

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202304417F01

TEST Report

Applicant: Guangdong Baixiang Environmental Technology Co., Ltd

Address of Applicant: Building H, No. 13, Rd Tongfu, Renhe Town, Baiyun Dist,

Guangzhou, Guangdong, China

Manufacturer: Guangdong Baixiang Environmental Technology Co., Ltd

Address of Building H, No. 13, Rd Tongfu, Renhe Town, Baiyun Dist,

Manufacturer: Guangzhou, Guangdong, China

Equipment Under Test (EUT)

Product Name: A2000 Luxury Scent Diffuser

Model No.: A2000

Series model: A300,A1000,A2000PRO,A3000,A5000,A6000,A8000,A9000

Trade Mark: BXAROMA

FCC ID: 2BA6L-A2000

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Apr.28,2023

Date of Test: Apr.28,2023~May.08,2023

Date of report issued: May.08,2023

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	May.08,2023	Original

Tested/ Prepared By	Heber He	Date:	May.08,2023
	Project Engineer		
Check By:	Bruce Zhu	Date:	May.08,2023
	Reviewer		
Approved By :	Kerin Yang	Date:	May.08,2023
	Authorized Signature	_	

2. Contents

	Page
1. VERSION	2
2. CONTENTS	3
3. TEST SUMMARY	4
4. GENERAL INFORMATION	
4.1. GENERAL DESCRIPTION OF EUT 4.2. TEST MODE 4.3. DESCRIPTION OF SUPPORT UNITS 4.4. DEVIATION FROM STANDARDS 4.5. ABNORMALITIES FROM STANDARD CONDITIONS 4.6. TEST FACILITY 4.7. TEST LOCATION 4.8. ADDITIONAL INSTRUCTIONS 5. TEST INSTRUMENTS LIST	
6.1. CONDUCTED EMISSIONS 6.2. CONDUCTED OUTPUT POWER 6.3. CHANNEL BANDWIDTH 6.4. POWER SPECTRAL DENSITY 6.5. BAND EDGES 6.5.1 Conducted Emission Method 6.5.2 Radiated Emission Method 6.6. SPURIOUS EMISSION 6.6.1 Conducted Emission Method 6.6.2 Radiated Emission Method 6.6.2 Radiated Emission Method 6.7. ANTENNA REQUIREMENT	
7. TEST SETUP PHOTO	31
8. FUT CONSTRUCTIONAL DETAILS	31

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	y Range Measurement Uncertainty			
Radiated Emission	30~1000MHz	3.45 dB	(1)		
Radiated Emission	1~6GHz	3.54 dB	(1)		
Radiated Emission	6~40GHz	5.38 dB	(1)		
Conducted Disturbance 0.15~30MHz 2.66 dB					
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.					

4. General Information

4.1. General Description of EUT

Product Name:	A2000 Luxury Scent Diffuser
Model No.:	A2000
Series model:	A300,A1000,A2000PRO,A3000,A5000,A6000,A8000,A9000
Test sample(s) ID:	HTT202304417-1(Engineer sample) HTT202304417-2(Normal sample)
Operation frequency	2402~2480 MHz
Number of Channels	40
Modulation Type	GFSK
Channel separation	2MHz
Antenna Type:	PCB Antenna
Antenna Gain:	0dBi
Power Supply:	DC 12V

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

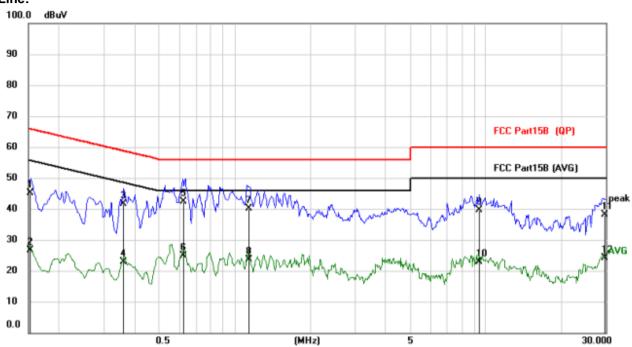
Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

Item	Test Equipment	Manufacturer	Model No.	Inventory	Cal.Date	Cal.Due date
	0 - 0 : A - : -	Ob a see base O. D. T.		No.	(mm-dd-yy)	(mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2020	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2020	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	May 23 2022	May 22 2023
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	May 23 2022	May 22 2023
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	May 23 2022	May 22 2023
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	May 23 2022	May 22 2023
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	May 23 2022	May 22 2023
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	May 23 2022	May 22 2023
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May 23 2022	May 22 2023
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May 23 2022	May 22 2023
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	May 23 2022	May 22 2023
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	May 23 2022	May 22 2023
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	May 23 2022	May 22 2023
14	high-frequency Amplifier	HP	8449B	HTT-E014	May 23 2022	May 22 2023
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	May 23 2022	May 22 2023
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	May 23 2022	May 22 2023
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May 23 2022	May 22 2023
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May 23 2022	May 22 2023
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	May 23 2022	May 22 2023
20	Attenuator	Robinson	6810.17A	HTT-E007	May 23 2022	May 22 2023
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	May 23 2022	May 22 2023
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	May 23 2022	May 22 2023
23	DC power supply	Agilent	E3632A	HTT-E023	May 23 2022	May 22 2023
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	May 23 2022	May 22 2023
25	Analog signal generator	Agilent	N5181A	HTT-E025	May 23 2022	May 22 2023
26	Vector signal generator	Agilent	N5182A	HTT-E026	May 23 2022	May 22 2023
27	Power sensor	Keysight	U2021XA	HTT-E027	May 23 2022	May 22 2023
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	May 23 2022	May 22 2023
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

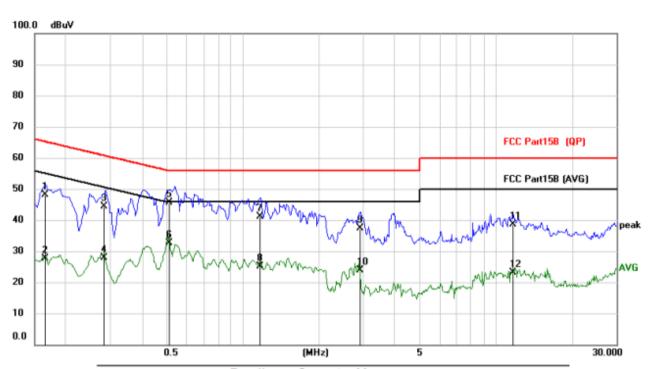
6. Test results and Measurement Data

6.1. Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	Class B	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, S	Sweep time=auto				
Limit:	Fraguency range (MHz)	Limit (dBuV)				
	Frequency range (MHz)	Quasi-peak	Avera			
	0.15-0.5	66 to 56*	56 to			
	0.5-5	56	46			
	5-30 Decreases with the logarithmatical stress and the second stress are second stress.	m of the frequency	50)		
Test setup:	Reference Plane					
Test procedure:	Remark E.U.T. Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators line impedance stabilizatio 50ohm/50uH coupling imp 2. The peripheral devices are	AUX Equipment Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN Line Impedence Stabilization Network				
	 LISN that provides a 50oh termination. (Please refer photographs). 3. Both sides of A.C. line are interference. In order to fin positions of equipment and according to ANSI C63.10 	to the block diagram of checked for maximum and the maximum emised all of the interface can	of the test set m conducted sion, the relat ables must be	up and tive e changed		
Test Instruments:	Refer to section 6.0 for details	S				
Test mode:	Refer to section 5.2 for details	S				
Test environment:	Temp.: 25 °C Hui	mid.: 52%	Press.:	1012mbar		
Test voltage:	AC 120V, 60Hz	· · · · · · · · · · · · · · · · · · ·	<u>ı </u>			
Test results:	Pass					

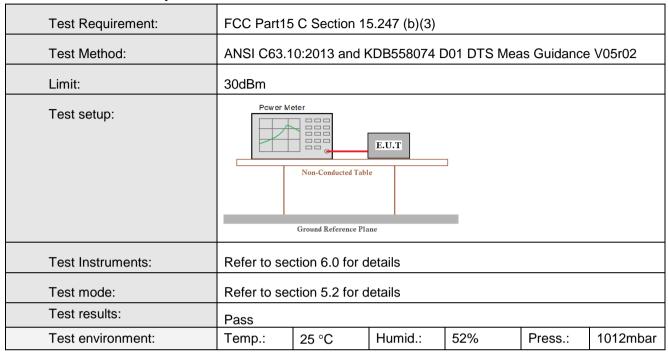
Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:



Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
MHz	dBuV	dB	dBuV	dBuV	dB	Detector
0.1524	34.73	10.37	45.10	65.87	-20.77	QP
0.1524	16.35	10.37	26.72	55.87	-29.15	AVG
0.3605	31.22	10.43	41.65	58.72	-17.07	QP
0.3605	12.36	10.43	22.79	48.72	-25.93	AVG
0.6258	31.74	10.64	42.38	56.00	-13.62	QP
0.6258	14.31	10.64	24.95	46.00	-21.05	AVG
1.1352	29.23	10.89	40.12	56.00	-15.88	QP
1.1352	12.75	10.89	23.64	46.00	-22.36	AVG
9.4428	28.24	11.49	39.73	60.00	-20.27	QP
9.4428	11.42	11.49	22.91	50.00	-27.09	AVG
29.6838	25.23	12.79	38.02	60.00	-21.98	QP
29.6838	11.29	12.79	24.08	50.00	-25.92	AVG
	MHz 0.1524 0.1524 0.3605 0.3605 0.6258 0.6258 1.1352 1.1352 9.4428 9.4428	Freq. Level MHz dBuV 0.1524 34.73 0.1524 16.35 0.3605 31.22 0.3605 12.36 0.6258 31.74 0.6258 14.31 1.1352 29.23 1.1352 12.75 9.4428 28.24 9.4428 11.42 29.6838 25.23	Freq. Level Factor MHz dBuV dB 0.1524 34.73 10.37 0.1524 16.35 10.37 0.3605 31.22 10.43 0.3605 12.36 10.43 0.6258 31.74 10.64 0.6258 14.31 10.64 1.1352 29.23 10.89 1.1352 12.75 10.89 9.4428 28.24 11.49 9.4428 11.42 11.49 29.6838 25.23 12.79	Freq. Level Factor ment MHz dBuV dB dBuV 0.1524 34.73 10.37 45.10 0.1524 16.35 10.37 26.72 0.3605 31.22 10.43 41.65 0.3605 12.36 10.43 22.79 0.6258 31.74 10.64 42.38 0.6258 14.31 10.64 24.95 1.1352 29.23 10.89 40.12 1.1352 12.75 10.89 23.64 9.4428 28.24 11.49 39.73 9.4428 11.42 11.49 22.91 29.6838 25.23 12.79 38.02	Freq. Level Factor ment Limit MHz dBuV dB dBuV dBuV 0.1524 34.73 10.37 45.10 65.87 0.1524 16.35 10.37 26.72 55.87 0.3605 31.22 10.43 41.65 58.72 0.3605 12.36 10.43 22.79 48.72 0.6258 31.74 10.64 42.38 56.00 0.6258 14.31 10.64 24.95 46.00 1.1352 29.23 10.89 40.12 56.00 1.1352 12.75 10.89 23.64 46.00 9.4428 28.24 11.49 39.73 60.00 9.4428 11.42 11.49 22.91 50.00 29.6838 25.23 12.79 38.02 60.00	Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB 0.1524 34.73 10.37 45.10 65.87 -20.77 0.1524 16.35 10.37 26.72 55.87 -29.15 0.3605 31.22 10.43 41.65 58.72 -17.07 0.3605 12.36 10.43 22.79 48.72 -25.93 0.6258 31.74 10.64 42.38 56.00 -13.62 0.6258 14.31 10.64 24.95 46.00 -21.05 1.1352 29.23 10.89 40.12 56.00 -15.88 1.1352 12.75 10.89 23.64 46.00 -22.36 9.4428 28.24 11.49 39.73 60.00 -20.27 9.4428 11.42 11.49 22.91 50.00 -27.09 29.6838 25.23 12.79 38.02 60.00 -21.98

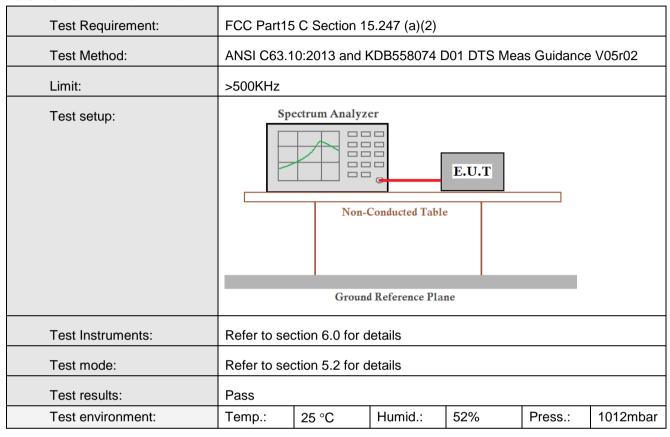
Neutral:


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1641	37.90	10.25	48.15	65.25	-17.10	QP
2	0.1641	17.40	10.25	27.65	55.25	-27.60	AVG
3	0.2803	34.17	10.24	44.41	60.81	-16.40	QP
4	0.2803	17.76	10.24	28.00	50.81	-22.81	AVG
5 *	0.5074	35.17	10.36	45.53	56.00	-10.47	QP
6	0.5074	22.17	10.36	32.53	46.00	-13.47	AVG
7	1.1679	30.38	10.80	41.18	56.00	-14.82	QP
8	1.1679	14.29	10.80	25.09	46.00	-20.91	AVG
9	2.8956	26.47	10.84	37.31	56.00	-18.69	QP
10	2.8956	12.95	10.84	23.79	46.00	-22.21	AVG
11	11.7360	26.86	11.74	38.60	60.00	-21.40	QP
12	11.7360	11.36	11.74	23.10	50.00	-26.90	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

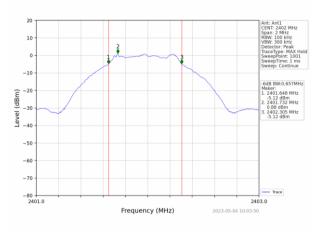
6.2. Conducted Output Power



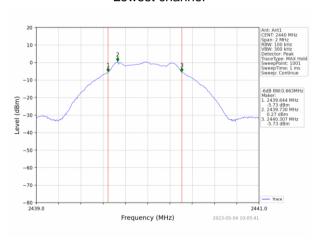
Measurement Data

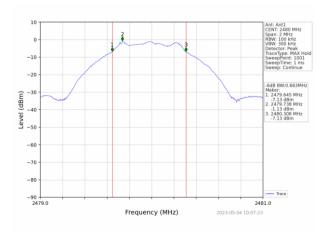
Test channel	Peak Output Power (dBm)	Limit(dBm)	Result	
Lowest	1.06			
Middle	0.48	30.00	Pass	
Highest	-0.92			

6.3. Channel Bandwidth

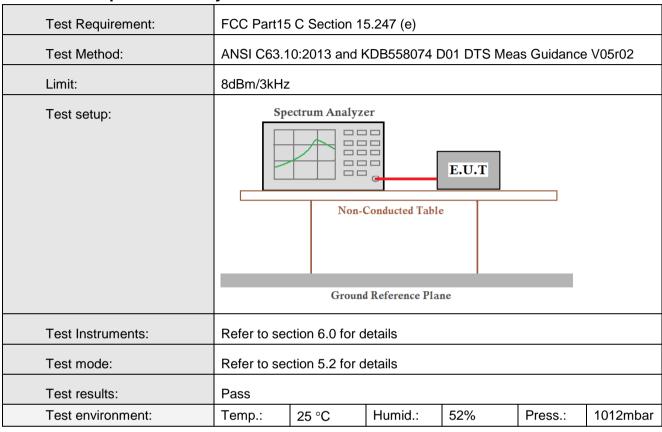


Measurement Data


Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.657		
Middle	0.663	>500	Pass
Highest	0.663		

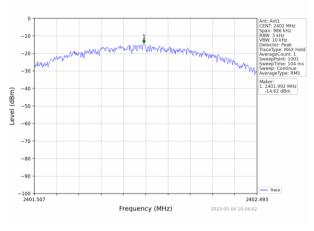

Test plot as follows:

Lowest channel

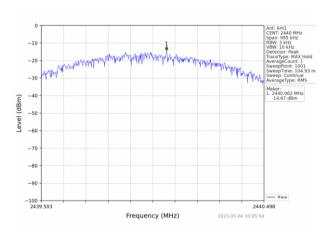

Middle channel

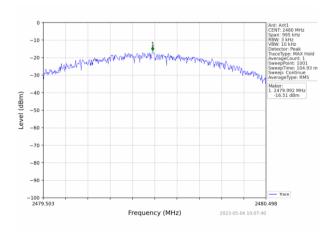
Highest channel

6.4. Power Spectral Density



Measurement Data

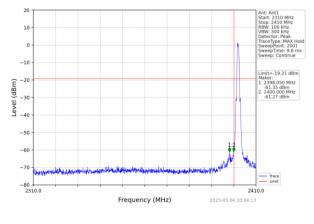

Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result	
Lowest	-14.62			
Middle	-14.67	8.00	Pass	
Highest	-16.51			

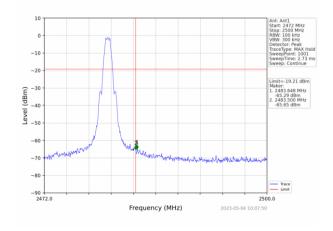

Test plot as follows:

Lowest channel

Middle channel

Highest channel




6.5. Band edges

6.5.1 Conducted Emission Method

						1	
Test Requirement:	FCC Part15	C Section 1	5.247 (d)				
Test Method:	ANSI C63.1	0:2013 and k	KDB558074 [001 DTS Mea	as Guidance	v05r02	
Limit:	spectrum in is produced the 100 kHz	cHz bandwidt tentional radi by the intent bandwidth w power, based ent.	ator is opera ional radiator vithin the ban	ting, the radions the radions that the state of the tender of tender of the tender of tender o	o frequency east 20 dB b ns the highe	power that elow that in st level of	
Test setup:	Spo						
Test Instruments:	Refer to sec	ction 6.0 for d	etails				
Test mode:	Refer to sec	ction 5.2 for d	etails				
Test results:	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	

Test plot as follows:

Lowest channel

Highest channel

6.5.2 Radiated Emission Method

Test Requirement:	FCC Part15 (C Section 15	5.209 and	15.205					
Test Method:	ANSI C63.10	:2013							
Test Frequency Range:	All of the res 2500MHz) da			d, only	the wor	st band's (2	2310MHz to		
Test site:	Measuremen								
Receiver setup:	Frequency	Detec	tor F	RBW	VBW	/ \	/alue		
•	Above 1GH	_ Pea	k 1	MHz	3MHz	z F	Peak		
	Above 1GH	² RM	S 1	MHz	3MHz	z Av	verage		
Limit:	Fred	quency	Limit	(dBuV/	m @3m	n) \	/alue		
	Ahov	e 1GHz		54.0			erage		
Test setup:	71001	0 10112		74.0	0	F	Peak		
	Tum Table+	EUT+	<	st Antenna-	^				
Test Procedure:	1. The EUT v	was placed	on the top			le 1.5 mete	rs above		
	determine 2. The EUT vantenna, vantenna, vantenna, vantenna, vanten ground to horizontal measurem 4. For each sand then tand the routhe maxim 5. The test-respecified in the EUT vanten to the E	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. The radiation measurements are performed in X, Y, Z axis positioning. 							
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to sect	ion 5.2 for d	etails						
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%)	Press.:	1012mbar		

Measurement Data

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m) (dB)		Туре
2390	58.75	26.20	5.72	33.30	57.37	74	-16.63	peak
2390	46.33	26.20	5.72	33.30	44.95	54	-9.05	AVG

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m) (dB)		Туре
2390	60.38	26.20	5.72	33.30	59.00	74	-15.00	peak
2390	46.96	26.20	5.72	33.30	45.58	54	-8.42	AVG

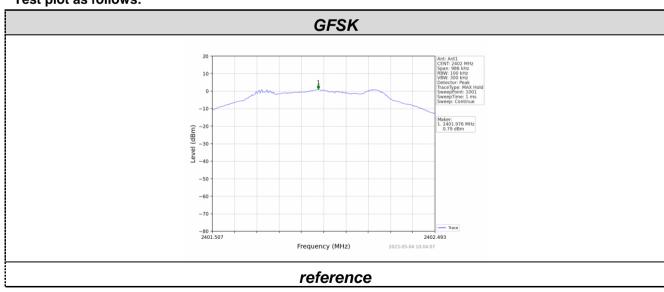
Operation Mode: GFSK TX High channel (2480MHz)

Horizontal (Worst case)

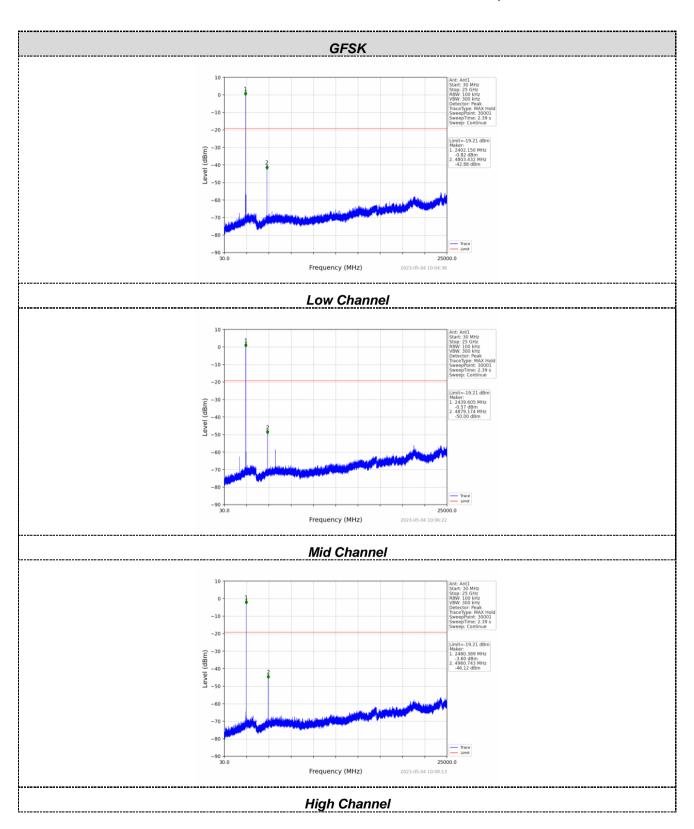
Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m) (dB)		Туре
2483.5	55.28	28.60	6.97	32.70	58.15	74	-15.85	peak
2483.5	41.36	28.60	6.97	32.70	44.23	54	-9.77	AVG

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	BμV/m) (dB)	
2483.5	57.11	28.60	6.97	32.70	59.98	74	-14.02	peak
2483.5	41.56	28.60	6.97	32.70	44.43	54	-9.57	AVG

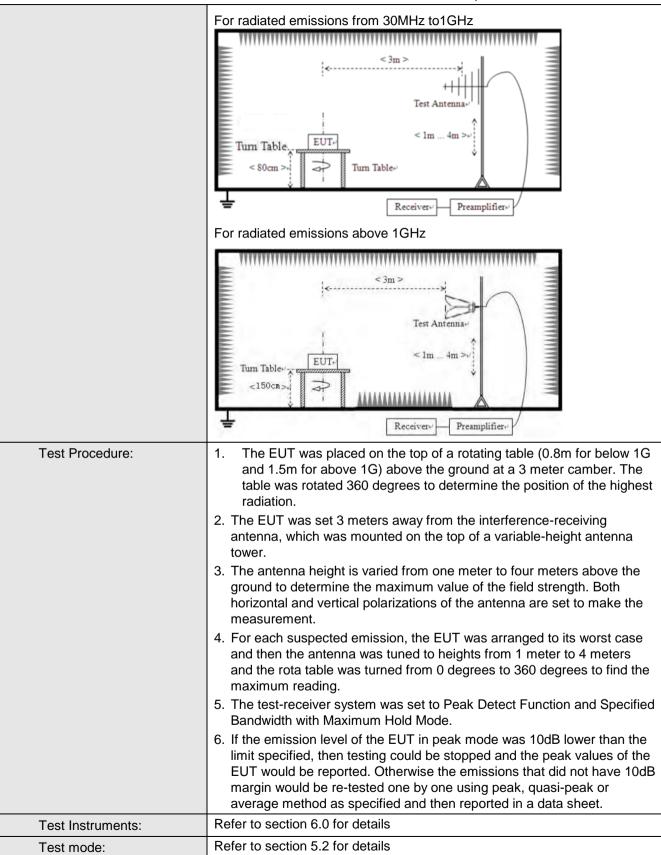


6.6. Spurious Emission


6.6.1 Conducted Emission Method

0.0.1 Conducted Linission We							
Test Requirement:	FCC Part15 C	Section 15	5.247 (d)				
Test Method:	ANSI C63.10:2	013 and K	DB558074 D	001 DTS Mea	as Guidance	v05r02	
Limit:	In any 100 kHz spectrum inten- is produced by the 100 kHz ba the desired pov measurement.	tional radia the intenti Indwidth w	ator is operat onal radiator ithin the ban	ing, the radic shall be at le d that contair	ofrequency east 20 dB bases the higher	power that below that in est level of	
Test setup:	Spectru						
Test Instruments:	Refer to section	n 6.0 for d	etails				
Test mode:	Refer to section	n 5.2 for d	etails				
Test results:	Pass						
Test environment:	Temp.: 25	5 °C	Humid.:	52%	Press.:	1012mbar	

Test plot as follows:



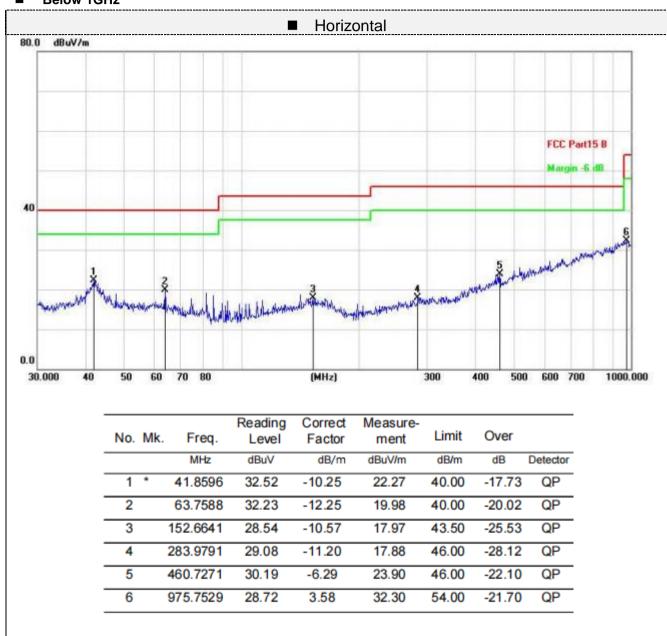
6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distan	ice: 3	3m					
Receiver setup:	Frequency		Detector	RB\	W	VBW	Value	
	9KHz-150KHz	Qi	ıasi-peak	200Hz		600Hz	z Quasi-peak	
	150KHz-30MHz	Qı	ıasi-peak	9Kł	Ηz	30KH:	z Quasi-peak	
	30MHz-1GHz Quasi-peak 12		120k	Ήz	300KH	Iz Quasi-peak		
	Above 1GHz		Peak	1MI	Ηz	3MHz	z Peak	
	Above 1GHz	Peak 1M		1MI	Ηz	10Hz	Average	
Limit:	Frequency		Limit (u\	//m)	\	/alue	Measurement Distance	
	0.009MHz-0.490M	2400/F(k	(Hz)		QP	300m		
	0.490MHz-1.705MHz		24000/F(KHz)	QP		30m	
	1.705MHz-30MHz		30	30		QP	30m	
	30MHz-88MHz		100		QP			
	88MHz-216MHz		150		QP			
	216MHz-960MH	Z	200		QP		3m	
	960MHz-1GHz		500		QP			
	Above 1GHz		500		Average			
			5000		Peak			
Test setup:	For radiated emissio	ns fr	om 9kHz to	30MH	z			
	Turn Table E	UT	< 3m > Tes Za Turn Table	t Antenna lm				

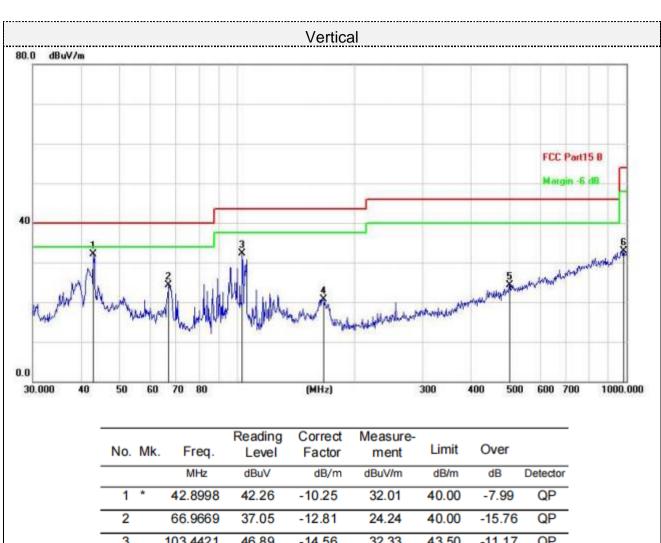
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 6	AC 120V, 60Hz				
Test results:	Pass					

Measurement data:

Remark:


Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ Below 1GHz

NO.	IVIK.	Freq.	Level	Factor	ment	LITTIL	Ovei	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1	*	42.8998	42.26	-10.25	32.01	40.00	-7.99	QP
2		66.9669	37.05	-12.81	24.24	40.00	-15.76	QP
3		103.4421	46.89	-14.56	32.33	43.50	-11.17	QP
4		167.2368	31.59	-10.85	20.74	43.50	-22.76	QP
5		501.1790	29.24	-4.93	24.31	46.00	-21.69	QP
6		982.6200	29.22	3.65	32.87	54.00	-21.13	QP

Final Level =Receiver Read level + Correct Factor

Above 1-25GHz

CH Low (2402MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	51.27	31.40	8.18	32.10	58.75	74.00	-15.25	peak
4804	36.50	31.40	8.18	32.10	43.98	54.00	-10.02	AVG
7206	44.69	35.80	10.83	31.40	59.92	74.00	-14.08	peak
7206	29.78	35.80	10.83	31.40	45.01	54.00	-8.99	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4804	51.55	31.40	0.40	32.10	59.03	74.00	-14.97	naak
4804	51.55	31.40	8.18	32.10	59.03	74.00	-14.97	peak
4804	35.87	31.40	8.18	32.10	43.35	54.00	-10.65	AVG
7206	43.65	35.80	10.83	31.40	58.88	74.00	-15.12	peak
7206	28.66	35.80	10.83	31.40	43.89	54.00	-10.11	AVG
Remark: Facto	or = Antenna Fac	tor + Cable Los	s – Pre-amplifie	r.				

CH Middle (2440MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4880	50.36	31.40	9.17	32.10	58.83	74.00	-15.17	peak
4880	35.78	31.40	9.17	32.10	44.25	54.00	-9.75	AVG
7320	44.36	35.80	10.83	31.40	59.59	74.00	-14.41	peak
7320	29.68	35.80	10.83	31.40	44.91	54.00	-9.09	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4880	50.37	31.40	9.17	32.10	58.84	74.00	-15.16	peak
4880	36.53	31.40	9.17	32.10	45.00	54.00	-9.00	AVG
7320	44.96	35.80	10.83	31.40	60.19	74.00	-13.81	peak
7000	00.00	05.00	40.00	04.40	45.00	54.00	0.04	A)/O
7320	29.86	35.80	10.83	31.40	45.09	54.00	-8.91	AVG
D	A	O-bl- l	- D!:f	_				
Remark: Facto	or = Antenna Fac	tor + Cable Los	<u>s – Pre-amplifier</u>	•				

CH High (2480MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4960	49.86	31.40	9.17	32.10	58.33	74.00	-15.67	peak
4960	37.55	31.40	9.17	32.10	46.02	54.00	-7.98	AVG
7440	44.61	35.80	10.83	31.40	59.84	74.00	-14.16	peak
7440	29.07	35.80	10.83	31.40	44.30	54.00	-9.70	AVG

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4960	52.04	31.40	9.17	32.10	60.51	74.00	-13.49	peak
4960	35.69	31.40	9.17	32.10	44.16	54.00	-9.84	AVG
7440	43.28	35.80	10.83	31.40	58.51	74.00	-15.49	peak
7440	29.37	35.80	10.83	31.40	44.60	54.00	-9.40	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

6.7. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 0.0 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

