 13: Duty Cycle - Highest Frequency                                         | 25 |
| Figure 14: Band Edge - Low Channel                                                |    |
| Figure 15: Band Edge - High Channel                                               | 27 |
| Figure 16: Radiated Emissions: Rx Mode 30-1000MHz Measured at 3m                  | 30 |
| Figure 17: Radiated Emissions: Rx Mode 1-6 GHz Measured at 3m                     | 31 |
| Figure 18: Radiated Emissions: Rx Mode 6-18 GHz Measured at 3m                    | 31 |
| Figure 19: Radiated Spurious Emissions: 10 kHz - 30 MHz, Horizontal, Low Channel  |    |
| Figure 20: Radiated Spurious Emissions: 10 kHz - 30 MHz, Vertical, Low Channel    |    |
| Figure 21: Radiated Spurious Emissions: 10 kHz - 30 MHz, Horizontal, Mid Channel  | 37 |
| Figure 22: Radiated Spurious Emissions: 10 kHz - 30 MHz, Vertical, Mid Channel    | 38 |
| Figure 23: Radiated Spurious Emissions: 10 kHz - 30 MHz, Horizontal, High Channel |    |
| Figure 24: Radiated Spurious Emissions: 10 kHz - 30 MHz, Vertical, High Channel   |    |
| Figure 25: Radiated Spurious Emissions: 30 MHz – 1 GHz, Low Channel               |    |
| Figure 26: Radiated Spurious Emissions: 30 MHz – 1 GHz, Mid Channel               |    |
| Figure 27: Radiated Spurious Emissions: 30 MHz – 1 GHz, High Channel              |    |
| Figure 28: Radiated Spurious Emissions: 1 GHz – 6 GHz, Low Channel                | 41 |
| Figure 29: Radiated Spurious Emissions: 1 GHz – 6 GHz, Mid Channel                |    |
| Figure 30: Radiated Spurious Emissions: 1 GHz – 6 GHz, High Channel               |    |
| Figure 31: Radiated Spurious Emissions: 6 GHz – 18 GHz, Low Channel               |    |
| Figure 32: Radiated Spurious Emissions: 6 GHz – 18 GHz, Mid Channel               | 43 |
| Figure 33: Radiated Spurious Emissions: 6 GHz – 18 GHz, High Channel              |    |
| Figure 34: Radiated Spurious Emissions: 18 GHz – 26 GHz, Vertical, Low Channel    |    |
| Figure 35: Radiated Spurious Emissions: 18 GHz – 26 GHz, Horizontal, Low Channel  |    |
| Figure 36: Radiated Spurious Emissions: 18 GHz – 26 GHz, Vertical, Mid Channel    | 45 |
| Figure 37: Radiated Spurious Emissions: 18 GHz – 26 GHz, Horizontal, Mid Channel  | 45 |
| Figure 38: Radiated Spurious Emissions: 18 GHz – 26 GHz, Vertical, High Channel   |    |
| Figure 39: Radiated Spurious Emissions: 18 GHz – 26 GHz, Horizontal, High Channel |    |
| Figure 40: RF Conducted Emissions                                                 |    |
| Figure 41: Radiated Emissions: 0.01-30 MHz                                        |    |
| Figure 42: Radiated Emissions: 30-1000 MHz                                        |    |
| Figure 43: Radiated Emissions: 1-18 GHz                                           |    |
| Figure 45, Dedicted Emissions, 19 26 CHz                                          | 40 |



# LIST OF TABLES

| Table 1: Applicable test standards and associated test methods       | 8  |
|----------------------------------------------------------------------|----|
| Table 2: Sample Quasi-Peak Correction Data – Radiated                | 12 |
| Table 3: Sample Quasi-Peak Correction Data - Conducted Emissions     | 12 |
| Table 4: Sample Average Correction Data- Conducted Emissions         | 12 |
| Table 5: RF Peak Output Power                                        | 16 |
| Table 6: EIRP                                                        |    |
| Table 7: RF Power Spectral Density (PSD)                             | 18 |
| Table 8: 20 dB Bandwidth Results                                     |    |
| Table 9: Duty Cycle                                                  | 24 |
| Table 10: Band Edge Results                                          |    |
| Table 11: Unintentional Radiated Emissions: 30 MHz - 1 GHz           | 30 |
| Table 12: Unintentional Radiated Emissions: 1 GHz - 18 GHz           | 30 |
| Table 13: Radiated Spurious Emissions: 10 kHz - 26 GHz, Low Channel  | 35 |
| Table 14: Radiated Spurious Emissions: 10 kHz - 26 GHz, Mid Channel  | 35 |
| Table 15: Radiated Spurious Emissions: 10 kHz - 26 GHz, High Channel |    |
|                                                                      |    |



# 1 EXECUTIVE SUMMARY

# 1.1 Purpose

The purpose of this report is to demonstrate and document the compliance of the Bitstrata Systems Inc Libra Module as per Sections 1.2 and 1.3.

# 1.2 Scope

The information documented in this report is based on the test methods and levels as per Quote 23RH02073R2:

- FCC Title 47 Part 15 Radio Frequency Devices, Subpart B Unintentional Radiators
- FCC Title 47 Part 15 Radio Frequency Devices, Subpart C Intentional Radiators
- RSS-Gen Issue 5 General Requirements and Information for the Certification of Radio Apparatus
- **RSS-247 Issue 2** Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices
- ICES-003 Issue 7 Information Technology Equipment (including Digital Apparatus) Limits and Methods of Measurement

Manufacturer: Bitstrata Systems Inc.



# 1.3 Summary of Results

The following testing was performed pursuant to FCC Title 47 Part 15 and Industry Canada ICES-003 to demonstrate the testimony to "FCC, IC, & CE" mark Electromagnetic Compatibility testing for the product.

| No.         | Test                             | Applicable Standard     | Test Method        | Result        |
|-------------|----------------------------------|-------------------------|--------------------|---------------|
| 1           | Antenna                          | FCC 47 CFR Part 15.203  | ANSI C63.10 - 2013 | Complies      |
| 1           | Requirements                     | RSS-Gen Issue 5: 6.8    | ANSI C03.10 - 2013 | Compiles      |
| 2           | Peak Output Power                | FCC 47 CFR Part 15.247  | ANSI C63.10 – 2013 | Complies      |
| 2           | and EIRP                         | RSS-247 Issue 2: 5.4    | FCC KDB 558074 D01 | Compiles      |
| 3           | Power Spectral                   | FCC 47 CFR Part 15.247  | ANSI C63.10 – 2013 | Complies      |
| 3           | Density                          | RSS-247 Issue 2: 5.2    | FCC KDB 558074 D01 | Complies      |
| 4           | 4 20 dB Bandwidth                | FCC 47 CFR Part 15.247  | ANSI C63.10 – 2013 | Commlias      |
| 4           |                                  | RSS-247 Issue 2: 5.2    | FCC KDB 558074 D01 | Complies      |
| 5 E         | Duty Cycle N/A                   | ANSI C63.10 – 2013      | N/A                |               |
|             |                                  | FCC KDB 558074 D        | FCC KDB 558074 D01 | 1 <b>N</b> /A |
| C D., 1 F1. | Pand Edga                        | FCC 47 CFR Part 15.247  | ANSI C63.10 - 2013 | Complies      |
| 6           | Band-Edge                        | RSS-247 Issue 2: 5.5    | ANSI C03.10 - 2013 | Complies      |
|             | Radiated Emissions:              | FCC 47 CFR Part 15.109  |                    |               |
| 7           | 7 Radiated Emissions:<br>Rx Mode | RSS-Gen Issue 5: 7.3    | ANSI C63.4 - 2014  | Complies      |
|             |                                  | ICES-003 Issue 7: 3.2.2 |                    |               |
|             | Doducted Spurious                | RSS-Gen Issue 5: 6.13   |                    |               |
| 8           | Raduated Spurious                | RSS-Gen Issue 5: 8.9    | ANSI C63.10 - 2013 | Complies      |
|             | Emissions                        | RSS-Gen Issue 5: 8.10   |                    |               |

Note: Duty cycle measured to calculate Duty Cycle Correction Factor (DCCF) if applicable.

Table 1: Applicable test standards and associated test methods

Note: The gain of the antenna(s) is provided by the client to measure or calculate test results and is not independently measured by QAI.

Manufacturer: Bitstrata Systems Inc.



# 2 GENERAL INFORMATION

# 2.1 Product Description

The information provided in this section is for the Equipment Under Test (EUT) and the corresponding Auxiliary Equipment needed to perform the tests as a complete system.



Figure 1: EUT

# **Equipment Under Test (EUT)**

| Equipment                                    | Libra Module                              |
|----------------------------------------------|-------------------------------------------|
| Description                                  | 2.4 GHz Bluetooth Low Energy (BLE) module |
| Manufacturer                                 | Bitstrata Systems Inc.                    |
| Model No.                                    | M1000                                     |
| Serial No.                                   | Sample 1                                  |
| Clock frequencies tuned upon within the EUT: | 32.768 kHz, 24 MHz                        |
| Highest frequency generated within the EUT:  | 2483.5 MHz                                |

Manufacturer: Bitstrata Systems Inc.



# **Equipment Under Test (EUT) – RF Information**

| RF device type           | 2.4 GHz Bluetooth Low Energy (BLE) module |
|--------------------------|-------------------------------------------|
| Model No. (HVIN)         | M1000                                     |
| Operating frequency      | 2400 – 2483.5 MHz                         |
| Number of available      | 40                                        |
| Channel separation       | 2 MHz                                     |
| Channel bandwidth        | 1200 kHz                                  |
| Output Power/Transmitter | -21 dBm to +5 dBm                         |
| Modulation type          | GFSK                                      |
| Test Channels (L, M, H)  | 2402 MHz, 2440 MHz, 2480 MHz              |
| Data Rate                | 1 Mbps                                    |
| Adaptive                 | No                                        |
| Geo-location-capable     | No                                        |
| Number of antennas       | 1                                         |
| Antenna type             | Chip antenna                              |
| Antenna gain             | 0.5 dBi                                   |

Notes: None.

# **Equipment Under Test (EUT) – General Information**

| Tested as                             | Tabletop                                                  |
|---------------------------------------|-----------------------------------------------------------|
| Dimensions                            | 3.3 x 2.5 x 0.9 cm                                        |
| Declared operating temperature range: | $-40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$            |
| Input power                           | 3.3V DC, 25mA, 83 mW                                      |
| Grounded                              | 3x ground pins                                            |
| Device use                            | Mobile – Separation distance of 20 cm from the human body |

Notes: None.

Manufacturer: Bitstrata Systems Inc.



# **Test Modes**

| Test | Transmitter State                      | Power           |
|------|----------------------------------------|-----------------|
| 1    | ON – continuously transmitting, 1 Mbps | Battery powered |
| 2    | OFF – Rx Only                          | Battery powered |

# **Auxiliary Manufacturer Supplied Equipment**

| Equipment | Manufacturer | Product Description | Model No.     |
|-----------|--------------|---------------------|---------------|
| Aux 1     | Lenovo       | Laptop              | Thinkpad T550 |
| Aux 2     | Apple        | Cellphone           | iPhone 5S     |

# 2.2 Environmental Conditions

The equipment under test was operated and tested under the following environmental conditions:

| Parameter         | Conditions |
|-------------------|------------|
| Location          | Indoors    |
| Temperature       | 24 °C      |
| Relative Humidity | 38 %       |

# 2.3 Measurement Uncertainty

| Parameter                      | Uncertainty           |
|--------------------------------|-----------------------|
| Radiated Emissions, 30MHz-1GHz | $\pm 2.40 \text{ dB}$ |
| Radiated Emissions, 1GHz-40GHz | ± 2.48 dB             |
| Radio Frequency                | ±1.5 x 10-5 MHz       |
| Total RF Power Conducted       | ±1.36 dB              |
| Spurious Emissions, Conducted  | ±1.36 dB              |
| RF Power Density, Conducted    | ±1.36 dB              |
| Temperature                    | ±1°C                  |
| Humidity                       | ±5 %                  |
| DC and low frequency voltages  | ±3 %                  |

Manufacturer: Bitstrata Systems Inc.



### 2.4 Worst Test Case

Worst-case orientation was determined during the preliminary testing. The final radiated emissions were performed in the worst-case orientation.

## 2.5 Sample Calculations of Emissions Data

Radiated and conducted emissions were performed using EMC32 software developed by Rohde & Schwarz. Transducer factors such as antenna factors, cable losses and amplifier gains were stored in the test templates which are used to perform the emissions measurements. After the test is finished, data is generated from the EMC32 consisting of product details, emission plots and final data tables as shown below.

| Frequency (MHz) | Q-Peak<br>(dBµV/m) | Meas. Time (ms) | Bandwidth<br>(kHz) | Ant. Ht. (cm) | Pol | Turntable<br>Position<br>(deg) | Corr. (dB) | Margin (dB) | Limit<br>(dBµV/m) |
|-----------------|--------------------|-----------------|--------------------|---------------|-----|--------------------------------|------------|-------------|-------------------|
| 42.663900       | 33.0               | 1000.000        | 120.000            | 100.0         | Н   | 70.0                           | 13.2       | 7.5         | 40.5              |

Table 2: Sample Quasi-Peak Correction Data – Radiated

Quasi-Peak reading shown in the table above is already corrected by the software using the correction factor shown in column "Corr." The correction factor listed under "Corr." table calculated as:

Or

### Corr.(dB) = Antenna factor + Cable Loss - Amp gain (if pre-amplifier was used)

The final Quasi peak reading shown in the data is calculated by the software using following equation:

### Corrected Quasi-Peak (dBµV/m) = Raw Quasi-Peak Reading + Antenna factor + Cable loss

To obtain the final Quasi-Peak or Average reading during power line conducted emissions, transducer factors are included in the final measurement as shown below.

| Frequency<br>(MHz) | Q-Peak<br>(dBµV) | Meas. Time<br>(ms) | Bandwidth<br>(kHz) | PE  | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV) |
|--------------------|------------------|--------------------|--------------------|-----|---------------|----------------|-----------------|
| 0.150              | 44.3             | 1000.000           | 9.000              | GND | 0.6           | 21.7           | 66.0            |

Table 3: Sample Quasi-Peak Correction Data - Conducted Emissions

| Frequency<br>(MHz) | Average (dBµV) | Meas. Time<br>(ms) | Bandwidth<br>(kHz) | PE  | Corr. (dB) | Margin<br>(dB) | Limit<br>(dBµV) |
|--------------------|----------------|--------------------|--------------------|-----|------------|----------------|-----------------|
| 0.150              | 27.2           | 1000.000           | 9.000              | GND | 0.6        | 28.8           | 56.0            |

Table 4: Sample Average Correction Data- Conducted Emissions

Manufacturer: Bitstrata Systems Inc.



Quasi Peak or Average reading shown in the preceding table is already corrected by the software using the correction factor shown in column "Corr." The correction factor listed under "Corr." table calculated as:

### Corr.(dB) = Antenna factor + Cable loss

The final Quasi-peak or Average reading shown in the data is calculated by the software using following equation:

### Corr. Quasi-Peak/Average Reading (dBµV) = Raw Quasi-Peak/Average Reading + Antenna factor + Cable loss

The allowable margin from the limits, as per the standards, were calculated for both radiated and conducted emissions:

### Margin(dB) = Limit - Quasi-Peak or Average reading

# 2.6 Test Equipment List

The tables below contain all the equipment used by QAI Laboratories in conducting all tests on the Equipment Under Test (EUT) as per Section 1.

### **Emissions Test Equipment**

| Sl.<br>NO. | Manufacturer    | Model     | Description                    | Serial No. | S/W Version | Calibration<br>Due Date |
|------------|-----------------|-----------|--------------------------------|------------|-------------|-------------------------|
| 1          | EMCO            | 6502      | 22" Loop antenna               | 2178       | N/A         | 2025-Dec-5              |
| 2          | ETS Lindgren    | 3117      | Horn Antenna, 1.0-18 GHz       | 75944      | N/A         | 2026-Jan-28             |
| 3          | ETS Lindgren    | 2165      | Turntable                      | 00043677   | N/A         | N/A                     |
| 4          | ETS Lindgren    | 2125      | Mast                           | 00077487   | N/A         | N/A                     |
| 5          | ETS Lindgren    | S201      | 5-meter Semi-Anechoic Chamber  | 1030       | N/A         | N/A                     |
| 6          | Hewlett Packard | 8449B     | Preamplifier (1-26 GHz)        | 2933A00198 | N/A         | 2025-Feb-15             |
| 7          | Maturo Gmbh     | BAM 4.0-P | Mast                           | 365        | 3382.01     | N/A                     |
| 8          | Rohde & Schwarz | ESW44     | EMI Receiver                   | 101604     | 4.73 SP4    | 2025-Jul-20             |
| 9          | Rohde & Schwarz | FSU       | Spectrum Analyzer              | 101388     | 4.71 SP6    | 2025-May-13             |
| 10         | Sunol Sciences  | SM46C     | Turntable                      | 051204-2   | N/A         | N/A                     |
| 11         | Sunol Sciences  | JB1       | Biconilog Antenna 30MHz – 2GHz | A070209    | N/A         | 2026-Jan-4              |

Note: Equipment listed above has 3-year calibration intervals.

### **Measurement Software**

| Si<br>No |   | Manufacturer    | Model  | Version  | Description             |
|----------|---|-----------------|--------|----------|-------------------------|
|          | 1 | Rhode & Schwarz | EMC 32 | 10.35.10 | Emissions Test Software |

Manufacturer: Bitstrata Systems Inc.



# 3 DATA & TEST RESULTS

# 3.1 Antenna Requirements

**Date Performed:** June 29, 2023

**Test Standard:** FCC CFR 47 Part 15.203

IC RSS-Gen Issue 7 Section 6.8

**Test Method:** ANSI C63.10:2013

**Modifications:** None

Final Result: Complies

### **Applicable Regulations:**

The purpose of this requirement is to make certain that no other antenna, except for that provided by the responsible party, shall be used with the Equipment-Under-Test (EUT) as defined in Section 1.1.

"An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited." ... "the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in the Part are not exceeded."

#### Data:

| Ant. | Manufacturer             | Part Number   | Туре | Connection | Max Gain<br>(dBi) |
|------|--------------------------|---------------|------|------------|-------------------|
| 1    | Johanson Technology Inc. | 2450AT18B100E | Chip | Soldered   | 0.5               |

Note: Antenna gain provided by manufacturer

Manufacturer: Bitstrata Systems Inc.



# 3.2 RF Peak Output Power and EIRP

**Date Performed:** June 29, 2023

**Test Standard:** FCC CFR 47 Part 15.247

ISED RSS-247 Issue 2: 5.4

**Test Method:** ANSI C63.10:2013

FCC KDB 558074 D01 DTS Measurement Guidance V04

Span = 10 MHz, RBW = 2 MHz, VBW = 5 MHz

Trace stabilization time: 3.5 minutes

**Modifications:** None.

Final Result: Complies

### **Applicable Regulation:**

#### FCC CFR 47 Part 15.247 (b)(3)

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: maximum output power 1 W. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (eg alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

### ISED RSS-247 Issue 2: 5.4

For DTSs employing digital modulation techniques operating in the bands 902-28 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The EIRP shall not exceed 4W, except for fixed point-to-point systems.

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

#### **Test Setup:**

The EUT was tested outside the SAC via output conducted measurements per FCC KDB 558074 D01 DTS Measurement Guidance V04.

Manufacturer: Bitstrata Systems Inc.



# **Measurement Data and Plots:**

| Carrier<br>Frequency<br>(MHz) | Raw Peak<br>(dBm) | Correction Factor <sup>1</sup> (dB) | Corrected Peak Conducted Output Power (dBm) | Limit<br>(dBm) | Margin<br>(dB) | Results  |
|-------------------------------|-------------------|-------------------------------------|---------------------------------------------|----------------|----------------|----------|
| 2402                          | 3.92              | 0.74                                | 4.66                                        | 30 dBm         | 25.34          | Complies |
| 2440                          | 3.79              | 0.77                                | 4.56                                        | 30 dBm         | 25.44          | Complies |
| 2480                          | 3.57              | 0.88                                | 4.45                                        | 30 dBm         | 25.55          | Complies |


<sup>&</sup>lt;sup>1</sup> Correction factor consists of cable loss, external attenuator, and adapter(s)

Table 5: RF Peak Output Power

| Carrier<br>Frequency<br>(MHz) | Peak Conducted<br>Output Power<br>(dBm) | Antenna Gain <sup>1</sup><br>(dBi) | EIRP<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Results  |
|-------------------------------|-----------------------------------------|------------------------------------|---------------|----------------|----------------|----------|
| 2402                          | 4.66                                    | 0.5                                | 5.16          | 30 dBm         | 24.84          | Complies |
| 2440                          | 4.56                                    | 0.5                                | 5.06          | 30 dBm         | 24.94          | Complies |
| 2480                          | 4.45                                    | 0.5                                | 4.95          | 30 dBm         | 25.05          | Complies |

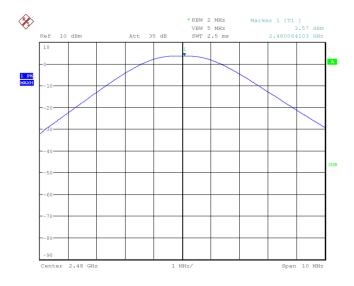
<sup>&</sup>lt;sup>1</sup> Antenna gain provided by manufacturer

Table 6: EIRP



Date: 29.JUN.2023 14:35:46

Figure 2: Peak Output Power – Lowest Frequency


Manufacturer: Bitstrata Systems Inc.





Date: 29.JUN.2023 14:49:16

Figure 3: Peak Output Power - Middle Frequency



Date: 29.JUN.2023 14:48:31

Figure 4: Peak Output Power - Highest Frequency

Manufacturer: Bitstrata Systems Inc.



# 3.3 Power Spectral Density (PSD)

**Date Performed:** August 9, 2023

**Test Standard:** FCC CFR 47 Part 15.247

ISED RSS-247 Issue 2

**Test Method:** ANSI C63.10:2013

FCC KDB 558074 D01 DTS Measurement Guidance V04

Span = 2 MHz, RBW = 3 kHz, VBW = 10 kHz

Trace stabilization time: 3.5 minutes

**Modifications:** None.

Final Result: Complies

### **Applicable Regulation:**

#### FCC CFR 47 Part 15.247 (e)

For digitally modulated systems, the power spectral density conducted\ from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of Paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

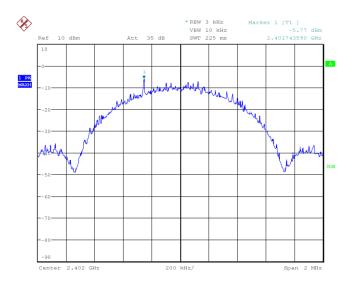
#### ISED RSS-247 Issue 2:

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

# **Test Setup:**

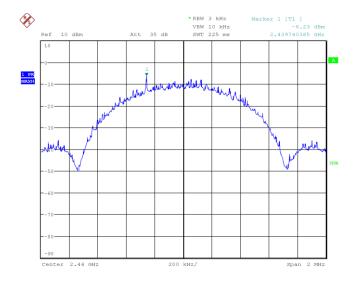
The EUT was tested outside the SAC via output conducted measurements per FCC KDB 558074 D01 DTS Measurement Guidance V04.

### **Measurement Data and Plots:**


| Carrier<br>Frequency<br>(MHz) | Raw Output<br>(dBm/3kHz) | Correction<br>Factor <sup>1</sup><br>(dB) | Corrected PSD<br>(dBm/3kHz) | Limit<br>(dBm/3kHz) | Margin<br>(dB) | Results  |
|-------------------------------|--------------------------|-------------------------------------------|-----------------------------|---------------------|----------------|----------|
| 2402                          | -5.77                    | 0.74                                      | -5.03                       | 8                   | 13.03          | Complies |
| 2440                          | -6.23                    | 0.77                                      | -5.46                       | 8                   | 13.46          | Complies |
| 2480                          | -6.32                    | 0.88                                      | -5.44                       | 8                   | 13.44          | Complies |

<sup>&</sup>lt;sup>1</sup> Correction factor consists of cable loss, external attenuator, and adapter(s)

Table 7: RF Power Spectral Density (PSD)

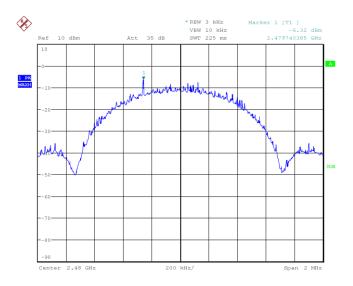

Manufacturer: Bitstrata Systems Inc.





Date: 9.AUG.2023 15:39:44

Figure 5: Power Spectral Density – Lowest Frequency




Date: 9.AUG.2023 15:42:18

Figure 6: Power Spectral Density - Middle Frequency

Manufacturer: Bitstrata Systems Inc.





Date: 9.AUG.2023 15:44:07

Figure 7: Power Spectral Density - Highest Frequency



### 3.4 20 dB Bandwidth

**Date Performed:** June 29, 2023

**Test Standard:** FCC CFR 47 Part 15.247

ISED RSS-247 Issue 2

**Test Method:** ANSI C63.10:2013

FCC KDB 558074 D01 DTS Measurement Guidance V04

Span = 2 to 5 x OBW, RBW = 1 to 5% of OBW, VBW = 3 x RBW

Ref Level > 10log(OBW/RBW) above signal peak

**Modifications:** None

Final Result: Complies

### **Applicable Regulations:**

FCC CFR 47 Part 15.247 (e)

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

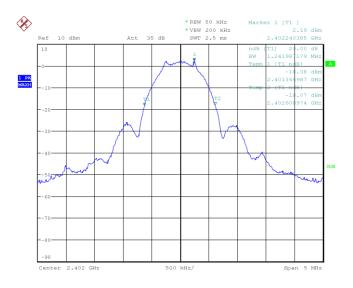
ISED RSS-247 Issue 2:

The minimum 6 dB bandwidth shall be 500 kHz.

### **Test Setup:**

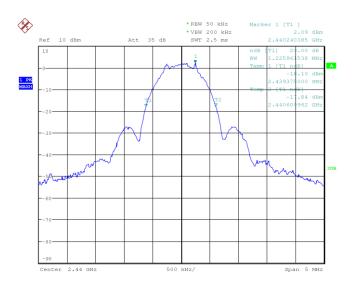
The EUT was tested outside the SAC via output conducted measurements per ANSI C63.10: 2013, 7.4.

A spectrum analyzer or other instrument providing a spectral display is recommended for these measurements. When using a spectrum analyzer or other instrument providing a spectral display, the video bandwidth shall be set to a value at least three times greater than the IF bandwidth of the measuring instrument to avoid the introduction of unwanted amplitude smoothing. Video filtering is not used during occupied bandwidth tests.


#### **Measurement Data and Plots:**

| Channels | Carrier Frequency<br>(MHz) | 20dB Bandwidth<br>(kHz) | Limit<br>(kHz) | Result   |  |
|----------|----------------------------|-------------------------|----------------|----------|--|
| Low      | 2402                       | 1242                    | 500            | Complies |  |
| Middle   | 2440                       | 1226                    | 500            | Complies |  |
| High     | 2480                       | 1234                    | 500            | Complies |  |

Table 8: 20 dB Bandwidth Results

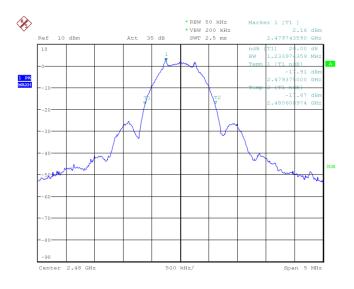

Manufacturer: Bitstrata Systems Inc.





Date: 29.JUN.2023 15:34:51

Figure 8: 20 dB Bandwidth – Low Channel




Date: 29.JUN.2023 15:33:22

Figure 9: 20 dB Bandwidth - Middle Channel

Manufacturer: Bitstrata Systems Inc.





Date: 29.JUN.2023 15:40:10

Figure 10: 20 dB Bandwidth - High Channel



# 3.5 Duty Cycle

**Date Performed:** June 29, 2023

**Test Standard:** N/A

**Test Method:** ANSI C63.10:2013

FCC KDB 558074 D01 DTS Measurement Guidance V04

Span = 0 MHz, Sweep Time = 10 ms

**Modifications:** None.

Final Result: N/A

# **Applicable Regulation:**

N/A

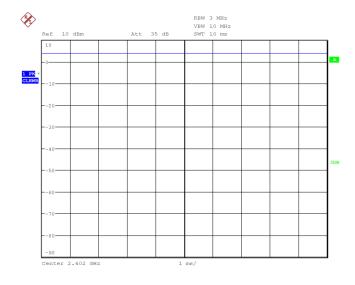
### **Test Setup:**

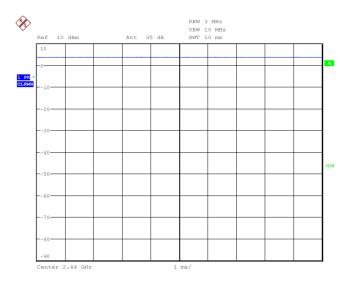
The EUT was tested outside the SAC via output conducted measurements per FCC KDB 558074 D01 DTS Measurement Guidance V04.

### **Measurement Data and Plots:**

| Carrier Frequency (MHz) | Sweep Time<br>(ms) | Tx ON Time (ms) | <b>Duty Cycle</b> | DCCF<br>(dB) | Results |
|-------------------------|--------------------|-----------------|-------------------|--------------|---------|
| 2402                    | 10                 | 10              | 100 %             | 0 dB         | N/A     |
| 2440                    | 10                 | 10              | 100 %             | 0 dB         | N/A     |
| 2480                    | 10                 | 10              | 100 %             | 0 dB         | N/A     |

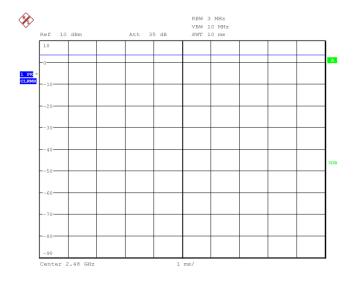
Table 9: Duty Cycle





Figure 11: Duty Cycle – Lowest Frequency

Manufacturer: Bitstrata Systems Inc.

Report Number: E10959-2301\_Bitstrata\_Libra\_FCC\_ISED\_Rev1.0


Date: 29.JUN.2023 16:50:03





Date: 29.JUN.2023 16:49:17

Figure 12: Duty Cycle - Middle Frequency



Date: 29.JUN.2023 16:46:41

Figure 13: Duty Cycle - Highest Frequency

Manufacturer: Bitstrata Systems Inc.



# 3.6 Out-Of-Band Emissions (Band Edge)

**Date Performed:** June 29, 2023

**Test Standard:** FCC CFR 47 Part 15.247

ISED RSS-247 Issue 2

**Test Method:** ANSI C63.10:2013

Span = Wide enough to capture the peak level of the emission closest to the band edge, as

well as any modulation products that fall outside of the band.

Ref Level = High enough to keep the signal from overdriving the input mixer

RBW = 100 kHz, VBW = 300 kHz Trace Detector: Peak, Trace: Max Hold

**Modifications:** None

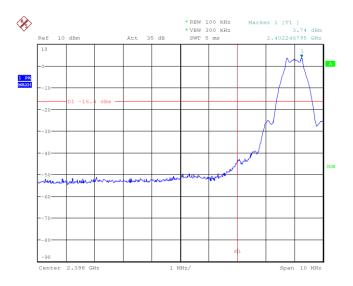
Final Result: Complies

### **Applicable Regulation:**

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, shall be at least 20 dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

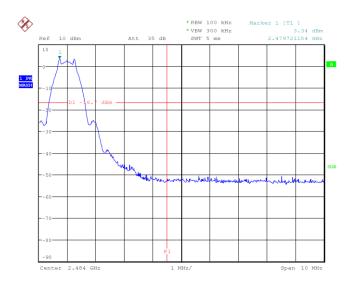
### **Test Setup:**

The EUT was tested outside the SAC via output conducted measurements per ANSI C63.10:2013.


#### **Measurement Data and Plots:**

| Band Edge | Modulation | Highest Out of Band<br>Emission | Limit  | Result   |
|-----------|------------|---------------------------------|--------|----------|
| Low       | GFSK       | < -40 dB                        | -20 dB | Complies |
| High      | GFSK       | < -50 dB                        | -20 dB | Complies |

Table 10: Band Edge Results


Manufacturer: Bitstrata Systems Inc.





Date: 29.JUN.2023 16:07:31

Figure 14: Band Edge - Low Channel



Date: 29.JUN.2023 16:10:03

Figure 15: Band Edge - High Channel



### 3.7 Radiated Emissions: Rx Mode

**Date Performed:** June 26, 2023

**Test Standard:** FCC 47 CFR Part 15.33

FCC 47 CFR Part 15.205 FCC 47 CFR Part 15.209

ICES-003 Issue 7 RSS-Gen Issue 5

**Test Method:** ANSI C63.4:2014

**Modifications:** None

Final Result: Complies

### **Applicable Standard:**

FCC 47 CFR Part 15.33 (a)(1), (5): Frequency range of radiated measurements

For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the 10<sup>th</sup> harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

FCC 47 CFR Part 15.109 (a): Radiated emission limits

Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following table:

| Frequency, f | Maximum Field strength Quasi-peak |
|--------------|-----------------------------------|
| (MHz)        | (dBµV/m at 3 m)                   |
| 30 – 88      | 40.0                              |
| 88 – 216     | 43.5                              |
| 216 – 960    | 46.0                              |
| above 960    | 54.0                              |

Note 1: The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.

Note 2: The emissions limits shown in the above table are based on measurements employing a CISPR quasi-peak detector.

#### RSS-Gen Issue 5: 7.3 Receiver radiated emissions limits

Spurious emissions from receivers shall not exceed the radiated emissions limits shown in the following table:

| Frequency, f (MHz) | Maximum Field strength Quasi-peak<br>(dBμV/m at 3 m) |
|--------------------|------------------------------------------------------|
| 30 – 88            | 40.0                                                 |
| 88 – 216           | 43.5                                                 |
| 216 – 960          | 46.0                                                 |
| above 960          | 54.0                                                 |

Note 1: The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.

Note 2: The emissions limits shown in the above table are based on measurements employing a CISPR quasi-peak detector.

Manufacturer: Bitstrata Systems Inc.



### ICES-003 Issue 7: 3.2.2 Radiated emission limits

The quasi-peak limits for the electric component of the radiated field strength emitted from ITE or digital apparatus, within 30 MHz to 1 GHz, for a measurement distance of 3 m or 10 m, are:

| Frequency Range (MHz) | Class A (3 m) Quasi-peak (dBµV/m) | Class A (10 m)<br>Quasi-peak<br>(dBµV/m) | Class B (3 m)<br>Quasi-peak<br>(dBµV/m) | Class B (10 m)<br>Quasi-peak<br>(dBµV/m) |
|-----------------------|-----------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|
| 30 – 88               | 50.0                              | 40.0                                     | 40.0                                    | 30.0                                     |
| 88 - 216              | 54.0                              | 43.5                                     | 43.5                                    | 33.1                                     |
| 216 – 230             | 56.9                              | 46.4                                     | 46.0                                    | 35.6                                     |
| 230 – 960             | 57.0                              | 47.0                                     | 47.0                                    | 37.0                                     |
| 960 - 1000            | 60.0                              | 49.5                                     | 54.0                                    | 43.5                                     |

At and above 1 GHz, except for outdoor units of home satellite receiving systems, the ITE or digital apparatus shall comply with:

| Engagonory Dongs   | Class A  | Class A  | Class B       | Class B       |
|--------------------|----------|----------|---------------|---------------|
| Frequency Range    | Average  | Peak     | Average       | Peak          |
| (MHz)              | (dBµV/m) | (dBµV/m) | $(dB\mu V/m)$ | $(dB\mu V/m)$ |
| 1 - F <sub>M</sub> | 60       | 80       | 54            | 74            |

### $F_M$ is determined by:

| Highest internal frequency $(F_X)$            | Highest measurement frequency $(F_M)$ |
|-----------------------------------------------|---------------------------------------|
| $F_X \le 108 \text{ MHz}$                     | 1 GHz                                 |
| $108 \text{ MHz} \le F_X \le 500 \text{ MHz}$ | 2 GHz                                 |
| $500 \text{ MHz} \le F_X \le 1 \text{ GHz}$   | 5 GHz                                 |
| $F_X > 1 \text{ GHz}$                         | 5 x $F_X$ up to a maximum of 40 GHz   |

# **Test Setup:**

The EUT was tested in a 3 m SAC and was positioned on the front of the turntable. The transmitter was set for continuous transmission. The radiated output of the device was measured for all emissions from 30 MHz up to the 5<sup>th</sup> harmonic of the highest fundamental frequency. The EUT was pre-scanned in 3 different orthogonal orientations and was found to radiate highest when placed as indicated in the test photos.

Manufacturer: Bitstrata Systems Inc.



# **Measurement Data and Plots:**

| Frequency<br>MHz | QuasiPeak<br>(dBuV/m) | Height<br>(cm) | Pol | Azimuth (°) | Corr. (dB/m) | Limit<br>(dBuV/m) | Margin (dB) | Result   |
|------------------|-----------------------|----------------|-----|-------------|--------------|-------------------|-------------|----------|
| 31.8354          | 22.96                 | 127.0          | Н   | 267         | 27.1         | 40.00             | 17.04       | Complies |
| 935.8996         | 27.57                 | 342.0          | Н   | 268         | 31.7         | 46.00             | 18.43       | Complies |

Table 11: Unintentional Radiated Emissions: 30 MHz - 1 GHz

| Frequency<br>MHz | MaxPeak<br>(dBuV/m) | Average (dBuV/m) | Height<br>(cm) | Pol | Azimuth | Corr. (dB/m) | Limit (dBuV/m) | Margin (dB) | Result   |
|------------------|---------------------|------------------|----------------|-----|---------|--------------|----------------|-------------|----------|
| 1998.1880        | (uDu v/III)         | 34.39            | 349.0          | Н   | 164     | 1.5          | 50.00          | 15.61       | Complies |
| 2464.5680        |                     | 34.52            | 149.0          | Н   | 13      | 0.3          | 50.00          | 15.48       | Complies |
| 4780.3360        |                     | 36.92            | 249.0          | Н   | 240     | 7.0          | 54.00          | 17.08       | Complies |
| 5560.7480        |                     | 37.45            | 249.0          | H   | 330     | 7.7          | 54.00          | 16.55       | Complies |
| 15672,9440       |                     | 37.43            | 244.0          | V   | 104     | 12.2         | 54.00          | 16.17       | Complies |
|                  |                     |                  |                | · · |         |              |                |             | 1        |
| 16680.3040       |                     | 38.90            | 193.0          | V   | 291     | 12.9         | 54.00          | 15.10       | Complies |

Table 12: Unintentional Radiated Emissions: 1 GHz - 18 GHz

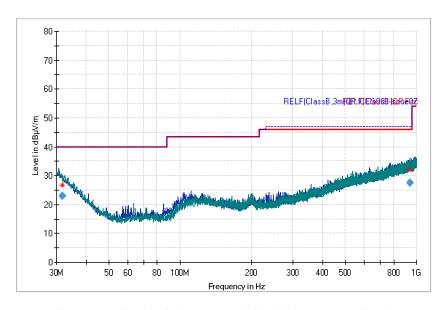



Figure 16: Radiated Emissions: Rx Mode 30-1000MHz Measured at 3m

Manufacturer: Bitstrata Systems Inc.



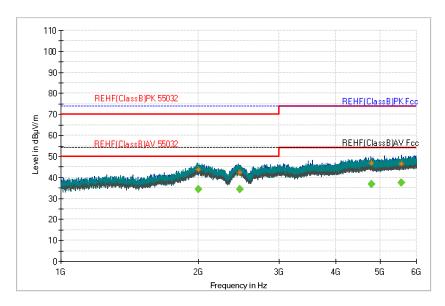



Figure 17: Radiated Emissions: Rx Mode 1-6 GHz Measured at 3m

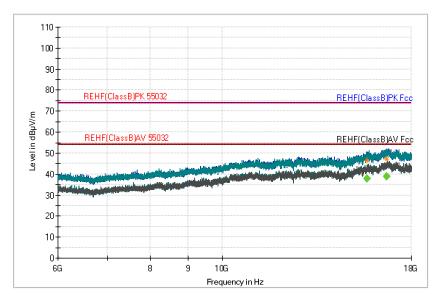



Figure 18: Radiated Emissions: Rx Mode 6-18 GHz Measured at 3m



# 3.8 Radiated Spurious Emissions

**Date Performed:** June 26, 2023 - June 27, 2023

**Test Standard:** FCC 47 CFR Part 15.33

FCC 47 CFR Part 15.205 FCC 47 CFR Part 15.209

RSS-Gen Issue 5 RSS-247 Issue 2

**Test Method:** ANSI C63.10:2013

**Modifications:** None

Final Result: Complies

### **Applicable Standard:**

FCC 47 CFR Part 15.33 (a)(1), (5): Frequency range of radiated measurements

For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the 10<sup>th</sup> harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

FCC 47 CFR Part 15.205 (a), (b): Restricted bands of operation

Only spurious emissions are permitted in any of the frequency bands listed below:

| FCC 15.205 Restricted Bands |                     |               |             |  |  |
|-----------------------------|---------------------|---------------|-------------|--|--|
| MHz                         | MHz                 | MHz           | GHz         |  |  |
| 0.090-0.110                 | 16.42-16.423        | 399.9-410     | 4.5-5.15    |  |  |
| 0.495-0.505                 | 16.69475-16.69525   | 608-614       | 5.35-5.46   |  |  |
| 2.1735-2.1905               | 16.80425-16.80475   | 960-1240      | 7.25-7.75   |  |  |
| 4.125-4.128                 | 25.5-25.67          | 1300-1427     | 8.025-8.5   |  |  |
| 4.17725-4.17775             | 37.5-38.25          | 1435-1626.5   | 9.0-9.2     |  |  |
| 4.20725-4.20775             | 73-74.6             | 1645.5-1646.5 | 9.3-9.5     |  |  |
| 6.215-6.218                 | 74.8-75.2           | 1660-1710     | 10.6-12.7   |  |  |
| 6.26775-6.26825             | 108-121.94          | 1718.8-1722.2 | 13.25-13.4  |  |  |
| 6.31175-6.31225             | 123-138             | 2200-2300     | 14.47-14.5  |  |  |
| 8.291-8.294                 | 149.9-150.05        | 2310-2390     | 15.35-16.2  |  |  |
| 8.362-8.366                 | 156.52475-156.52525 | 2483.5-2500   | 17.7-21.4   |  |  |
| 8.37625-8.38675             | 156.7-156.9         | 2690-2900     | 22.01-23.12 |  |  |
| 8.41425-8.41475             | 162.0125-167.17     | 3260-3267     | 23.6-24.0   |  |  |
| 12.29-12.293                | 167.72-173.2        | 3332-3339     | 31.2-31.8   |  |  |
| 12.51975-12.52025           | 240-285             | 3345.8-3358   | 36.43-36.5  |  |  |
| 12.57675-12.57725           | 322-335.4           | 3600-4400     |             |  |  |
| 13.36-13.41                 |                     |               |             |  |  |

The field strength of emissions appearing within these frequency bands shall not exceed the limits show in § 15.209

Manufacturer: Bitstrata Systems Inc.



### FCC 47 CFR Part 15.209 (a): Radiated emission limits; general requirements

The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency, f  | Maximum Field strength Quasi-peak |  |
|---------------|-----------------------------------|--|
| (MHz)         | (dBµV/m at 3 m)                   |  |
| 0.009 - 0.490 | $20*\log(2400/F(kHz)) + 40 dB$    |  |
| 0.490 - 1.705 | $20*\log(24000/F(kHz)) + 20 dB$   |  |
| 1.705 – 30.0  | 49.5                              |  |
| 30 – 88       | 40.0                              |  |
| 88 – 216      | 43.5                              |  |
| 216 – 960     | 46.0                              |  |
| above 960     | 54.0                              |  |

Note 1: The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.

Note 2: The emissions limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz., 110-490 kHz. and above 1000 MHz.

Radiated emission limits in these three bands are based on measurements employing an average detector

#### RSS-Gen Issue 5: 8.9 Transmitter emission limits

Except where otherwise indicated in the applicable RSS, radiated emissions shall comply with the field strength limits shown in the following table. Additionally, the level of any transmitter unwanted emission shall not exceed the level of the transmitter's fundamental emission.

| Frequency, f (MHz) | Maximum Field strength Quasi-peak<br>(dBμV/m at 3 m) |
|--------------------|------------------------------------------------------|
| 0.009 - 0.490      | $20*\log(6.37/F(kHz)) + 20*\log(377) + 40 dB$        |
| 0.490 - 1.705      | $20*\log(63.7/F(kHz)) + 20*\log(377) + 20 dB$        |
| 1.705 – 30.0       | 49.5                                                 |
| 30 – 88            | 40.0                                                 |
| 88 – 216           | 43.5                                                 |
| 216 – 960          | 46.0                                                 |
| above 960          | 54.0                                                 |

Note 1: The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.

Note 2: The emissions limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz., 110-490 kHz. and above 1000 MHz.

Radiated emission limits in these two bands are based on measurements employing a linear average detector

### RSS-Gen Issue 5: 8.10 Restricted frequency bands

Restricted frequency bands, identified in the following table, are designed primarily for safety-of-life services (distress calling and certain aeronautical activities), certain satellite downlinks, radio astronomy and some government uses. Except where otherwise indicated, the following conditions related to the restricted frequency bands apply:

- a) The transmit frequency, including fundamental components of modulation, of license-exempt radio apparatus shall not fall within the restricted frequency bands listed in the following table.
- b) Unwanted emissions that fall into restricted frequency bands shall comply with the limits specified in RSS-Gen Issue 5: 8.9
- c) Unwanted emissions that do not fall within the restricted frequency bands shall comply either with the limits specified in the applicable RSS or with those specified in RSS-Gen Issue 5: 8.9

Manufacturer: Bitstrata Systems Inc.



| RSS-Gen Restricted Bands |                     |               |             |  |  |
|--------------------------|---------------------|---------------|-------------|--|--|
| MHz                      | MHz                 | MHz           | GHz         |  |  |
| 0.090-0.110              | 16.42-16.423        | 399.9-410     | 4.5-5.15    |  |  |
| 0.495-0.505              | 16.69475-16.69525   | 608-614       | 5.35-5.46   |  |  |
| 2.1735-2.1905            | 16.80425-16.80475   | 960-1240      | 7.25-7.75   |  |  |
| 4.125-4.128              | 25.5-25.67          | 1300-1427     | 8.025-8.5   |  |  |
| 4.17725-4.17775          | 37.5-38.25          | 1435-1626.5   | 9.0-9.2     |  |  |
| 4.20725-4.20775          | 73-74.6             | 1645.5-1646.5 | 9.3-9.5     |  |  |
| 6.215-6.218              | 74.8-75.2           | 1660-1710     | 10.6-12.7   |  |  |
| 6.26775-6.26825          | 108-121.94          | 1718.8-1722.2 | 13.25-13.4  |  |  |
| 6.31175-6.31225          | 123-138             | 2200-2300     | 14.47-14.5  |  |  |
| 8.291-8.294              | 149.9-150.05        | 2310-2390     | 15.35-16.2  |  |  |
| 8.362-8.366              | 156.52475-156.52525 | 2483.5-2500   | 17.7-21.4   |  |  |
| 8.37625-8.38675          | 156.7-156.9         | 2690-2900     | 22.01-23.12 |  |  |
| 8.41425-8.41475          | 162.0125-167.17     | 3260-3267     | 23.6-24.0   |  |  |
| 12.29-12.293             | 167.72-173.2        | 3332-3339     | 31.2-31.8   |  |  |
| 12.51975-12.52025        | 240-285             | 3345.8-3358   | 36.43-36.5  |  |  |
| 12.57675-12.57725        | 322-335.4           | 3600-4400     |             |  |  |
| 13.36-13.41              |                     |               |             |  |  |

### RSS-247 Issue 2: 5.5 Unwanted emissions

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

### **Test Setup:**

The EUT was tested in a 3 m SAC and was positioned on the front of the turntable. The transmitter was set for continuous transmission. The radiated output of the device was measured for all emissions from 10 kHz up to the 10th harmonic of the highest fundamental frequency. The EUT was pre-scanned in 3 different orthogonal orientations and was found to radiate highest when placed as indicated in the test photos.

Manufacturer: Bitstrata Systems Inc.



# **Measurement Data and Plots:**

| Frequency                             | MaxPeak            | Average  | Height | Pol | Azimuth | Corr.  | Limit    | Margin | Result   |
|---------------------------------------|--------------------|----------|--------|-----|---------|--------|----------|--------|----------|
| MHz                                   | (dBuV/m)           | (dBuV/m) | (cm)   |     | (°)     | (dB/m) | (dBuV/m) | (dB)   |          |
| 0.5587                                | 50.76 <sup>1</sup> |          | 100.0  | Н   | 174     | 20.9   | 72.66    | 21.90  | Complies |
| 1.4681                                | 45.78 <sup>1</sup> |          | 100.0  | V   | 231     | 21.0   | 64.30    | 18.52  | Complies |
| 29.8572                               | 36.00 <sup>1</sup> |          | 100.0  | V   | 120     | 18.5   | 69.50    | 33.50  | Complies |
| 30.5144                               | 24.33 1            |          | 325.0  | V   | 328     | 28.1   | 40.00    | 15.67  | Complies |
| 107.6231                              | 14.20 <sup>1</sup> |          | 225.0  | Н   | 109     | 19.5   | 43.50    | 29.30  | Complies |
| 202.0926                              | 18.50 <sup>1</sup> |          | 323.0  | Н   | 180     | 20.5   | 43.50    | 25.00  | Complies |
| 949.8794                              | 27.26 1            |          | 228.0  | Н   | 289     | 31.8   | 46.00    | 18.74  | Complies |
| 1990.7360                             |                    | 34.85    | 100.0  | Н   | 4       | 1.4    | 50.00    | 15.15  | Complies |
| 2802.2400                             |                    | 33.99    | 149.0  | V   | 246     | 1.2    | 50.00    | 16.01  | Complies |
| 4778.0880                             |                    | 37.26    | 299.0  | Н   | 29      | 7.0    | 54.00    | 16.74  | Complies |
| 4803.8000                             |                    | 46.95    | 349.0  | Н   | 138     | 7.0    | 54.00    | 7.05   | Complies |
| 15669.2080                            |                    | 37.57    | 261.0  | Н   | 276     | 12.1   | 54.00    | 16.43  | Complies |
| 16739.5480                            |                    | 40.09    | 177.0  | V   | 159     | 12.9   | 54.00    | 13.91  | Complies |
| <sup>1</sup> Quasi-Peak detector used |                    |          |        |     |         |        |          |        |          |

Table 13: Radiated Spurious Emissions: 10 kHz - 26 GHz, Low Channel

| Frequency                             | MaxPeak            | Average  | Height | Pol | Azimuth | Corr.  | Limit    | Margin | Result   |
|---------------------------------------|--------------------|----------|--------|-----|---------|--------|----------|--------|----------|
| MHz                                   | (dBuV/m)           | (dBuV/m) | (cm)   |     | (°)     | (dB/m) | (dBuV/m) | (dB)   |          |
| 1.4710                                | 45.68 <sup>1</sup> |          | 100.0  | Н   | 189     | 21.0   | 64.28    | 18.60  | Complies |
| 30.3047                               | 24.39 <sup>1</sup> |          | 189.0  | Н   | 301     | 28.2   | 40.00    | 15.61  | Complies |
| 112.3185                              | 13.69 <sup>1</sup> |          | 319.0  | Н   | 162     | 20.3   | 43.50    | 29.81  | Complies |
| 200.3871                              | 15.98 <sup>1</sup> |          | 315.0  | Н   | 329     | 20.8   | 43.50    | 27.52  | Complies |
| 952.3183                              | 27.25 1            |          | 275.0  | Н   | 174     | 31.8   | 46.00    | 18.75  | Complies |
| 2007.6400                             |                    | 34.73    | 199.0  | Н   | 249     | 1.5    | 50.00    | 15.27  | Complies |
| 2758.1640                             |                    | 33.36    | 150.0  | Н   | 160     | 1.1    | 50.00    | 16.64  | Complies |
| 4879.9080                             |                    | 47.81    | 150.0  | Н   | 130     | 7.0    | 54.00    | 6.19   | Complies |
| 11890.9720                            |                    | 34.61    | 136.0  | Н   | 328     | 7.6    | 54.00    | 19.39  | Complies |
| 12668.8560                            |                    | 35.04    | 176.0  | V   | 15      | 7.5    | 54.00    | 18.96  | Complies |
| 15582.5680                            |                    | 36.96    | 177.0  | V   | 225     | 11.5   | 54.00    | 17.04  | Complies |
| 16804.9880                            |                    | 39.24    | 208.0  | Н   | 198     | 12.9   | 54.00    | 14.76  | Complies |
| <sup>1</sup> Quasi-Peak detector used |                    |          |        |     |         |        |          |        |          |

Table 14: Radiated Spurious Emissions: 10 kHz - 26 GHz, Mid Channel

Manufacturer: Bitstrata Systems Inc.



| Frequency                             | MaxPeak            | Average  | Height | Pol | Azimuth | Corr.  | Limit    | Margin | Result   |
|---------------------------------------|--------------------|----------|--------|-----|---------|--------|----------|--------|----------|
| MHz                                   | (dBuV/m)           | (dBuV/m) | (cm)   |     | (°)     | (dB/m) | (dBuV/m) | (dB)   |          |
| 0.5885                                | 50.67 <sup>1</sup> |          | 100.0  | V   | 282     | 20.9   | 72.21    | 21.54  | Complies |
| 1.4687                                | 45.73 <sup>1</sup> |          | 100.0  | V   | 239     | 21.0   | 64.29    | 18.57  | Complies |
| 1.1204                                | 44.87 1            |          | 100.0  | V   | 53      | 21.1   | 66.64    | 21.77  | Complies |
| 1.4703                                | 46.61 <sup>1</sup> |          | 100.0  | V   | 250     | 21.0   | 64.28    | 17.68  | Complies |
| 31.2669                               | 23.44 1            |          | 180.0  | Н   | 356     | 27.5   | 40.00    | 16.56  | Complies |
| 109.7302                              | 15.76 <sup>1</sup> |          | 122.0  | Н   | 328     | 19.9   | 43.50    | 27.74  | Complies |
| 194.8126                              | 14.12 1            |          | 377.0  | V   | 296     | 19.9   | 43.50    | 29.38  | Complies |
| 416.4333                              | 18.89 <sup>1</sup> |          | 315.0  | V   | 223     | 24.4   | 46.00    | 27.11  | Complies |
| 930.4253                              | 27.51 1            |          | 143.0  | V   | 105     | 31.7   | 46.00    | 18.49  | Complies |
| 2016.9000                             |                    | 34.37    | 299.0  | Н   | 247     | 1.4    | 50.00    | 15.63  | Complies |
| 2959.3360                             |                    | 33.60    | 249.0  | V   | 233     | 1.5    | 50.00    | 16.40  | Complies |
| 4640.2520                             |                    | 36.60    | 200.0  | Н   | 69      | 6.7    | 54.00    | 17.40  | Complies |
| 12784.6800                            |                    | 36.05    | 240.0  | V   | 78      | 7.5    | 54.00    | 17.95  | Complies |
| 15584.3400                            |                    | 36.97    | 314.0  | V   | 175     | 11.5   | 54.00    | 17.03  | Complies |
| 16796.5040                            |                    | 39.17    | 286.0  | Н   | 286     | 12.9   | 54.00    | 14.83  | Complies |
| <sup>1</sup> Quasi-Peak detector used |                    |          |        |     |         |        |          |        |          |

Table 15: Radiated Spurious Emissions: 10 kHz - 26 GHz, High Channel

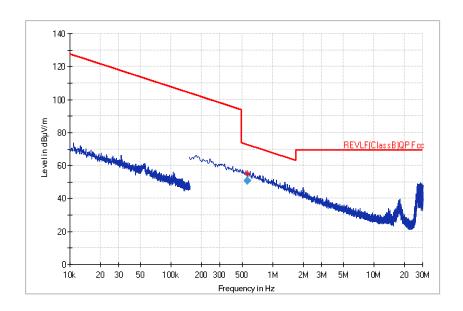



Figure 19: Radiated Spurious Emissions: 10 kHz - 30 MHz, Horizontal, Low Channel

Manufacturer: Bitstrata Systems Inc.



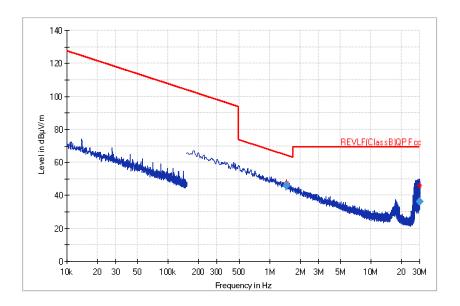



Figure 20: Radiated Spurious Emissions: 10 kHz - 30 MHz, Vertical, Low Channel

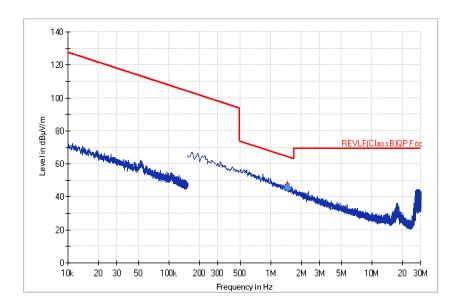



Figure 21: Radiated Spurious Emissions: 10 kHz - 30 MHz, Horizontal, Mid Channel



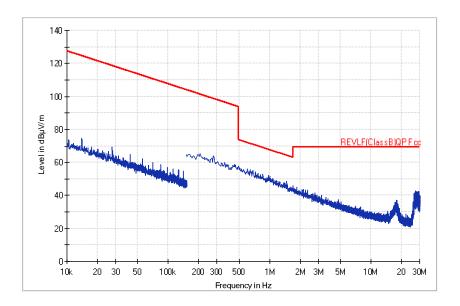



Figure 22: Radiated Spurious Emissions: 10 kHz - 30 MHz, Vertical, Mid Channel

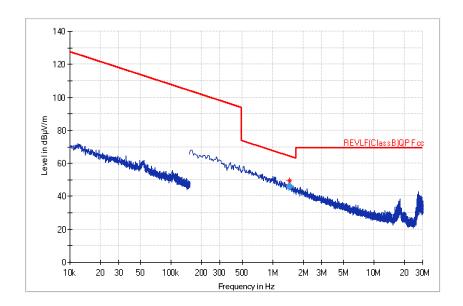



Figure 23: Radiated Spurious Emissions: 10 kHz - 30 MHz, Horizontal, High Channel



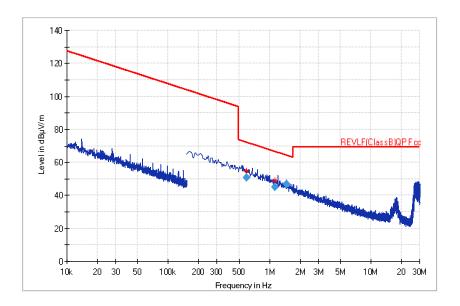



Figure 24: Radiated Spurious Emissions: 10 kHz - 30 MHz, Vertical, High Channel

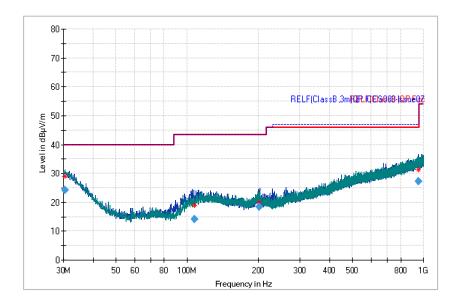



Figure 25: Radiated Spurious Emissions: 30 MHz – 1 GHz, Low Channel



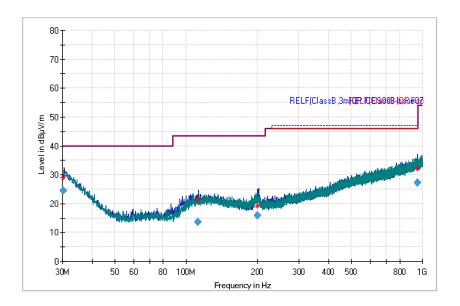



Figure 26: Radiated Spurious Emissions: 30 MHz – 1 GHz, Mid Channel

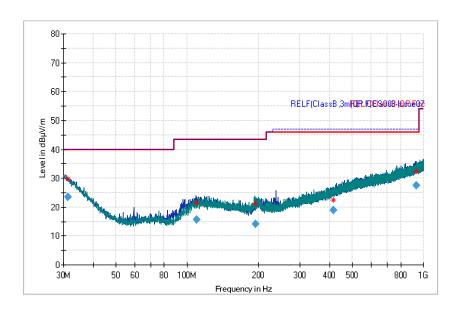



Figure 27: Radiated Spurious Emissions: 30 MHz – 1 GHz, High Channel



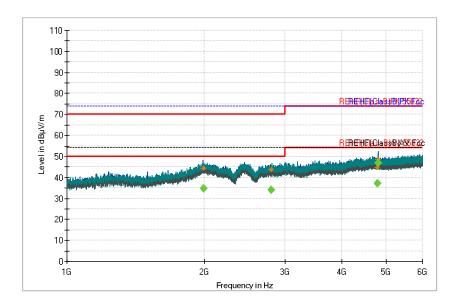



Figure 28: Radiated Spurious Emissions: 1 GHz – 6 GHz, Low Channel

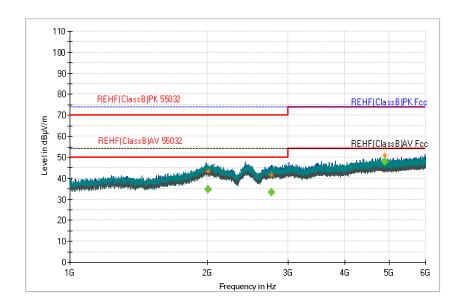



Figure 29: Radiated Spurious Emissions: 1 GHz – 6 GHz, Mid Channel



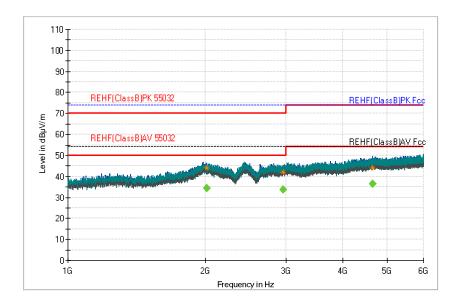



Figure 30: Radiated Spurious Emissions: 1 GHz – 6 GHz, High Channel

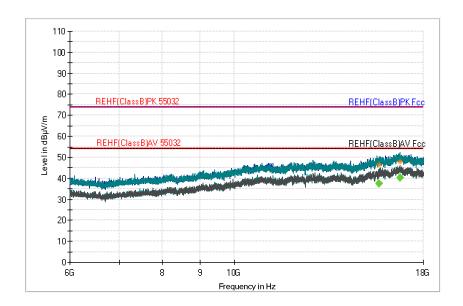



Figure 31: Radiated Spurious Emissions: 6 GHz – 18 GHz, Low Channel



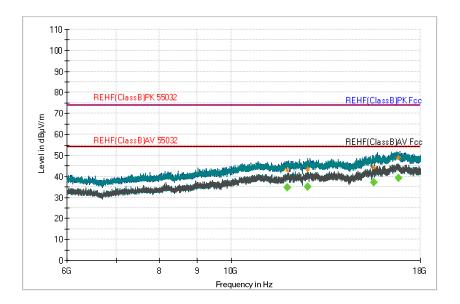



Figure 32: Radiated Spurious Emissions: 6 GHz – 18 GHz, Mid Channel

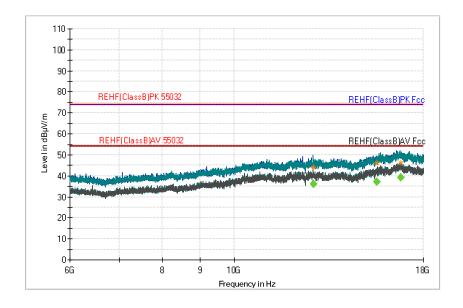



Figure 33: Radiated Spurious Emissions: 6 GHz – 18 GHz, High Channel



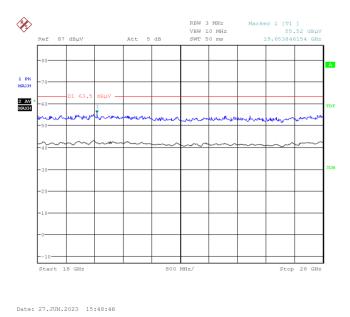



Figure 34: Radiated Spurious Emissions: 18 GHz – 26 GHz, Vertical, Low Channel

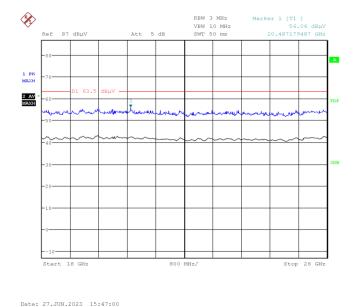
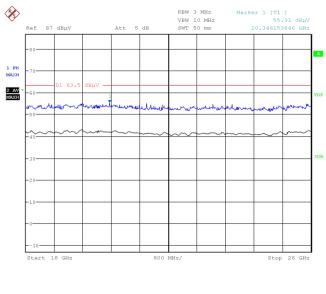
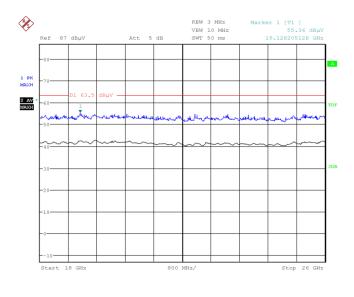




Figure 35: Radiated Spurious Emissions: 18 GHz – 26 GHz, Horizontal, Low Channel


Manufacturer: Bitstrata Systems Inc.





Date: 27.JUN.2023 15:50:44

Figure 36: Radiated Spurious Emissions: 18 GHz – 26 GHz, Vertical, Mid Channel



Date: 27.JUN.2023 15:52:24

Figure 37: Radiated Spurious Emissions: 18 GHz – 26 GHz, Horizontal, Mid Channel

Manufacturer: Bitstrata Systems Inc.



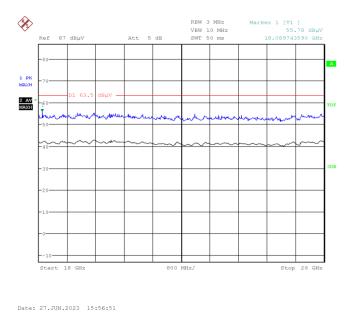



Figure 38: Radiated Spurious Emissions: 18 GHz – 26 GHz, Vertical, High Channel

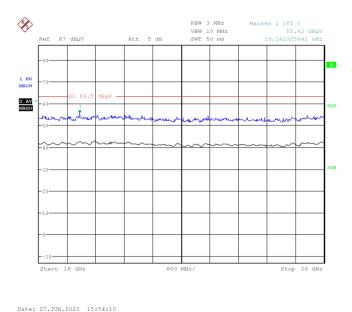



Figure 39: Radiated Spurious Emissions: 18 GHz – 26 GHz, Horizontal, High Channel

Manufacturer: Bitstrata Systems Inc.



## **Appendix A:** Test Setup Photos



Figure 40: RF Conducted Emissions



Figure 41: Radiated Emissions: 0.01-30 MHz

Manufacturer: Bitstrata Systems Inc.





Figure 42: Radiated Emissions: 30-1000 MHz

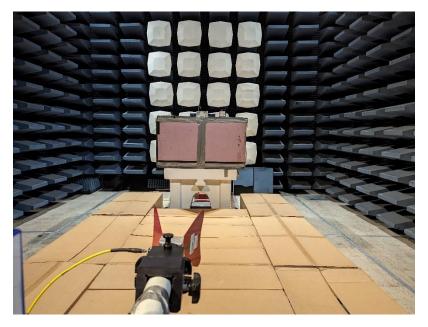



Figure 43: Radiated Emissions: 1-18 GHz





Figure 44: Radiated Emissions: 18-26 GHz



## **Appendix B:** Abbreviations

| Abbreviation | Definition                                                                                                                 |
|--------------|----------------------------------------------------------------------------------------------------------------------------|
| AC           | Alternating Current                                                                                                        |
| AM           | Amplitude Modulation                                                                                                       |
| CE           | European Conformity                                                                                                        |
| CISPR        | Comité International Spécial des Perturbations Radioélectriques<br>(International Special Committee on Radio Interference) |
| DC           | Direct Current                                                                                                             |
| EFT          | Electrical Fast Transient                                                                                                  |
| EMC          | Electro Magnetic Compatibility                                                                                             |
| EMI          | Electro Magnetic Interference                                                                                              |
| ESD          | Electrostatic Discharge                                                                                                    |
| EUT          | Equipment Under Test                                                                                                       |
| FCC          | Federal Communications Commission                                                                                          |
| FVIN         | Firmware Version Identification Number FVIN                                                                                |
| IC           | Industry Canada                                                                                                            |
| ICES         | Interference Causing Equipment Standard                                                                                    |
| IEC          | International Electrotechnical Commission                                                                                  |
| LISN         | Line Impedance Stabilizing Network                                                                                         |
| OATS         | Open Area Test Site                                                                                                        |
| RF           | Radio Frequency                                                                                                            |
| RMS          | Root-Mean-Square                                                                                                           |
| SAC          | Semi-Anechoic Chamber                                                                                                      |

Manufacturer: Bitstrata Systems Inc.



## **END OF REPORT**

Manufacturer: Bitstrata Systems Inc.