Radio Test Report

Report No.:CTA231129005W01

Issued for

Guangzhou Ganyuan Intelligent Technology Co.,Ltd

1st to 4th floors, No16, Ping shun street, Lanhe Town, Nansha District, Guangzhou, Guangdong, China

Product Name:

GAN12ui Free play (charging base)

Brand Name: GAN / MG / Swift

Model Name: GAN 3x3

Series Model(s):

GAN2x2, MG2x2, MG3x3, GAN4x4, MG4x4, GAN5x5, MG5x5, GAN6x6, MG6x6, GAN7x7, MG7x7, GAN Mega, MG Mega, GAN PYR, MG PYR, PYR, GAN ROBOT, GAN Skewb, MG Skewb, GAN Twist, MG Twist, Swift 3x3, GAN Mirror M, Swift 4x4, MG Mirror, Swift 5x5, Swift 6x6, GAN 328 10x10, GAN 328 6x6

FCC ID: 2BAB4GAN3X3

Test Standards: F

FCC Part15.247

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the ShenZhen CTA Test Services Co., Ltd.

Shenzhen CTA Testing Technology Co., Ltd.

Page 2 of 58

Report No.: CTA231129005W01

TEST REPORT

Applicant's Nam	e Guangzh	ou Ganyuan Intelligent Technology Co.,Ltd
	1st to 4th	floors, No16, Ping shun street, Lanhe Town, Nansha Suangzhou, Guangdong, China
Manufacturer's I	Name Guangzh	ou Ganyuan Intelligent Technology Co.,Ltd
Address		floors, No16, Ping shun street, Lanhe Town, Nansha Guangzhou, Guangdong, China
Product Descrip	tion	
Product Name	: GAN12ui	Free play (charging base)
Brand Name	: GAN / M	G / Swift
Model Name	: GAN 3x3	
Series Model(s)	GAN6x6, PYR, MG Twist, MC	MG2x2, MG3x3, GAN4x4, MG4x4, GAN5x5, MG5x5, MG6x6, GAN7x7, MG7x7, GAN Mega, MG Mega, GAN PYR, PYR, GAN ROBOT, GAN Skewb, MG Skewb, GAN Twist, Swift 3x3, GAN Mirror M, Swift 4x4, MG Mirror, , Swift 6x6, GAN 328 10x10, GAN 328 6x6
Test Standards	FCC Par	15.247
Test Procedure	ANSI C6	3.10-2013
reproduced, exce		late only to the object tested. This report shall not be ten approval of the ShenZhen CTA Test Services Co., Ltd.
Date of receipt of	test item:	21 Nov. 2023
Date (s) of perform	nance of tests:	21 Nov. 2023 ~ 23 Nov. 2023
Date of Issue	:	23 Nov. 2023
Test Result	G .	Pass
	N.C.	7004 000
	Testing Engineer :	Card Low Con
		(Zoey Cao)
	Technical Manager :	Anny Won
		(Amy Wen)
	Authorized Signatory :	Estino Evic Wang
		(Eric Wang)
		CTA

Table of Contents 1. SUMMARY OF TEST RESULTS 6 **1.1 TEST FACTORY** 7 **1.2 MEASUREMENT UNCERTAINTY** 7 2. GENERAL INFORMATION 8 2.1 GENERAL DESCRIPTION OF THE EUT 8 2.2 DESCRIPTION OF THE TEST MODES 10 2.3 TEST SOFTWARE AND POWER LEVEL 10 2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 11 12 NG 2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS 2.6 EQUIPMENTS LIST 13 **3. EMC EMISSION TEST** 15 **3.1 CONDUCTED EMISSION MEASUREMENT** 15 **3.2 TEST PROCEDURE** 16 3.3 TEST SETUP 16 3.4 EUT OPERATING CONDITIONS 16 3.5 TEST RESULTS 17 4. RADIATED EMISSION MEASUREMENT 19 **4.1 RADIATED EMISSION LIMITS** 19 4.3 TEST SETUP **4.2 TEST PROCEDURE** 21 22 **4.4 EUT OPERATING CONDITIONS** 22 **4.5 FIELD STRENGTH CALCULATION** 22 **4.6 TEST RESULTS** 24 5. CONDUCTED SPURIOUS & BAND EDGE EMISSION 30 30 **5.1 LIMIT 5.2 TEST PROCEDURE** 30 5.3 TEST SETUP 30 5.4 EUT OPERATION CONDITIONS 30 5.5 TEST RESULTS 30 TATESTING 6. POWER SPECTRAL DENSITY TEST 31 6.1 LIMIT 31 6.2 TEST PROCEDURE 31 6.3 TEST SETUP 31 CTA TES

Page 3 of 58

Table of Contents 6.4 EUT OPERATION CONDITIONS 31 6.5 TEST RESULTS 31 WID توجير 7.1 LIMIT توجيح 7.2 - 7 7. BANDWIDTH TEST 32 32 7.2 TEST PROCEDURE 32 7.3 TEST SETUP 32 7.4 EUT OPERATION CONDITIONS 32 7.5 TEST RESULTS 32 33 NG 8. PEAK OUTPUT POWER TEST 8.1 LIMIT 33 **8.2 TEST PROCEDURE** 33 8.3 TEST SETUP 34 **8.4 EUT OPERATION CONDITIONS** 34 8.5 TEST RESULTS 34 9. ANTENNA REQUIREMENT 35 9.1 STANDARD REQUIREMENT 35 9.2 EUT ANTENNA 35 **APPENDIX 1-TEST DATA** 36 **1. DUTY CYCLE** 36 2. MAXIMUM AVERAGE CONDUCTED OUTPUT POWER 39 3. MAXIMUM PEAK CONDUCTED OUTPUT POWER 42 5. MAXIMUM POWER SPECTRAL DENSITY LEVEL 4. -6DB BANDWIDTH 45 48 51 MG CTA TE 6. BAND EDGE 7. CONDUCTED RF SPURIOUS EMISSION 54 **APPENDIX 2- EUT TEST PHOTO** 58 CTA TESTING

Page 4 of 58

Page 5 of 58

Revision History

v.	Issue Date	Report No.	Effect Page	Contents
)	23 Nov. 2023	CTA231129005W01	ALL	Initial Issue
	23 1100. 2023	CTA2311290050001	ALL	

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

	Standard Section	Test Item	Judgment	Remark	TE
	15.207	Conducted Emission	PASS	- 60	CIP
	15.247 (a)(2)	6dB Bandwidth	PASS		
	15.247 (b)(3)	Output Power	PASS		
	15.209	Radiated Spurious Emission	PASS		
	15.247 (d)	Conducted Spurious & Band Edge Emission	PASS	TESTIN	G
	15.247 (e)	Power Spectral Density	PASS	CIE .	
	15.205	Restricted bands of operation	PASS		
	Part 15.247(d)/ Part 15.209(a)	Band Edge Emission	PASS		
	15.203	Antenna Requirement	PASS		
G	NOTE: (1) 'N/A' denotes tes	Antenna Requirement et is not applicable in this Test Report. Fording to ANSI C63.10-2013.	PASS	3	-1

- (1) 'N/A' denotes test is not applicable in this Test Report.
- (2) All tests are according to ANSI C63.10-2013.

Page 7 of 58

1.1 TEST FACTORY

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an end S District, Shenzhen, China

FCC test Firm Registration Number: 517856

IC test Firm Registration Number: 27890

A2LA Certificate No.: 6534.01

IC CAB ID: CN0127

1.2 MEASUREMENT UNCERTAINTY The reported upcortaint The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

	Test	Range	Measurement Uncertainty	STING
	Radiated Emission	30~1000MHz	4.06 dB	1 E-
	Radiated Emission	1~18GHz	5.14 dB	
	Radiated Emission	18-40GHz	5.38 dB	
	Conducted Disturbance	0.15~30MHz	2.14 dB	
	Output Peak power	30MHz~18GHz	0.55 dB	
	Power spectral density	/	0.57 dB	
TAN	Spectrum bandwidth		1.1%	
(COS CTA'	Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	
	Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	
	Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

	1.15	1.000	_
Product Name	GAN12ui Free play	(charging base)	
Brand Name	GAN / MG / Swift	GTA	
Model Name	GAN 3x3	0	CTAT
Series Model(s)	MG5x5, GAN6x6, M Mega, MG Mega, G ROBOT, GAN Skew Twist, Swift 3x3, GA	MG6x6, GAN7x7, MG7x7, GAN GAN PYR, MG PYR, PYR, GAN vb, MG Skewb, GAN Twist, MG AN Mirror M, Swift 4x4, MG Mirror,	
Model Difference	Only the color and r	model name are different	G
	Operation	2ui Free play (charging base)	
	Modulation Type:	GFSK	
	Radio Technology:	BLE	
Product Description	Bluetooth Configuration:	LE(Support 1M PHY)	
	Number Of Channel:	40	
	Antenna Type:	Ceramic	
	Antenna Gain (dBi)	2.28 dBi	100
Channel List	Please refer to the	Note 3.	C.W.
Rating	Input: DC 5.0V 15	i0mA	
Hardware version number	N/A]
Software version number	N/A	STING	
Connecting I/O Port(s)	Please refer to the		à
	Brand Name Model Name Series Model(s) Model Difference Product Description Channel List Rating Hardware version number Software version number	Brand NameGAN / MG / SwiftModel NameGAN 3x3Series Model(s)GAN2x2, MG2x2, M MG5x5, GAN6x6, M Mega, MG Mega, G ROBOT, GAN Skew Twist, Swift 3x3, GA Swift 5x5, Swift 6x6Model DifferenceOnly the color and no The EUT is a GAN2 Operation Frequency: Modulation Type: Radio Technology: Bluetooth Configuration: Number Of Channel: Antenna Gain (dBi)Product DescriptionPlease refer to the RatingChannel ListPlease refer to the N/ARatingInput: DC 5.0VHardware version numberN/A	Brand Name GAN / MG / Swift Model Name GAN 3x3 Series Model(s) GAN 2x2, MG2x2, MG3x3, GAN4x4, MG4x4, GAN5x5, MG5x5, GAN6x6, MG6x6, GAN7x7, MG7x7, GAN Mega, MG Mega, GAN PYR, MG PYR, PYR, GAN ROBOT, GAN Skewb, MG Skewb, GAN Twist, MG Twist, Swift 3x3, GAN Mirror M, Swift 4x4, MG Mirror, Swift 5x5, Swift 6x6, GAN 328 10x10, GAN 328 6x6 Model Difference Only the color and model name are different The EUT is a GAN12ui Free play (charging base) Operation Frequency: 2402-2480 MHz Modulation Type: GFSK Radio Technology: BLE Bluetooth LE(Support 1M PHY) Configuration: Number Of Antenna Type: Ceramic Antenna Type: Ceramic Antenna Gain (dBi) 2.28 dBi Channel List Please refer to the Note 3. Rating Input: DC 5.0V 150mA Hardware version number N/A

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.
- 2. The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report. Due to the incorrect antenna information, a series of problems such as the accuracy of the test results will be borne by the customer.

Page 9 of 58

Report No.: CTA231129005W01

hannel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
00	2402	10	2422	20	2442	30	2462	
01	2404	10	2424	21	2444	31	2464	
02	2406	12	2426	22	2446	32	2466	
03	2408	13	2428	23	2448	33	2468	
04	2410	14	2430	24	2450	34	2470	
05	2412	15	2432	25	2452	35	2472	
06	2414	16	2434	26	2454	36	2474	
07	2416	17	2436	27	2456	37	2476	
08	2418	18	2438	28	2458	38	2478	
09	2420	19	2440	29	2460	39	2480	
				CTATE				

Page 10 of 58

2.2 DESCRIPTION OF THE TEST MODES

For conducted test items and radiated spurious emissions

Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

				-
	Worst Mode	Description	Data/Modulation	TES
	Mode 1	TX CH00(2402MHz)	1 Mbps/GFSK	CTA
STING	Mode 2	TX CH19(2440MHz)	1 Mbps/GFSK	
CTATES	Mode 3	TX CH39(2480MHz)	1 Mbps/GFSK	
	Note:		1.970	

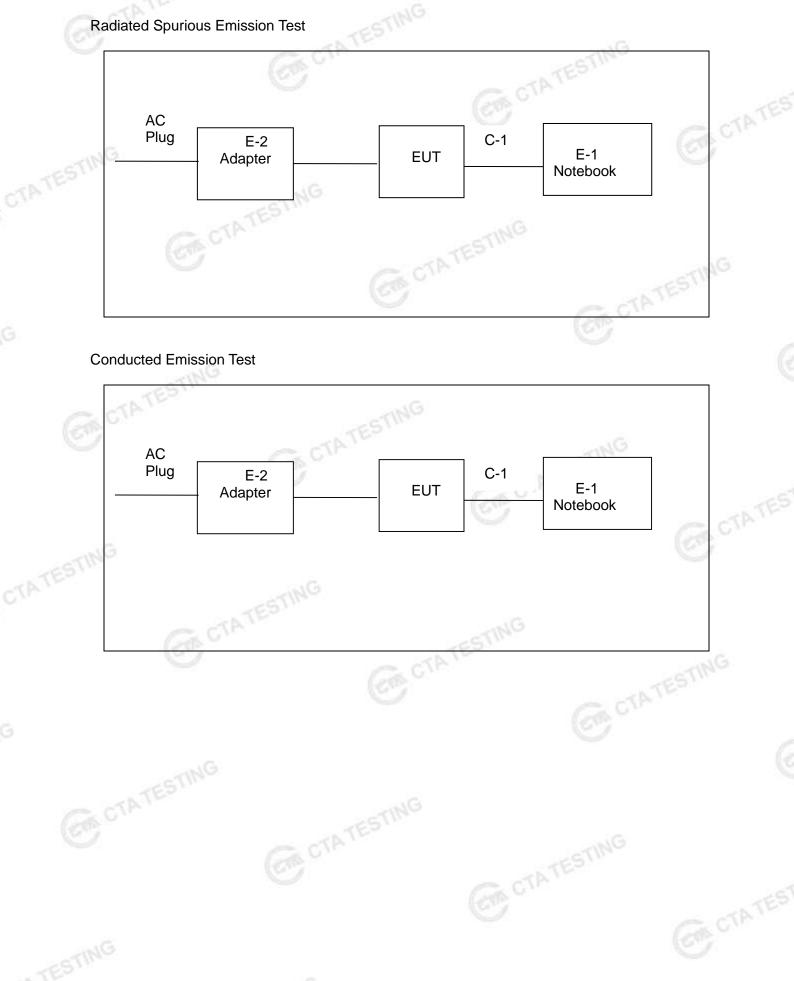
Note:

(1) We tested for all available U.S. voltage and frequencies (For 120V, 50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/ 60Hz is TESTING shown in the report.

(2) The battery is fully-charged during the radiated and RF conducted test. STA GTA

For AC Conducted Emission

	Test Case
AC Conducted Emission	Mode 4 : Keeping BT TX


2.3 TEST SOFTWARE AND POWER LEVEL

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

RF Function	Туре	Mode Or Modulation type	ANT Gain(dBi)	Power Class	Software For Testing	
BLE	BLE	GFSK	2.28	8	nRF Connect for Desktop	TATES

Page 11 of 58

2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Page 12 of 58

Report No.: CTA231129005W01

2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

			lecessary accessories			
Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note	
					Ge	
NG			Support units		U	
ltem	Equipment	Mfr/Brand	Model/Type No.	Length	Note	
	Adamtan			NI/A	N1/A	

Adapter	HUAWEI	HW-050450C00	N/A	N/A
USB Cable	N/A	N/A	150cm	NO
Notebook	DELL	Inspiron 14-3467	N/A	N/A
			(CT CT

Note:

- (1) For detachable type I/O cable should be specified the length in cm in ^[] Length ^[] column.
- (2) "YES" is means "with core"; "NO" is means "without core".

Page 13 of 58

Report No.: CTA231129005W01

2.6 EQUIPMENTS LIST

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01
LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01
EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01
EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01
Spectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01
Spectrum Analyzer	R&S	FSP	CTA-337	2023/08/02	2024/08/01
Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01
Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01
WIDEBAND RADIO COMMUNICATIO N TESTER	CMW500	R&S	CTA-302	2023/08/02	2024/08/01
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01
Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01
Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01
Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01
Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01

		Page 14 of 58	Report	No.: CTA23112	9005W01
Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibratio Due Date
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A
	CTATEST				

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

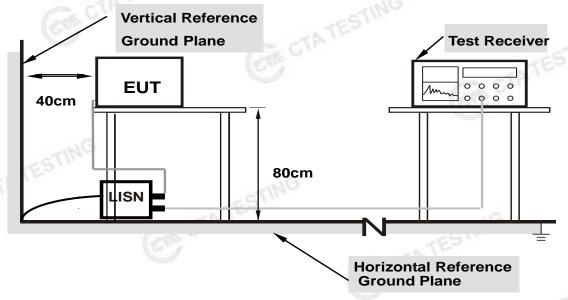
The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

Conducted Emis		
Conducted Linia	ssion limit (dBuV)	TATE
ງuasi-peak	Average	CV
66 - 56 *	56 - 46 *	
56.00	46.00	
60.00	50.00	
	Quasi-peak 66 - 56 * 56.00	66 - 56 * 56 - 46 * 56.00 46.00

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver


Setting	
10 dB	
0.15 MHz	
30 MHz	
9 kHz	
69	TATE
	10 dB 0.15 MHz 30 MHz

Page 16 of 58

3.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network
- (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.3 TEST SETUP

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

3.4 EUT OPERATING CONDITIONS

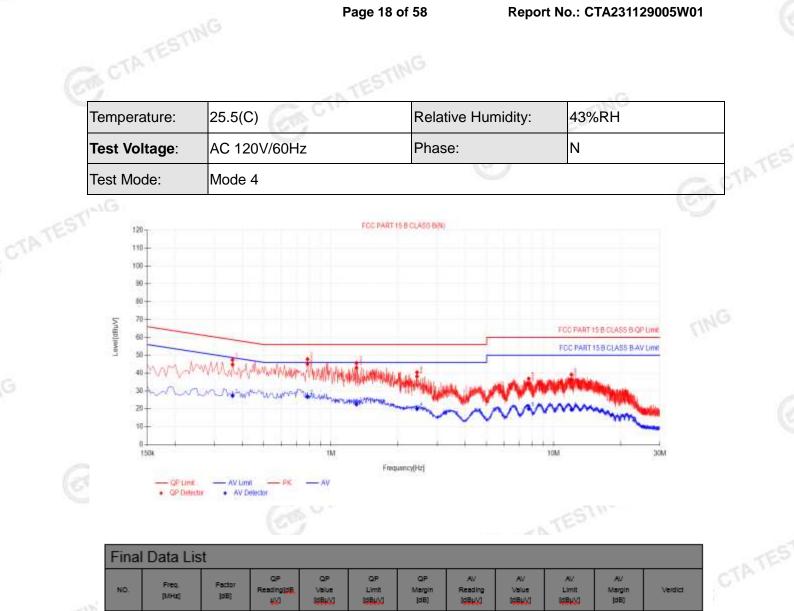
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

Page 17 of 58

Report No.: CTA231129005W01

3.5 TEST RESULTS

Temperature:	26.5(C)	Relative Humidity:	60%RH	
Test Voltage:	AC 120V/60Hz	Phase:	LSTING	
Test Mode:	Mode 4	CCTP		
		C)	~	CTP
130	FCC	PART 15 B CLASS BIL1)		


). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)). QPMargin(dB) = QP Limit (dBμV) - QP Value (dBμV)													
$\frac{1}{1} \frac{1}{0.204} \frac{1}{10.50} \frac{1}{33.46} \frac{1}{43.96} \frac{1}{0.684VJ} \frac{1}{0.684VJ} \frac{1}{1890} \frac{1}{1684VJ} \frac{1}{0.684VJ} \frac{1}$	Fina	l Data Lis	t										TES
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NO.			ReadingidB	Value	Limit	Margin	Reading	Value	Limit	Margin	Verdict	CTA
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	0.204	10.50	33.46	43.96	63.45	19.49	16.75	27.25	53.45	26.20	PASS]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	0.483	10.50	32.80	43.30	56.29	12.99	15.23	25.73	46.29	20.56	PASS]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	0.825	10.50	34.70	45.20	56.00	10.80	14.08	24.58	46.00	21.42	PASS]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	1.698	10.50	30.51	41.01	56.00	14.99	12.25	22.75	46.00	23.25	PASS]
	5	9.636	10.50	26.45	36.95	60.00	23.05	11.32	21.82	50.00	28.18	PASS]
Iote:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB)). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)). QPMargin(dB) = QP Limit (dBμV) - QP Value (dBμV)). AVMargin(dB) = AV Limit (dBμV) - AV Value (dBμV)	6	12.0795	10.50	26.81	37.31	60.00	22.69	9.82	20.32]
). Facto). QPM	or (dB)=ins largin(dB)	sertion lo = QP Li	oss of Ll mit (dBµ	ISN (dB) IV) - QP) + Cable Value (e loss (d dBµV)	-					

4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V) CTA TESTING

Page 18 of 58

Report No.: CTA231129005W01

TESTING

	Final	l Data Lis	st										
3	NO.	Freq. [MHz]	Factor (dB)	QP Readingid <u>B</u>	QP Value MBUVJ	QP Limit IdBUVJ	QP Margin (dB)	AV Reading IdBu\J	AV Value IdBuVJ	AV Limit IdBuVJ	AV Margin (dB)	Verdict	C1
6	1	0.3615	10.50	34.27	44.77	58.69	13.92	16.80	27.30	48.69	21.39	PASS]
	2	0.7845	10.50	34.65	45.15	56.00	10.85	16.19	26.69	46.00	19.31	PASS	
	3	1.302	10.50	32.49	42.99	56.00	13.01	11.99	22.49	46.00	23.51	PASS	
	4	2.435	10.50	27.67	38.17	56.00	17.83	9.40	19.90	46.00	26.10	PASS	
	5	7.728	10.50	23.54	34.04	60.00	25.96	9.48	19.98	50.00	30.02	PASS	
	6	12.0165	10.50	26.01	36.51	60.00	23.49	9.06	19.56	50.00	30.44	PASS	
2). 3).	Facto QPM	QP Value or (dB)=in: argin(dB) argin(dB)	sertion I = QP Li	oss of Ll imit (dBµ	ISN (dB) IV) - QP) + Cabl Value (e loss (d dBµV)	,				TEST	
• • •	,				•, , , • •								

- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dBµV) AV Value (dBµV) CTA TESTING

Page 19 of 58

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	G 30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	(dBuV/m) (at 3M)				
FREQUENCY (MHz)	PEAK	AVERAGE			
Above 1000	74	54			

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

FREQUENCY (MH	z) FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GH
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.5202	5 240-285	3345.8-3358	36.43-36.5
12.57675-12.5772	5 322-335.4	3600-4400	Above 38.6
13.36-13.41		(AND)	

Page 20 of 58

Report No.: CTA231129005W01

For Radiated Emission

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP/AV
Start Frequency	9 KHz/150KHz(Peak/QP/AV)
Stop Frequency	150KHz/30MHz(Peak/QP/AV)
	200Hz (From 9kHz to 0.15MHz)/
RB / VB (emission in restricted	9KHz (From 0.15MHz to 30MHz);
band)	200Hz (From 9kHz to 0.15MHz)/
TESTING	9KHz (From 0.15MHz to 30MHz)
AL O	-ING

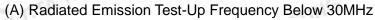
ALD S	-ING			
Spectrum Parameter	Setting			
Attenuation	Auto			
Detector	Peak/QP			
Start Frequency	30 MHz(Peak/QP)			
Stop Frequency	1000 MHz (Peak/QP)			
RB / VB (emission in restricted band)	120 KHz / 300 KHz			
K C VIII	CTING			

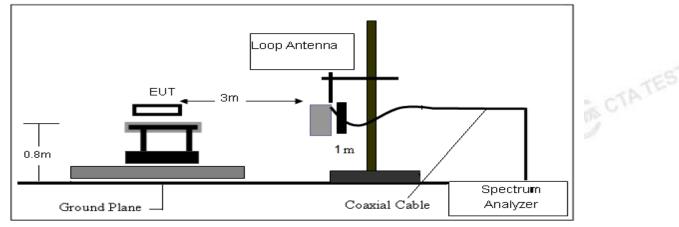
band)	TING	
Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/AV	
Start Frequency	1000 MHz(Peak/AV)	TATES
Stop Frequency	10th carrier hamonic(Peak/AV)	No. Y
RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)	
band)	1 MHz/1/T MHz(AVG)	
or Restricted band		
	Spectrum Parameter Attenuation Detector Start Frequency Stop Frequency RB / VB (emission in restricted band)	Spectrum ParameterSettingAttenuationAutoDetectorPeak/AVStart Frequency1000 MHz(Peak/AV)Stop Frequency10th carrier hamonic(Peak/AV)RB / VB (emission in restricted1 MHz / 3 MHz(Peak)band)1 MHz/1/T MHz(AVG)

Spectrum Parameter	Setting
Detector	Peak/AV
Stort/Stop Fraguenov	Lower Band Edge: 2310 to 2410 MHz
Start/Stop Frequency	Upper Band Edge: 2475 to 2500 MHz
	1 MHz / 3 MHz(Peak)
RB / VB	1 MHz/1/T MHz(AVG)
C CTATESTING	STING

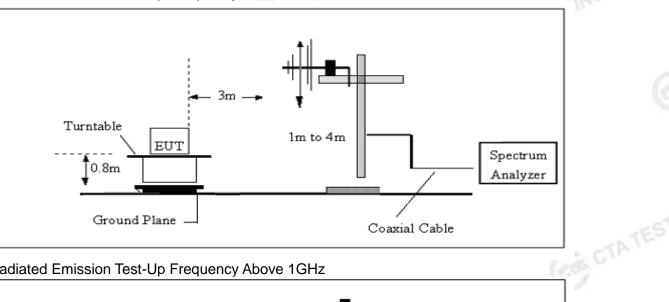
Page 21 of 58

Report No.: CTA231129005W01

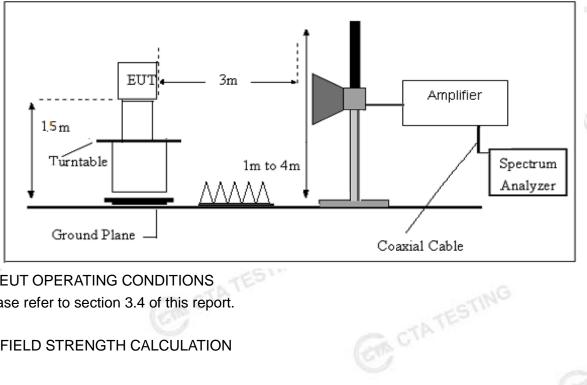

Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP


4.2 TEST PROCEDURE

- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos. Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

4.3 TEST SETUP



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz CTATESTI

4.4 EUT OPERATING CONDITIONS Please refer to section 3.4 of this report.

4.5 FIELD STRENGTH CALCULATION

Page 23 of 58

Report No.: CTA231129005W01

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

RA = Reading Amplitude

AG = Amplifier Gain

AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1
Factor=AF+CL-AG						

Page 24 of 58

Report No.: CTA231129005W01

4.6 TEST RESULTS

(Between 9KHz –	30 MHz)		
Temperature:	23.1(C)	Relative Humidtity:	60%RH
Test \/altaga		Delerization	1.20

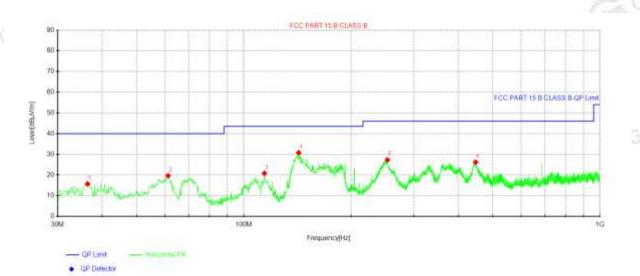
Ier	mperature:	23.1(C)	Relative	Humidtity:	60%RH	
Tes	st Voltage:	DC 3.7V	Polarizat	tion:	20 C	
Tes	st Mode:	TX Mode		Good		185
	Freq.	Reading	Limit	Margin	State	S CTA IL
111	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F	/

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
	TING			PASS
	TEST			PASS
· Grac	19		STING	

Note:

CTA TESTING The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);


Limit line = specific limits(dBuv) + distance extrapolation factor.

Page 25 of 58

Report No.: CTA231129005W01

(30MHz -1000MHz)

Test Voltage: DC 3.7V Phase: Horizontal	emperature: 23.1(C)	Relative Hur	midity: 60%RH
	est Voltage: DC 3.7V	Phase:	Horizontal
Test Mode: Mode 1/2/3 (Mode 3 worst mode)	est Mode: Mode 1/2	/3 (Mode 3 worst mode)	CTA

		QP Detector									
20	ALC: N				1.54	MIN					
17	Suspe	ected Data	List								
	CP Detector Suspected Data L NO. Freq. [MHz] 1 36.4263 2 61.2825 3 114.268 4 142.52 5 252.978 6 447.585	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity		
	NO.	[MHz]	[dBµ∨]	[dBµ∨/m]	[dB/m]	[dBµ∖//m]	[dB]	[cm]	[°]	Polarity	
	1	36.4263	33.36	15.71	-17.65	40.00	24.29	100	357	Horizontal	
	2	61.2825	38.18	19.63	-18.55	40.00	20.37	100	27	Horizontal	K CTAT
	3	114.268	40.28	20.82	-19.46	43.50	22.68	100	171	Horizontal	AL-
	4	142.52	52.54	30.76	-21.78	43.50	12.74	100	180	Horizontal	is Com
36	5	252.978	45.23	27.32	-17.91	46.00	18.68	100	75	Horizontal	2
les_	6	447.585	41.31	26.21	-15.10	46.00	19.79	100	236	Horizontal	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

CTATESTING Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

> 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB) G CTATESTING

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

4). All modes have been tested, only show the worst case.

	Page 26 of	58 Report	No.: CTA231129005W01
Temperature:	23.1(C)	Relative Humidity:	60%RH
Test Voltage:	DC 3.7V	Phase:	Vertical
Test Mode:	Mode 1/2/3 (Mode 3 worst mo	ode)	TESTING

	Suspe	ected Data	List								100
	NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity	
	140.	[MHz]	[dBµ∨]	[dBµ∖//m]	[dB/m]	[dBµ∖/m]	[dB]	[cm]	[°]	1 oldiney	
	1	36.1838	47.96	30.28	-17.68	40.00	9.72	100	327	Vertical	
	2	60.1912	49.67	31.41	-18.26	40.00	8.59	100	262	Vertical	
	3	144.823	54.36	32.59	-21.77	43.50	10.91	100	342	Vertical	
	4	180.713	45.99	25.49	-20.50	43.50	18.01	100	51	Vertical	
	5	252.615	42.28	24.36	-17.92	46.00	21.64	100	99	Vertical	-455
	6	373.501	44.47	28.64	-15.83	46.00	17.36	100	181	Vertical	ATAIN
											CTATES
Note	e:1).Le	evel (dBµ	V/m)= Rea	ading (dBµ	JV)+ Fa	ctor (dB/m)					
CTATESTIN	2). Fa	ctor(dB/r	n)=Antenn	a Factor	(dB/m) +	Cable los	s (dB) - Pi	re Amplif	ier gain	(dB)	
	3). Ma	argin(dB)	= Limit (d	BμV/m) -	Level (d	BµV/m)					
	Λ) ΔΙΙ	modae h	ave heen	tested on	ly chow	the worst o	200				

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- CTA TESTING 4). All modes have been tested, only show the worst case.

Report No.: CTA231129005W01

Page 27 of 58

212

(1GHz-25GHz) Spurious emission Requirements

Frequency	, Meter Reading	Amplifier	Loss	Antenna Factor	Corrected Factor	Emission Level	Limits	Margin	Detector	Commen
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Commen
,			,	Low Cl	hannel (GFSK/2	2402 MHz)	,	, ,	,,	
3264.77	61.22	44.70	6.70	28.20	-9.80	51.42	74.00	-22.58	PK	Vertical
3264.77	50.61	44.70	6.70	28.20	-9.80	40.81	54.00	-13.19	AV	Vertical
3264.76	61.43	44.70	6.70	28.20	-9.80	51.63	74.00	-22.37	PK	Horizonta
3264.76	50.65	44.70	6.70	28.20	-9.80	40.85	54.00	-13.15	AV	Horizonta
4804.55	59.01	44.20	9.04	31.60	-3.56	55.45	74.00	-18.55	PK	Vertical
4804.55	50.48	44.20	9.04	31.60	-3.56	46.92	54.00	-7.08	AV	Vertical
4804.52	59.45	44.20	9.04	31.60	-3.56	55.89	74.00	-18.11	PK	Horizonta
4804.52	49.47	44.20	9.04	31.60	-3.56	45.91	54.00	-8.09	AV	Horizonta
5359.73	48.45	44.20	9.86	32.00	-2.34	46.11	74.00	-27.89	PK	Vertical
5359.73	39.82	44.20	9.86	32.00	-2.34	37.48	54.00	-16.52	AV	Vertical
5359.67	47.78	44.20	9.86	32.00	-2.34	45.44	74.00	-28.56	PK	Horizonta
5359.67	39.04	44.20	9.86	32.00	-2.34	36.70	54.00	-17.30	AV	Horizonta
7205.96	53.74	43.50	11.40	35.50	3.40	57.14	74.00	-16.86	PK	Vertical
7205.96	44.93	43.50	11.40	35.50	3.40	48.33	54.00	-5.67	AV	Vertical
7205.83	53.98	43.50	11.40	35.50	3.40	57.38	74.00	-16.62	PK	Horizonta
7205.83	44.49	43.50	11.40	35.50	3.40	47.89	54.00	-6.11	AV	Horizonta
				Middle 0	Channel (GFSK	//2440 MHz)		100		
3262.93	62.02	44.70	6.70	28.20	-9.80	52.22	74.00	-21.78	PK	Vertical
3262.93	51.40	44.70	6.70	28.20	-9.80	41.60	54.00	-12.40	AV	Vertical
3263.05	61.83	44.70	6.70	28.20	-9.80	52.03	74.00	-21.97	PK	Horizonta
3263.05	50.69	44.70	6.70	28.20	-9.80	40.89	54.00	-13.11	AV	Horizonta
4879.97	58.79	44.20	9.04	31.60	-3.56	55.23	74.00	-18.77	PK	Vertical
4879.97	50.54	44.20	9.04	31.60	-3.56	46.98	54.00	-7.02	AV	Vertical
4880.10	59.55	44.20	9.04	31.60	-3.56	55.99	74.00	-18.01	PK	Horizonta
4880.10	49.85	44.20	9.04	31.60	-3.56	46.29	54.00	-7.71	AV	Horizonta
5357.20	48.46	44.20	9.86	32.00	-2.34	46.12	74.00	-27.88	PK	Vertical
5357.20	39.26	44.20	9.86	32.00	-2.34	36.92	54.00	-17.08	AV	Vertical
5357.39	47.46	44.20	9.86	32.00	-2.34	45.12	74.00	-28.88	PK	Horizonta
5357.19	39.26	44.20	9.86	32.00	-2.34	36.92	54.00	-17.08	AV	Horizonta
7320.85	53.86	43.50	11.40	35.50	3.40	57.26	74.00	-16.74	PK	Vertical
7320.85	44.89	43.50	11.40	35.50	3.40	48.29	54.00	-5.71	AV	Vertical
7320.44	54.04	43.50	11.40	35.50	3.40	57.44	74.00	-16.56	PK	Horizonta
7320.44	44.13	43.50	11.40	35.50	3.40	47.53	54.00	-6.47	AV	Horizonta

Page 28 of 58

Report No.: CTA231129005W01

					High Cha	nnel (GFSK/	2480 MHz)					
	3264.74	61.01	44.70	6.70	28.20	-9.80	51.21	74.00	-22.79	PK	Vertical	
	3264.74	51.02	44.70	6.70	28.20	-9.80	41.22	54.00	-12.78	AV	Vertical	
	3264.66	61.13	44.70	6.70	28.20	-9.80	51.33	74.00	-22.67	PK	Horizontal	
	3264.66	50.08	44.70	6.70	28.20	-9.80	40.28	54.00	-13.72	AV	Horizontal	
	4960.46	59.59	44.20	9.04	31.60	-3.56	56.03	74.00	-17.97	PK	Vertical	
	4960.46	49.84	44.20	9.04	31.60	-3.56	46.28	54.00	-7.72	AV	Vertical	
	4960.32	58.55	44.20	9.04	31.60	-3.56	54.99	74.00	-19.01	PK	Horizontal	
	4960.32	49.99	44.20	9.04	31.60	-3.56	46.43	54.00	-7.57	AV	Horizontal	K
	5359.64	48.83	44.20	9.86	32.00	-2.34	46.49	74.00	-27.51	PK	Vertical	2
	5359.64	39.79	44.20	9.86	32.00	-2.34	37.45	54.00	-16.55	AV	Vertical	
	5359.78	48.47	44.20	9.86	32.00	-2.34	46.13	74.00	-27.87	PK	Horizontal	
1	5359.78	38.95	44.20	9.86	32.00	-2.34	36.61	54.00	-17.39	AV	Horizontal	
S N	7439.92	54.47	43.50	11.40	35.50	3.40	57.87	74.00	-16.13	PK	Vertical	
AX,	7439.92	44.35	43.50	11.40	35.50	3.40	47.75	54.00	-6.25	AV	Vertical	
	7439.73	53.84	43.50	11.40	35.50	3.40	57.24	74.00	-16.76	PK	Horizontal	
	7439.73	44.93	43.50	11.40	35.50	3.40	48.33	54.00	-5.67	AV	Horizontal	

Note:

1) Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Emission Level = Reading + Factor

CTATESTING ²⁾ The frequency emission of peak points that did not show above the forms are at least 20dB a, th below the limit, the frequency emission is mainly from the environment noise.

Page 29 of 58

Report No.: CTA231129005W01

4.6 TEST RESULTS (Restricted Bands Requirements)

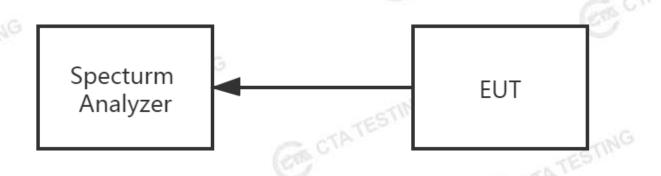
	ATA					GFSK	1					_
1		Meter			Antenna	Orrected	Emission					
1	Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	Comment	
	(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
	2390.00	67.17	43.80	4.91	25.90	-12.99	54.18	74.00	-19.82	РК	Vertical	CTATES
ſ	2390.00	54.35	43.80	4.91	25.90	-12.99	41.36	54.00	-12.64	AV	Vertical	CIP
	2390.00	68.28	43.80	4.91	25.90	-12.99	55.29	74.00	-18.71	РК	Horizontal	
2	2390.00	52.86	43.80	4.91	25.90	-12.99	39.87	54.00	-14.13	AV	Horizontal	1
ľ	2483.50	70.03	43.80	5.12	25.90	-12.78	57.25	74.00	-16.75	РК	Vertical	1
ľ	2483.50	52.25	43.80	5.12	25.90	-12.78	39.47	54.00	-14.53	AV	Vertical	1
ľ	2483.50	70.07	43.80	5.12	25.90	-12.78	57.29	74.00	-16.71	PK	Horizontal	
ľ	2483.50	53.17	43.80	5.12	25.90	-12.78	40.39	54.00	-13.61	AV	Horizontal	
L		<u> </u>	<u></u>	. <u></u>		G			C	The CTI	X725.]

Report No.: CTA231129005W01

5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

5.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in CTATES the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.


5.2 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

For Rand adda

or Danu euge	
Spectrum Parameter	Setting
Detector	Peak
Start/Stan Fraguenay	Lower Band Edge: 2300 – 2407 MHz
Start/Stop Frequency	Upper Band Edge: 2475 – 2500 MHz
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold
	CTAIL
.3 TEST SETUP	

5.3 TEST SETUP

The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna termina is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

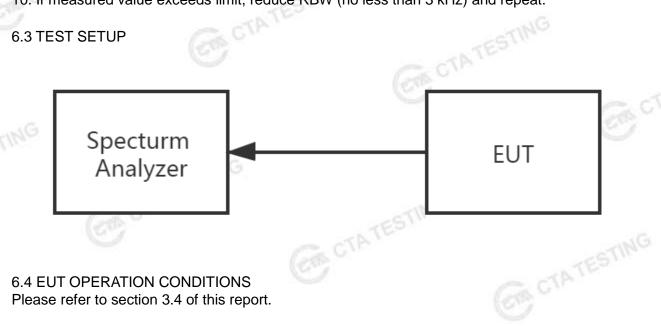
5.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

5.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

Report No.: CTA231129005W01

Page 31 of 58


6. POWER SPECTRAL DENSITY TEST

6.1 LIMIT		MINU		
9	FCC Pa	art 15.247,Subpart C		
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(e)	Power Spectral Density	≤8 dBm (RBW≥3KHz)	2400-2483.5	PASS

CTA TESTING **6.2 TEST PROCEDURE**

- 1. Set analyzer center frequency to DTS channel center frequency.
- CTATESTING 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 100 kHz \ge RBW \ge 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

6.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

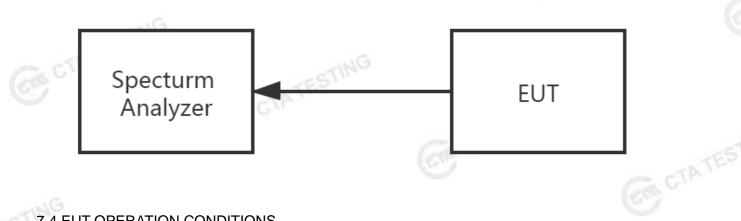
6.5 TEST RESULTS

CTA TESTING Note: The test data please refer to APPENDIX 1.

Page 32 of 58

Report No.: CTA231129005W01

7. BANDWIDTH TEST


7.1 LIMIT

I LIMIT					
	F	CC Part 15.247,Subpa	art C		
Section	Test Item	Limit	Frequency Range (MHz)	Result	TE
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS	CIM

CTATESTIN 7.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW≥3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be≥6 dB.

7.3 TEST SETUP

7.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

Note: The test data please refer to APPENDIX 1.

Page 33 of 58

8. PEAK OUTPUT POWER TEST

8.1 LIMIT				
1		ATES	10	
	F	CC Part 15.247,Subpa	art C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS

8.2 TEST PROCEDURE

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

RBW ≥ DTS bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

a) Set the RBW \geq DTS bandwidth.

b) Set VBW ≥ [3 × RBW].

c) Set span \geq [3 × RBW].

d) Sweep time = auto couple.

e) Detector = peak.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use peak marker function to determine the peak amplitude level.

Integrated band power method:

The following procedure can be used when the maximum available RBW of the instrument is less than the

DTS bandwidth:

a) Set the RBW = 1 MHz.

b) Set the VBW \geq [3 × RBW].

c) Set the span \geq [1.5 × DTS bandwidth].

d) Detector = peak.

e) Sweep time = auto couple.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector). If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS channel bandwidth.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

Averaging:

a) Measure the duty cycle D of the transmitter output signal as described in 11.6.

b) Set span to at least 1.5 times the OBW.

c) Set RBW = 1% to 5% of the OBW, not to exceed 1 MHz.

d) Set VBW \geq [3 × RBW].

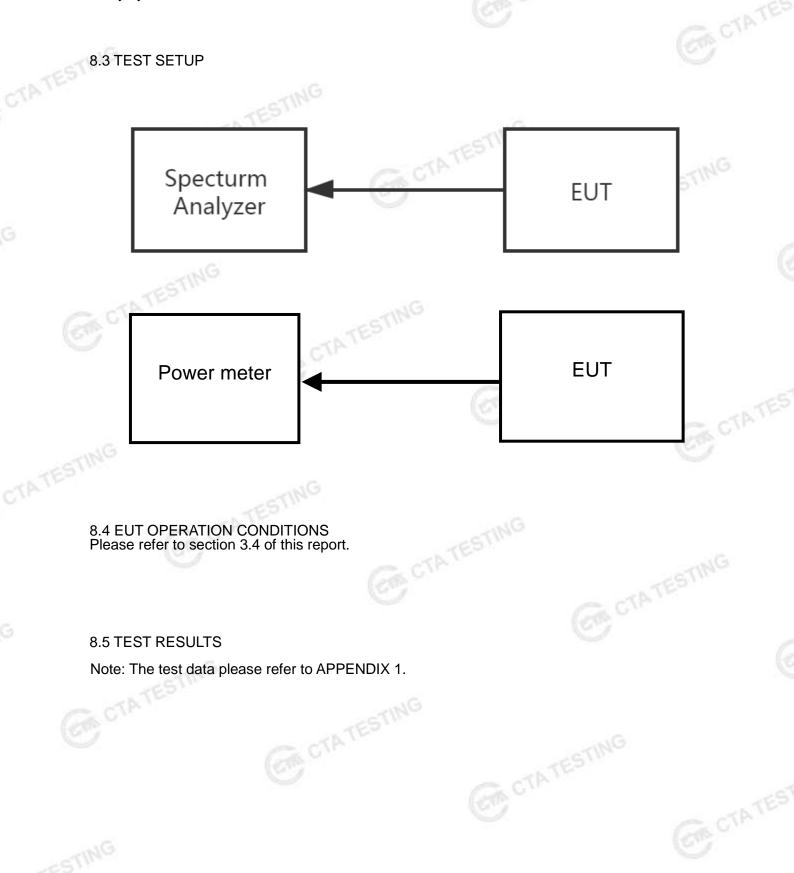
e) Number of points in sweep $\geq [2 \times \text{span} / \text{RBW}]$. (This gives bin-to-bin spacing $\leq \text{RBW} / 2$, so that narrowband signals are not lost between frequency bins.)

f) Sweep time = auto.

g) Detector = RMS (i.e., power averaging), if available. Otherwise, use the sample detector mode.

h) Do not use sweep triggering, Allow the sweep to "free run."

i) Trace average at least 100 traces in power averaging (rms) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the ON and OFF periods of the transmitter.


j) Compute power by integrating the spectrum across the OBW of the signal using the instrument's TATESTING

Page 34 of 58

Report No.: CTA231129005W01

band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

k) Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average over both the ON and OFF times of the transmission). For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is 25%.

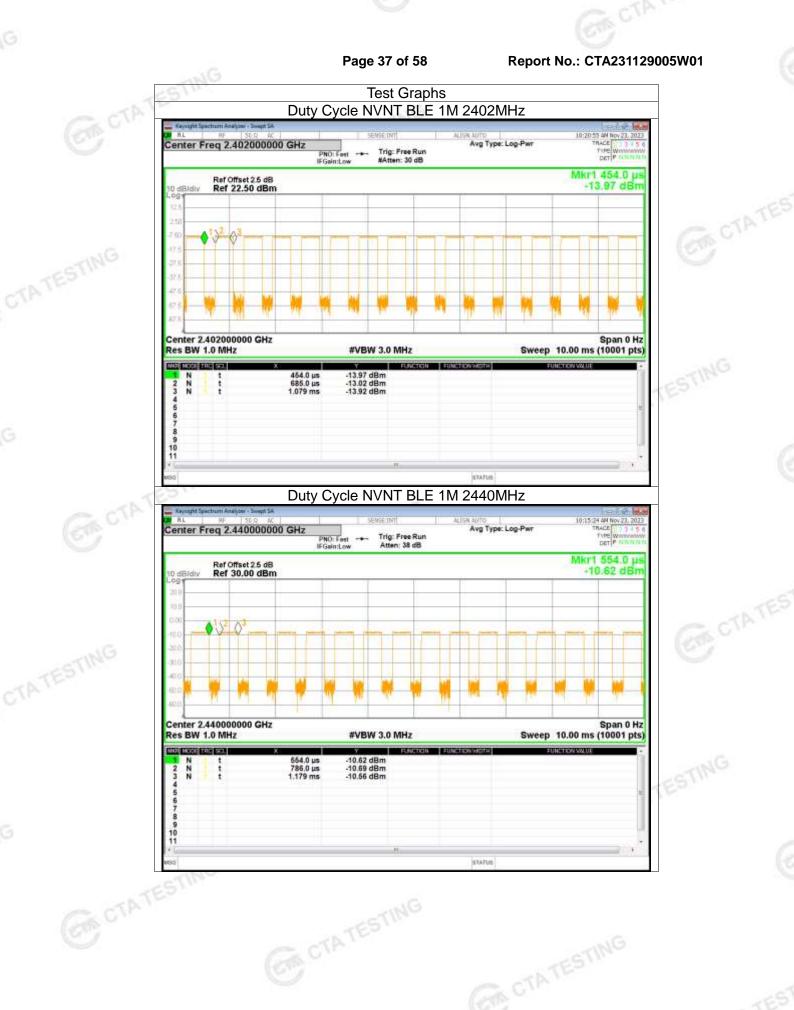
9. ANTENNA REQUIREMENT

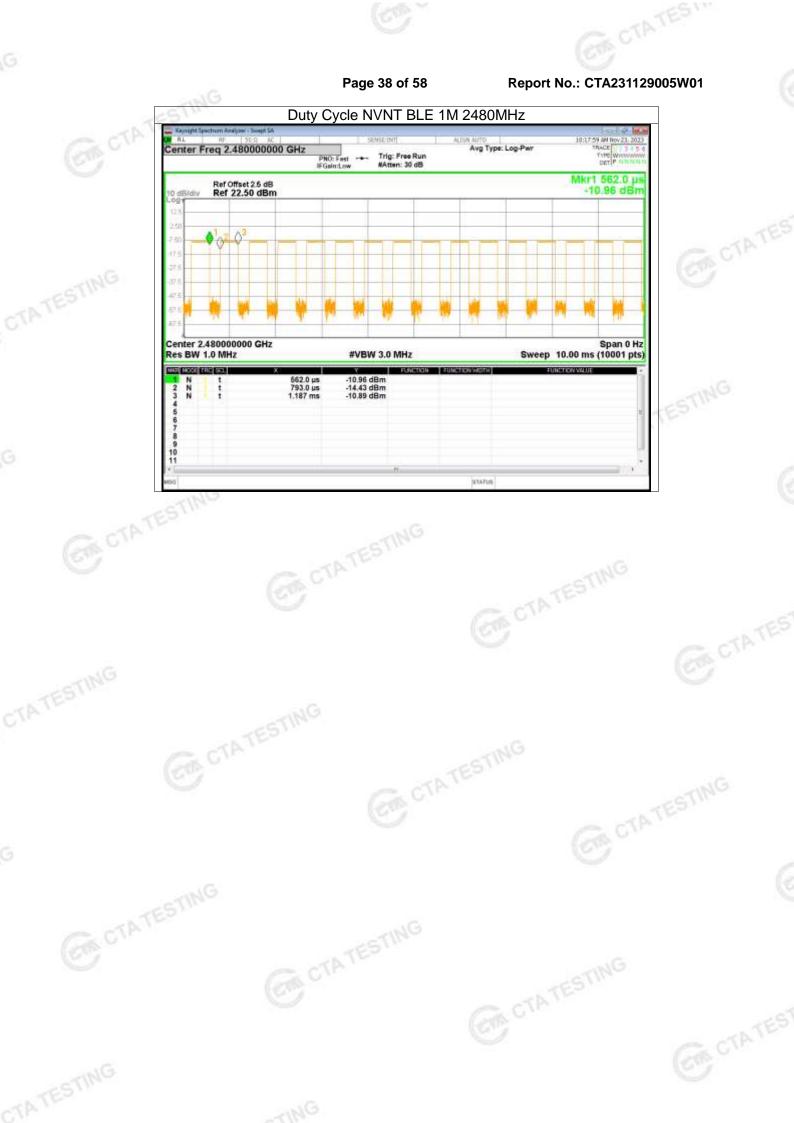
9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2 EUT ANTENNA

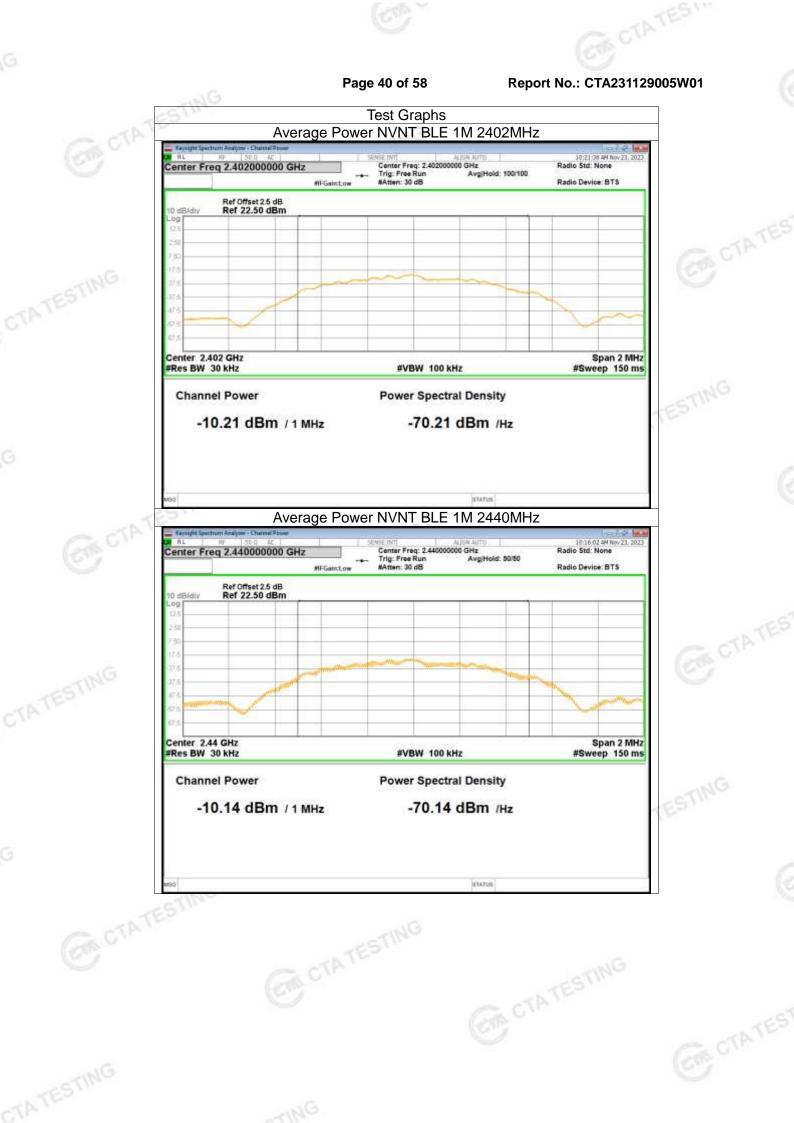
The EUT antenna is Ceramic Antenna. It comply with the standard requirement.

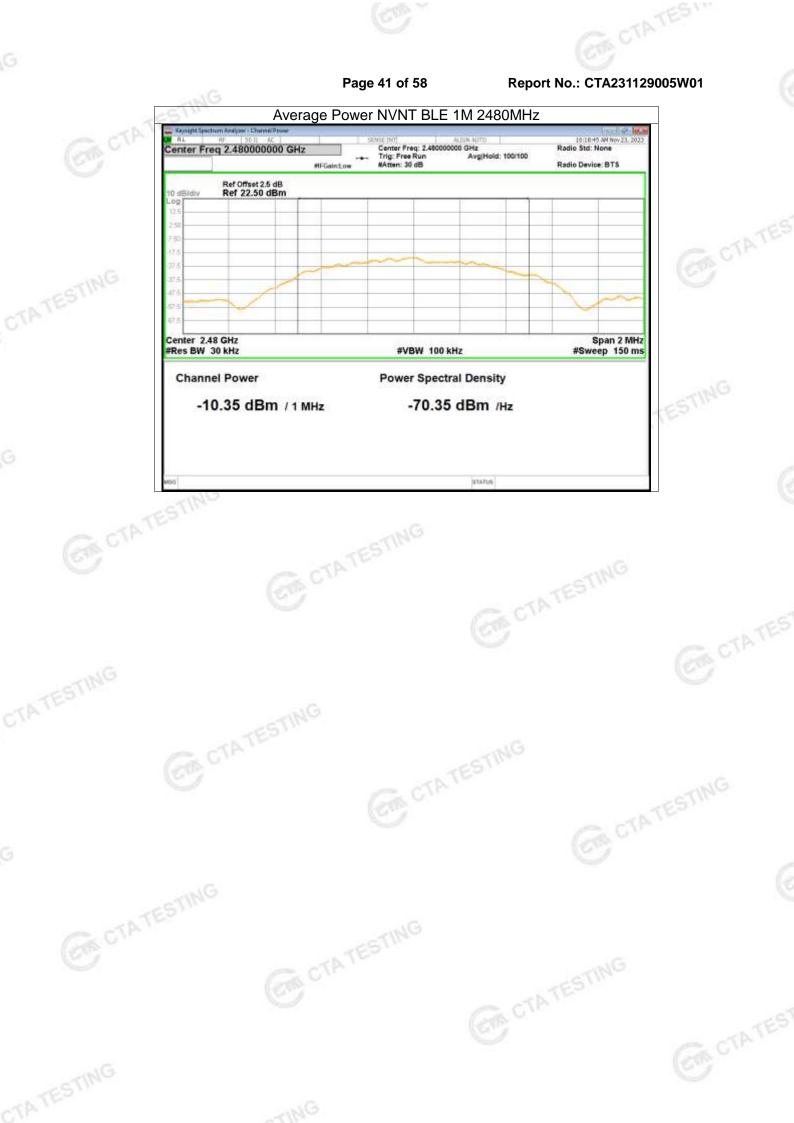

Page 36 of 58


Report No.: CTA231129005W01

APPENDIX 1-TEST DATA

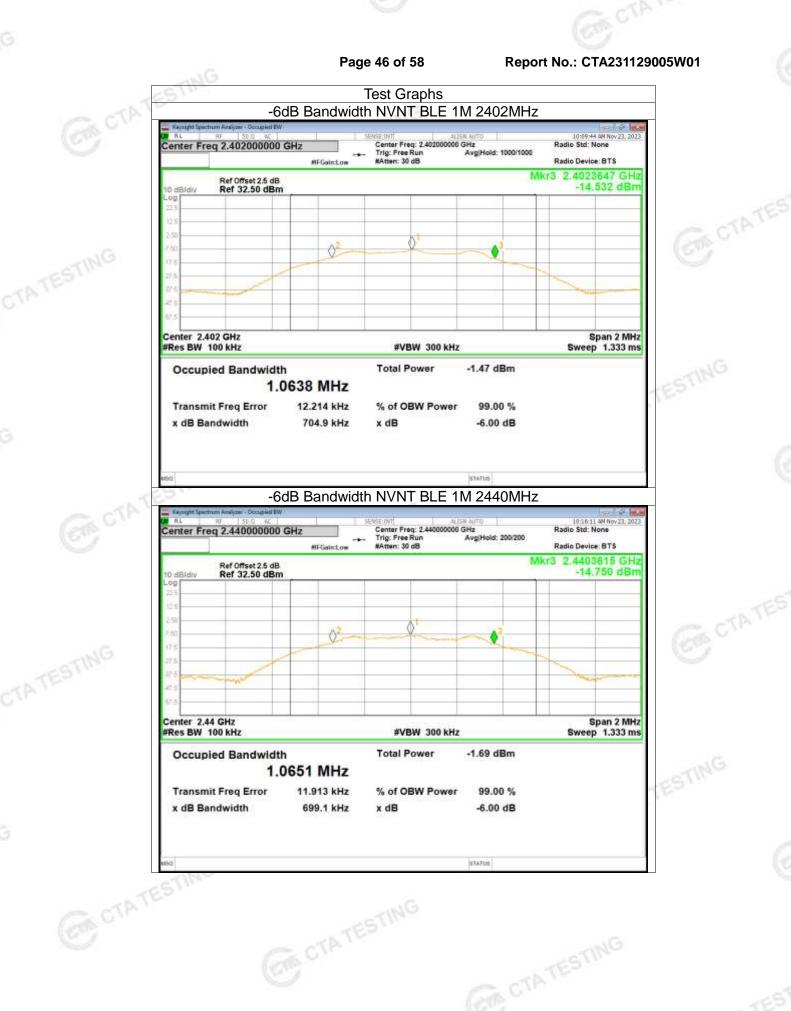
1. Duty Cycle

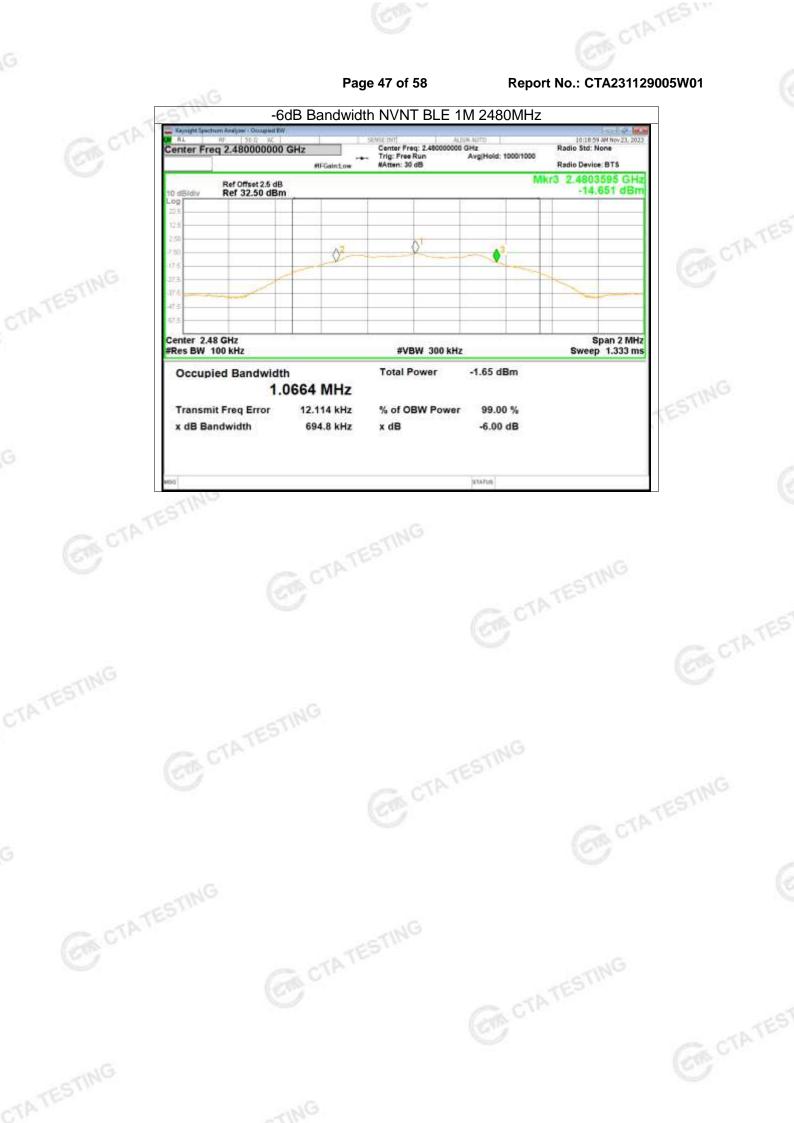

Condition	ty Cycle Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz
NVNT	BLE 1M	2402	63.04	2	2.54
NVNT	BLE 1M	2440	62.88	2.01	2.54
NVNT	BLE 1M	2480	63.04	2	2.54

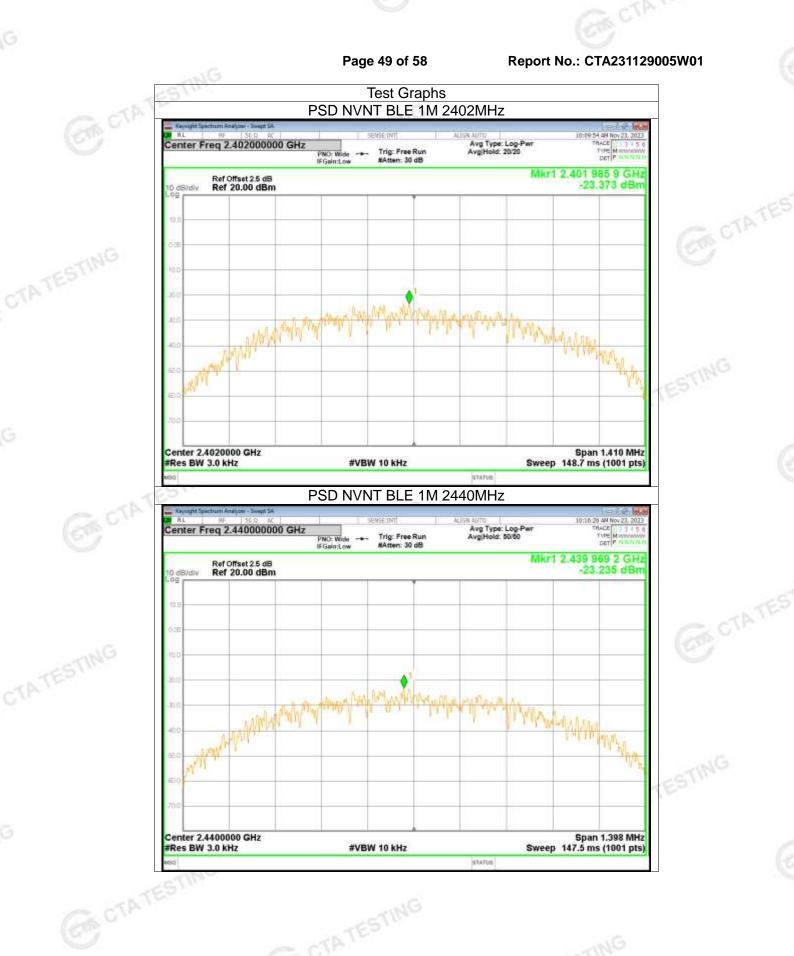


2. Maximum Average Conducted Output Power

Condition	Mode	Frequency	Conducted Power	Duty Factor	Total Power	Limit	Verdict
		(MHz)	(dBm)	(dB)	(dBm)	(dBm)	
NVNT	BLE 1M	2402	-10.21	2	-8.21	<=30	Pass
NVNT	BLE 1M	2440	-10.14	2.01	-8.13	<=30	Pass
NVNT	BLE 1M	2480	-10.35	2	-8.35	<=30	Pass

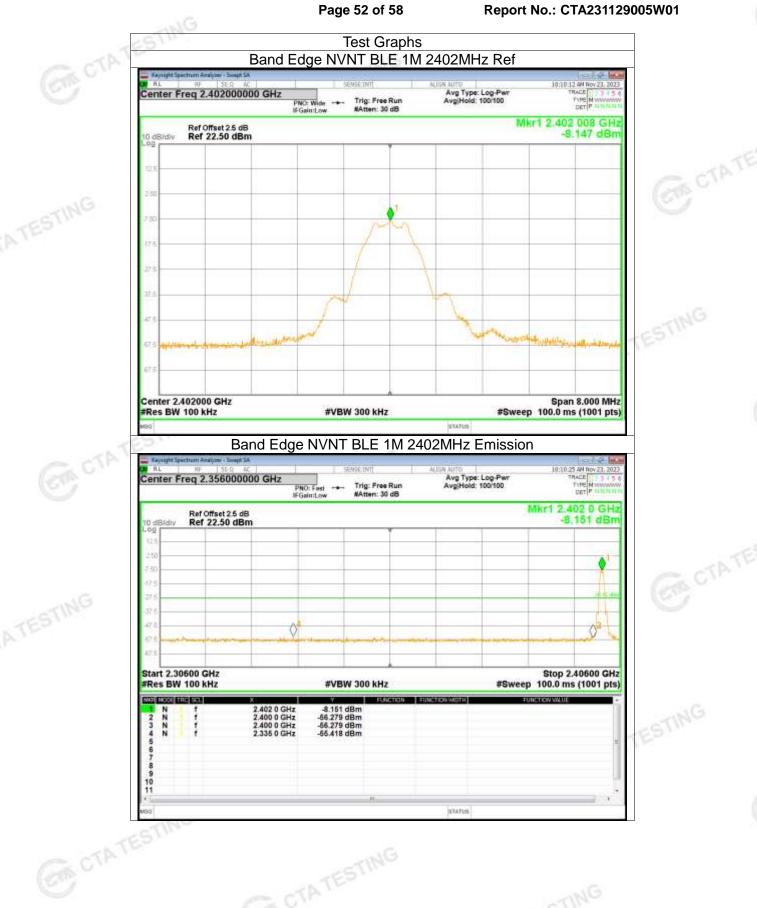



ondition	Mode	eak Conducted Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdic
NVNT NVNT	BLE 1M BLE 1M	2402 2440	-7.96 -7.87	<=30 <=30	Pass Pass
NVN1 NVNT	BLE 1M BLE 1M	2440 2480	-7.87 -8.1	<=30	Pass Pass
			-7.87 -8.1		
	ATESTING				
STING					
		TING			



A 6	dD Dar	dwidth	Page 45 of 58	Report No.: CTA231129005W01	
40 Condition	dB Ban	GWIGTN Frequency (MHz)	-6 dB Bandwidth (M	Hz) Limit -6 dB Bandwidth (MHz)	Verd
NVNT	BLE 1M	2402	0.7049	>=0.5	Pas
NVNT	BLE 1M	2440	0.6991	>=0.5	Pas
NVNT	BLE 1M	2480	0.6948	>=0.5	Pas
		CTATESTING			
	TEST				
	TATESTI				
TESTING					
		TING			

NVNT NVNT NVNT	BLE 1M BLE 1M BLE 1M	Frequency (MHz) 2402 2440 2480	PSD (dBm/3kHz) -23.37 -23.24 23.74	Limit (dBm/3kHz) <=8 <=8	Pass
NVNT	BLE 1M		-23.24	<=8	
	BLE 1M	2480	00 74		Pass
			-23.74	<=8	Pass
		TATESTING			
CTP CTA	TESTING				



CTATED IN Report No.: CTA231129005W01

6. Ban	d Edge Mode		Moy Volue (JDs)		Manalia
Condition NVNT	Mode BLE 1M	Frequency (MHz) 2402	Max Value (dBc) -47.26	Limit (dBc) <=-20	Verdic Pass
NVNT	BLE 1M	2480			Pass
			-46.82		
6 CTA	TESTING				
TESTING					

7 Con	ductod P	Page 54 of 58 Report No.: CTA231129005				
Condition	Mode	F Spurious Ernis: Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdie	
NVNT	BLE 1M	2402	-27.2	<=-20	Pass	
NVNT	BLE 1M	2440	-30.49	<=-20	Pass	
NVNT	BLE 1M	2480	-27.35	<=-20	Pass	
			-27.35			
6 CTA	TESTING					
ESTING						
		TING				

Page 58 of 58

APPENDIX 2- EUT TEST PHOTO

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

* * * * * END OF THE REPORT * * * * *