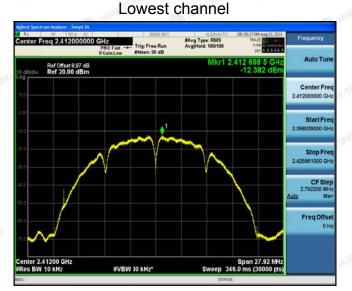


Test data

EUT Set Mode	Channel	Result (dBm/30kHz)	Result (dBm/3kHz)
	Lowest	-12.38	-22.38
802.11b	Middle	-13.33	-23.33
	Highest	-12.29	-22.29
	Lowest	-15.06	-25.06
802.11g	Middle	-13.04	-23.04
	Highest	-14.07	-24.07
	Lowest	-13.6	-23.6
802.11n(H20)	Middle	-13.48	-23.48
	Highest	-15.3	-25.3
	Lowest	-15.26	-25.26
802.11n(H40)	Middle	-16.82	-26.82
	Highest	-14.2	-24.2
PSD test result (dBm/	3kHz)= PSD test	t result (dBm/30kHz)-10	
Limit: 8dBm/3kHz			
Test Result:	HUANTES	PASS	.6.

Test plots as follows:


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

EST FIF

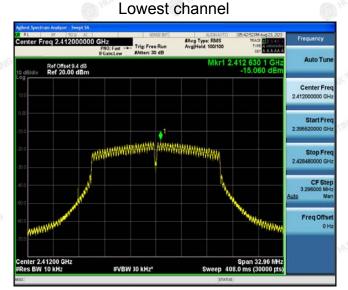
802.11b Modulation

Middle channel

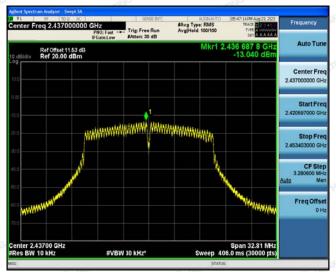
Highest channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com



Page 32 of 74


NG

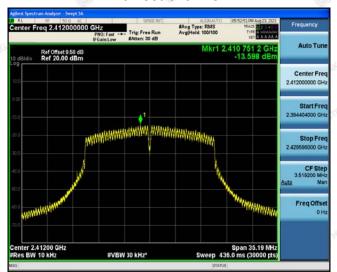
¦К

802.11g Modulation

Middle channel

Highest channel

 Ref Offset 10.69 dB
 State n: 0
 <t


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

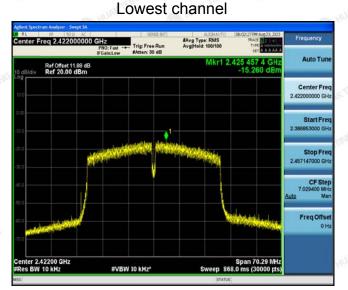
802.11n (HT20) Modulation

Lowest channel

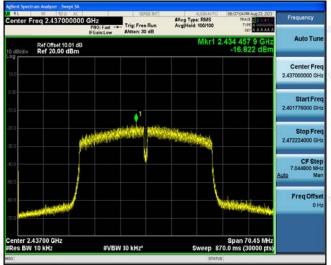
Middle channel

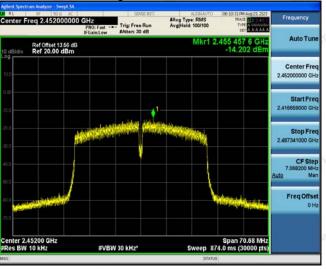
Highest channel

 Adjent System
 Adjent System
 Adjent System
 Adjent System
 Adjent System
 Firequency


 Center Freq 2.452000000 GHz BrGainLow
 Firequency
 Adjent System
 Firequency
 Adjent System
 Firequency
 Adjent System
 Firequency
 Adjent System
 Adjent System System
 Adjent System
 Adje

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com


802.11n (HT40) Modulation

Middle channel

Highest channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

CATION

5.6. Conducted Band Edge and Spurious Emission Measurement

Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 15.247 Meas Guidance v05r02
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows FCC KDB Publication 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

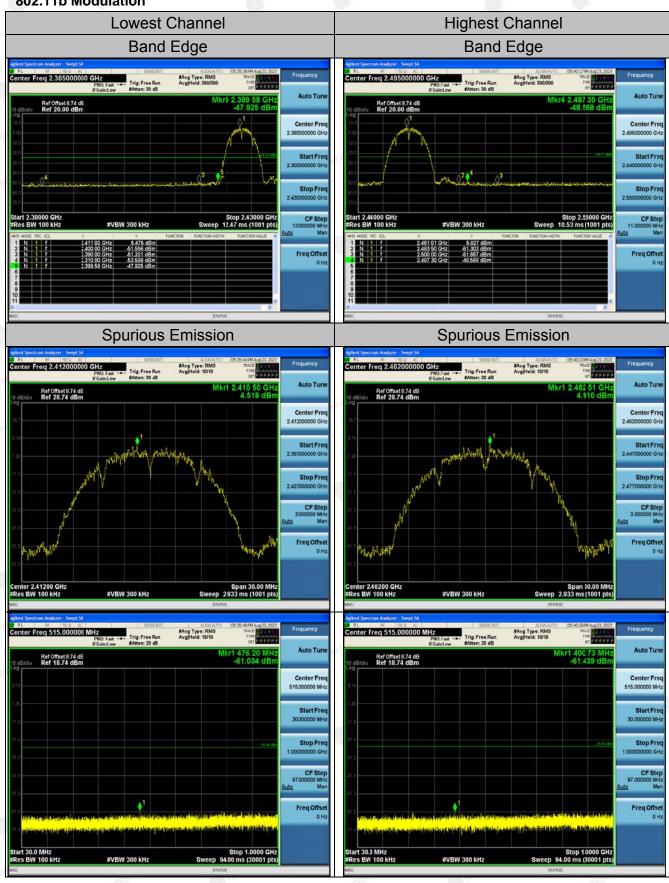
100 HO 100 H		attas HO	102900. Y	ATTAL HO	100m V						
RF Test Room											
Equipment	Manufacturer	nufacturer Model Se		Calibration Date	Calibration Due						
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 17, 2023	Feb. 16, 2024						
High pass filter unit	Tonscend	JS0806-F	HKE-055	Feb. 17, 2023	Feb. 16, 2024						
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Feb. 17, 2023	Feb. 16, 2024						
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 17, 2023	Feb. 16, 2024						
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A						

Test Instruments

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com



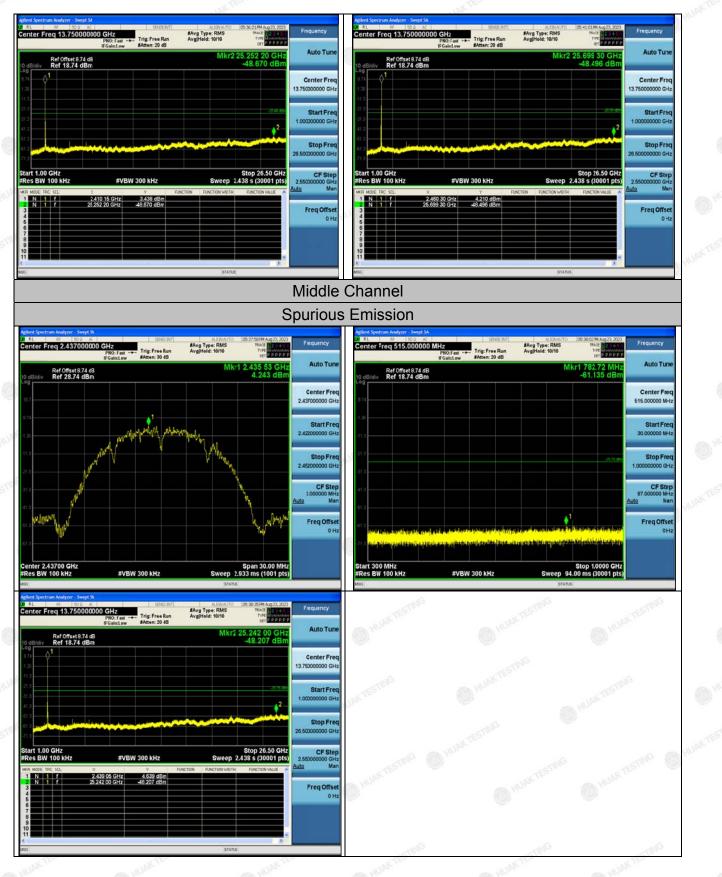
Page 37 of 74

EST FIF

Test Data

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

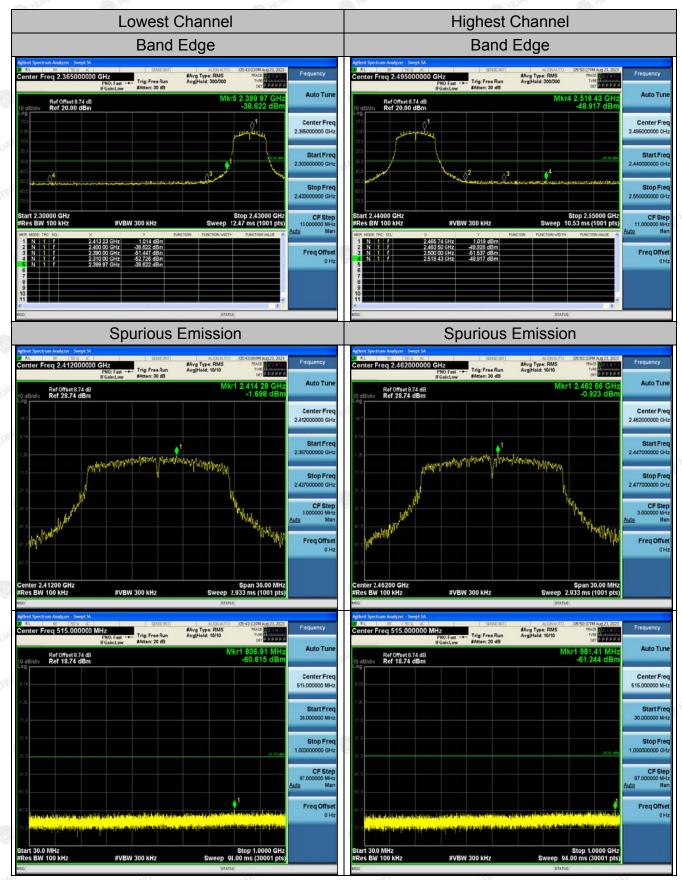


Page 38 of 74

Report No.: HK2308223830-2E

NG

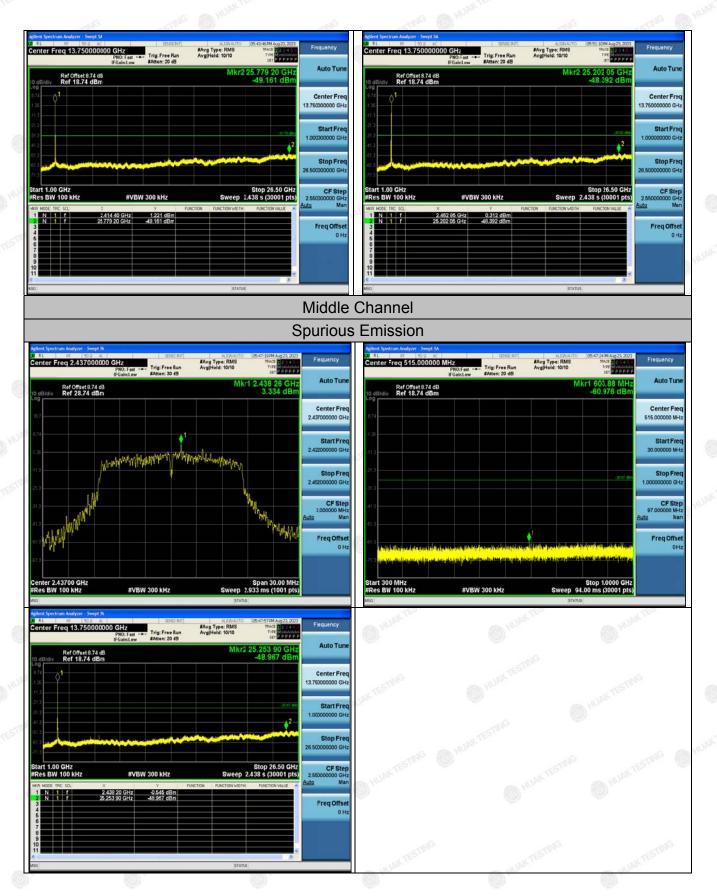
IE.


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

.

802.11g Modulation

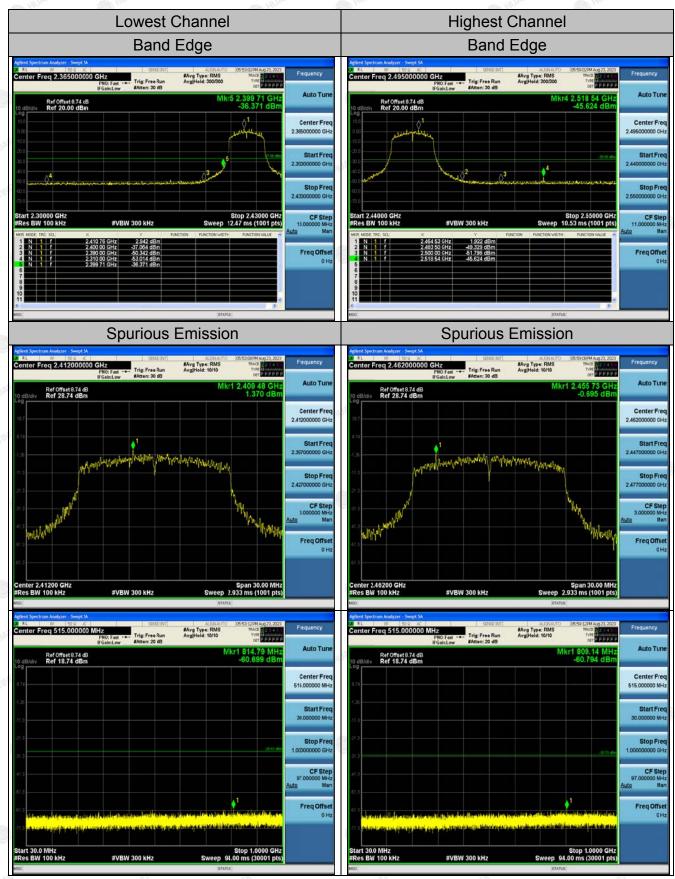


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 40 of 74

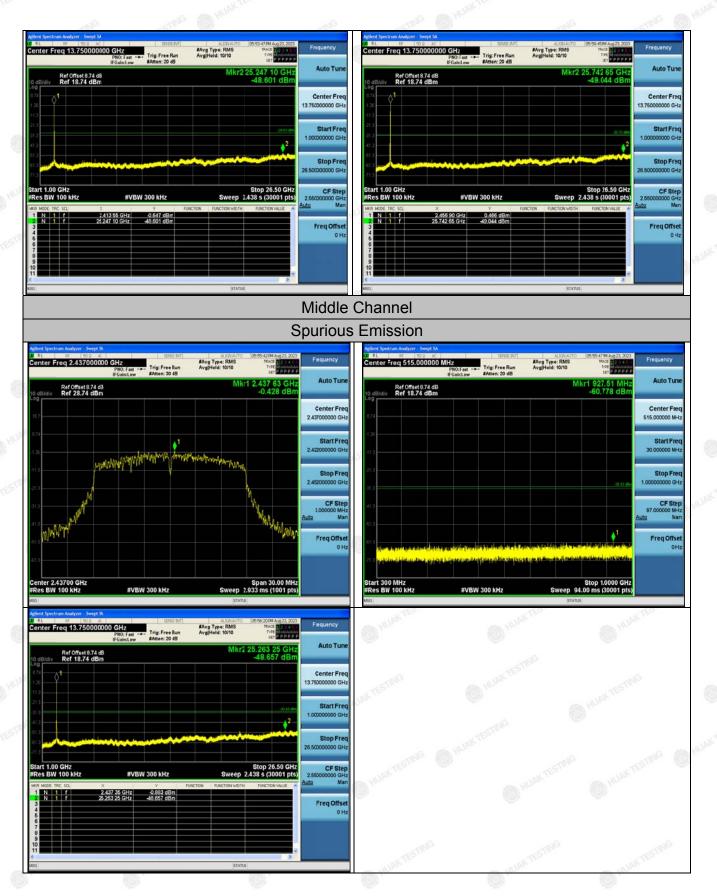
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 41 of 74

FICATION

802.11n (HT20) Modulation



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 42 of 74

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

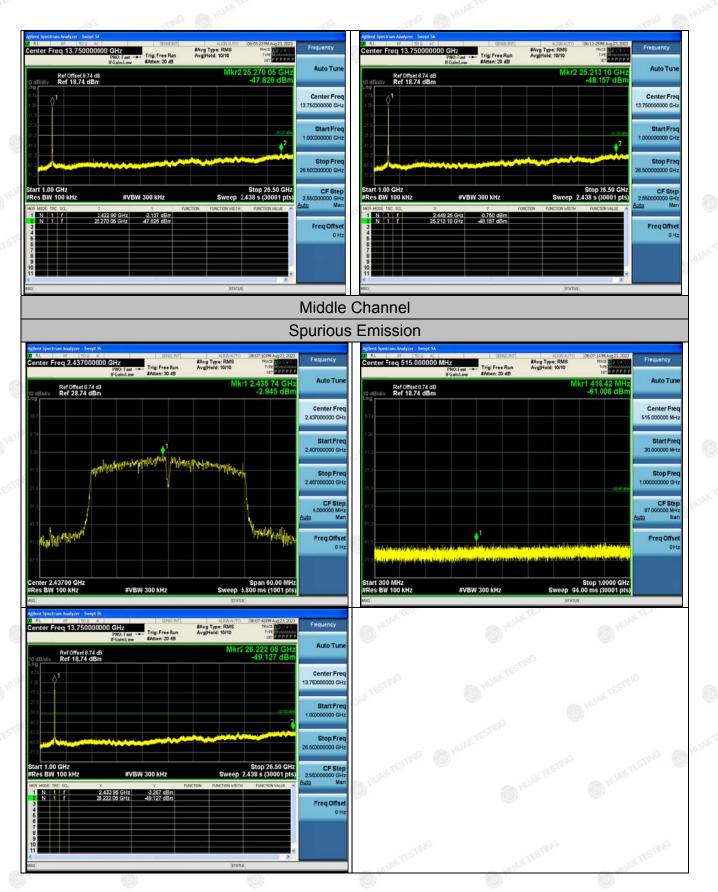
TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 43 of 74

Heat ⊢⊓F

802.11n (HT40) Modulation

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 44 of 74

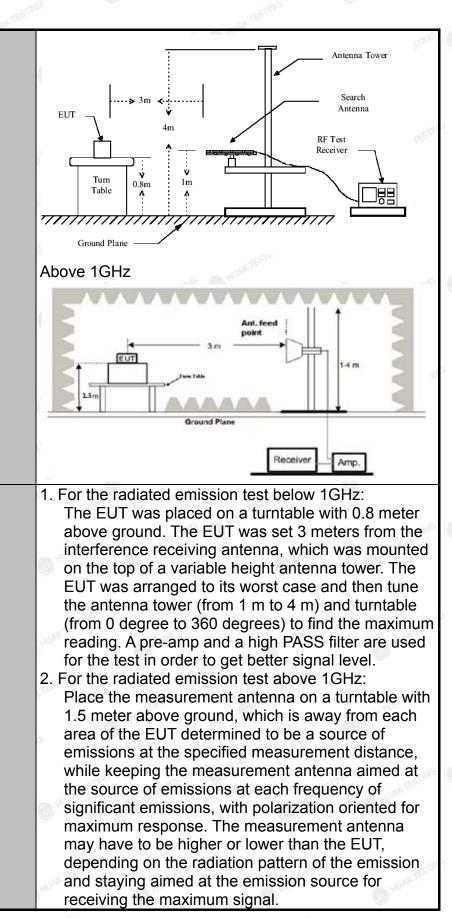
NG

IE.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

5.7. Radiated Spurious Emission Measurement


Test Specification

Test Requirement:	FCC Part15	C Sectio	n 1	5.209	TESTI	NG.	TE
Test Method:	ANSI C63.10: 2013						C HUAN
Frequency Range:	9 kHz to 25 (9 kHz to 25 GHz					
Measurement Distance:	3 m			A HU	AKTES		TESTING
Antenna Polarization:	Horizontal & Vertical					0	HOLE
Operation mode:	Transmitting mode with modulatio						
	Frequency	Detecto	r	RBW	VBW	STING	Remark
	9kHz- 150kHz	Quasi-pe	ak	200Hz	1kHz	Quas	si-peak Valu
Receiver Setup:	150kHz- 30MHz	Quasi-pe	ak	9kHz	30kHz	Quas	si-peak Valu
	30MHz-1GHz	Quasi-pe	ak	120KHz	300KHz	Quas	si-peak Valu
	TING	Peak	an C	1MHz	3MHz		eak Value
	Above 1GHz	Peak		1MHz	10Hz		erage Value
	Frequen	ю		Field Stre (microvolts)	•	Measurement Distance (meters)	
	0.009-0.490			2400/F(KHz)		300	
	0.490-1.705			24000/F(KHz)		30	
	1.705-30			30		30	
	30-88			100	lan		3
	88-216			150			3
Limit:	216-960			200		STING	3 15
	Above 960			500	HUAK		3
	Frequency		Field Strength (microvolts/meter)		Measure Distan (mete	ce	Detector
	Above 1GHz	7 M LUNA		500	3		Average
			5	000	3		Peak
Test setup:	For radiated	- Turn	— 3 Table	m IPlane			
	30MHz to 10	GHz			Receive	er	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Test Procedure:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

FICATION

Page 47 of 74

	The final measurement antenna elevation shall be
	that which maximizes the emissions. The
W	measurement antenna elevation for maximum
	emissions shall be restricted to a range of heights of
	from 1 m to 4 m above the ground or reference
	ground plane.
Dwa	3. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level
45	4. For measurement below 1GHz, If the emission level
DNC YEAR	of the EUT measured by the peak detector is 3 dB
	lower than the applicable limit, the peak emission
	level will be reported. Otherwise, the emission
ne.	measurement will be repeated using the quasi-peak
	detector and reported.
	5. Use the following spectrum analyzer settings:
0)	 (1) Span shall wide enough to fully capture the emission being measured;
	(2) Set RBW=120 kHz for f < 1 GHz; VBW ≥RBW;
	Sweep = auto; Detector function = peak; Trace =
	max hold;
3) Hor	(3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for
	peak measurement.
ATES	6.For average measurement: VBW = 10 Hz, when duty
Den.	cycle is no less than 98 percent.VBW \geq 1/T, when
	duty cycle is less than 98 percent where T is the
10 ¹⁶	minimum transmission duration over which the
	transmitter is on and is transmitting at its maximum
	power control level for the tested mode of operation.
Test results:	PASS

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Test Instruments

	Rad	iated Emission	Test Site (966)	.XO [*]
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Receiver	R&S	ESR-7	HKE-010	Feb. 17, 2023	Feb. 16, 2024
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 17, 2023	Feb. 16, 2024
Spectrum analyzer	R&S	FSP40	HKE-025	Feb. 17, 2023	Feb. 16, 2024
High gain antenna	Schwarzbeck	LB-180400KF	HKE-054	Feb. 17, 2023	Feb. 16, 2024
Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Feb. 17, 2023	Feb. 16, 2024
Preamplifier	EMCI	EMC051845S E	HKE-015	Feb. 17, 2023	Feb. 16, 2024
Preamplifier	Agilent	83051A	HKE-016	Feb. 17, 2023	Feb. 16, 2024
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Feb. 17, 2023	Feb. 16, 2024
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Feb. 17, 2023	Feb. 16, 2024
Horn antenna	Schwarzbeck	9120D	HKE-013	Feb. 17, 2023	Feb. 16, 2024
High pass filter unit	Tonscend	JS0806-F	HKE-055	Feb. 17, 2023	Feb. 16, 2024
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	N/A
Position controller	Taiwan MF	MF7802	HKE-011	Feb. 17, 2023	Feb. 16, 2024
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A
RF cable	Times	9kHz-1GHz	HKE-117	Feb. 17, 2023	Feb. 16, 2024
RF cable	Times	1-40G	HKE-034	Feb. 17, 2023	Feb. 16, 2024
Horn Antenna	Schewarzbeck	BBHA 9170	HKE-017	Feb. 17, 2023	Feb. 16, 2024

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Test Data

All the test modes completed for test. only the worst result of (802.11b at 2412MHz) was reported as below:

Susp	ected List								
NO.	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Polarity
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	69.45982	-15.77	33.42	17.65	40.00	22.35	100	181	Horizontal
2	126.06202	-16.21	42.35	26.14	43.50	17.36	100	236	Horizontal
3	184.92830	-16.78	49.11	32.33	43.50	11.17	100	331	Horizontal
4	260.29009	-12.72	44.49	31.77	46.00	14.23	100	331	Horizontal
5	395.48849	-9.76	45.52	35.76	46.00	10.24	100	187	Horizontal
6	771.32710	-2.47	32.06	29.59	46.00	16.41	100	218	Horizontal

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level;

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

E.

QP Detector

Suspe	cted List								
NO.	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Delerity
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	65.255085	-14.74	40.24	25.50	40.00	14.50	100	105	Vertical
2	156.14204	-18.27	49.69	31.42	43.50	12.08	100	105	Vertical
3	207.56919	-14.61	47.47	32.86	43.50	10.64	100	169	Vertical
4	239.26642	-13.32	43.31	29.99	46.00	16.01	100	161	Vertical
5	263.84794	-12.71	44.80	32.09	46.00	13.91	100	275	Vertical
6	356.02867	-11.03	43.60	32.57	46.00	13.43	100	6	Vertical

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level;

Harmonics and Spurious Emissions

Frequency Range (9kHz-30MHz)

P	Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
		<u> </u>	
TING			-STANG
	CSTOR A	AKTE	HUAKTL
	HUAK !!-	and the second s	- HUAK L

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Above 1GHz

RADIATED EMISSION TEST

LOW CH1 (802.11b Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	56.98	-3.64	53.34	74	-20.66	peak
4824	45.03	-3.64	41.39	54	-12.61	AVG
7236	52.33	-0.95	51.38	74	-22.62	peak
7236	43.64	-0.95	42.69	54	-11.31	AVG
122						

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	o (dB)	Туре	
4824	59.64	-3.64	56	74	-18	peak	
4824	43.13	-3.64	39.49	54	-14.51	AVG	
7236	53.96	-0.95	53.01	74	-20.99	peak	
7236	38.75	-0.95	37.8	54	-16.2	AVG	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

MID CH6 (802.11b Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Stimits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
se 4874	56.71	-3.51	53.2	74	-20.8	peak
4874	43.23	-3.51	39.72	54	-14.28	AVG
7311	51.28	-0.82	50.46	74	-23.54	peak
7311	38.93	-0.82	38.11	54	-15.89	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	55.98	-3.51	52.47	74	-21.53	peak
4874	42.75	-3.51	39.24	54	-14.76	AVG
7311	52.04	-0.82	51.22	74	-22.78	peak
7311	38.04	-0.82	37.22	54	-16.78	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

CATION

HIGH CH11 (802.11b Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	59.42	-3.43	55.99	74	-18.01	peak
4924	43.76	-3.43	40.33	54	-13.67	AVG
7386	51.69	-0.75	50.94	74	-23.06	peak
7386	40.06	-0.75	39.31	54	-14.69	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	62.08	-3.43	58.65	74	-15.35	peak
4924	43.31	-3.43	39.88	54	-14.12	AVG
7386	52.93	-0.75	52.18	74	-21.82	peak
7386	40.34	-0.75	39.59	54	-14.41	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

LOW CH1 (802.11g Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Mo Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	57.6	-3.64	53.96	74	-20.04	peak
4824	42.51	-3.64	38.87	54	-15.13	AVG
7236	52.58	-0.95	51.63	74	-22.37	peak
7236	40.38	-0.95	39.43	54	-14.57	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	56.57	-3.64	52.93	74	-21.07	peak
4824	44.43	-3.64	40.79	54	-13.21	AVG
7236	53.10	-0.95	52.15	74	-21.85	peak
7236	41.40	-0.95	40.45	54	-13.55	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

HST FIF

MID CH6 (802.11g Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	🔊 Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	55.91	-3.51	52.4	74	-21.6	peak
4874	46.65	-3.51	43.14	54	-10.86	AVG
7311	52.28	-0.82	51.46	74	-22.54	peak
7311	39.77	-0.82	38.95	54	-15.05	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	🔊 Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
a ⁶⁶ 4874	55.36	-3.51	51.85	74	-22.15	peak
4874	42.94	-3.51	39.43	54	-14.57	AVG
7311	53.23	-0.82	52.41	74	-21.59	peak
7311	38.85	-0.82	38.03	54	-15.97	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

HIGH CH11 (802.11g Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	60.25	-3.43	56.82	74	-17.18	peak
4924	45.83	-3.43	42.4	54	-11.6	AVG
7386	56.09	-0.75	55.34	74	-18.66	peak
7386	39.43	-0.75	38.68	54	-15.32	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	55.91	-3.43	52.48	74	-21.52	peak
4924	43.02	-3.43	39.59	54 M ^{MA}	-14.41	AVG
7386	52.52	-0.75	51.77	74	-22.23	peak
7386	43.37	-0.75	42.62	54	-11.38	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

LOW CH1 (802.11n/H20 Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	55.46	-3.64	51.82	74	-22.18	peak
4824	41.95	-3.64	38.31	54	-15.69	AVG
7236	54.54	-0.95	53.59	74	-20.41	peak
7236	40.54	-0.95	39.59	54	-14.41	AVG
	in the Hor			ALL HOME		

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	51.66	-3.64	48.02	74	-25.98	peak
4824	45.24	-3.64	41.6	54	-12.4	AVG
7236	49.43	-0.95	48.48	74	-25.52	peak
7236	38.32	-0.95	37.37	54	-16.63	AVG
NAM AN	HUPP	- ullan	AND HOME		- ullan	HUPP

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

MID CH6 (802.11n/H20 Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	imits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	52.98	-3.51	49.47	74.00	-24.53	peak
4874	42.74	-3.51	39.23	54.00	-14.77	AVG
7311	53.01	-0.82	52.19	74.00	-21.81	peak
7311	40.10	-0.82	39.28	54.00	-14.72	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	55.42	-3.51	51.91	74.00	-22.09	peak
4874	43.78	-3.51	40.27	54.00	-13.73	AVG
7311	53.17	-0.82	52.35	74.00	-21.65	peak
7311	40.82	-0.82	40.00	54.00	-14.00	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

FICATION

HIGH CH11 (802.11n/H20 Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Sime Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	O HUMAN JPC
4924	53.71	-3.43	50.28	74	-23.72	peak
4924	43.55	-3.43	40.12	54	-13.88	AVG
7386	51.29	-0.75	50.54	74	-23.46	peak
7386	44.51	-0.75	43.76	54	-10.24	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4924	55.36	-3.43	51.93	74	-22.07	peak
4924	42.71	-3.43	39.28	54	-14.72	AVG
7386	52.8	-0.75	52.05	74	-21.95	peak
7386	42.31	-0.75	41.56	54	-12.44	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

LOW CH3 (802.11n/H40 Mode)/2422

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	59.26	-3.63	55.63	74	-18.37	peak
4844	44.1	-3.63	40.47	54	-13.53	AVG
7266	54.02	-0.94	53.08	74	-20.92	peak
7266	40.11	-0.94	39.17	54	-14.83	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4844	56.12	-3.63	52.49	74	-21.51	peak
4844	41.31	-3.63	37.68	54	-16.32	AVG
7266	51.31	-0.94	50.37	74	-23.63	peak
7266	37.9	-0.94	36.96	54 JUNE TO	-17.04	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

FIF

MID CH6 (802.11n/H40 Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4874	58.06	-3.51	54.55	74	-19.45	peak
4874	44.92	-3.51	41.41	54	-12.59	AVG
7311	56.74	-0.82	55.92	74	-18.08	peak
7311	42.31	-0.82	41.49	54	-12.51	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
sa 4874	56.71	-3.51	53.2	74	-20.8	peak
4874	42.39	-3.51	38.88	54	-15.12	AVG
7311	53.34	-0.82	52.52	74	-21.48	peak
7311	39.88	-0.82	39.06	54	-14.94	AVG

emark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

HIGH CH9 (802.11n/H40 Mode)/2452

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Deteotor Type
4904	53.99	-3.43	50.56	74	-23.44	peak
4904	45.96	-3.43	42.53	54	-11.47	AVG
7356	52.89	-0.75	52.14	74	-21.86	peak
7356	41.5	-0.75	40.75	54	-13.25	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Typ
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4904	52.52	-3.43	49.09	74	-24.91	peak
4904	45.39	-3.43	41.96	54	-12.04	AVG
7356	52.45	-0.75	51.7	74	-22.3	peak
7356	41.97	-0.75	41.22	54	-12.78	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
 (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Test Result of Radiated Spurious at Band edges

Operation Mode:

802.11b Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	53.63	-5.81	47.82	74	-26.18	peak
2310.00	41.51	-5.81	35.7	54	-18.3	AVG
2390.00	51.76	-5.84	45.92	74	-28.08	peak
2390.00	39.17	-5.84	33.33	54	-20.67	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	57.33	-5.81	51.52	74	-22.48	peak
2310.00	41.06	-5.81	35.25	54 (-18.75	AVG
2390.00	54.84	-5.84	49	74	-25	peak
2390.00	40.02	-5.84	34.18	⁶⁶ 54	-19.82	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
ာ (MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	55.32	-5.81	49.51	74 Mun	-24.49	peak
2483.50	42.77	-5.81	36.96	54	-17.04	AVG
2500.00	51.46	-6.06	45.4	74	-28.6	peak
2500.00	42.11	-6.06	36.05	54	-17.95	AVG

Vertical:

Result	Factor	Emission Level	Limits		HOT
				Margin	Detector Type
(VL	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
62	-5.81	45.81	74	-28.19	peak
81	-5.81	38	54	-16	AVG
07	-6.06	45.01	74	-28.99	peak
63	-6.06	36.57	54	-17.43	AVG
	Ŵ		115 ML 15511	A THE MARKEN IN THE AND A	The Martin Street Stree

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

ICATIOn.

Operation Mode: 802.11g Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
6 (MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	55.25	-5.81	49.44	74 HUAK	-24.56	peak
2310.00	44.29	-5.81	38.48	54	-15.52	AVG
2390.00	51.15	-5.84	45.31	74	-28.69	peak
2390.00	41.58	-5.84	35.74	54	-18.26	AVG

Vertical:

Reading Result	Factor	Emission Level	Limits 🌑	Margin	Detector Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
63.66	-5.81	57.85	74	-16.15	peak
42.34	-5.81	36.53	54	-17.47	AVG
53.35	-5.84	47.51	74	-26.49	peak
42.85	-5.84	37.01	54	-16.99	AVG
	(dBµV) 63.66 42.34 53.35	(dBµV) (dB) 63.66 -5.81 42.34 -5.81 53.35 -5.84	(dBµV) (dB) (dBµV/m) 63.66 -5.81 57.85 42.34 -5.81 36.53 53.35 -5.84 47.51	(dBµV) (dB) (dBµV/m) (dBµV/m) 63.66 -5.81 57.85 74 42.34 -5.81 36.53 54 53.35 -5.84 47.51 74	(dBµV) (dB) (dBµV/m) (dBµV/m) (dBµV/m) 63.66 -5.81 57.85 74 -16.15 42.34 -5.81 36.53 54 -17.47 53.35 -5.84 47.51 74 -26.49

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 66 of 74

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	52.97	-5.65	47.32	74	-26.68	peak
2483.50	44.24	-5.65	38.59	54	-15.41	AVG
2500.00	50.25	-5.65	44.6	74	-29.4	peak
2500.00	40.86	-5.65	35.21	54	-18.79	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
o (MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	56.49	-5.65	50.84	74 N ^{UM}	-23.16	peak
2483.50	42.96	-5.65	37.31	54	-16.69	AVG
2500.00	53.59	-5.65	47.94	74	-26.06	peak
2500.00	39.35	-5.65	33.7	54	-20.3	AVG

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: 802.11n/H20 Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	54.18	-5.81	48.37	74	-25.63	peak
2310.00	43.76	-5.81	37.95	54	-16.05	AVG
2390.00	52.03	-5.84	46.19	74	-27.81	peak
2390.00	40.14	-5.84	34.3	54	-19.7	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
ှ (MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	55.65	-5.81	49.84	74 MAR	-24.16	peak
2310.00	45.49	-5.81	39.68	54	-14.32	AVG
2390.00	52.33	-5.84	46.49	74	-27.51	peak
2390.00	41.17	-5.84	35.33	54	-18.67	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	55.07	-5.65	49.42	74 M ^{JAK}	-24.58	peak
2483.50	42.82	-5.65	37.17	54	-16.83	AVG
2500.00	52.82	-5.65	47.17	74	-26.83	peak
2500.00	40.85	-5.65	35.2	54	-18.8	AVG

Vertical:

10	AN IL	N Mar	att		akit	AKIL
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	STING
2483.50	54.63	-5.65	48.98	74	-25.02	peak
2483.50	45.37	-5.65	39.72	54	-14.28	AVG
2500.00	53.44	-5.65	47.79	74	-26.21	peak
2500.00	41.69	-5.65	36.04	54	-17.96	AVG

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: 802.11n/H40 Mode TX CH Low (2422MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	55.15	-5.81	49.34	74	-24.66	peak
2310.00	S ¹¹ /	-5.81	HUAYTEST	54	1	AVG
2390.00	52.64	-5.84	46.8	74	-27.2	peak
2390.00	and an HUA	-5.84	1	54	1	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
🧆 (MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	56.14	-5.81	50.33	74	-23.67	peak
2310.00	1	-5.81	<u>ا</u> ا	54	, ()	AVG
2390.00	54.37	-5.84	48.53	74	-25.47	peak
2390.00	ALAN TEL /	-5.84	Aunx Te	54	JUAN TEST	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: TX CH High (2452MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	54.26	-5.65	48.61	74	-25.39	peak
2483.50	/	-5.65	· /	54	, 🔍	AVG
2500.00	51.39	-5.65	45.74	74	-28.26	peak
2500.00	Jak In	-5.65	- I Junk I	54	HUAKTES	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

1	(12980) N	Colling, 1	62963	1/	CONTRACT N
Reading Result	Factor	Emission Level	Limits	Margin	_ Detector Type
(MHz) (dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
55.65	-5.65	50	74	-24	peak
mel O HUAY	-5.65		54	1	AVG
53.08	-5.65	47.43	74	-26.57	peak
1	-5.65	/	54	1	AVG
	55.65	(dBµV) (dB) 55.65 -5.65 / -5.65 53.08 -5.65	(dBµV) (dB) (dBµV/m) 55.65 -5.65 50 / -5.65 / 53.08 -5.65 47.43	(dBµV) (dB) (dBµV/m) (dBµV/m) 55.65 -5.65 50 74 / -5.65 / 54 53.08 -5.65 47.43 74	(dBµV) (dB) (dBµV/m) (dBµV/m) (dBµV/m) 55.65 -5.65 50 74 -24 / -5.65 / 54 / 53.08 -5.65 47.43 74 -26.57

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Remark:

1. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

2. In restricted bands of operation, the spurious emissions below the permissible value more than 20dB.

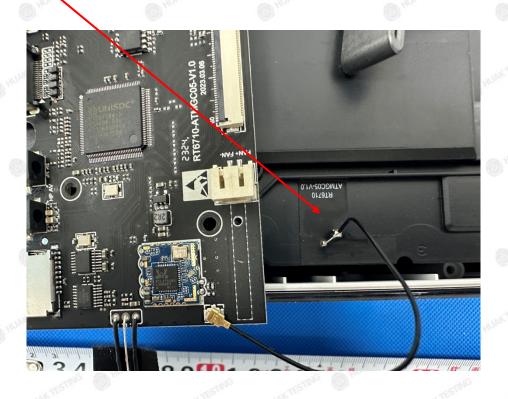
3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

5.8. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.


Refer to statement below for compliance.

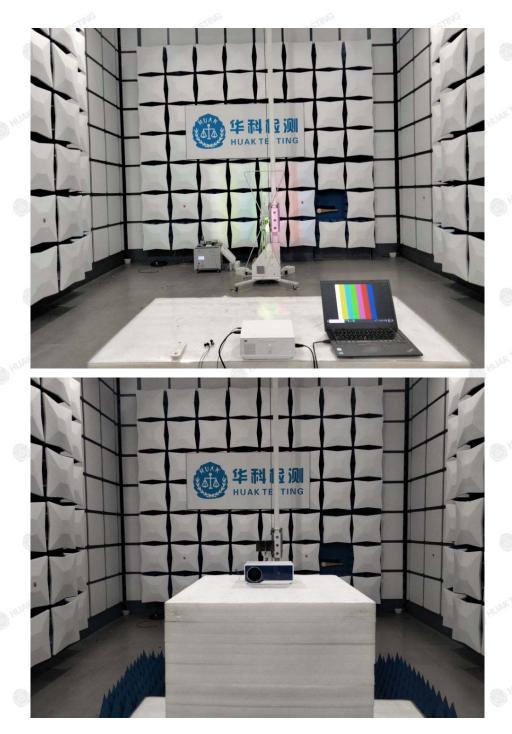
The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a Internal antenna, need professional installation, not easy to remove. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 4.72dBi.

WIFI ANTENNA

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

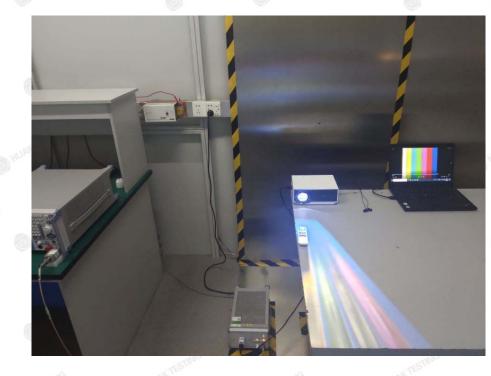

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 72 of 74

6. Photograph of Test

Radiated Emissions

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com


TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 73 of 74

Report No.: HK2308223830-2E

Conducted Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com/

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

DAT.

7. Photos of the EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

----End of test report--

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com