

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202307247F01

TEST Report

Applicant: Shenzhen Saibolin Electronic Technology Co., Ltd

Address of Applicant: Floor 4, No. 5, Caiyun 1st Road, Longgang District, Shenzhen

Manufacturer: Shenzhen Saibolin Electronic Technology Co., Ltd

Address of Floor 4, No. 5, Caiyun 1st Road, Longgang District, Shenzhen

Manufacturer:

Equipment Under Test (EUT)

Product Name: Karaoke Machine

Model No.: S25

Series model: S28, S29, S30

Trade Mark: /

FCC ID: 2BABV-S25

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Jul.14,2023

Date of Test: Jul.14,2023~Jul.18,2023

Date of report issued: Jul.18,2023

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Jul.18,2023	Original

Tested/ Prepared By	Heber He	Date:	Jul.18,2023
	Project Engineer		
Check By:	Bruce Zhu	Date:	Jul.18,2023
	Reviewer	_	
Approved By :	Kein Yang	Date:	Jul.18,2023
	Authorized Signature		

2. Contents

	Page
1. VERSION	2
2. CONTENTS	
3. TEST SUMMARY	
4. GENERAL INFORMATION	
4.1. GENERAL DESCRIPTION OF EUT	
4.2. TEST MODE	
4.3. DESCRIPTION OF SUPPORT UNITS	
4.5. ABNORMALITIES FROM STANDARD CONDITIONS	
4.6. TEST FACILITY	
4.7. TEST LOCATION	
4.8. ADDITIONAL INSTRUCTIONS	
5. TEST INSTRUMENTS LIST	
6. TEST RESULTS AND MEASUREMENT DATA	9
6.1. CONDUCTED EMISSIONS	9
6.2. CONDUCTED PEAK OUTPUT POWER	
6.3. 20DB EMISSION BANDWIDTH	13
6.4. Frequencies Separation	_
6.5. HOPPING CHANNEL NUMBER	
6.6. DWELL TIME	
6.7. BAND EDGE	
6.7.1. Conducted Emission Method	
6.7.2. Radiated Emission Method	
6.8. SPURIOUS EMISSION	
6.8.1. Conducted Emission Method	
6.8.2. Radiated Emission Method	
7. TEST SETUP PHOTO	42
8 FUT CONSTRUCTIONAL DETAILS	12

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

_				
Test Item	Frequency Range	Measurement Uncertainty	Notes	
Radiated Emission	30~1000MHz	3.45 dB	(1)	
Radiated Emission	1~6GHz	3.54 dB	(1)	
Radiated Emission	6~40GHz	5.38 dB	(1)	
Conducted Disturbance 0.15~30MHz 2.66 dB				
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.	

4. General Information

4.1. General Description of EUT

Product Name:	Karaoke Machine
Model No.:	S25
Series model:	S28, S29, S30
Test sample(s) ID:	HTT202307247-1(Engineer sample) HTT202307247-2(Normal sample)
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK
Antenna Type:	PCB Antenna
Antenna gain:	-0.58 dBi
Power Supply:	DC 3.7V From Battery and DC 5V From External Circuit

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz	
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz	
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz	
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz	
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz	
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz	
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz	
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz	
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz	
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz	
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz	
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz	
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz	
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz	
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz	
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz	
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz	
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz	
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz	
20	2421MHz	40	2441MHz	60	2461MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been accredited on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

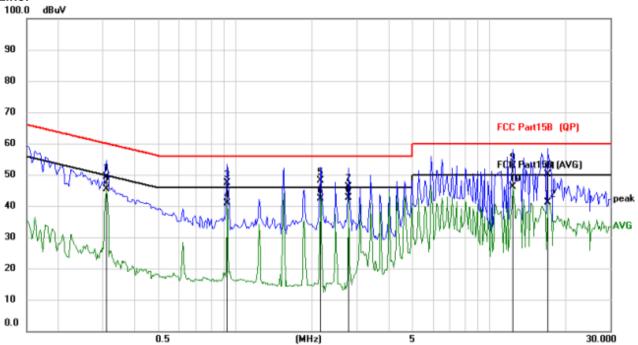
Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2021	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2021	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	Apr. 26 2023	Apr. 25 2024
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	Apr. 26 2023	Apr. 25 2024
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	Apr. 26 2023	Apr. 25 2024
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	Apr. 26 2023	Apr. 25 2024
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	Apr. 26 2023	Apr. 25 2024
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	Apr. 26 2023	Apr. 25 2024
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May. 21 2023	May. 20 2024
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May. 20 2023	May. 19 2024
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Apr. 26 2023	Apr. 25 2024
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Apr. 26 2023	Apr. 25 2024
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	Apr. 26 2023	Apr. 25 2024
14	high-frequency Amplifier	HP	8449B	HTT-E014	Apr. 26 2023	Apr. 25 2024
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	Apr. 26 2023	Apr. 25 2024
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	Apr. 26 2023	Apr. 25 2024
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May. 23 2023	May. 22 2024
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May. 23 2023	May. 22 2024
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	Apr. 26 2023	Apr. 25 2024
20	Attenuator	Robinson	6810.17A	HTT-E007	Apr. 26 2023	Apr. 25 2024
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	Apr. 26 2023	Apr. 25 2024
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	Aug. 10 2021	Aug. 09 2024
23	DC power supply	Agilent	E3632A	HTT-E023	Apr. 26 2023	Apr. 25 2024
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	Apr. 26 2023	Apr. 25 2024
25	Analog signal generator	Agilent	N5181A	HTT-E025	Apr. 26 2023	Apr. 25 2024
26	Vector signal generator	Agilent	N5182A	HTT-E026	Apr. 26 2023	Apr. 25 2024
27	Power sensor	Keysight	U2021XA	HTT-E027	Apr. 26 2023	Apr. 25 2024
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	Apr. 28 2023	Apr. 27 2024
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

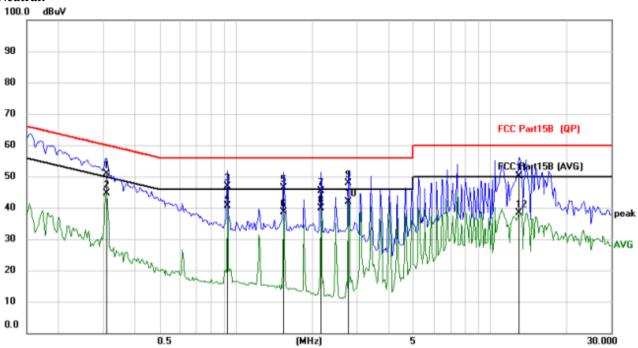
6. Test results and Measurement Data

6.1. Conducted Emissions

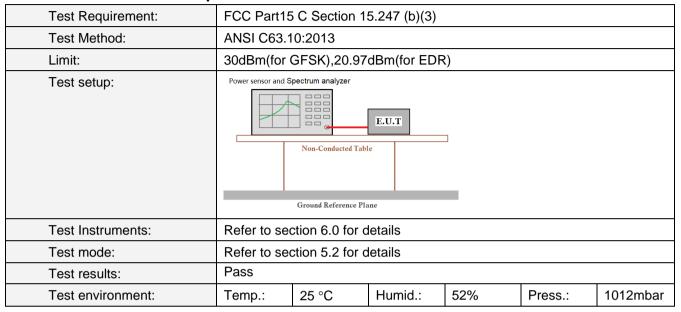

	Donaucteu Emissions							
	Test Requirement:	FCC Part15	C Section 15.2	207				
-	Test Method:	ANSI C63.10:2013						
-	Test Frequency Range:	150KHz to 30MHz						
(Class / Severity:	Class B						
i	Receiver setup:	RBW=9KH	z, VBW=30KHz	, Sweep tir	ne=auto			
l	_imit:	Frequen	cy range (MHz)	\	Limit	(dBuV)		
		0.15-0.5 66 to 56* 56 to					age	
			0.5-5 5-30		56 60	40		
		* Decrease	_ວ-ວບ s with the logari	ithm of the		50	U	
_	Test setup:	Doorodoo	Reference Pi		noquonoy.			
-	Test procedure:	Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and					s a ent. er through a 50ohm	
		photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.						
_	Test Instruments:	Refer to see	ction 6.0 for det	ails				
_	Test mode:	Refer to see	ction 5.2 for det	ails	T	T	T	
-	Test environment:	Temp.:	25 °C H	Humid.:	52%	Press.:	1012mbar	
-	Test voltage:	AC 120V, 6	0Hz					
_	Test results:	Pass						

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:



No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
INO. IVIK.		Level	ractor		Litting	010	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.3100	39.06	10.41	49.47	59.97	-10.50	QP
2	0.3100	34.87	10.41	45.28	49.97	-4.69	AVG
3	0.9261	36.44	10.86	47.30	56.00	-8.70	QP
4	0.9261	30.00	10.86	40.86	46.00	-5.14	AVG
5	2.1662	37.42	10.83	48.25	56.00	-7.75	QP
6	2.1662	31.56	10.83	42.39	46.00	-3.61	AVG
7	2.7863	35.25	10.84	46.09	56.00	-9.91	QP
8 *	2.7863	31.70	10.84	42.54	46.00	-3.46	AVG
9	12.3795	41.12	11.78	52.90	60.00	-7.10	QP
10	12.3795	34.39	11.78	46.17	50.00	-3.83	AVG
11	17.0088	37.96	12.22	50.18	60.00	-9.82	QP
12	17.0088	29.01	12.22	41.23	50.00	-8.77	AVG


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.3100	40.58	10.25	50.83	59.97	-9.14	QP
2	0.3100	34.48	10.25	44.73	49.97	-5.24	AVG
3	0.9261	36.14	10.76	46.90	56.00	-9.10	QP
4	0.9261	29.89	10.76	40.65	46.00	-5.35	AVG
5	1.5423	35.54	10.81	46.35	56.00	-9.65	QP
6	1.5423	27.94	10.81	38.75	46.00	-7.25	AVG
7	2.1585	34.56	10.83	45.39	56.00	-10.61	QP
8	2.1585	29.17	10.83	40.00	46.00	-6.00	AVG
9	2.7785	36.94	10.84	47.78	56.00	-8.22	QP
10 *	2.7785	31.03	10.84	41.87	46.00	-4.13	AVG
11	13.0347	38.25	11.92	50.17	60.00	-9.83	QP
12	13.0347	26.55	11.92	38.47	50.00	-11.53	AVG

Notes:

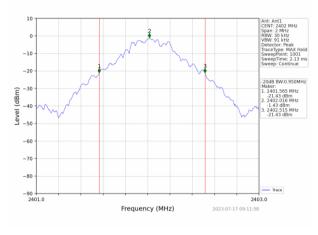
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

6.2. Conducted Peak Output Power

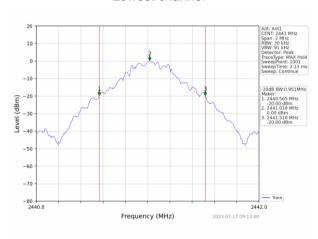
Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	0.62		
GFSK	Middle	2.05	30.00	Pass
	Highest	3.36		
	Lowest	1.40		
π/4-DQPSK	Middle	2.63	20.97	Pass
	Highest	3.84		

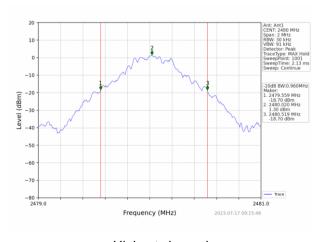
6.3. 20dB Emission Bandwidth


Measurement Data

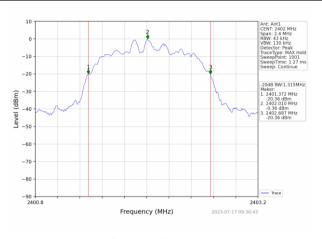
Mode	Test channel	20dB Emission Bandwidth (MHz)	Result
	Lowest	0.950	
GFSK	Middle	0.951	Pass
	Highest	0.960	
	Lowest	1.315	
π/4-DQPSK	Middle	1.304	Pass
	Highest	1.321	

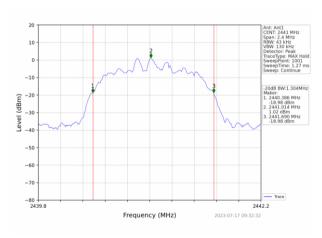


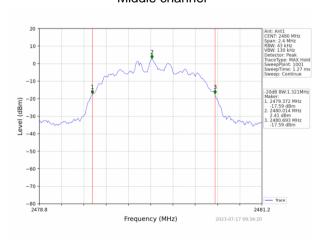
Test plot as follows:


Test mode: GFSK mode

Lowest channel


Middle channel


Highest channel


Test mode: $\pi/4$ -DQPSK mode

Lowest channel

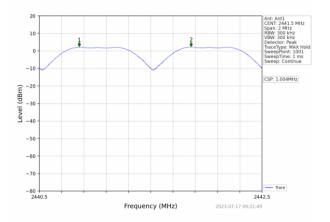
Middle channel

Highest channel

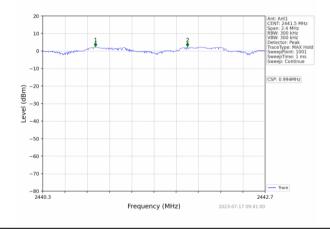
6.4. Frequencies Separation

Test Requirement:	FCC Part1	FCC Part15 C Section 15.247 (a)(1)							
Test Method:		ANSI C63.10:2013							
Receiver setup:	RBW=100h	RBW=100KHz, VBW=300KHz, detector=Peak							
Limit:		GFSK: 20dB bandwidth π/4-DQPSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)							
Test setup:	Sp								
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								
Test environment:	Temp.:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar							

Measurement Data


Micasarciniciti Date	a			
Mode	Test channel	Frequencies Separation (MHz)	Limit (kHz)	Result
			25KHz or	
GFSK	Middle	1.004	2/3*20dB	Pass
			bandwidth	
			25KHz or	
π/4-DQPSK	Middle	0.994	2/3*20dB	Pass
			bandwidth	

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle



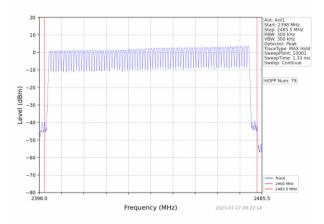
Test plot as follows:

Modulation mode: GFSK

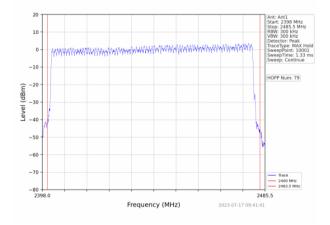
Test mode: $\pi/4$ -DQPSK

6.5. Hopping Channel Number

Test Requirement:	FCC Part1	FCC Part15 C Section 15.247 (a)(1)(iii)							
Test Method:	ANSI C63.	ANSI C63.10:2013							
Receiver setup:		RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak							
Limit:	15 channel	S							
Test setup:	Spe			E.U.T					
Test Instruments:	Refer to se	ction 6.0 for c	letails						
Test mode:	Refer to se	Refer to section 5.2 for details							
Test results:	Pass	Pass							
Test environment:	Temp.:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar							


Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79	>4F	Pass
π/4-DQPSK	79	≥15	Pass



Test plot as follows:

Test mode: GFSK

Test mode: $\pi/4$ -DQPSK

6.6. Dwell Time

Test Requirement:	FCC Part1	FCC Part15 C Section 15.247 (a)(1)(iii)							
Test Method:	ANSI C63.	ANSI C63.10:2013							
Receiver setup:	RBW=1MH	z, VBW=1MH	Iz, Span=0Hz	z, Detector=F	Peak				
Limit:	0.4 Second								
Test setup:	Sp	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to se	Refer to section 6.0 for details							
Test mode:	Refer to se	Refer to section 5.2 for details							
Test results:	Pass	Pass							
Test environment:	Temp.:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar							

Measurement Data

GFSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	DH1	0.386	122.748	400	Pass
Hopping	DH3	1.644	259.752	400	Pass
Hopping	DH5	2.896	318.560	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3

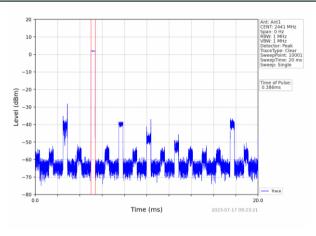
Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5

$\pi/4$ -DQPSK mode:

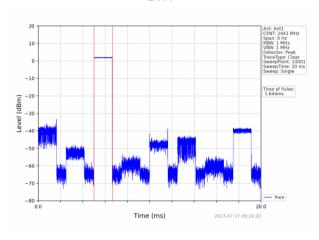
Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	2DH1	0.396	125.532	400	Pass
Hopping	2DH3	1.648	276.864	400	Pass
Hopping	2DH5	2.896	309.872	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

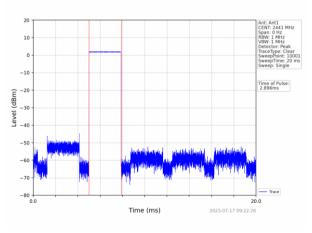
Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1

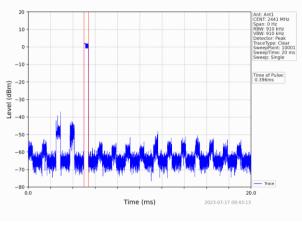

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3

Dwell time=Pulse time (ms) x (1600 \div 6 \div 79) x31.6 Second for DH5, 2-DH5

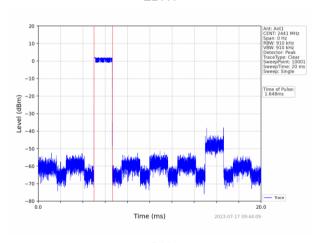


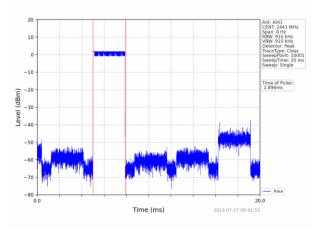
Test plot as follows:


GFSK mode



DH3

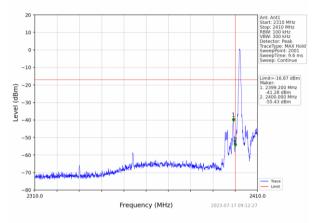


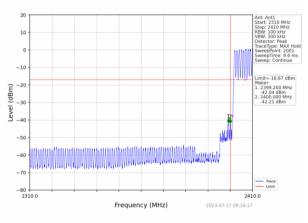

π/4-DQPSK mode

2DH1

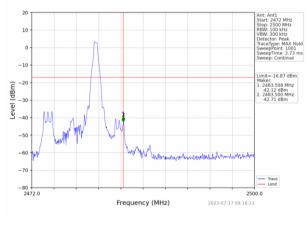
2DH3

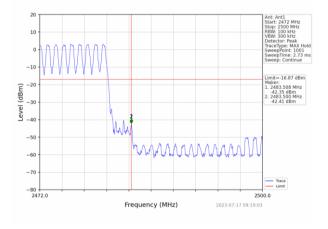
6.7. Band Edge


6.7.1. Conducted Emission Method


Test Requirement:	FCC Part15 C Section 15.247 (d)								
Test Method:	ANSI C63.1	ANSI C63.10:2013							
Receiver setup:	RBW=100k	Hz, VBW=30	0kHz, Detect	tor=Peak					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								
Test environment:	Temp.:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar							

Test plot as follows: GFSK Mode:

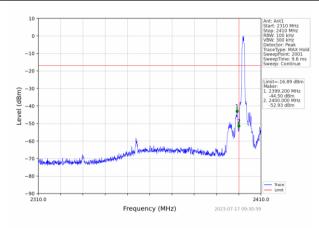


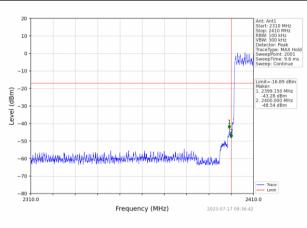

No-hopping mode

Hopping mode

Test channel:

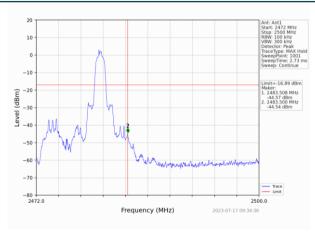
Highest channel

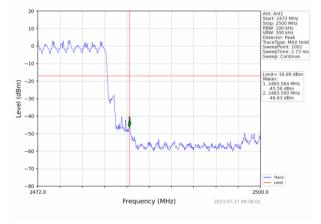

No-hopping mode


Hopping mode

π/4-DQPSK Mode:

Test channel Lowest channel




No-hopping mode

Hopping mode

Test channel:

Highest channel

No-hopping mode

Hopping mode

6.7.2. Radiated Emission Method

6.7.2. Radiated Emission Method								
Test Requirement:	FCC Part15	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10	:2013						
Test Frequency Range:		All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.						
Test site:	Measuremen	Measurement Distance: 3m						
Receiver setup:	Frequency	Detec	ctor	RBW	VBW	/ R	emark	
	Above 1GH	Pea		1MHz	3MH		k Value	
		Pea		1MHz	10Hz		age Value	
Limit:	Fred	quency	L	<u>-imit (dBuV</u>		,	emark	
	Abov	e 1GHz		54.0 74.0			age Value ik Value	
Test setup:	Tum Table - <150cm > .							
Test Procedure:	1. The EUT v	was placed	on the	top of a rot	ating tak	ole 1.5 mete	rs above the	
	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or 							
Test Instruments:	Refer to sect				-	in a data sh		
Test mode:	Refer to sect							
Test results:	Pass							
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar							

Measurement Data

Remark: GFSK, Pi/4 DQPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (Worst case)

1 10112011	ta: (11010t o	a00)						
Frague and a	Motor Donding	Antenna		Preamp	Emississ Lavel	Limita	Morein	
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
(IVII IZ)	(ириу)	(ub/III)	(GD)	(GD)	(ασμν/π)	(ασμν/π)	(GD)	
2390	58.82	26.20	5.72	33.30	57.44	74.00	-16.56	peak
2000	30.02	20.20	5.72	33.30	37.44	74.00	-10.50	peak
2390	45.16	26.20	5.72	33.30	43.78	54.00	-10.22	AVG
2390	45.10	20.20	3.72	33.30	45.76	34.00	-10.22	710

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2390	59.47	26.20	5.72	33.30	58.09	74.00	-15.91	peak
2390	46.05	26.20	5.72	33.30	44.67	54.00	-9.33	AVG

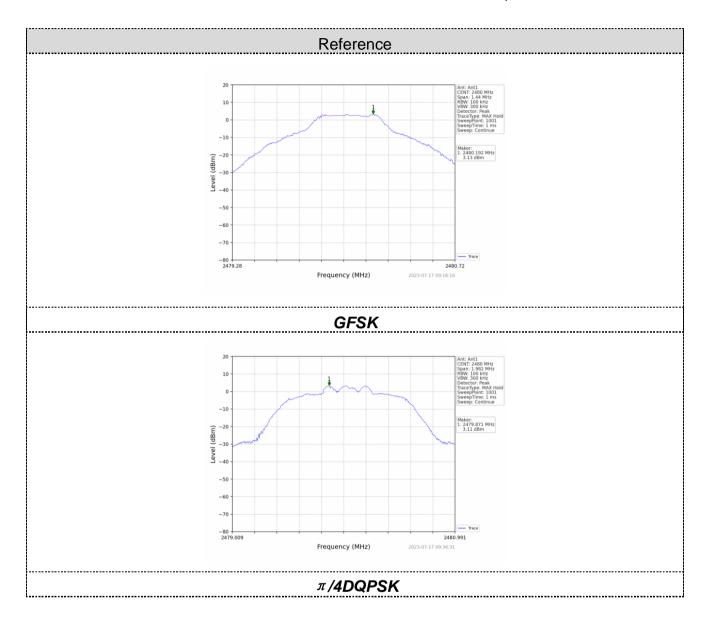
Operation Mode: GFSK TX High channel (2480MHz)

Horizontal (Worst case)

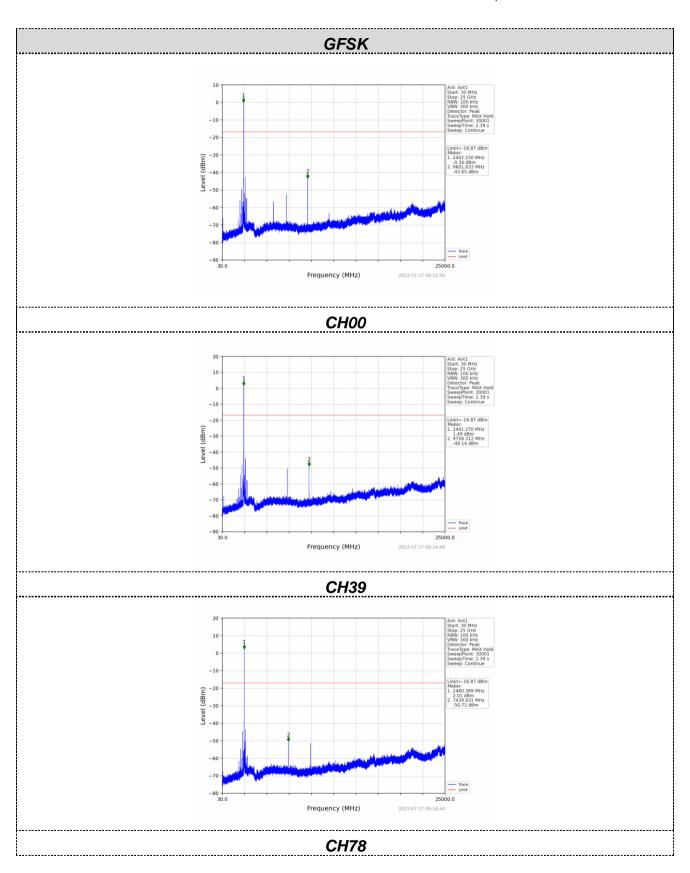
Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	56.38	28.60	6.97	32.70	59.25	74.00	-14.75	peak
2483.5	41.82	28.60	6.97	32.70	44.69	54.00	-9.31	AVG

Vertical:

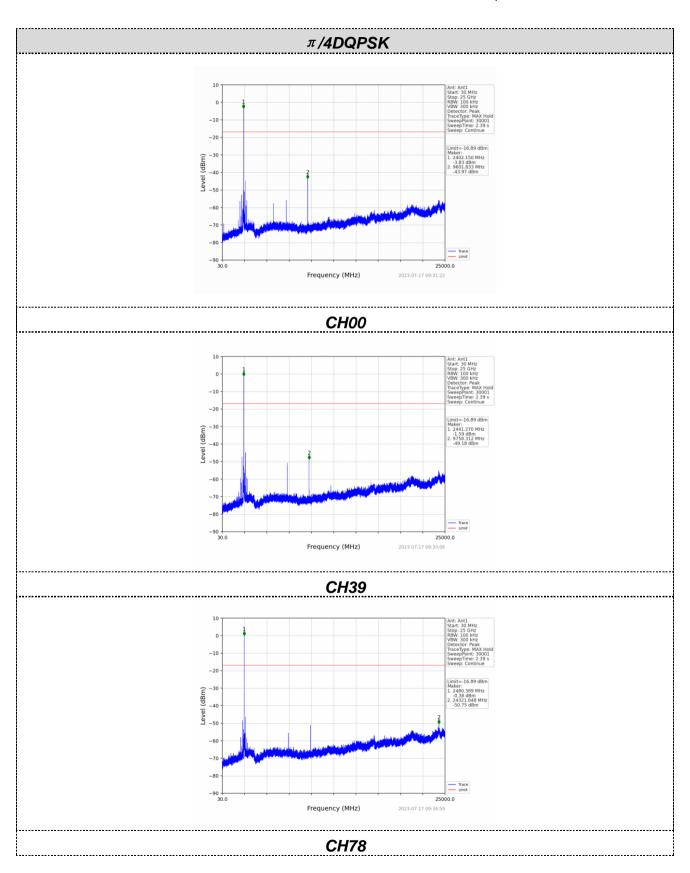
Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	54.18	28.60	6.97	32.70	57.05	74.00	-16.95	peak
2483.5	43.50	28.60	6.97	32.70	46.37	54.00	-7.63	AVG

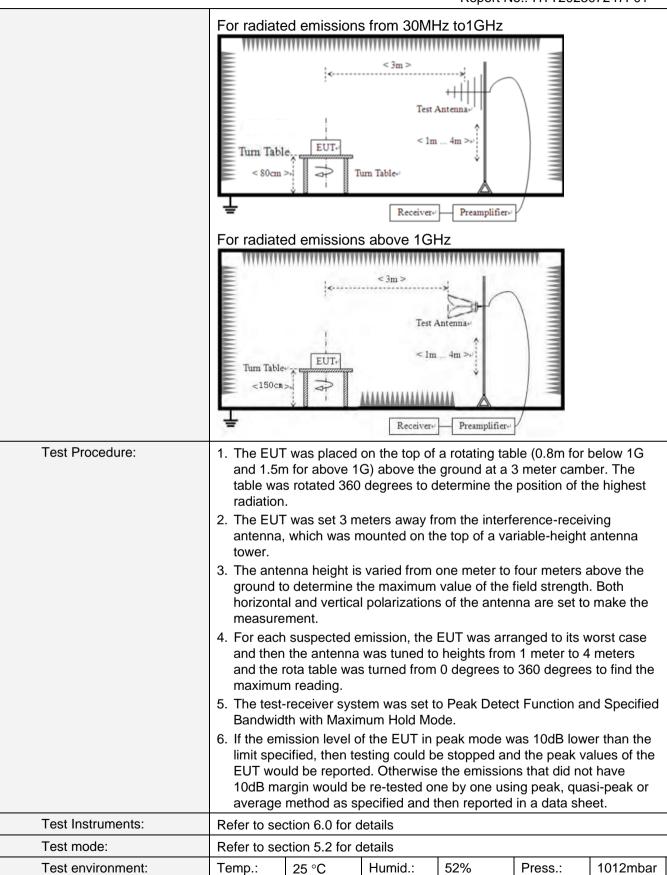


6.8. Spurious Emission


6.8.1. Conducted Emission Method

Test Requirement:	FCC Part15	C Section 1	5.247 (d)			
Test Method:	ANSI C63.10	0:2013				
Limit:	spectrum int is produced the 100 kHz	entional radi by the intent bandwidth v bower, based	ator is opera ional radiato vithin the bar	e frequency b ting, the radio r shall be at le d that contain n RF conduct	o frequency peast 20 dB be ns the highes	oower that elow that in at level of
Test setup:	Spe					
Test Instruments:	Refer to sec	tion 6.0 for d	etails			
Test mode:	Refer to sec	tion 5.2 for d	etails			
Test results:	Pass					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar





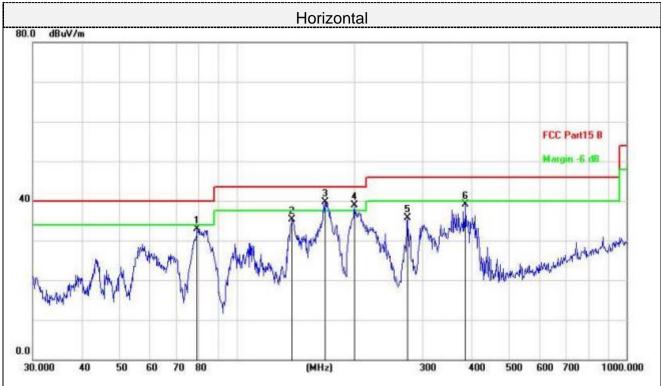
6.8.2. Radiated Emission Method

0.0.2. Nadiated L	ilission wethou							
Test Requirement:	FCC Part15 C Section	on 15	5.209					
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distar	nce: 3	3m					
Receiver setup:	Frequency		Detector	RB\	N	VBW	'	Value
	9KHz-150KHz	Qi	ıasi-peak	200H	Ηz	600Hz	Z	Quasi-peak
	150KHz-30MHz	Q	ıasi-peak	9KH	lz	30KH:	Z	Quasi-peak
	30MHz-1GHz	Q	ıasi-peak	120K	Hz	300KH	lz	Quasi-peak
	Above 1GHz		Peak	1MF	lz	3MHz	<u> </u>	Peak
	Above 1G112		Peak	1MF	lz	10Hz		Average
Limit:	Frequency		Limit (u\	//m)	V	alue	N	Measurement Distance
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)	(QP		300m
	0.490MHz-1.705M	lHz	24000/F(KHz)	(QP		30m
	1.705MHz-30MH	lz	30		(QP		30m
	30MHz-88MHz		100		(QP		
	88MHz-216MHz	<u> </u>	150		(QP		
	216MHz-960MH	Z	200 500		(QP		3m
	960MHz-1GHz				QP			Sili
	Above 1GHz		500		Av	erage		
	Above Toriz		5000		Р	eak		
Test setup:	For radiated emiss	sions	from 9kH	z to 30	MHz	Z		
	**********	11111	**********	******	11111	77777777		
	Tum Table EUT		<3m> Test A um Table√	ntenna lm Receiver				

Test voltage:	AC 120V, 60Hz
Test results:	Pass

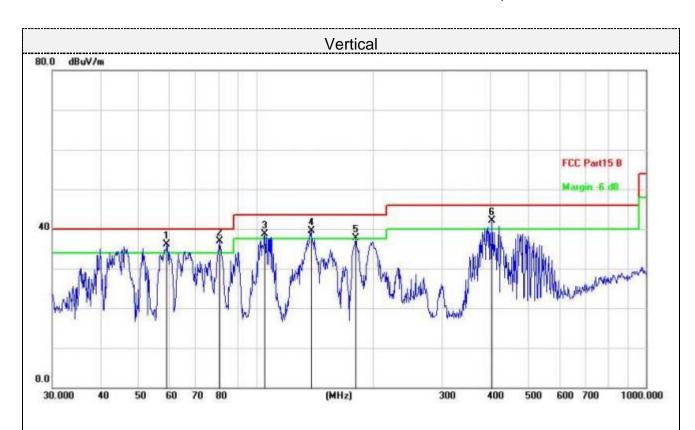
Measurement data:

Remarks:


- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


For 30MHz-1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		79.2425	48.05	-15.11	32.94	40.00	-7.06	QP
2		138.8735	47.27	-11.96	35.31	43.50	-8.19	QP
3	*	168.4138	50.69	-10.90	39.79	43.50	-3.71	QP
4	!	200.6879	52.33	-13.39	38.94	43.50	-4.56	QP
5		274.1938	47.18	-11.42	35.76	46.00	-10.24	QP
6		386.6338	47.54	-8.49	39.05	46.00	-6.95	QP

Final Level =Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1	!	59.0251	47.80	-11.60	36.20	40.00	-3.80	QP
2	*	80.6440	52.22	-15.31	36.91	40.00	-3.09	QP
3	!	105.2716	53.15	-14.42	38.73	43.50	-4.77	QP
4	!	138.3873	51.46	-11.99	39.47	43.50	-4.03	QP
5	!	180.0165	50.46	-12.80	37.66	43.50	-5.84	QP
6	!	403.2500	50.02	-7.92	42.10	46.00	-3.90	QP

Final Level =Receiver Read level + Correct Factor

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK,Pi/4 DQPSK were test at Low, Middle, and High channel; only the worst result of GFSK was reported as below:

CH Low (2402MHz)

Horizontal:

	Antenna		Preamn				
Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)		Detector Type
(=====)	(5-2,111)	(5.2)	(5.2)	(42 21 / 11 / 1	(== == 1, 11.)	(==)	1,72
52.37	31.40	8.18	31.50	60.45	74.00	-13.55	peak
37.45	31.40	8.18	31.50	45.53	54.00	-8.47	AVG
46.13	35.80	10.83	31.40	61.36	74.00	-12.64	peak
28.79	35.80	10.83	31.40	44.02	54.00	-9.98	AVG
	(dBµV) 52.37 37.45 46.13 28.79	(dBµV) (dB/m) 52.37 31.40 37.45 31.40 46.13 35.80 28.79 35.80	Meter Reading Factor Cable Loss (dBμV) (dB/m) (dB) 52.37 31.40 8.18 37.45 31.40 8.18 46.13 35.80 10.83 28.79 35.80 10.83	Meter Reading Factor Cable Loss Factor (dBμV) (dB/m) (dB) (dB) 52.37 31.40 8.18 31.50 37.45 31.40 8.18 31.50 46.13 35.80 10.83 31.40 28.79 35.80 10.83 31.40	Meter Reading Factor Cable Loss Factor Emission Level (dBμV) (dB/m) (dB) (dB) (dBμV/m) 52.37 31.40 8.18 31.50 60.45 37.45 31.40 8.18 31.50 45.53 46.13 35.80 10.83 31.40 61.36 28.79 35.80 10.83 31.40 44.02	Meter Reading Factor Cable Loss Factor Emission Level Limits (dBμV) (dB/m) (dB) (dB) (dBμV/m) (dBμV/m) 52.37 31.40 8.18 31.50 60.45 74.00 37.45 31.40 8.18 31.50 45.53 54.00 46.13 35.80 10.83 31.40 61.36 74.00 28.79 35.80 10.83 31.40 44.02 54.00	Meter Reading Factor Cable Loss Factor Emission Level Limits Margin (dBμV) (dB/m) (dB) (dB) (dBμV/m) (dBμV/m) (dB) 52.37 31.40 8.18 31.50 60.45 74.00 -13.55 37.45 31.40 8.18 31.50 45.53 54.00 -8.47 46.13 35.80 10.83 31.40 61.36 74.00 -12.64 28.79 35.80 10.83 31.40 44.02 54.00 -9.98

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	51.80	31.40	8.18	31.50	59.88	74.00	-14.12	peak
4804	36.56	31.40	8.18	31.50	44.64	54.00	-9.36	AVG
7206	45.29	35.80	10.83	31.40	60.52	74.00	-13.48	peak
7206	29.38	35.80	10.83	31.40	44.61	54.00	-9.39	AVG

CH Middle (2441MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4882	51.47	31.40	9.17	32.10	59.94	74.00	-14.06	peak
4882	38.46	31.40	9.17	32.10	46.93	54.00	-7.07	AVG
7323	42.69	35.80	10.83	31.40	57.92	74.00	-16.08	peak
7323	28.67	35.80	10.83	31.40	43.90	54.00	-10.10	AVG

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4882	52.07	31.40	9.17	32.10	60.54	74.00	-13.46	peak
4882	37.14	31.40	9.17	32.10	45.61	54.00	-8.39	AVG
7000	42.22	25.00	10.00	24.40	E0.45	74.00	45.55	naal.
7323	43.22	35.80	10.83	31.40	58.45	74.00	-15.55	peak
7323	29.61	35.80	10.83	31.40	44.84	54.00	-9.16	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

CH High (2480MHz)

Horizontal:

eter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
50.89	31.40	9.17	32.10	59.36	74.00	-14.64	peak
38.21	31.40	9.17	32.10	46.68	54.00	-7.32	AVG
45.22	35.80	10.83	31.40	60.45	74.00	-13.55	peak
29.78	35.80	10.83	31.40	45.01	54.00	-8.99	AVG
	(dBµV) 50.89 38.21 45.22 29.78	(dBµV) (dB/m) 50.89 31.40 38.21 31.40 45.22 35.80 29.78 35.80	(dBμV) (dB/m) (dB) 50.89 31.40 9.17 38.21 31.40 9.17 45.22 35.80 10.83 29.78 35.80 10.83 10.83	(dBμV) (dB/m) (dB) (dB) 50.89 31.40 9.17 32.10 38.21 31.40 9.17 32.10 45.22 35.80 10.83 31.40 29.78 35.80 10.83 31.40	(dBμV) (dB/m) (dB) (dB) (dBμV/m) 50.89 31.40 9.17 32.10 59.36 38.21 31.40 9.17 32.10 46.68 45.22 35.80 10.83 31.40 60.45 29.78 35.80 10.83 31.40 45.01	(dBμV) (dB/m) (dB) (dB) (dBμV/m) (dBμV/m) 50.89 31.40 9.17 32.10 59.36 74.00 38.21 31.40 9.17 32.10 46.68 54.00 45.22 35.80 10.83 31.40 60.45 74.00 29.78 35.80 10.83 31.40 45.01 54.00	(dBμV) (dB/m) (dB) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 50.89 31.40 9.17 32.10 59.36 74.00 -14.64 38.21 31.40 9.17 32.10 46.68 54.00 -7.32 45.22 35.80 10.83 31.40 60.45 74.00 -13.55 29.78 35.80 10.83 31.40 45.01 54.00 -8.99

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4960	51.48	31.40	9.17	32.10	59.95	74.00	-14.05	peak
4960	37.46	31.40	9.17	32.10	45.93	54.00	-8.07	AVG
7440	44.96	35.80	10.83	31.40	60.19	74.00	-13.81	peak
7440	28.53	35.80	10.83	31.40	43.76	54.00	-10.24	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

6.9. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was -0.58 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

