

TEST Report

Applicant:	GUANGZHOU ZHIFEI LIGHTING CO., LTD.
Address of Applicant:	3/F, Building 3, No.18, Keyuan Rd., Guangzhou Private Science and Technology Industry Park, Baiyun District, Guangzhou, Guangdong, 510080
Manufacturer :	GUANGZHOU ZHIFEI LIGHTING CO., LTD.
Address of Manufacturer :	3/F, Building 3, No.18, Keyuan Rd., Guangzhou Private Science and Technology Industry Park, Baiyun District, Guangzhou, Guangdong, 510080
Equipment Under Test (El	
Product Name:	Portable luminaires
Model No.:	T1001
Series model:	F1013, F1014, F1015, F1016, F1017, F1018, F1019, F1053, F1054, F1055, F1060, F1061, T1005, T1006, T1012, T1013, T1014, T1015, D1005, D1006, D1007
Trade Mark:	CHIPHY
FCC ID:	2BA7G-T1001
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	Apr.10,2023
Date of Test:	Apr.10,2023~Apr.14,2023
Date of report issued:	Apr.14,2023
Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Apr. 14,2023	Original

Tested/ Prepared By

Heber He Date:

Apr.14,2023

Project Engineer

Bruce Zhu Date:

Apr.14,2023

Reviewer

Approved By :

Check By:

Kein Yang

Date:

Apr.14,2023

Authorized Signature

Shenzhen HTT Technology Co.,Ltd.

2. Contents

1. VERSION	.2
2. CONTENTS	.3
3. TEST SUMMARY	.4
4. GENERAL INFORMATION	.5
 4.1. GENERAL DESCRIPTION OF EUT	.7 .7 .7 .7 .7 .7 .7
6. TEST RESULTS AND MEASUREMENT DATA	
6.1. CONDUCTED EMISSIONS 6.2. CONDUCTED PEAK OUTPUT POWER 6.3. CHANNEL BANDWIDTH 6.4. POWER SPECTRAL DENSITY 6.5. BAND EDGE 6.5.1. Conducted Emission Method 6.5.2. Radiated Emission Method 6.6. SPURIOUS EMISSION 6.6.1. Conducted Emission Method 6.6.2. Radiated Emission Method 6.6.3. Conducted Emission Method 6.6.4. Conducted Emission Method 6.6.5. Radiated Emission Method 6.6.7. ANTENNA REQUIREMENT	12 13 16 19 22 24 24 29
7. TEST SETUP PHOTO	38
8. EUT CONSTRUCTIONAL DETAILS	38

Test Summary 3.

Test Item	Section	Result
Antenna requirement	FCC part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	FCC part 15.207	Pass
Conducted Peak Output Power	FCC part 15.247 (b)(3)	Pass
6dB Bandwidth	FCC part 15.247 (a)(2)	Pass
Power Spectral Density	FCC part 15.247 (e)	Pass
Band Edge	FCC part 15.247(d)	Pass
Spurious Emission	FCC part 15.205/15.209	Pass

Remark: Test according to ANSI C63.10:2013 and RSS-Gen

Pass: The EUT complies with the essential requirements in the standard.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	3.45 dB	(1)
Radiated Emission	1~6GHz	3.54 dB	(1)
Radiated Emission	6~40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.66 dB	(1)
Note (1): The measurement unc	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.

4. General Information

4.1. General Description of EUT

Product Name:	Portable luminaires
Model No.:	T1001
Series model:	F1013, F1014, F1015, F1016, F1017, F1018, F1019, F1053, F1054, F1055, F1060, F1061, T1005, T1006, T1012, T1013, T1014, T1015, D1005, D1006, D1007
Test sample(s) ID:	HTT202304169-1(Engineer sample) HTT202304169-2(Normal sample)
Operation frequency	2412~2462 MHz
Channel numbers:	802.11b/802.11g /802.11n(HT20): 11 802.11n(HT40):7
Channel separation:	5MHz
Modulation technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n(H20)/802.11n(HT40): Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	PCB Antenna
Antenna gain:	2.21 dBi
Power supply:	DC 5.0V

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

	Frequency (MHz)			
Test channel	802.11b/802.11g/802.11n(HT20)	802.11n(HT40)		
Lowest channel	2412MHz	2422MHz		
Middle channel	2437MHz	2437MHz		
Highest channel	2462MHz	2452MHz		

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.						
Mode	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)		
Data rate	1Mbps	6Mbps	6.5Mbps	13Mbps		

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements. **A2LA-Lab Cert. No.: 6435.01** Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at: Shenzhen HTT Technology Co.,Ltd. 1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

Shenzhen HTT Technology Co.,Ltd.

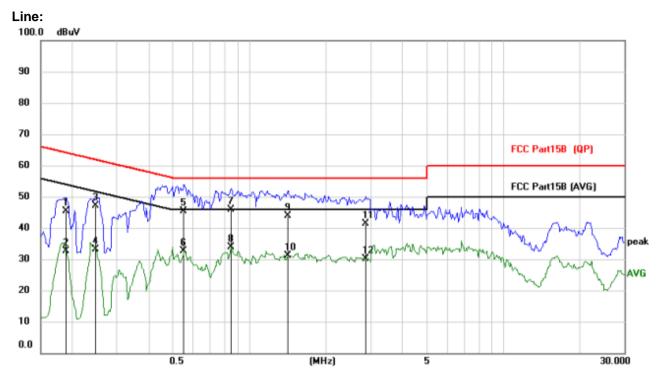
5. Test Instruments list

5.	5. Test Instruments list							
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2020	Aug. 09 2024		
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2020	Aug. 09 2024		
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	May 23 2022	May 22 2023		
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	May 23 2022	May 22 2023		
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	May 23 2022	May 22 2023		
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	May 23 2022	May 22 2023		
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	May 23 2022	May 22 2023		
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	May 23 2022	May 22 2023		
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May 23 2022	May 22 2023		
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May 23 2022	May 22 2023		
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	May 23 2022	May 22 2023		
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	May 23 2022	May 22 2023		
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	May 23 2022	May 22 2023		
14	high-frequency Amplifier	HP	8449B	HTT-E014	May 23 2022	May 22 2023		
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	May 23 2022	May 22 2023		
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	May 23 2022	May 22 2023		
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May 23 2022	May 22 2023		
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May 23 2022	May 22 2023		
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	May 23 2022	May 22 2023		
20	Attenuator	Robinson	6810.17A	HTT-E007	May 23 2022	May 22 2023		
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	May 23 2022	May 22 2023		
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	May 23 2022	May 22 2023		
23	DC power supply	Agilent	E3632A	HTT-E023	May 23 2022	May 22 2023		
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	May 23 2022	May 22 2023		
25	Analog signal generator	Agilent	N5181A	HTT-E025	May 23 2022	May 22 2023		
26	Vector signal generator	Agilent	N5182A	HTT-E026	May 23 2022	May 22 2023		
27	Power sensor	Keysight	U2021XA	HTT-E027	May 23 2022	May 22 2023		
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	May 23 2022	May 22 2023		
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A		
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A		
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A		

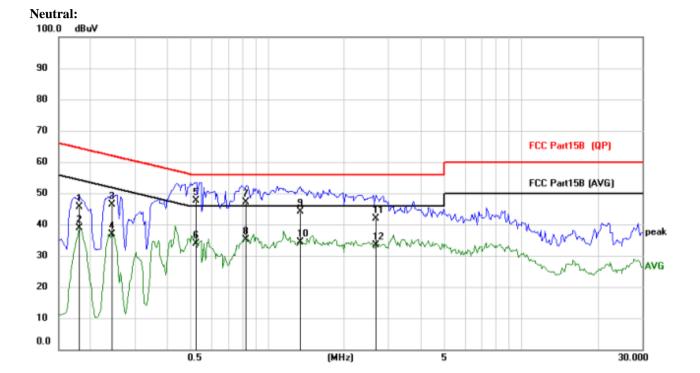
6. Test results and Measurement Data

6.1. Conducted Emissions

Tost Poquiromont:	FCC Part15 C Section 15.207				
Test Requirement:					
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto			
Limit:	Frequency range (MHz)	Limit Quasi-peak	t (dBuV)	rage	
	0.15-0.5	66 to 56*		o 46*	
	0.5-5	56		6	
	5-30	60	5	60	
	* Decreases with the logarithm	n of the frequency.			
Test setup:	Reference Plane				
Tost procedure:	LISN 40cm 80cm AUX Equipment E.U.T Fequipment E.U.T E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN. Equipment Under Test LISN. LIST Equipment Under Test LISN. Equipment Under Test LISN. Equipment Equipment Under Test LISN. Equipment Equipment Under Test LISN. Equipment Equipm	EMI Receiver	nower	through a	
Test procedure:	 The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling imped The peripheral devices are LISN that provides a 50ohn termination. (Please refer to photographs). Both sides of A.C. line are of interference. In order to find positions of equipment and according to ANSI C63.10:2 	n network (L.I.S.N.). edance for the measure also connected to the n/50uH coupling imported to the block diagram checked for maximus d the maximum emisure all of the interface c	This provides uring equipm he main powe edance with of the test se m conducted ssion, the rela- ables must b	s a ent. er through a 50ohm tup and ative e changed	
Test Instruments:	Refer to section 6.0 for details	i			
Test mode:	Refer to section 5.2 for details				
Test environment:	Temp.: 25 °C Hun	nid.: 52%	Press.:	1012mbar	
Test voltage:	AC 120V, 60Hz	I	l	1	
Test results:	Pass				


Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Shenzhen HTT Technology Co.,Ltd.



Report No.: HTT202304169F02

Measurement data:

	Level	Factor			Over	
MHz	dBuV	dB	dBuV	dBuV	dB	Detector
0.1890	34.94	10.39	45.33	64.08	-18.75	QP
0.1890	22.25	10.39	32.64	54.08	-21.44	AVG
0.2475	36.81	10.40	47.21	61.84	-14.63	QP
0.2475	22.74	10.40	33.14	51.84	-18.70	AVG
0.5517	34.97	10.52	45.49	56.00	-10.51	QP
0.5517	22.12	10.52	32.64	46.00	-13.36	AVG
0.8481	35.10	10.82	45.92	56.00	-10.08	QP
0.8481	22.96	10.82	33.78	46.00	-12.22	AVG
1.4175	32.89	10.87	43.76	56.00	-12.24	QP
1.4175	20.18	10.87	31.05	46.00	-14.95	AVG
2.8761	30.56	10.84	41.40	56.00	-14.60	QP
2.8761	19.30	10.84	30.14	46.00	-15.86	AVG
	0.1890 0.2475 0.2475 0.5517 0.5517 0.8481 1.4175 1.4175 2.8761	0.189034.940.189022.250.247536.810.247522.740.551734.970.551722.120.848135.100.848122.961.417532.891.417520.182.876130.56	0.189034.9410.390.189022.2510.390.247536.8110.400.247522.7410.400.551734.9710.520.551722.1210.520.848135.1010.820.848122.9610.821.417532.8910.871.417520.1810.84	0.189034.9410.3945.330.189022.2510.3932.640.247536.8110.4047.210.247522.7410.4033.140.551734.9710.5245.490.551722.1210.5232.640.848135.1010.8245.920.848122.9610.8233.781.417532.8910.8743.761.417520.1810.8731.052.876130.5610.8441.40	0.189034.9410.3945.3364.080.189022.2510.3932.6454.080.247536.8110.4047.2161.840.247522.7410.4033.1451.840.551734.9710.5245.4956.000.551722.1210.5232.6446.000.848135.1010.8245.9256.000.848122.9610.8233.7846.001.417532.8910.8743.7656.001.417520.1810.8731.0546.002.876130.5610.8441.4056.00	0.189034.9410.3945.3364.08-18.750.189022.2510.3932.6454.08-21.440.247536.8110.4047.2161.84-14.630.247522.7410.4033.1451.84-18.700.551734.9710.5245.4956.00-10.510.551722.1210.5232.6446.00-13.360.848135.1010.8245.9256.00-10.080.848122.9610.8233.7846.00-12.221.417532.8910.8743.7656.00-14.952.876130.5610.8441.4056.00-14.60

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1812	35.32	10.23	45.55	64.43	-18.88	QP
2		0.1812	28.63	10.23	38.86	54.43	-15.57	AVG
3		0.2436	36.11	10.22	46.33	61.97	-15.64	QP
4		0.2436	26.62	10.22	36.84	51.97	-15.13	AVG
5	*	0.5205	37.22	10.38	47.60	56.00	-8.40	QP
6		0.5205	23.62	10.38	34.00	46.00	-12.00	AVG
7		0.8208	36.41	10.71	47.12	56.00	-8.88	QP
8		0.8208	24.43	10.71	35.14	46.00	-10.86	AVG
9		1.3473	33.30	10.81	44.11	56.00	-11.89	QP
10		1.3473	23.52	10.81	34.33	46.00	-11.67	AVG
11		2.6655	31.13	10.84	41.97	56.00	-14.03	QP
12		2.6655	22.56	10.84	33.40	46.00	-12.60	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

Shenzhen HTT Technology Co.,Ltd.

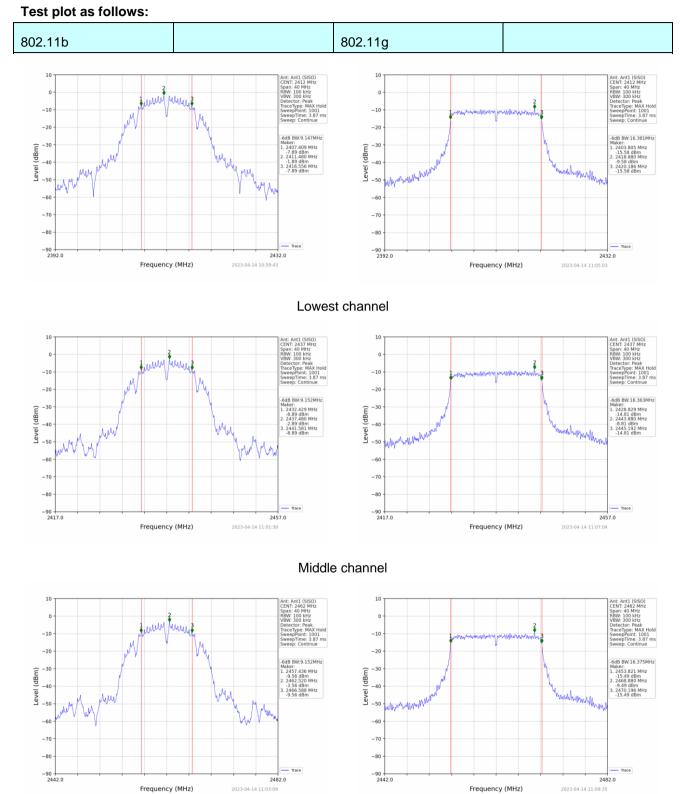
Tel: 0755-23595200 Fax: 0755-23595201

eill conductor can outp									
Test Requirement:	FCC Part15	C Section 1	5.247 (b)(3)						
Test Method:	KDB558074	KDB558074 D01 15.247 Meas Guidance v05r02							
Limit:	30dBm								
Test setup:	Power sensor and Spectrum analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to sec	tion 6.0 for d	letails						
Test mode:	Refer to sec	tion 5.2 for d	letails						
Test results:	Pass								
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar								

6.2. Conducted Peak Output Power

Measurement Data

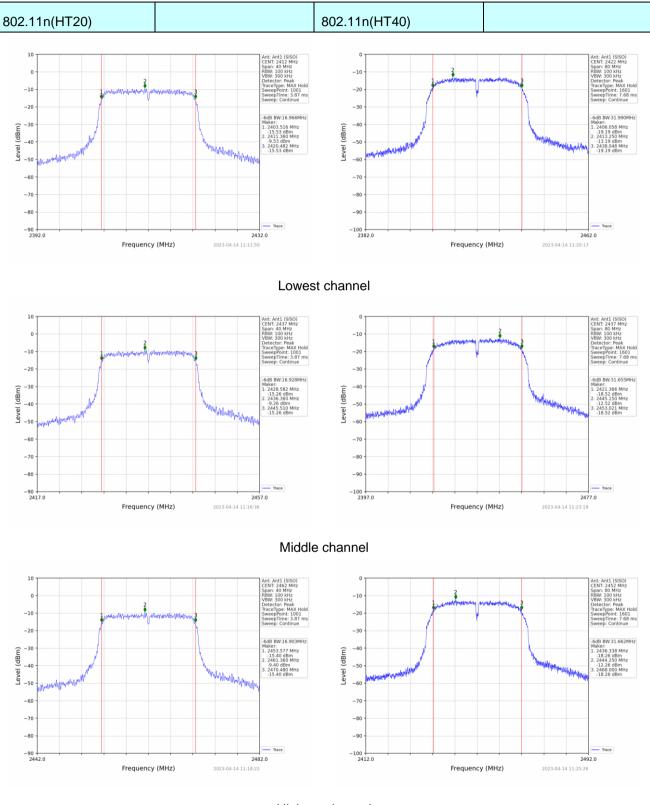
		Peak Outp	ut Power (dBm)			
Test CH	802.11b	802.11g	11g 802.11n(HT20) 802.11n(HT40)		Limit(dBm)	Result
Lowest	8.98	11.31	11.34	10.92		
Middle	8.03	11.61	11.64	11.24	30.00	Pass
Highest	7.37	11.03	11.07	11.23		


6.3. Channel Bandwidth

Test Requirement:	FCC Part15	5 C Section 1	5.247 (a)(2)						
Test Method:		4 D01 15.247	. , . ,	nce v05r02					
Limit:	>500KHz	>500KHz							
Test setup:	Sp								
Test Instruments:	Refer to see	ction 6.0 for c	letails						
Test mode:	Refer to see	ction 5.2 for c	letails						
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

Measurement Data

		Channel E	Bandwidth (MHz)			
Test CH	802.11b	802.11b 802.11g 802.11n(HT20) 802.11n(HT40)		Limit(KHz)	Result	
Lowest	9.147	16.381	16.966	31.990		
Middle	9.152	16.363	16.928	31.655	>500	Pass
Highest	9.152	16.375	16.903	31.662		



Highest channel

Tel: 0755-23595200 Fax: 0755-23595201

Shenzhen HTT Technology Co.,Ltd.

Highest channel

Tel: 0755-23595200 Fax: 0755-23595201

Shenzhen HTT Technology Co.,Ltd.

6.4. Power Spectral Density

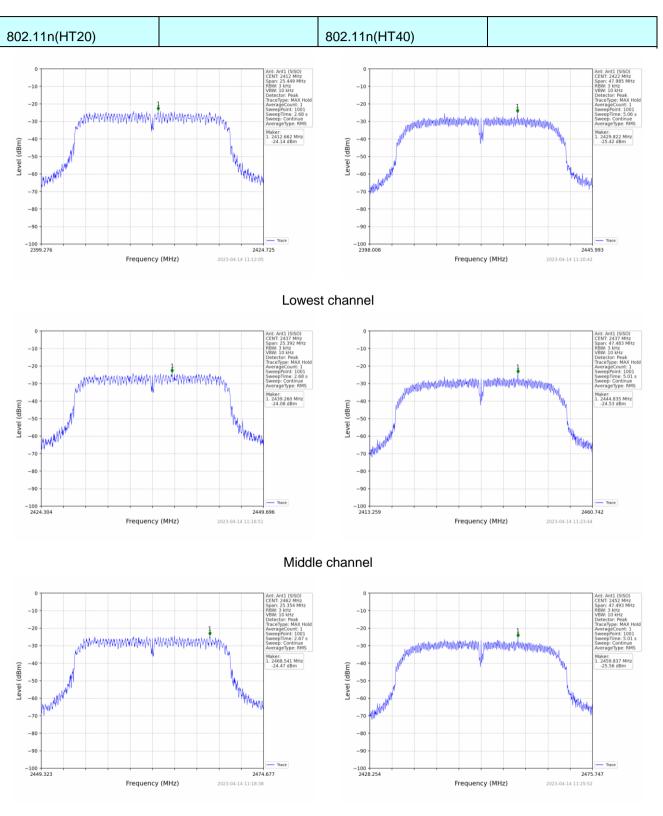
Test Requirement:	FCC Part15	5 C Section 1	5.247 (e)			
Test Method:	KDB558074	4 D01 15.247	' Meas Guida	nce v05r02		
Limit:	8dBm/3kHz	2				
Test setup:	Sp	ectrum Analyz		E.U.T		
		Groun	d Reference Pla	ne		
Test Instruments:	Refer to se	ction 6.0 for a	details			
Test mode:	Refer to se	ction 5.2 for a	details			
Test results:	Pass					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar


Measurement Data

-		Power Spectra	al Density (dBm/3kl	Hz)	Limit	
Test CH	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	(dBm/3kHz)	Result
Lowest	-17.94	-24.46	-24.14	-25.42		
Middle	-18.74	-24.21	-24.08	-24.53	8.00	Pass
Highest	-19.86	-24.89	-24.47	-25.56		

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle

Report No.: HTT202304169F02



Highest channel

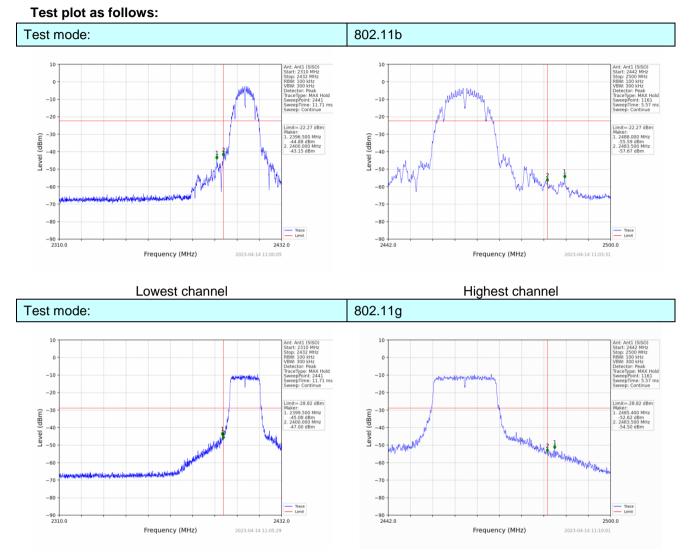
Tel: 0755-23595200 Fax: 0755-23595201

Shenzhen HTT Technology Co.,Ltd.

Highest channel

Shenzhen HTT Technology Co.,Ltd.

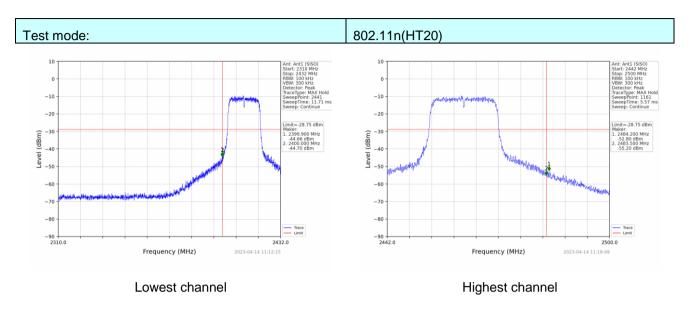
Tel: 0755-23595200 Fax: 0755-23595201

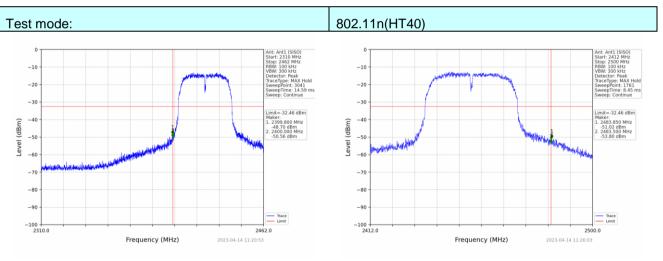


6.5. Band Edge

6.5.1. Conducted Emission Method

Test Requirement:	FCC Part1	5 C Section	15.247 (d)					
Test Method:	KDB55807	4 D01 15.24	7 Meas Guida	ance v05r02				
Limit:	spectrum ir produced b 100 kHz ba desired po	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spec		eference Plane	J.T				
Test Instruments:	Refer to se	ction 6.0 for	details					
Test mode:	Refer to se	ction 5.2 for	details					
Test results:	Pass	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		





Lowest channel

Highest channel

Lowest channel

Highest channel

6.5.2.	Radiated E	mission Me							
Test R	equirement:	FCC Part15 C Section 15.209 and 15.205							
Test M	•	ANSI C63.10	0: 2013						
Test F	requency Range:	All of the re 2500MHz) d			tested, only	y the wo	rst band's (2310MHz to	
Test si	te:	Measureme	nt Distance:	3m					
Receiv	ver setup:	Frequency Detector RBW VBW						emark	
		Above 1GF	Dor	ak	1MHz	3MHz	z Pea	k Value	
		Above 1GI	Pea	ak	1MHz	10Hz	Avera	ge Value	
Limit:		Fre	quency	L	_imit (dBu∖			emark	
		Aboy	Above 1GHz 54.00 Aver						
					74.0	00	Pea	k Value	
Test se	etup.	Tum Tablew <150cm>		< 3m :	Test Antenn < 1m 4m	1			
	rocedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or 							
Test In	struments:	Refer to sec							
Test m	node:	Refer to sec	tion 5.2 for c	letails					
Test re	esults:	Pass				<u> </u>			
Test er	nvironment:	Temp.:	25 °C	Humi	d.: 52%	%	Press.:	1012mbar	
		I		1	1				

6.5.2. Radiated Emission Method

Shenzhen HTT Technology Co.,Ltd.

Measurement Data

Remark: During the test, pre-scan the 802.11b/802.11g/802.11n (H20)/802.11n (H40) modulation, and found the 802.11b modulation which it is worse case.

Test mode: 802.11b	Test channel:	Lowest
--------------------	---------------	--------

Horizontal (Worst case)

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	dB) (dBµV/m) (dBµV/n		(dB)	Туре	
2390	61.52	26.20	5.72	33.30	60.14	74.00	-13.86	peak	
2390	45.30	26.20	5.72	33.30	43.92	54.00	-10.08	AVG	

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	60.53	26.20	5.72	33.30	59.15	74.00	-14.85	peak
2390	45.68	26.20	5.72	33.30	44.30	54.00	-9.70	AVG

Test mode:	802.11b	Test channel:	Highest
			-

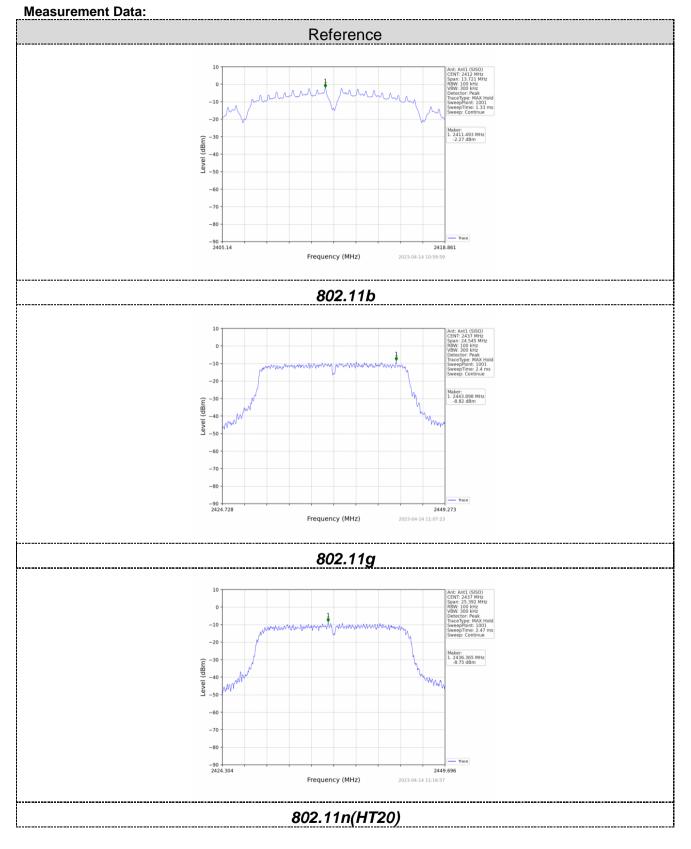
Horizontal (Worst case)

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	57.48	28.60	6.97	32.70	60.35	74.00	-13.65	peak
2483.5	43.55	28.60	6.97	32.70	46.42	54.00	-7.58	AVG

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	56.82	28.60	6.97	32.70	59.69	74.00	-14.31	peak
2483.5	42.69	28.60	6.97	32.70	45.56	54.00	-8.44	AVG

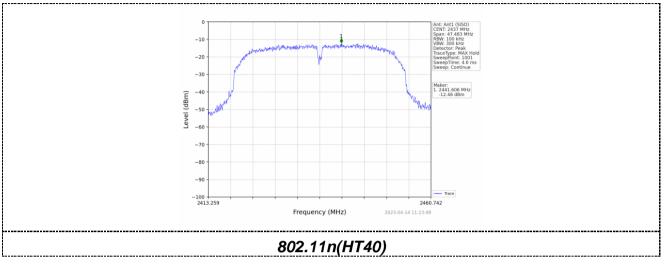
Shenzhen HTT Technology Co.,Ltd.



6.6. Spurious Emission

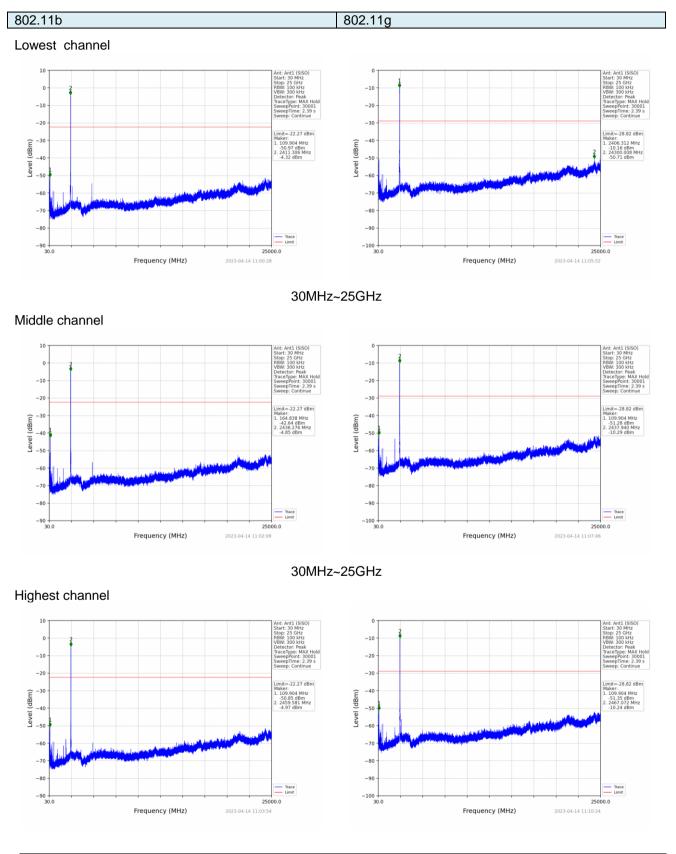
6.6.1. Conducted Emission Method

Test Requirement:	FCC Part15 C Se	ection 1	5.247 (d)							
Test Method:	KDB558074 D01	KDB558074 D01 15.247 Meas Guidance v05r02								
Limit:	In any 100 kHz b spectrum intention produced by the 100 kHz bandwin desired power, measurement.	onal radi intentior dth with	ator is opera nal radiator s in the band	ting, the radio hall be at leas that contains	o frequency st 20 dB belo s the highest	power that is by that in the level of the				
Test setup:	Spectrum	Non-G								
Test Instruments:	Refer to section 6	6.0 for d	letails							
Test mode:	Refer to section section	5.2 for d	letails							
Test results:	Pass									
Test environment:	Temp.: 25 °	С	Humid.:	52%	Press.:	1012mbar				



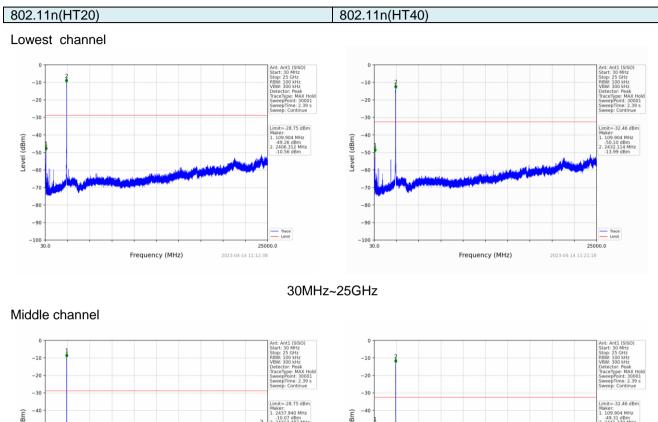
Shenzhen HTT Technology Co.,Ltd.

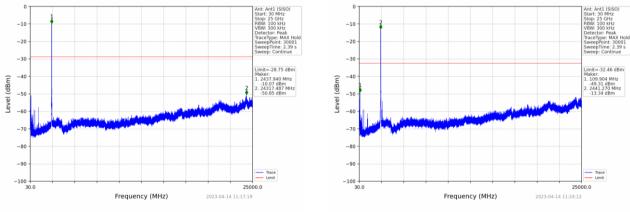
Tel: 0755-23595200 Fax: 0755-23595201



Shenzhen HTT Technology Co.,Ltd.

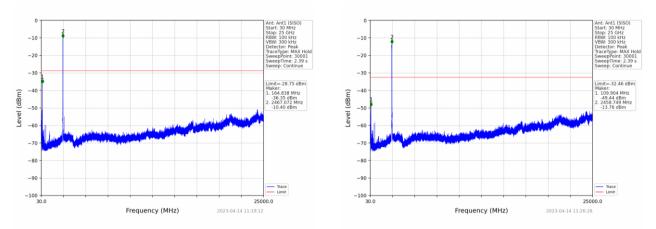
Tel: 0755-23595200 Fax: 0755-23595201




Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

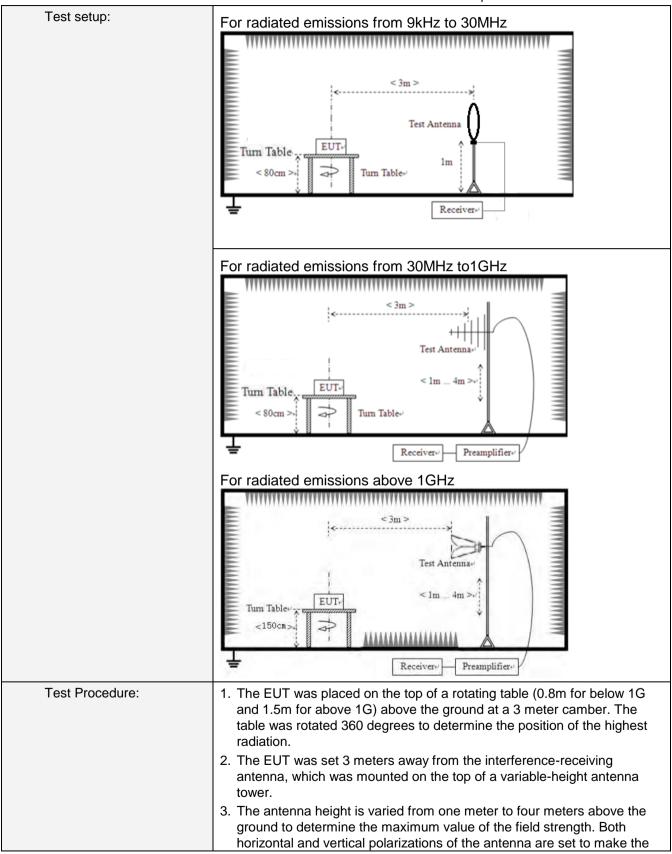
30MHz~25GHz



30MHz~25GHz

Highest channel

30MHz~25GHz


6.6.2. Radiated El	mission Method									
Test Requirement:	FCC Part15 C Section	CC Part15 C Section 15.209								
Test Method:	ANSI C63.10:2013									
Test Frequency Range:	9kHz to 25GHz									
Test site:	Measurement Distar	ice: 3	3m							
Receiver setup:	Frequency	۵	Detector	RB	W	VBW	Value			
	9KHz-150KHz Qu		uasi-peak	200	Hz	600Hz	z Quasi-peak			
	150KHz-30MHz Qu		uasi-peak	9KI	Ηz	30KHz	z Quasi-peak			
	30MHz-1GHz Qua		uasi-peak	120	Ήz	300KH	z Quasi-peak			
			Peak 1M		Ηz	3MHz	Peak			
	Above 1GHz		Peak	1M	1MHz 1		Average			
Limit:	Frequency	Limit (u\		//m)	V	alue	Measurement Distance			
	0.009MHz-0.490M	IHz 2400/F(M		(Hz)		QP	300m			
	0.490MHz-1.705M	Hz	24000/F(KHz)		QP	30m			
	1.705MHz-30MH	Z	30			QP	30m			
	30MHz-88MHz		100			QP				
	88MHz-216MHz		150			QP				
	216MHz-960MHz		200			QP	3m			
	960MHz-1GHz		500			QP	5111			
	Above 1GHz		500		Av	erage				
	Above TGHz		5000)	F	Peak				

6.6.2. Radiated Emission Method

Shenzhen HTT Technology Co.,Ltd.

Report No.: HTT202304169F02

Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

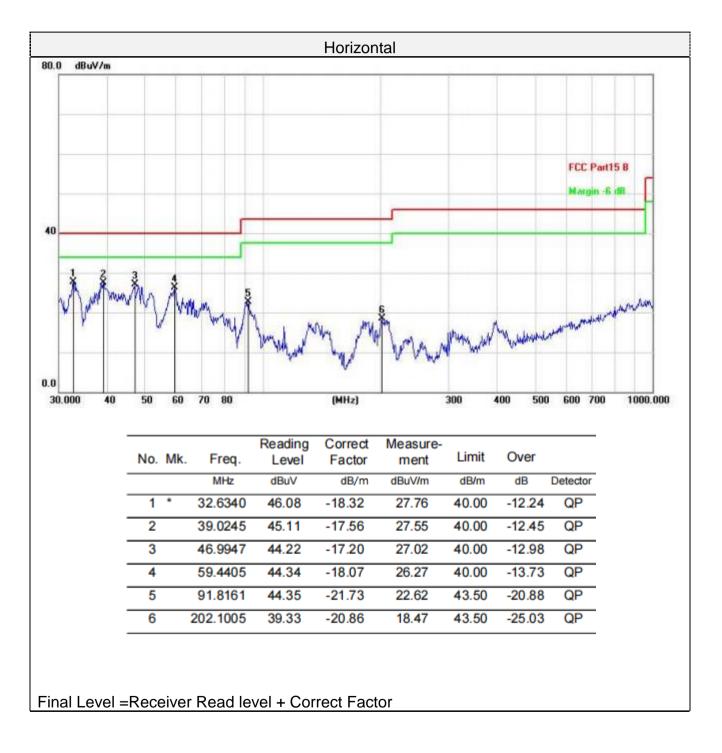
measure	ement.							
4. For each suspected emission, the EUT was arranged to its wors and then the antenna was tuned to heights from 1 meter to 4 me the rota table was turned from 0 degrees to 360 degrees to find t maximum reading.								
5. The test-receiver system was set to Peak Detect Function and Specif Bandwidth with Maximum Hold Mode.								
limit spec EUT wou margin w	cified, then te uld be reporte vould be re-te	esting could b ed. Otherwise ested one by	e stopped an the emission one using pe	d the peak w ns that did ne ak, quasi-pe	values of the ot have 10dB ak or			
Refer to see	ction 6.0 for a	details						
Refer to see	ction 5.2 for a	details						
Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			
AC 120V, 6	0Hz							
Pass								
	 4. For each and then the rota maximur 5. The test Bandwid 6. If the em limit spectrum to the rota margin vareage Refer to see Refer to see Temp.: AC 120V, 6 	and then the antenna the rota table was turn maximum reading. 5. The test-receiver syst Bandwidth with Maxir 6. If the emission level of limit specified, then te EUT would be reporte margin would be re-te average method as s Refer to section 6.0 for of Refer to section 5.2 for of Temp.: 25 °C AC 120V, 60Hz	 4. For each suspected emission, the and then the antenna was tuned to the rota table was turned from 0 do maximum reading. 5. The test-receiver system was set to Bandwidth with Maximum Hold Mode. If the emission level of the EUT in limit specified, then testing could be EUT would be reported. Otherwise margin would be re-tested one by average method as specified and the Refer to section 6.0 for details Refer to section 5.2 for details Temp.: 25 °C Humid.: 	 4. For each suspected emission, the EUT was arrand then the antenna was tuned to heights from the rota table was turned from 0 degrees to 360 maximum reading. 5. The test-receiver system was set to Peak Detection Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode willimit specified, then testing could be stopped an EUT would be reported. Otherwise the emission margin would be re-tested one by one using peak average method as specified and then reported. Refer to section 6.0 for details Refer to section 5.2 for details Temp.: 25 °C Humid.: 52% 	 4. For each suspected emission, the EUT was arranged to its and then the antenna was tuned to heights from 1 meter to the rota table was turned from 0 degrees to 360 degrees to maximum reading. 5. The test-receiver system was set to Peak Detect Function a Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB low limit specified, then testing could be stopped and the peak verage method as specified and then reported in a data stars. Refer to section 6.0 for details Refer to section 5.2 for details Temp.: 25 °C Humid.: 52% Press.: 			

Remarks:

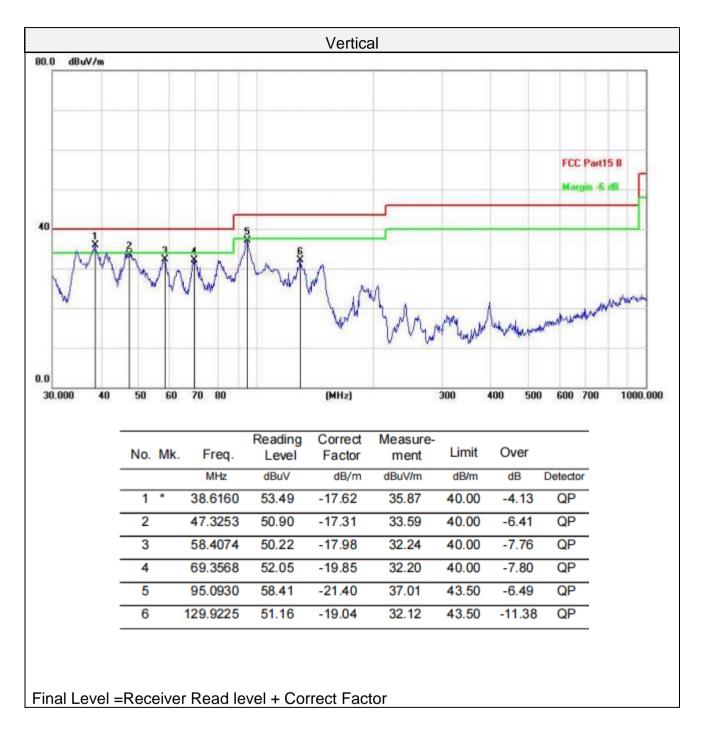
1. Only the worst case Main Antenna test data.

2.Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement data:


■ 9kHz~30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.


Below 1GHz

Pre-scan all test modes, found worst case at 802.11b 2437MHz, and so only show the test result of 802.11b 2437MHz

Shenzhen HTT Technology Co.,Ltd.

Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

Above 1-25GHz

Note: During the test, pre-scan the 802.11b/802.11g/802.11n (H20)/802.11n (H40) modulation, and found the 802.11b modulation which it is worse case.

802.11b:Lowest

Horizontal:

	I I	Austaura		Due euro				
		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	51.68	31.40	8.18	31.50	59.76	74.00	-14.24	peak
4824	37.05	31.40	8.18	31.50	45.13	54.00	-8.87	AVG
7236	45.33	35.80	10.83	31.40	60.56	74.00	-13.44	peak
7236	28.74	35.80	10.83	31.40	43.97	54.00	-10.03	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

		Antonno						
		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	51.36	31.40	8.18	31.50	59.44	74.00	-14.56	peak
4824	36.59	31.40	8.18	31.50	44.67	54.00	-9.33	AVG
7236	44.62	35.80	10.83	31.40	59.85	74.00	-14.15	peak
7236	28.67	35.80	10.83	31.40	43.90	54.00	-10.10	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

802.11b:Middle

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	51.69	31.40	9.17	32.10	60.16	74.00	-13.84	peak
4874	36.80	31.40	9.17	32.10	45.27	54.00	-8.73	AVG
7311	43.96	35.80	10.83	31.40	59.19	74.00	-14.81	peak
7311	30.07	35.80	10.83	31.40	45.30	54.00	-8.70	AVG
Remark: Fact	or = Antenna Fact	or + Cable Los	s – Pre-amplifier					

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	51.47	31.40	9.17	32.10	59.94	74.00	-14.06	peak
4874	35.45	31.40	9.17	32.10	43.92	54.00	-10.08	AVG
7311	42.88	35.80	10.83	31.40	58.11	74.00	-15.89	peak
7311	29.31	35.80	10.83	31.40	44.54	54.00	-9.46	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

802.11b:Highest

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	50.12	31.40	9.17	32.10	58.59	74	-15.41	peak
4924	34.71	31.40	9.17	32.10	43.18	54	-10.82	AVG
7386	43.96	35.80	10.83	31.40	59.19	74	-14.81	peak
7386	28.68	35.80	10.83	31.40	43.91	54	-10.09	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	50.35	31.40	9.17	32.10	58.82	74	-15.18	peak
4924	34.55	31.40	9.17	32.10	43.02	54	-10.98	AVG
7386	44.62	35.80	10.83	31.40	59.85	74	-14.15	peak
7386	29.78	35.80	10.83	31.40	45.01	54	-8.99	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

(1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

6.7. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-topoint operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 2.21 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the **appendix I** for details.

8. EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----