

Report No.: TBR-C-202304-0258-1 Page: 1 of 58

Radio Test Report FCC ID: 2BA7O-SRBDLLCS

Original Grant

Report No.	105	TBR-C-202304-0258-1
Applicant	:	Super Real Business Deals LLC
Equipment Under T	'est (l	EUT)
EUT Name	÷	Speakerbag
Model No.	:	SRBDLLCS
Series Model No.		Please refer to page 6
Brand Name	1.1	Super Real
Sample ID	:	202304-0258-1-1# & 202304-0258-1-2#
Receipt Date	B	2023-05-06
Test Date	:	2023-05-06 to 2023-05-23
Issue Date	3	2023-05-23
Standards	-	FCC Part 15 Subpart C 15.247
Test Method		ANSI C63.10: 2013 KDB 558074 D01 15.247 Meas Guidance v05r02
Conclusions	÷	PASS
		In the configuration tested, the EUT complied with the standards specified above.

Caustle Li

WAN SU fay ba.

Witness Engineer

Engineer Supervisor

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

Ray La

TB-RF-074-1.0

Contents

CON	TENTS	
1.	GENERAL INFORMATION ABOUT EUT	6
	1.1 Client Information	6
	1.2 General Description of EUT (Equipment Under Test)	6
	1.3 Block Diagram Showing the Configuration of System Tested	8
	1.4 Description of Support Units	8
	1.6 Description of Test Software Setting	10
	1.7 Measurement Uncertainty	10
	1.8 Test Facility	11
2.	TEST SUMMARY	12
3.	TEST SOFTWARE	12
4.	TEST EQUIPMENT	13
5.	CONDUCTED EMISSION	15
	5.1 Test Standard and Limit	15
	5.2 Test Setup	15
	5.3 Test Procedure	15
	5.4 Deviation From Test Standard	16
	5.5 EUT Operating Mode	16
	5.6 Test Data	16
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	17
	6.1 Test Standard and Limit	17
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 Deviation From Test Standard	
	6.5 EUT Operating Mode	21
	6.6 Test Data	21
7.	EMISSIONS IN RESTRICTED BANDS	22
	7.1 Test Standard and Limit	22
	7.2 Test Setup	22
	7.3 Test Procedure	23
	7.4 Deviation From Test Standard	25
	7.5 EUT Operating Mode	25

TOBY Part of the Cotacena Group

	7.6 Test Data	
8.	99% OCCUPIED AND 20DB BANDWIDTH	
	8.1 Test Standard and Limit	
	8.2 Test Setup	
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	
	8.5 EUT Operating Mode	
	8.6 Test Data	27
9.	PEAK OUTPUT POWER TEST	
	9.1 Test Standard and Limit	
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 Deviation From Test Standard	
	9.5 EUT Operating Mode	
	9.6 Test Data	
10.	CARRIER FREQUENCY SEPARATION	
	10.1 Test Standard and Limit	
	10.2 Test Setup	
	10.3 Test Procedure	
	10.4 Deviation From Test Standard	
	10.5 Antenna Connected Construction	
	10.6 Test Data	
11.	TIME OF OCCUPANCY (DWELL TIME)	
	11.1 Test Standard and Limit	
	11.2 Test Setup	
	11.3 Test Procedure	
	11.4 Deviation From Test Standard	
	11.5 Antenna Connected Construction	
	11.6 Test Data	
12.	NUMBER OF HOPPING FREQUENCIES	
	12.1 Test Standard and Limit	
	12.2 Test Setup	
	12.3 Test Procedure	
	12.4 Deviation From Test Standard	
	12.5 Antenna Connected Construction	
	12.6 Test Data	

13.	ANTENNA REQUIREMENT	
	13.1 Test Standard and Limit	
	13.2 Deviation From Test Standard	
	13.3 Antenna Connected Construction	
	13.4 Test Data	
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	37
ATT	ACHMENT BUNWANTED EMISSIONS DATA	

Report No.: TBR-C-202304-0258-1 Page: 5 of 58

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202304-0258-1	Rev.01	Initial issue of report	2023-05-23
LUC AND	E		
	30 -	TOP TO	13
	(nDB		Eans
A LO MO		TOUL TOUR	
and be	mBJ		
Les mai		TOPH TOPH	
and the second	INBL		
Lange I			A DE TRA
	BU	TOP TO	and the
	IOm L		
		TOW TO DUCK	

1. General Information about EUT

1.1 Client Information

Applicant	icant : Super Real Business Deals LLC	
Address	: 30 N Gould St Ste R Sheridan WY 82801	
Manufacturer		Super Real Business Deals LLC
Address	05	30 N Gould St Ste R Sheridan WY 82801

1.2 General Description of EUT (Equipment Under Test)

EUT Name		Speakerbag		
Model(s) No.		SRBDLLCS, SRBFP, SRBFP1, SRBFP2, SRBFP3, SRBFP4, SRBFP5, SRBFP6, SRBFP7, SRBFP8, SRBFP9, SRBFP10, SRBFP11, SRBFP12, SRBFP13, SRBFP14, SRBFP15, SRBFP16 SRBFP17, SRBFP18, SRBFP19, SRBFP20, SRBFP21, SRBFP22 SRBFP23		
Model Difference		All PCB boards and circuit diagrams are the same, the only difference is that color.		
AUG -	-	Operation Frequency:	Bluetooth V5.0: 2402MHz~2480MHz	
		Number of Channel:	79 channels	
Product		Antenna Gain:	1.3dBi PCB Antenna	
Description .		Modulation Type:	GFSK π /4-DQPSK 8-DPSK	
Power Rating	:	DC 3.7V by 600mAh R	Rechargeable Li-ion battery	
Software Version		MBE-02-AB5365B_7B4F994C(Super Real Bluetooth)-fw5000-2021-9-7		
Hardware Version		MBE-02-NS4250-2.2		
Remark:		2 ~ ~		

(1) The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.

- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant.

(4) Channel List:

Bluetooth Channel List							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
00	2402	27	2429	54	2456		
01	2403	28	2430	55	2457		
02	2404	29	2431	56	2458		
03	2405	30	2432	57	2459		
04	2406	31	2433	58	2460		
05	2407	32	2434	59	2461		
06	2408	33	2435	60	2462		
07	2409	34	2436	61	2463		
08	2410	35	2437	62	2464		
09	2411	36	2438	63	2465		
10	2412	37	2439	64	2466		
11	2413	38	2440	65	2467		
12	2414	39	2441	66	2468		
13	2415	40	2442	67	2469		
14	2416	41	2443	68	2470		
15	2417	42	2444	69	2471		
16	2418	43	2445	70	2472		
17	2419	44	2446	71	2473		
18	2420	45	2447	72	2474		
19	2421	46	2448	73	2475		
20	2422	47	2449	74	2476		
21	2423	48	2450	75	2477		
22	2424	49	2451	76	2478		
23	2425	50	2452	77	2479		
24	2426	51	2453	78	2480		
25	2427	52	2454				
26	2428	53	2455				

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

ted Test	a	Em	nOB	1 al	RUD
		EUT		ER	

1.4 Description of Support Units

Equipment Information							
Name	me Model FCC ID/VOC Manufacturer Used " $$ "						
Adapter	TPA-46B050100UU			\checkmark			
	Cable Information						
Number	Number Shielded Type Ferrite Core Length Note						
Cable 1			1.0M	Accessory			
	Remark: The USB Cable and adapter provided by the Applicant.						

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test			
Final Test Mode	Description		
Mode 1	Charging + TX GFSK Mode Channel 00		
	For Radiated Test		
Final Test Mode	Description		
Mode 1	TX GFSK Mode Channel 00		
Mode 2	TX Mode (GFSK) Channel 00/39/78		
Mode 3	TX Mode (π /4-DQPSK) Channel 00/39/78		
Mode 4	TX Mode (8-DPSK) Channel 00/39/78		
Mode 5	Hopping Mode (GFSK)		
Mode 6	Hopping Mode (π /4-DQPSK)		
Mode 7	Hopping Mode (8-DPSK)		

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK (1 Mbps)

- TX Mode: π /4-DQPSK (2 Mbps)
- TX Mode:8-DPSK (3 Mbps)
- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	CMD.EXE			
Frequency	2402 MHz	2441MHz	2480 MHz	
GFSK	DEF	DEF	DEF	
π /4-DQPSK	DEF	DEF	DEF	
8-DPSK	DEF	DEF	DEF	

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	$\pm 3.50 \text{ dB}$ $\pm 3.10 \text{ dB}$
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

TOBY Part of the Cotecna Group Report No.: TBR-C-202304-0258-1 Page: 11 of 58

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

2. Test Summary

Standard Section	Testites	Trat Opmala(a)	ll.	Demende
FCC	Test Item	Test Sample(s)	Judgment	Remark
FCC 15.207(a)	Conducted Emission	202304-0258-1-1#	PASS	N/A
FCC 15.209 & 15.247(d)	Radiated Unwanted Emissions	202304-0258-1-1#	PASS	N/A
FCC 15.203	Antenna Requirement	202304-0258-1-2#	PASS	N/A
FCC 15.247(a)	99% Occupied Bandwidth & 20dB Bandwidth	202304-0258-1-2#	PASS	N/A
FCC 15.247(b)(1)	Peak Output Power	202304-0258-1-2#	PASS	N/A
FCC 15.247(a)(1)	Carrier frequency separation	202304-0258-1-2#	PASS	N/A
FCC 15.247(a)(1)	Time of occupancy	202304-0258-1-2#	PASS	N/A
FCC 15.247(a)(1)	Number of Hopping Frequency	202304-0258-1-2#	PASS	N/A
FCC 15.247(d)	Band Edge	202304-0258-1-2#	PASS	N/A
FCC 15.207(a)	Conducted Unwanted Emissions	202304-0258-1-2#	PASS	N/A
FCC 15.205	Emissions in Restricted Bands	202304-0258-1-2#	PASS	N/A
	On Time and Duty Cycle	202304-0258-1-2#		N/A

Note: N/A is an abbreviation for Not Applicable.

3. Test Software

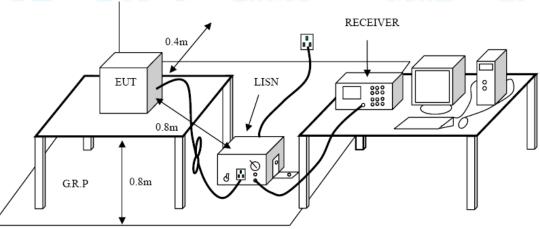
Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V2.6.88.0336

4. Test Equipment

Conducted Emissi	on Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 23, 2022	Jun. 22, 2023
	Compliance				
RF Switching Unit	Direction Systems	RSU-A4	34403	Jun. 23, 2022	Jun. 22, 2023
	Inc	200		0022	
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 22, 2022	Jun. 21, 2023
LISN	Rohde & Schwarz	ENV216	101131	Jun. 22, 2022	Jun. 21, 2023
ISN	SCHWARZBECK	NTFM 8131	8131-193	Jun. 22, 2022	Jun. 21, 2023
ISN	SCHWARZBECK	CAT3 8158	cat3 5158-0094	Jun. 22, 2022	Jun. 21, 2023
ISN	SCHWARZBECK	NTFM5158	NTFM5158 0145	Jun. 22, 2022	Jun. 21, 2023
ISN	SCHWARZBECK	CAT 8158	cat5 8158-179	Jun. 22, 2022	Jun. 21, 2023
Radiation Emissio	n Test (B Site)				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep.01.2022	Aug. 31, 2023
Spectrum	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
Analyzer					
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 23, 2023	Feb.22, 2024
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Jun. 26, 2022	Jun.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep.01.2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep.01.2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep.01.2022	Aug. 31, 2023
Antenna Conducte	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jun. 23, 2022	Jun. 22, 2023
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
MXA Signal Analyzer	KEYSIGHT	N9020B	MY60110172	Sep.01.2022	Aug. 31, 2023
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Sep.01.2022	Aug. 31, 2023
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep.01.2022	Aug. 31, 2023
Analog Signal Generator	Agilent	N5181A	MY48180463	Sep.01.2022	Aug. 31, 2023

Vector Signal Generator	KEYSIGHT	N5182B	MY59101429	Sep.01.2022	Aug. 31, 2023
Analog Signal Generator	KEYSIGHT	N5173B	MY61252685	Dec. 15, 2022	Dec. 14, 2023
2 4	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO26	Sep.01.2022	Aug. 31, 2023
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO29	Sep.01.2022	Aug. 31, 2023
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO31	Sep.01.2022	Aug. 31, 2023
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO33	Sep.01.2022	Aug. 31, 2023
RF Control Unit	Tonsced	JS0806-1	21C8060380	N/A	N/A
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep.01.2022	Aug. 31, 2023
Band Reject Filter Group	Tonsced	JS0806-F	21D8060414	Jun. 23, 2022	Jun. 22, 2023
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A
Wideband Radio Comunication Tester	Rohde & Schwarz	CMW500	144382	Sep.01.2022	Aug. 31, 2023
Universal Radio Communication Tester	Rohde&Schwarz	CMW500	168796	Jun. 23, 2022	Jun. 22, 2023
Temperature and Humidity Chamber	ZhengHang	ZH-QTH-1500	ZH2107264	Jun. 22, 2022	Jun. 21, 2023

5. Conducted Emission


- 5.1 Test Standard and Limit
 - 5.1.1 Test Standard
 - FCC Part 15.207
 - 5.1.2 Test Limit

Eroguopou	Maximum RF Line	Voltage (dBµV)
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Notes:

(1) *Decreasing linearly with logarithm of the frequency.

- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 5.2 Test Setup

5.3 Test Procedure

● The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

● Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

● I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

●LISN at least 80 cm from nearest part of EUT chassis.

• The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A inside test report.

6. Radiated and Conducted Unwanted Emissions

- 6.1 Test Standard and Limit
 - 6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.247(d)

6.1.2 Test Limit

General field strength limits at frequencies Below 30MHz		
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolt/meter)**	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30

Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

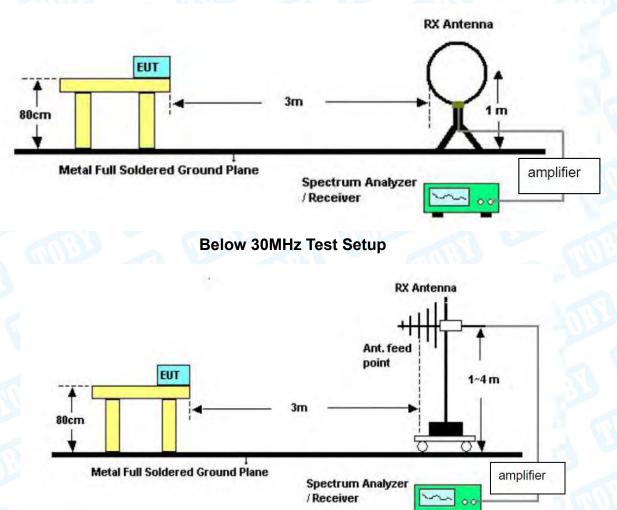
General field	General field strength limits at frequencies above 30 MHz		
Frequency	Field strength	Measurement Distance	
(MHz)	(µV/m at 3 m)	(meters)	
30~88	100	3	
88~216	150	3	
216~960	200	3	
Above 960	500	3	

General field strength limits at frequencies Above 1000MHz			
Frequency	Distance of 3m (dBuV/m)		
(MHz)	Peak	Average	
Above 1000	74	54	

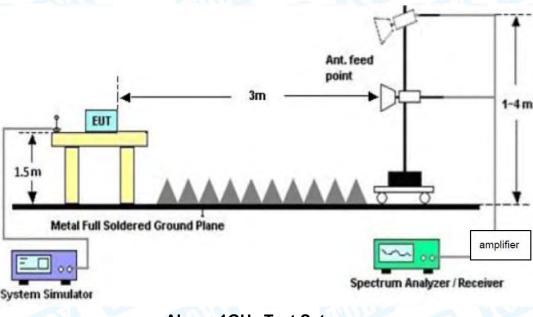
Note:

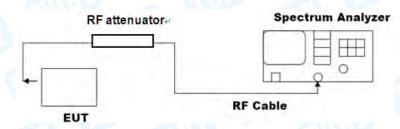
(1) The tighter limit applies at the band edges.

(2) Emission Level(dBuV/m)=20log Emission Level(uV/m)


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the

transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.


6.2 Test Setup



Below 1000MHz Test Setup

Above 1GHz Test Setup Conducted measurement

6.3 Test Procedure

---Radiated measurement

● The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.

• Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

• The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

● The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

● If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode

measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.

● Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.

● Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

• For the actual test configuration, please see the test setup photo.

--- Conducted measurement

• Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.
 Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.
- 6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

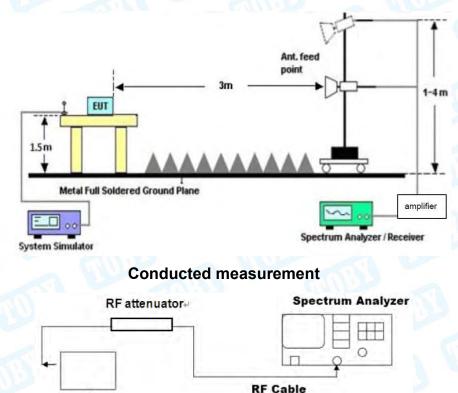
6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report. Conducted measurement please refer to the Appendix A.

7. Emissions in Restricted Bands

- 7.1 Test Standard and Limit
 - 7.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(d)


EUT

7.1.2 Test Limit

Restricted Frequency	Distance Meters(at 3m)		
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)	
2310 ~2390	74	54	
2483.5 ~2500	74	54	
	Peak (dBm)see 7.3 e)	Average (dBm) see 7.3 e)	
2310 ~2390	-41.20	-21.20	
2483.5 ~2500	-41.20	-21.20	

Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.

7.2 Test Setup

Radiated measurement

7.3 Test Procedure

---Radiated measurement

• Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

• The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

● The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

The Peak Value and average value both need to comply with applicable limit above 1 GHz.

● Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

• For the actual test configuration, please see the test setup photo.

--- Conducted measurement

a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).

b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).

c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies \leq 30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for frequencies > 1000 MHz).

d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).

e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.

7.4 Deviation From Test Standard

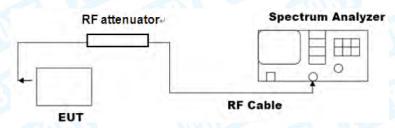
No deviation

- 7.5 EUT Operating Mode Please refer to the description of test mode.
- 7.6 Test Data

Remark: The test uses antenna-port conducted measurements as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements.

Please refer to the Appendix A.

8. 99% Occupied and 20dB Bandwidth


- 8.1 Test Standard and Limit
 - 8.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(a)

8.1.2 Test Limit

For an FHSS system operating in the 2400 to 2483.5 MHz band, there are no limits for 20dB bandwidth and 99% occupied bandwidth.

8.2 Test Setup

8.3 Test Procedure

• The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

d) Step a) through step c) might require iteration to adjust within the specified range.

e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.

g) If the instrument does not have a 99% power bandwidth function, then the trace data

TOBY Part of the Cateron Group

points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Mode

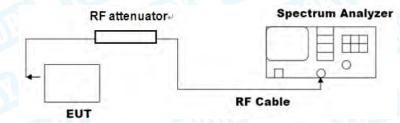
Please refer to the description of test mode.

8.6 Test Data

Please refer to the Appendix A.

9. Peak Output Power Test

- 9.1 Test Standard and Limit
 - 9.1.1 Test Standard


FCC Part 15.247(b)(1)

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)	
	P _{max-pk} ≤ 1 W	MUDY	
anB1	N _{ch} ≥ 75		
COBU	f ≥ MAX { 25 kHz, BW20dB }		
	max. BW20dB not specified		
051	t ch ≤ 0.4 s for $T = 0.4$ * N ch		
Peak Output Power	<i>P</i> max-pk ≤ 0.125 W	2400~2483.5	
2 10 00	$Nch \ge 15$		
	f ≥ [MAX{25 kHz, 0.67*BW20dB}		
0032	OR MAX{25 kHz, BW20dB}]		
A MAR	max. BW20dB not specified		
	$tch \le 0.4 ext{ s for } T = 0.4^* N_{ch}$		
<i>t</i> _{ch} = average time of oc	t_{ch} = average time of occupancy; T = period; N_{ch} = # hopping frequencies; BW = bandwidth;		

f = hopping channel carrier frequency separation

9.2 Test Setup

9.3 Test Procedure

This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test:

- a) Use the following spectrum analyzer settings:
 - 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
 - 2) RBW > 20 dB bandwidth of the emission being measured.
 - 3) VBW≥ RBW.
 - 4) Sweep: Auto.
 - 5) Detector function: Peak.

6) Trace: Max hold.

b) Allow trace to stabilize.

c) Use the marker-to-peak function to set the marker to the peak of the emission.

d) The indicated level is the peak output power, after any corrections for external attenuators and cables.

e) A plot of the test results and setup description shall be included in the test report.

NOTE-A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

- 9.4 Deviation From Test Standard No deviation
- 9.5 EUT Operating Mode

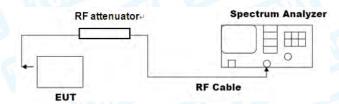
Please refer to the description of test mode.

9.6 Test Data

Please refer to the Appendix A.

10. Carrier frequency separation

- 10.1 Test Standard and Limit
 - 10.1.1 Test Standard


FCC Part 15.247(a)(1)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
	<i>P</i> _{max-pk} ≤ 1 W	mous
	N _{ch} ≥ 75	
	f ≥ MAX { 25 kHz, BW20dB }	
	max. BW20dB not specified	
Corrier frequency	t ch ≤ 0.4 s for $T = 0.4$ * N ch	
Carrier frequency	<i>P</i> max-pk ≤ 0.125 W	2400~2483.5
separation	<i>Nch</i> ≥ 15	
	f ≥ [MAX{25 kHz, 0.67*BW20dB}	
	OR MAX{25 kHz, BW20dB}]	
A B	max. BW20dB not specified	
	$tch \le 0.4 ext{ s for } T = 0.4 ext{*}N_{ch}$	
<i>t</i> _{ch} = average time of o	ccupancy; <i>T</i> = period; <i>N</i> _{ch} = # hopping f	requencies; BW = bandwidth;

f = hopping channel carrier frequency separation

10.2 Test Setup

10.3 Test Procedure

• The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

a) Span: Wide enough to capture the peaks of two adjacent channels.

b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

- c) Video (or average) bandwidth (VBW) \geq RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

- 10.4 Deviation From Test Standard No deviation
- 10.5 Antenna Connected Construction

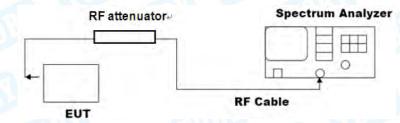
Please refer to the description of test mode.

10.6 Test Data

Please refer to the Appendix A.

11. Time of occupancy (dwell time)

- 11.1 Test Standard and Limit
 - 11.1.1 Test Standard


FCC Part 15.247(a)(1)

11.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Time of occupancy (dwell time)	<i>P</i> _{max-pk} ≤ 1 W	mod a
	N _{ch} ≥ 75	anB
	f ≥ MAX { 25 kHz, BW20dB }	
	max. BW20dB not specified	THE RUDD HOLE
	$tch \le 0.4 ext{ s for } T = 0.4 ext{*}Nch$	
	<i>P</i> max-pk ≤ 0.125 W	2400~2483.5
	Nch ≥ 15	
	f ≥ [MAX{25 kHz, 0.67*BW20dB}	
	OR MAX{25 kHz, BW20dB}]	
	max. BW20dB not specified	
	t ch ≤ 0.4 s for $T = 0.4$ * N ch	
tch = average time of or	ccupancy; <i>T</i> = period; <i>N</i> _{ch} = # hopping f	requencies; BW = bandwidth;

f = hopping channel carrier frequency separation

11.2 Test Setup

11.3 Test Procedure

• The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

a) Span: Zero span, centered on a hopping channel.

b) RBW shall be channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.

c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed

with a longer sweep time to show two successive hops on a channel.

- d) Detector function: Peak.
- e) Trace: Max hold.

Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) =

(number of hops on spectrum analyzer)x(period specified in the requirements / analyzer sweep time)

The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.

The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.

11.4 Deviation From Test Standard

No deviation

11.5 Antenna Connected Construction

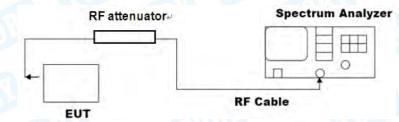
Please refer to the description of test mode.

11.6 Test Data

Please refer to the Appendix A.

12. Number of hopping frequencies

- 12.1 Test Standard and Limit
 - 12.1.1 Test Standard


FCC Part 15.247(a)(1)

12.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Carrier frequency separation	<i>P</i> _{max-pk} ≤ 1 W	MODY
	N _{ch} ≥ 75	
	f ≥ MAX { 25 kHz, BW20dB }	
	max. BW20dB not specified	AUD A
	$tch \le 0.4 ext{ s for } T = 0.4 ext{*}Nch$	
	<i>P</i> max-pk ≤ 0.125 W	2400~2483.5
	$Nch \ge 15$	
	f ≥ [MAX{25 kHz, 0.67*BW20dB}	
	OR MAX{25 kHz, BW20dB}]	
	max. BW20dB not specified	
	$tch \le 0.4 ext{ s for } T = 0.4^* N_{ch}$	
t_{ch} = average time of occupancy; T = period; N_{ch} = # hopping frequencies; BW = bandwidth;		

f = hopping channel carrier frequency separation

12.2 Test Setup

12.3 Test Procedure

• The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.

b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

c) VBW ≥ RBW.

d) Sweep: Auto.

- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies.

Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

- 12.4 Deviation From Test Standard No deviation
- 12.5 Antenna Connected Construction
 - Please refer to the description of test mode.
- 12.6 Test Data

Please refer to the Appendix A.

13. Antenna Requirement

13.1 Test Standard and Limit

11.1.1 Test Standard

FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

13.2 Deviation From Test Standard

No deviation

13.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 1.3dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

13.4 Test Data

The EUT antenna is a PCB Antenna. It complies with the standard requirement.

Antenna Type		
Permane	nt attached antenna	
	onnector antenna	
	nal installation antenna	

Attachment A-- Conducted Emission Test Data

emperature:	26.3 ℃	(AR)	R	elative Hum	nidity:	54.6%					
est Voltage:	AC 120\	//60Hz		N S		100					
erminal:	Line		100				call!				
est Mode:	Mode 1	Mode 1									
Remark:	Only wo	Only worse case is reported.									
80.0 dBuV		1.1.1.1		1 1 1 1		QP:					
						AVG	а <mark>—</mark>				
-											
30											
man	runnthan	munt with my the and	Manakan Magartanan	madelindeperior	winderthe	numphi sources	Markingerthan				
m	hannan	mmanushimenterises-eene	www.arther.com.arther.com.com	west ward and a second and a second	adent toman		way - ware				
-20 0.150	0.5		(MHz)	5			30.000				
No. M	- Frank	Reading	Correct	Measure-	Limit	Over					
No. MI	K. Freq.	Level	Factor	ment	Linne	Over					
		10.11		Contraction of the	JD. U	10	Detector				
-	MHz	dBuV	dB	dBuV	dBuV	dB	Detector				
1	MHz 0.1819	0.49	11.04	dBuV 11.53	64.39	-52.86	QP				
2	MHz 0.1819 0.1819	0.49 -4.19	11.04 11.04	dBuV 11.53 6.85	64.39 54.39	-52.86 -47.54	QP AVG				
2	MHz 0.1819 0.1819 0.4580	0.49 -4.19 -0.62	11.04 11.04 10.92	dBuV 11.53 6.85 10.30	64.39 54.39 56.73	-52.86 -47.54 -46.43	QP AVG QP				
2 3 4	MHz 0.1819 0.1819 0.4580 0.4580	0.49 -4.19 -0.62 -5.00	11.04 11.04 10.92 10.92	dBuV 11.53 6.85 10.30 5.92	64.39 54.39 56.73 46.73	-52.86 -47.54 -46.43 -40.81	QP AVG QP AVG				
2 3 4 5	MHz 0.1819 0.1819 0.4580 0.4580 1.0900	0.49 -4.19 -0.62 -5.00 -0.87	11.04 11.04 10.92 10.92 10.66	dBuV 11.53 6.85 10.30 5.92 9.79	64.39 54.39 56.73 46.73 56.00	-52.86 -47.54 -46.43 -40.81 -46.21	QP AVG QP AVG QP				
2 3 4 5 6	MHz 0.1819 0.1819 0.4580 0.4580 1.0900 1.0900	0.49 -4.19 -0.62 -5.00 -0.87 -5.22	11.04 11.04 10.92 10.92 10.66 10.66	dBuV 11.53 6.85 10.30 5.92 9.79 5.44	64.39 54.39 56.73 46.73 56.00 46.00	-52.86 -47.54 -46.43 -40.81 -46.21 -40.56	QP AVG QP AVG QP AVG				
2 3 4 5 6 7	MHz 0.1819 0.1819 0.4580 0.4580 1.0900 1.0900 1.9900	0.49 -4.19 -0.62 -5.00 -0.87 -5.22 -0.51	11.04 11.04 10.92 10.92 10.66 10.66 10.50	dBuV 11.53 6.85 10.30 5.92 9.79 5.44 9.99	64.39 54.39 56.73 46.73 56.00 46.00 56.00	-52.86 -47.54 -46.43 -40.81 -40.81 -40.56 -46.01	QP AVG QP AVG QP AVG QP				
2 3 4 5 6	MHz 0.1819 0.1819 0.4580 0.4580 1.0900 1.0900	0.49 -4.19 -0.62 -5.00 -0.87 -5.22	11.04 11.04 10.92 10.92 10.66 10.66	dBuV 11.53 6.85 10.30 5.92 9.79 5.44	64.39 54.39 56.73 46.73 56.00 46.00 56.00	-52.86 -47.54 -46.43 -40.81 -46.21 -40.56	QP AVG QP AVG QP AVG QP AVG				
2 3 4 5 6 7	MHz 0.1819 0.1819 0.4580 0.4580 1.0900 1.0900 1.9900	0.49 -4.19 -0.62 -5.00 -0.87 -5.22 -0.51	11.04 11.04 10.92 10.92 10.66 10.66 10.50	dBuV 11.53 6.85 10.30 5.92 9.79 5.44 9.99	64.39 54.39 56.73 46.73 56.00 46.00 56.00 46.00	-52.86 -47.54 -46.43 -40.81 -40.81 -40.56 -46.01	QP AVG QP AVG QP AVG QP AVG				
2 3 4 5 6 7 8 *	MHz 0.1819 0.1819 0.4580 0.4580 1.0900 1.0900 1.9900 1.9900	0.49 -4.19 -0.62 -5.00 -0.87 -5.22 -0.51 -5.03	11.04 11.04 10.92 10.92 10.66 10.66 10.50 10.50	dBuV 11.53 6.85 10.30 5.92 9.79 5.44 9.99 5.47	64.39 54.39 56.73 46.73 56.00 46.00 56.00 46.00 60.00	-52.86 -47.54 -46.43 -40.81 -40.81 -40.56 -46.01 -40.53	QP AVG QP AVG QP AVG QP				
2 3 4 5 6 7 8 * 9	MHz 0.1819 0.1819 0.4580 0.4580 1.0900 1.0900 1.9900 1.9900 5.1380	0.49 -4.19 -0.62 -5.00 -0.87 -5.22 -0.51 -5.03 -0.63	11.04 11.04 10.92 10.92 10.66 10.66 10.50 10.50 10.02	dBuV 11.53 6.85 10.30 5.92 9.79 5.44 9.99 5.47 9.39	64.39 54.39 56.73 46.73 56.00 46.00 56.00 46.00 60.00	-52.86 -47.54 -46.43 -40.81 -46.21 -40.56 -46.01 -40.53 -50.61	QP AVG QP AVG QP AVG QP AVG QP				

Remark:

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

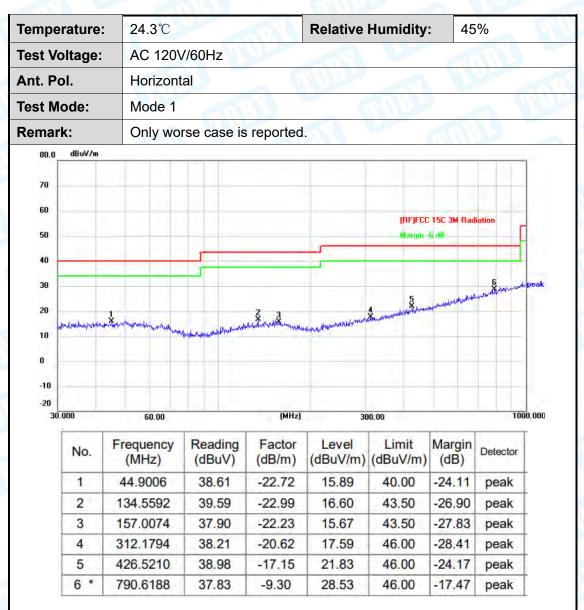
Temperature:	26.3 ℃	Relative Humidity	: 54.6%
Test Voltage:	AC 120V/60Hz		
Terminal:	Neutral		mus
Test Mode:	Mode 1		ants
Remark:	Only worse case	e is reported.	20
80.0 dBuV			
			QP:
-			
30			
50			
mult	Mon nothing barners have the	and market and and and the second an	manuna share with the state
man	I marine be adam of pour a series		A
			and and the and the second designed and the second designe
-20			
0.150	0.5	(MHz) 5	30.000

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.2900	2.73	10.98	13.71	60.52	-46.81	QP
2	-	0.2900	-1.12	10.98	9.86	50.52	-40.66	AVG
3	-	0.5140	-0.60	10.92	10.32	56.00	-45.68	QP
4	*	0.5140	-5.10	10.92	5.82	46.00	-40.18	AVG
5		1.1860	-0.75	10.67	9.92	56.00	-46.08	QP
6	-	1.1860	-5.13	10.67	5.54	46.00	-40.46	AVG
7		1.8740	-0.41	10.56	10.15	56.00	-45.85	QP
8	_	1.8740	-4.98	10.56	5.58	46.00	-40.42	AVG
9		4.1979	-0.64	10.09	9.45	56.00	-46.55	QP
10		4.1979	-4.99	10.09	5.10	46.00	-40.90	AVG
11		4.7819	-0.39	10.06	9.67	56.00	-46.33	QP
12		4.7819	-4.88	10.06	5.18	46.00	-40.82	AVG

Remark: 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Attachment B--Unwanted Emissions Data


---Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB Below the permissible value has no need to be reported.

30MHz~1GHz

*:Maximum data x:Over limit !:over margin

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Гer	nper	ature:	24.3°	С		\sim	Relative H	lun	nidity:	45%	
ſe	st Vo	Itage:	AC 1	20V/60	Hz		5		145	~	6175
۱n	t. Pol	I.	Vertic	cal	B	-0	23		10	W	-
e	st Mo	de:	Mode	e 1	2			5			197
le'	mark	:	Only	worse (case	is reported	J		× _ <	A V	
0.0	dBu	₩/m									
0								_			
0				_				-	IDENECT 16	C 3M Radiation	
1		_						_	Hangin -6 di		E
)			_		_		-				
1	-		_							6 1	
										www. Soundary	lanation
Q	iman	white the star man	- Zanananan		3×	marking	men an en where the start the	- X	here the state of		
D				inder an	Midwards :		may we can be a can b				
0		_						-			
0	0.000	-		1.11		(MHz)	-				1000.0
31	1.000		60.00			(MD2)	3	300.0	0		1000.0
1	No.	Frequ (MH		Read (dBu	-	Factor (dB/m)	Level (dBuV/n		Limit (dBuV/m)	Margin (dB)	Detecto
3	1	41.2	765	39.3	37	-22.87	16.50		40.00	-23.50	peak
Ţ	2	55.4	147	39.0	03	-23.13	15.90		40.00	-24.10	peak
ź	3	113.3	3163	39.2	21	-24.42	14.79		43.50	-28.71	peak
đ	4	156.4	4578	39.2	26	-22.25	17.01		43.50	-26.49	peak
	5	319.9	9370	38.6	63	-20.42	18.21		46.00	-27.79	peak
_				1							

*:Maximum data x:Over limit !:over margin

668.1423

6 *

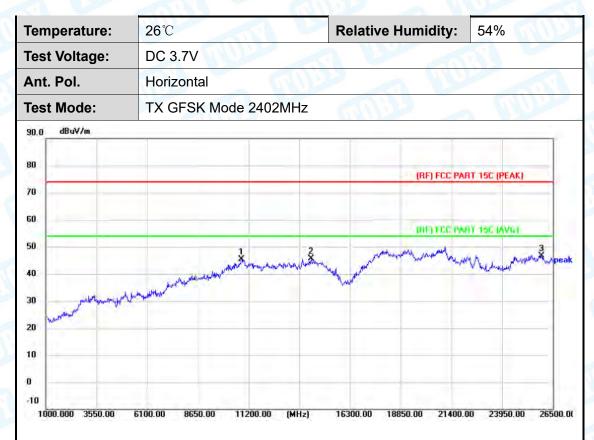
- Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

39.39

-11.74

27.65

46.00


-18.35

peak

3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Above 1-25GHz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10843.000	45.47	-0.04	45.43	74.00	-28.57	peak
2	14336.500	43.14	2.55	45.69	74.00	-28.31	peak
3 *	25939.000	46.54	0.00	46.54	74.00	-27.46	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)

4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26 ℃	Relative Humidity: 54%					
Test Voltage:	DC 3.7V	and a company					
Ant. Pol.	Vertical						
Test Mode:	TX GFSK Mode 24	2402MHz					
90.0 dBuV/m							
80		(RF) FCC PART 15C (PEAK)					
50		IRF FCC PART ISC (AVG)					
40	mound	worker and the second where the second and the seco					
30 20	and an address of the second second						
10 0 -10							

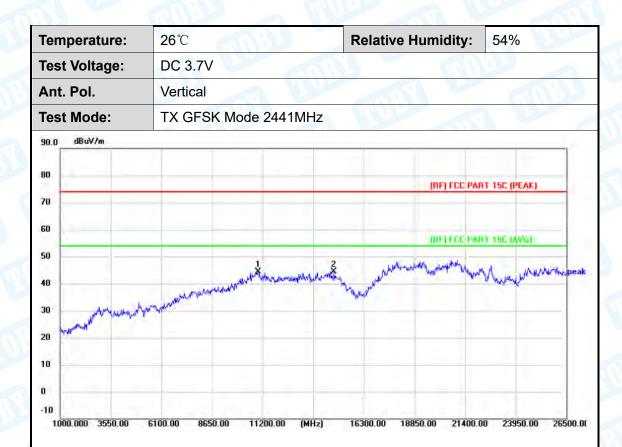
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10919.500	45.14	0.21	45.35	74.00	-28.65	peak
2 *	14362.000	43.89	2.73	46.62	74.00	-27.38	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.


Temperature:	26 ℃	Relative Humidity	y: 54%
Test Voltage:	DC 3.7V		and by
Ant. Pol.	Horizontal		6003
Fest Mode:	TX GFSK Mode 244	1MHz	
90.0 dBuV/m			1
70		(BF) FCC PART 15C (PEAK)
50		IRF) FCC PART 1SC (AVGI
0	man man man man mar the second	ward have we ward we	Man and a man and a man be
20 Water and Marker and			
0			
10			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10919.500	44.24	0.21	44.45	74.00	-29.55	peak
2 *	13903.000	42.48	3.01	45.49	74.00	-28.51	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency. 5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10970.500	44.14	0.18	44.32	74.00	-29.68	peak
2 *	14795.500	41.82	2.58	44.40	74.00	-29.60	peak

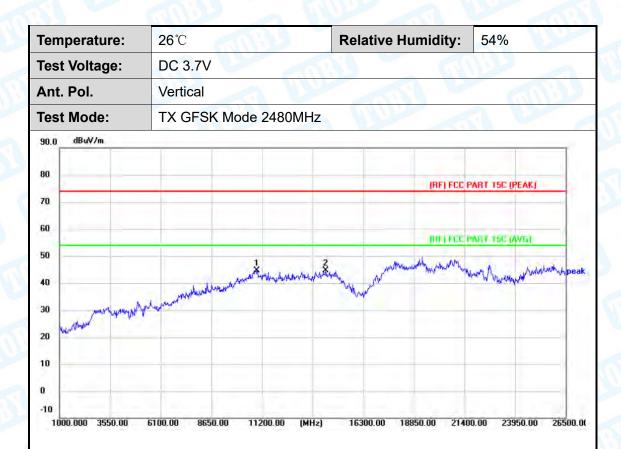
1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.



Temperature:	26 ℃	Relative Humidity: 54%				
Test Voltage:	DC 3.7V	ALL ALL				
Ant. Pol.	Horizontal					
Test Mode:	TX GFSK Mode 2480MH	de 2480MHz				
90.0 dBu¥/m						
80		(RF) FCC PART 15C (PEAK)				
70		to restant or trast				
60		(RE) FCC PART 1SC (AVG)				
50	<u>1</u>	were introduction with here in an internet				
40	Multiple and white a major mount	And the second				
30 March Marthant	per manufacture and the manual					
20						
10						
0						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10817.500	44.12	-0.17	43.95	74.00	-30.05	peak
2 *	13444.000	43.27	2.15	45.42	74.00	-28.58	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency. 5. No report for the emission which more than 20dB below the prescribed limit. 6. The average measurement was not performed when the peak measured data under the limit of

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10945.000	44.36	0.20	44.56	74.00	-29.44	peak
2 *	14413.000	41.70	2.94	44.64	74.00	-29.36	peak

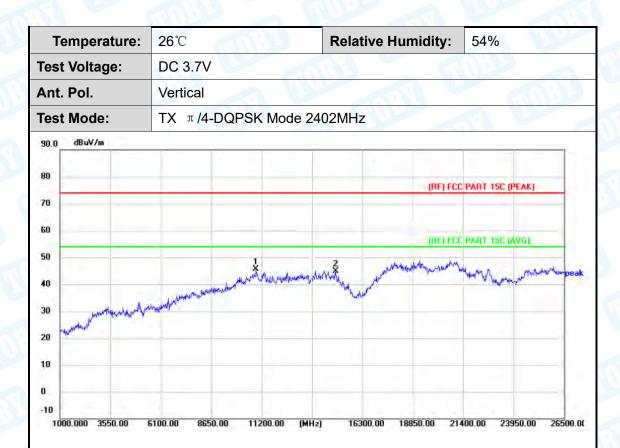
1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.



Temperature:	26 ℃	Relative Humidity: 54%
Test Voltage:	DC 3.7V	and the second
Ant. Pol.	Horizontal	and and
Fest Mode:	TX π/4-DQPSK Mode	e 2402MHz
90.0 dBuV/m		
30		(RF) FCC PART 15C (PEAK)
50		(RF) FCC PART 1SC (AVG)
	mon the second	in the work which we have a service and the se
30 mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	Will have a service and the service of the service	
D		
10	and the second s	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10868.500	46.09	0.07	46.16	74.00	-27.84	peak
2	12730.000	42.83	1.56	44.39	74.00	-29.61	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency. 5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10919.500	45.37	0.21	45.58	74.00	-28.42	peak
2	14948.500	41.62	3.37	44.99	74.00	-29.01	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26 ℃	Relative Humidity: 54%
Test Voltage:	DC 3.7V	and another
Ant. Pol.	Horizontal	
Fest Mode:	TX π/4-DQPSK Mode	2441MHz
90.0 dBuV/m		
80		(RF) FCC PART 15C (PEAK)
50		INF) FCC PART TBC (AVG)
50 40	Martine Martine Store	advantition where the most of the mountain the
30 - Marine M 20 - Marine M	of the part of the second of the second second	
10		
-10		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10894.000	44.46	0.20	44.66	74.00	-29.34	peak
2 *	14897.500	42.12	3.35	45.47	74.00	-28.53	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency. 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26 ℃	Relative Humidity: 54%
fest Voltage:	DC 3.7V	THE FORM
Ant. Pol.	Vertical	
est Mode:	TX π/4-DQPSK Mode 2	2441MHz
0.0 dBuV/m		T T
a		
0		(RF) FCC PART 15C (PEAK)
0		URE) FEC PART 15C JAVGT
0	1 August and a second	with an and and and and and and and and and
a harman and	phyman with series and the finance of the series and the series of the s	
0		
10		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10894.000	45.23	0.20	45.43	74.00	-28.57	peak
2	14464.000	42.53	2.78	45.31	74.00	-28.69	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency. 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	DC 3.7V		NU A
Ant. Pol.	Horizontal		Can B
Test Mode:	TX π/4-DQPSK N	1ode 2480MHz	
90.0 dBuV/m			1
80.		IRF) FCC /	PART 15C (PEAK)
70			
60		IIII) PCC. (WAT 15C (AVG)
40	with the way	and and and and	w Manual mark mark marke
30 Juny Magazine and	of manufacture and a second	n n n	
20			
10			
-10			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10919.500	44.95	0.21	45.16	74.00	-28.84	peak
2	14107.000	42.72	2.16	44.88	74.00	-29.12	peak

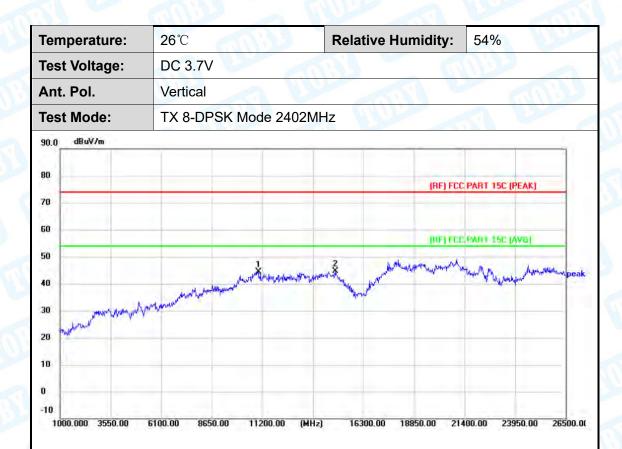
1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency. 5. No report for the emission which more than 20dB below the prescribed limit. 6. The average measurement was not performed when the peak measured data under the limit of

Temperature:	26 ℃	Relative Humidity	: 54%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical		CUL)
Test Mode:	TX π/4-DQPSK Mode	e 2480MHz	
90.0 dBu¥/m			
20		(RF) FCC.	PART 15C (PEAK)
50		्राज्य (मस्)	PART ISC (AVG)
50	under the second and and and and and and and and and a	adjurning the stand of the stand of the	will May marketinge
30 manual manual man	he when the south and the main when		
10			
10			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)		Limit (dBuV/m)	Margin (dB)	Detector
1 *	10843.000	45.19	-0.04	45.15	74.00	-28.85	peak
2	14617.000	41.53	2.86	44.39	74.00	-29.61	peak

Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency. 5. No report for the emission which more than 20dB below the prescribed limit.



Cemperature:	26 ℃	Relative Humidity: 54%
fest Voltage:	DC 3.7V	MBY MOUS
Ant. Pol.	Horizontal	
est Mode:	TX 8-DPSK Mode 24	02MHz
90.0 dBuV/m		
		(RF) FCC PART 15C (PEAK)
0		(IRF) FEC PART ISE (AVG)
	al and the stand and the server	and and a stand and and a stand and and a stand and and a stand and and a stand and and a stand and and a
20		
0		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	8701.000	49.38	-9.83	39.55	74.00	-34.45	peak
2 *	13418.500	42.36	2.17	44.53	74.00	-29.47	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency. 5. No report for the emission which more than 20dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10996.000	44.22	0.18	44.40	74.00	-29.60	peak
2 *	14872.000	41.54	3.14	44.68	74.00	-29.32	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Femperature:	26 ℃	Relative Humidity: 54%
Fest Voltage:	DC 3.7V	THE MOULD
Ant. Pol.	Horizontal	
est Mode:	TX 8-DPSK Mode 24	141MHz
)0.0 dBu¥/m		
		(RF) FCC PART 15C (PEAK)
:0		(RF) FCC PABT ISE (AVG)
10	Manual mark and	with many many many har when hard many
20 minutes minutes with	Mamma	
0		
10		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10792.000	44.52	-0.31	44.21	74.00	-29.79	peak
2 *	13265.500	43.00	1.80	44.80	74.00	-29.20	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency. 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26 °C	Relative Humidity: 54%
Test Voltage:	DC 3.7V	A COM THE
Ant. Pol.	Vertical	The second second
Fest Mode:	TX 8-DPSK Mode 244	IMHz
90.0 dBuV/m	1	
80		
70		(RF) FCC PART 15C (PEAK)
60		UIF) FCC PART 15C LAVGT
40	. Annous	and the month with the the second
30	montenterreturnet	
20 Journally		
10		
0		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10894.000	44.42	0.20	44.62	74.00	-29.38	peak
2 *	14719.000	42.20	2.82	45.02	74.00	-28.98	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency. 5. No report for the emission which more than 20dB below the prescribed limit.

Femperature:	26 ℃	Relative Humidity: 54%
Fest Voltage:	DC 3.7V	and the second
Ant. Pol.	Horizontal	and and
fest Mode:	TX 8-DPSK Mode	2480MHz
90.0 dBu¥/m		
30		IRF) FCC PART 15C (PEAK)
ro		
50		IRF) FCC PAR C 15C (AVG)
50 10	MAN	mon the man man way way and the
10 Junithy Marine	man man and the second	
0		
10		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10919.500	43.97	0.21	44.18	74.00	-29.82	peak
2 *	13954.000	41.94	2.70	44.64	74.00	-29.36	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency. 5. No report for the emission which more than 20dB below the prescribed limit. 6. The average measurement was not performed when the peak measured data under the limit of

Temperature:	26 ℃	Relative Humidity:	54%
Fest Voltage:	DC 3.7V	In Line	
Ant. Pol.	Vertical		an B
Fest Mode:	TX 8-DPSK Mode 24	480MHz	1
30.0 dBuV/m	1	P 20 8 P	
80		(RF) FCC F	ART 15C (PEAK)
0			
-		(01) 156 1	WAT 15C MVGT
0		man and a man man man man	my hangenthand mo
20 horan marine	An origination of the second second second		
0			
10			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10919.500	44.51	0.21	44.72	74.00	-29.28	peak
2 *	14566.000	41.98	2.79	44.77	74.00	-29.23	peak

Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency. 5. No report for the emission which more than 20dB below the prescribed limit.

6. The average measurement was not performed when the peak measured data under the limit of average detection.

--END OF REPORT-----