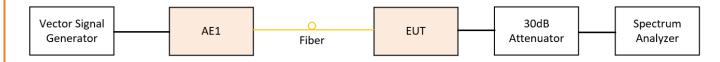
Project No.: 22105 Revision No.: (

5 Input/Output Power and Amplifier/Booster Gain


Governing Doc	FCC Part 90.219		Room Temperature (°C)		20.5	
Test Procedure	ANSI/TIA-603- E-2016; KDB 935210 D05, v01r04		Relative Humidity (%)			38.6
Test Location	Richmond		Barometric Pressure	(kPa)		101.8
Test Engineer	Jack Qin		Date		Au	gust 29,2023
EUT Voltage			☐ 120VAC @ 60)Hz		
Test Equipment Used	Manufacturer	Model	Serial Number	Calibration date		Calibration due
Signal Generator	Keysight	N5172B	MY53050270	Oct 9, 2021		Oct 9, 2023
Spectrum Analyzer	Keysight	N9010A	MY50520285	Oct 11, 2021		Oct 11, 2023
Span:	⊠ Max Gain Freq	uency ± 1500)kHz			
Detector:	⊠ Peak					
RBW/VBW:	⊠100k Hz/ 300 kH	łz				
Type of Facility:	⊠ Tabletop					
Distance:	☑ Direct					
Maximum booster gain is	95.5 dB.					
Compliant ⊠	Non-Compli	ant 🗆	Not Applica	ble □		

Test Setup

Description of test set-up:

The procedure used was ANSI/TIA-603-E-2016 and FCC KDB 935210 D05 Indus Booster Basic Meas v01r02:. A CW tone was input at the frequency where the system gain is the maximum in the pass band, with the nominal input power level. The spectrum analyzer was connected to the output RF port via a 50 Ohm 30 dB attenuator. The maximum hold trace and peak detector was used to capture the output power. The output power minus the input power equals to the booster gain in dB.

The EUT was set to Operation Mode #1 with configuration Mode #1.

Project No.: 22105 Revision No.:

Test Data

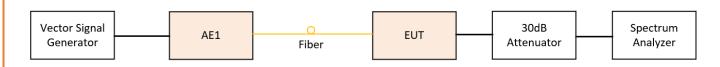
Test Band	Frequency (MHz)	Input Power (dBm)	Output Power (dBm)	Gain (dB)
800PS	860	-58.6	36.92	95.5
VHF PS	163	-55.8	37.08	92.9

Project No.: 22105 Revision No.: 0

6 Out-Of-Band / Out-Of-Block Intermodulation and Spurious Emissions

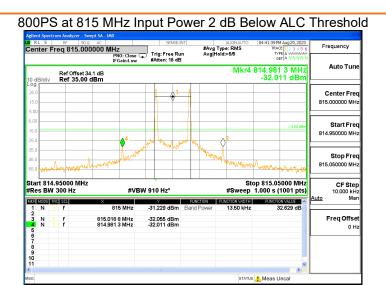
Governing Doc	FCC Part 90.219		Room Temperature (°	C)	20.5	
Test Procedure	ANSI/TIA-603- E-20 KDB 935210 D05, v	,	Relative Humidity (%)		38.6	
Test Location	Richmond		Barometric Pressure ((kPa)		101.8
Test Engineer	Jack Qin		Date		Aug	gust 29,2023
EUT Voltage	⊠ +48VDC		☐ 120VAC @ 60I	Hz		
Test Equipment Used	Manufacturer	Model	Serial Number	Calibrat	tion date	Calibration due
Signal Generator	Keysight	N5172B	MY53050270	Oct 9	, 2021	Oct 9, 2023
Spectrum Analyzer	Keysight	N9010A	MY50520285	Oct 11, 2021		Oct 11, 2023
Frequency Range:	⊠ Max Gain Freq	uency ± 50kH	łz			
Detector:	⊠ Average					
RBW/VBW:	⊠100/910Hz					
Type of Facility:	⊠ Tabletop					
Distance:	⊠ Direct					
On 800 band and UHF band: The intermodulation product of 2 tone is below the -13dBm emission limit with input power 0.5 dB below AGC threshold 2 dB AGC threshold 3 dB above AGC threshold					with input power	
Compliant ⊠	Non-Compli	iant □	Not Applicab	le □		

Test Setup

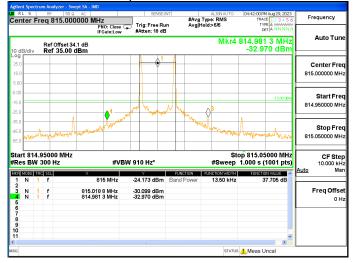

Description of test set-up:

The procedure used was ANSI/TIA-603-E-2016. Two tones (CW) method was used. The input power to the amplifier was set at maximum drive level by combining the two tones. The two tones were chosen in such a way (1) the third order intermodulation product frequencies are located within the pass band of the DUT and (2) they produce the worst-case emissions out of band.

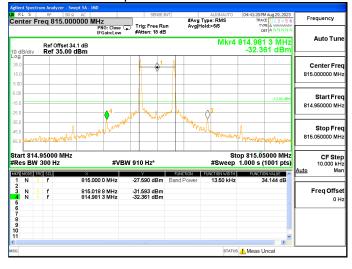
Based on KDB 935210 D05 Indus Booster Basic Meas v01r04: 2019, the two tone was located on either side of the maximum gain frequence in the passing band, and separated with the available spacing, which is 12.5kHz.

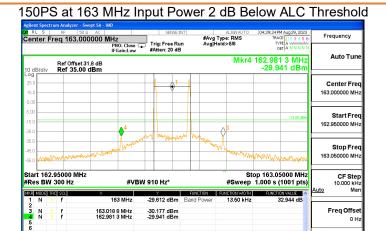

Measurements were performed with modulated -tone at identical input amplitude which produced integrated maximum rated output power.

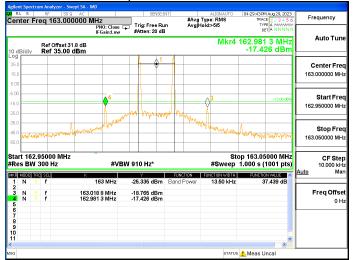
The EUT was set to Operation Mode #1 with configuration Mode #1.

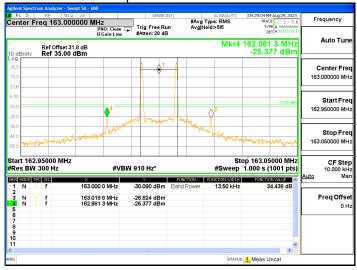


Project No.: 22105 Revision No.:

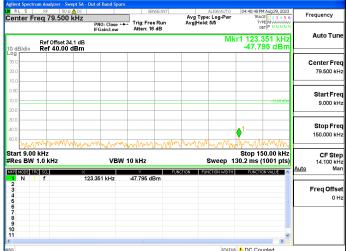

Test Data


800PS at 815 MHz Input Power 3 dB Above ALC Threshold


800PS at 815 MHz Input Power 0.5 dB Below ALC Threshold


Project No.: 22105 Revision No.:

150PS at 163 MHz Input Power 3 dB Above ALC Threshold

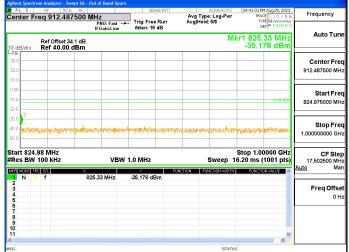


150PS at 163 MHz Input Power 0.5 dB Below ALC Threshold

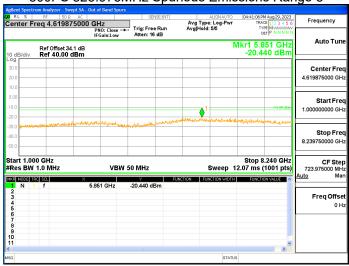
Project No.: 22105 Revision No.: 0

800PS 823.975MHz Spurious Emissions Range 2

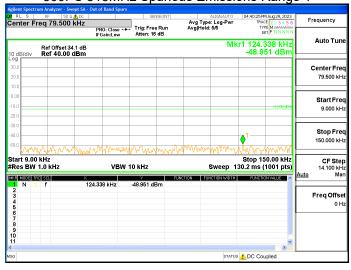
800PS 823.975MHz Spurious Emissions Range 3


Prepared by: LabTest Certification Inc.

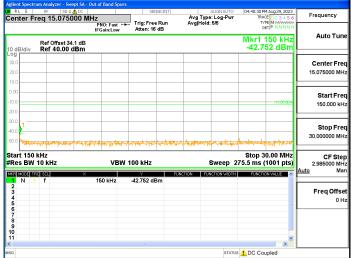
Date Issued: 2024-03-21 Project No.: 22105


Client: Avari Wireless Inc. Report No.: 20.01.22105-1

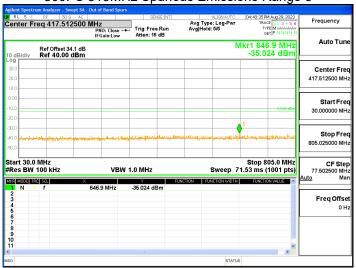
Revision No.: 0



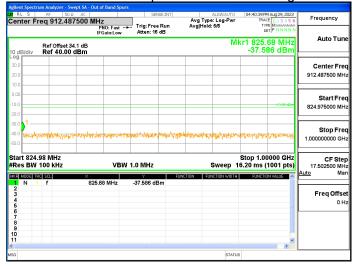
800PS 823.975MHz Spurious Emissions Range 5



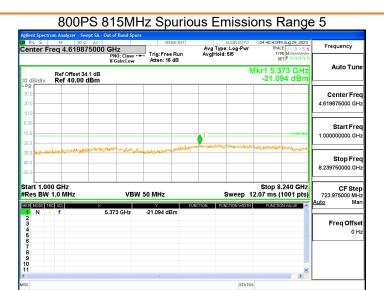
800PS 815MHz Spurious Emissions Range 1



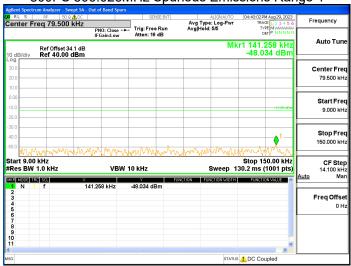
Project No.: 22105 Revision No.: 0



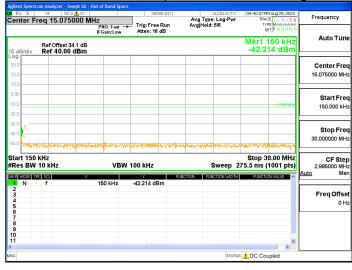
800PS 815MHz Spurious Emissions Range 3

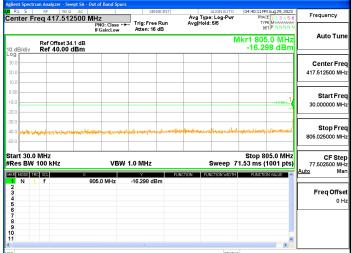


800PS 815MHz Spurious Emissions Range 4

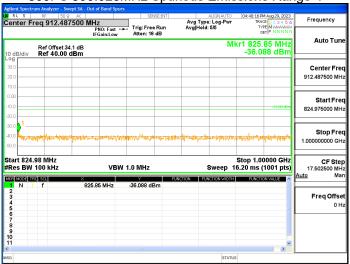


Page 48 of 71


Project No.: 22105 Revision No.:

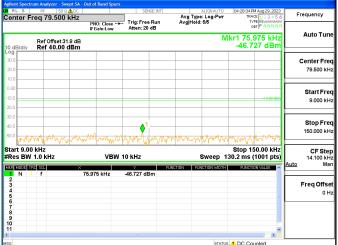


800PS 806.025MHz Spurious Emissions Range 2

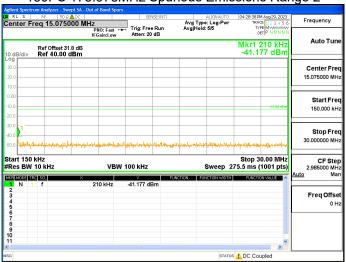


Date Issued: 2024-03-21 Report No.: 20.01.22105-1 Project No.: 22105 Revision No.: 0

800PS 806.025MHz Spurious Emissions Range 4

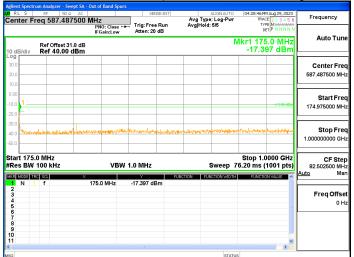


800PS 806.025MHz Spurious Emissions Range 5

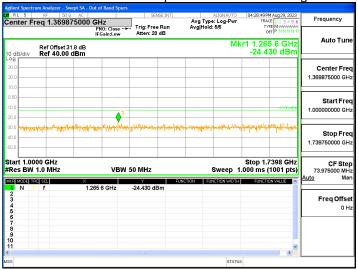


Project No.: 22105 Revision No.: 0

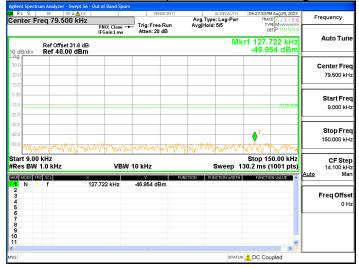
150PS 173.975MHz Spurious Emissions Range 2



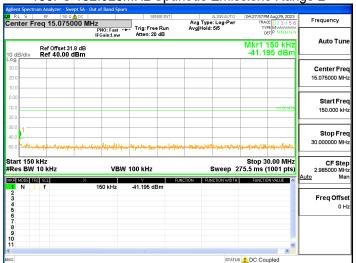
150PS 173.975MHz Spurious Emissions Range 3

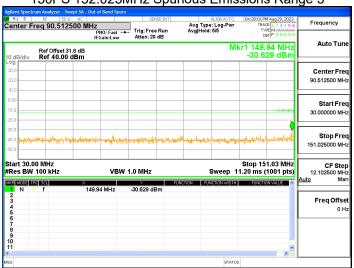


Date Issued: 2024-03-21 Report No.: 20.01.22105-1 Project No.: 22105 Revision No.: 0



150PS 173.975MHz Spurious Emissions Range 5


150PS 152.025MHz Spurious Emissions Range 1

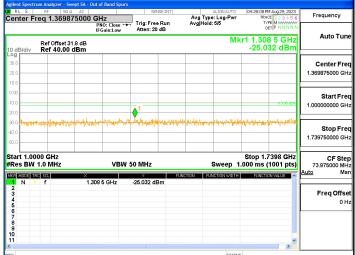

Page 52 of 71

Date Issued: 2024-03-21 Report No.: 20.01.22105-1 Project No.: 22105 Revision No.: 0

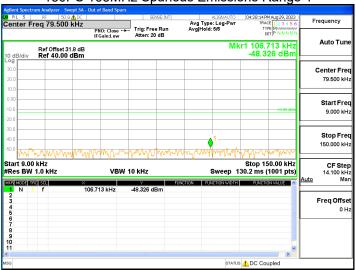
150PS 152.025MHz Spurious Emissions Range 2

150PS 152.025MHz Spurious Emissions Range 3

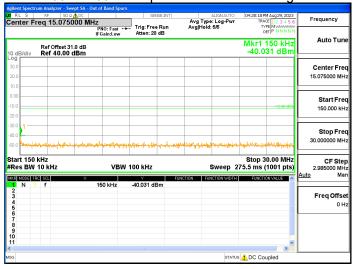
150PS 152.025MHz Spurious Emissions Range 4



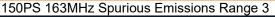
Page 53 of 71

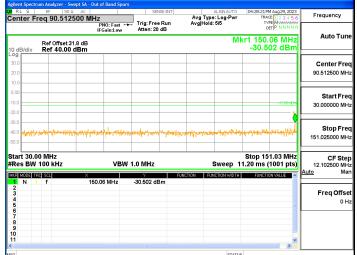

 Date Issued:
 2024-03-21
 Report No.:
 20.01.22105-1

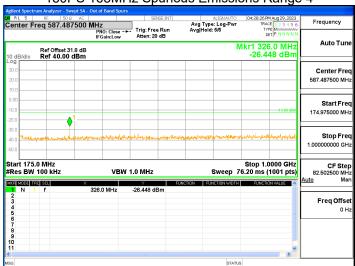
 Project No.:
 22105
 Revision No.:
 0



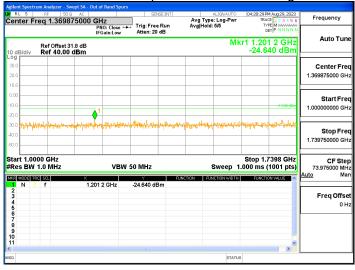
150PS 163MHz Spurious Emissions Range 1




150PS 163MHz Spurious Emissions Range 2

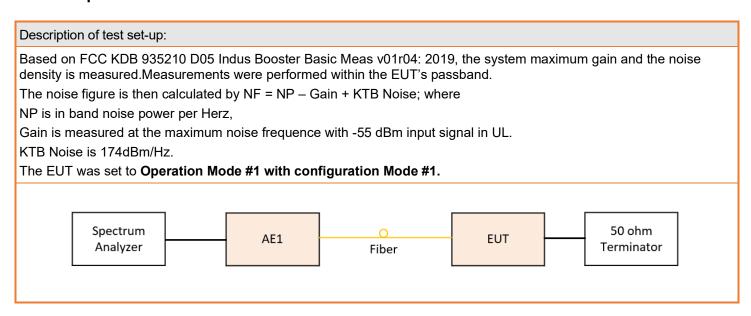

 Date Issued:
 2024-03-21
 Report No.:
 20.01.22105-1

 Project No.:
 22105
 Revision No.:
 0



150PS 163MHz Spurious Emissions Range 4

150PS 163MHz Spurious Emissions Range 5


Page 55 of 71

Project No.: 22105 Revision No.:

7 Noise Figure

Governing Doc	FCC Part 90.219		Room Temperature (°	(C)	20.5	
Test Procedure	ANSI/TIA-603- E; KDB 935210 D05, v01r04		Relative Humidity (%)			38.6
Test Location	Richmond		Barometric Pressure ((kPa)		101.8
Test Engineer	Jack Qin		Date		Auç	gust 29,2023
EUT Voltage			☐ 120VAC @ 60I	Hz		
Test Equipment Used	Manufacturer	Model	Serial Number	Calibration date		Calibration due
Signal Generator	Keysight	N5172B	MY53050270	Oct 9, 2021		Oct 9, 2023
Spectrum Analyzer	Keysight	N9010A	MY50520285	Oct 11, 2021		Oct 11, 2023
Frequency Range:	≥ 2 times of the p	assband on	each band			
Detector:	⊠ Average					
RBW:	⊠910 kHz					
Type of Facility:	⊠ Tabletop					
Distance:	⊠ Direct					
Noise Figure on each ban	d is less than the 9 d	B required.				
Compliant ⊠	Non-Compli	iant □	Not Applicabl	le 🗆		

Test Setup

Project No.: 22105 Revision No.:

Test Data

Test Band	Gain (dB)	kTB (dBm/Hz)	Measured Value (dBm/Hz)	Noise Figure (dB)
800PS	95.5	174	-70.5	8.04
VHF PS	92.9	174	-74.4	6.72

Project No.: 22105 Revision No.: 0

8 Frequency Stability

The AMU37 and RU37 are sychronized to the same reference clock. Therefore there is no frequency error after down and up frequency conversion are performed.

The frequency stability check is not applicable to the EUT.

Date Issued: 2024-03-21 Project No.: 22105 Report No.: 20.01.22105-1

Revision No.: 0

9 Radiated Emissions - Enclosure

9.1 Radiated Emissions 30 MHz - 1 GHz

ration date Nov-2022 Oct-2022	01-1	oration due Nov-2023 Oct-2024					
Nov-2022 Oct-2022	01-1	Nov-2023					
Nov-2022 Oct-2022	01-1	Nov-2023					
Nov-2022 Oct-2022	01-1	Nov-2023					
Nov-2022 Oct-2022	01-1	Nov-2023					
Nov-2022 Oct-2022	01-1	Nov-2023					
Oct-2022							
}	24-0	Oct-2024					
1)							
54							
57							
Note 1. The lower limit shall apply at the transition frequency Note 2. Additional provisions may be required for cases where interference occurs							
rence occi	urs						
TEM Waveguide according to IEC 61000-4-20							
Measurements were made in semi-anechoic chamber that complies to CISPR 16. Preliminary (peak) measurements. The EUT was rotated 360° about its azimuth with the receive antenna located at various heights in horizontal and vertical polarities. Final measurements (quasi-peak detector below 1GHz and average detector above 1GHz) were then performed by rotating the EUT 360° and adjusting the receive antenna height from 1 to 4 m. All frequencies were investigated in both horizontal and vertical antenna polarity, where applicable.							
1	ibout its az tical polarit detector ab ive antenn	bout its azimuth tical polarities. F detector above 10 vive antenna heig					

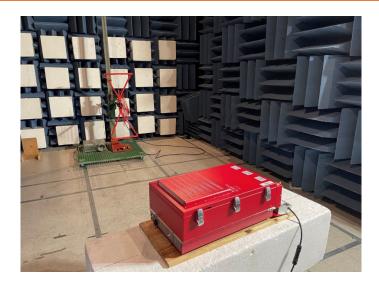
Project No.: 22105 Revision No.:

Supplementary information

• If the highest internal frequency of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz.

- If the highest internal frequency of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz.
- If the highest internal frequency of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz.
- If the highest internal frequency of the EUT is above 1 GHz, the measurement shall be made up to 6 GHz.
- Where the highest internal frequency is not known, tests shall be performed up to 6 GHz.

VERDICT: PASS


Test Method

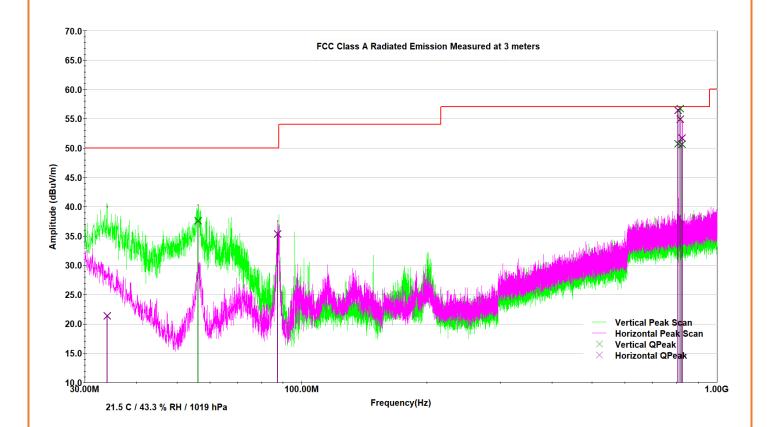
This test measures the radiating levels from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices. Testing was performed in accordance with the test standard(s) referenced in the test summary section of this report. The Equipment Under Test (EUT) was configured based upon the requirements of the applicable test standard. Initially, the primary emission frequencies are identified by positioning a broadband receive antenna three meter from the EUT.

A scan was made with an EMC Analyzer, controlled by EMC Test Software, Tile7! with the receiver in the peak mode. The receiver IF bandwidth was 120 kHz and scan step was less than 30kHz. To ensure that the maximum emission at each discrete frequency of interest is observed, the receive antenna is varied in height from one to four meters and rotated to produce horizontal and vertical polarities while the turntable is rotated to determine the worst emitting configuration. Measurements were then made using CISPR quasi peak when the peak readings were within 10dB of the limit line. The numerical results are included herein to demonstrate compliance.

Test Setup

The EUT was placed on a 0.8m non-conducting table above a ground reference plane (GRP).

Project No.: 22105 Revision No.: 0


Measurement data and Plot

Note:

Quasi-peak (dBuV/m) = Raw Quasi-peak (dBuV) + Antenna Factor (dB/m) + Correction Factor (dB)

Correction Factor (dB) = Cable loss(dB)

Radiated Emission 30 MHz - 1000MHz, 120V/60Hz, FCC Class A Limit

Frequency	Antenna Polarization	Raw QPeak	Antenna Factor	Correction Factor	QPeak	Margin	Limit
MHz	V/H	dBuV	dB/m	dB	dBuV/m	dB	dBuV/m
33.98275	Н	-2.7	23.4	0.7	21.4	28.6	50
87.364	Н	22.7	11.7	0.9	35.4	14.6	50
806.02425	Н	27.5	26.1	2.8	56.4	0.6	57
814.99675	Н	25.9	26.2	2.8	55	2	57
823.97925	Н	22.7	26.2	2.8	51.7	5.3	57
56.1785	V	25.7	11.2	0.8	37.6	12.4	50
806.01425	V	22.5	25.4	2.8	50.7	6.3	57
815.00675	V	28.4	25.5	2.8	56.7	0.3	57
823.96925	V	22.2	25.6	2.8	50.7	6.3	57

Prepared by: LabTest Certification Inc. Client:

Date Issued: 2024-03-21 Project No.: 22105 Client: Avari Wireless Inc. Report No.: 20.01.22105-1

Revision No.: 0

9.2 Radiated Emissions above 1 GHz

Standard		art 15 Subpart B						
Basic Standard(s)		ANSI C63.4, CISPR 16-2-1						
Tested by	Jack Q	<u> </u>						
Test date	2023-0	-						
Test location		, Richmond						
		·	N.4 -		LabTast	0-1:14:	-1 - 4 -	O a lib matiam about
Test Equipment		lanufacturer		odel	LabTest	Calibration of 02-Nov-20		Calibration due 01-Nov-2023
EMC Analyzer		ght Technologies		038A	702			
Horn Antenna	А	H Systems		S-571	227C	13-Sept-20		13-Sept-2024
RF Preamplifier		Agilent		49B	273	In House Calib		In House Calibration
RF Cable	A	.H. Systems	SAC-	26G-3	227D	In House Calib	oration	In House Calibration
						lass B Limit at	3 Meter	'S
	ı	Frequency (GHz)		ı	Average (d	BμV/m)		Peak (dB _μ V/m)
Applied limit	> 1 54 74				74			
		1						
Test set-up		Equipment on a	table o	f 80 cm	height			
description		Equipment on th	e floor	(insulate	ed from gro	und plane)		
		Other:						
Operating modes of EUT	The El 230V/5	JT is configured a 50Hz.	s "Dive	Mode",	the wireles	s charger is pow	ered by	120V/60Hz or
		OATS or SAC w	ith mea	sureme	nt distance	[m]: ⊠3 □10		
Test method	\boxtimes	FAR CISPR 16-2	2-3 with	n measu	rement dist	ance [m]: 3		
applied		FAR IEC 61000-	4-22 w	ith meas	surement di	stance [m]: 3		
		TEM Waveguide	accord	ding to I	EC 61000-4	I-20		
Supplementary test set-up	\boxtimes	Measurements were made in FAR chamber that complies to CISPR 16. Preliminary (peak) measurements. The EUT was rotated 360° about its azimuth with the receive antenna located at various heights in horizontal and vertical polarities. Final measurements (quasipeak detector below 1GHz and average detector above 1GHz) were then performed by rotating the EUT 360° and adjusting the receive antenna height from 1 to 4 m. All frequencies were investigated in both horizontal and vertical antenna polarity, where applicable.						

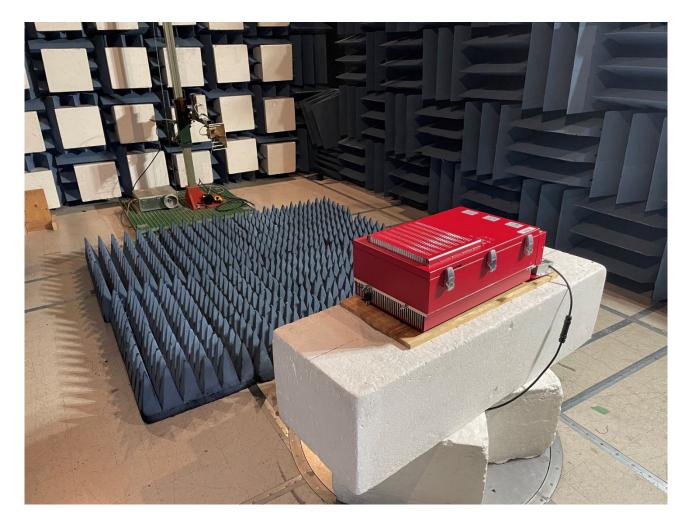
Project No.: 22105 Revision No.: 0

Supplementary information

- If the highest internal frequency of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz.
- If the highest internal frequency of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz.
- If the highest internal frequency of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz.
- If the highest internal frequency of the EUT is above 1 GHz, the measurement shall be made up to 6 GHz.
- Where the highest internal frequency is not known, tests shall be performed up to 6 GHz.

VERDICT: PASS

Test Method


This test measures the radiating levels from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices. Testing was performed in accordance with the test standard(s) referenced in the test summary section of this report. The Equipment Under Test (EUT) was configured based upon the requirements of the applicable test standard. Initially, the primary emission frequencies are identified by positioning a broadband receive antenna three meter from the EUT.

A scan was made with an EMC Analyzer, controlled by EMC Test Software, Tile7!, with the receiver in the peak mode. The receiver IF bandwidth was 1000 kHz and scan step was less than 300 kHz. To ensure that the maximum emission at each discrete frequency of interest is observed, the receive antenna is varied in height from one to four meters and rotated to produce horizontal and vertical polarities while the turntable is rotated to determine the worst emitting configuration. Measurements were then made using CISPR quasi peak when the peak readings were within 10dB of the limit line. The numerical results are included herein to demonstrate compliance.

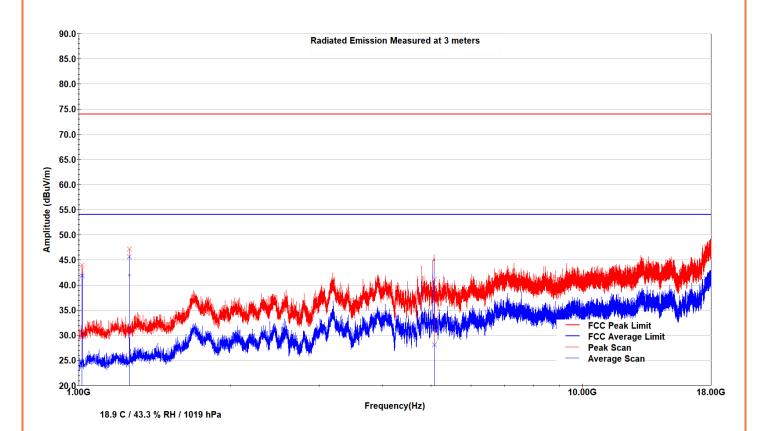
Project No.: 22105 Revision No.: 0

Test Setup

The EUT was placed on an 80 cm non-conducting table above a ground reference plane (GRP).

Date Issued: 2024-03-21 Project No.: 22105

Client: Avari Wireless Inc. Report No.: 20.01.22105-1


Revision No.: 0

Measurement data and Plot

Note:

- The test results below show that the EUT (Equipment Under Test) passes the tests with the Class B limit. Since
 the Class B limit is more restrictive than the Class A limit, it follows that the EUT also passes the tests with the
 Class A limit.
- 2) Quasi-peak (dBuV/m) = Raw Quasi-peak (dBuV) + Antenna Factor (dB/m) + Correction Factor (dB) Correction Factor (dB) = Cable loss(dB) + Preamp Gain(dB)

Radiated Emission 1 GHz – 18 GHz, 120V/60Hz, FCC Class B Limit

RAW Antenna Antenna Correction Raw Aveg Avg Peak Peak Frequency Average Peak **Polarization** Factor Limit Peak Limit Factor Average Margin Margin dBuV/ dBuV/ dBuv/ MH₂ V/H dB/m dB dBuV dBuV/m dB dBuV dB m m m 51.13 1014.8 ٧ 23.3 -30.5 49.1 41.9 12.1 54 43.95 30.05 74 6 52.20 26.76 1259.9 ٧ 24.7 -29.7 50.6 45.6 8.4 54 47.236 74 2 4 30.43 32.80 5079.8 ٧ 34.1 -23.4 17.4 28.1 25.9 54 41.198 74 6

Date Issued: 2024-03-21 Project No.: 22105

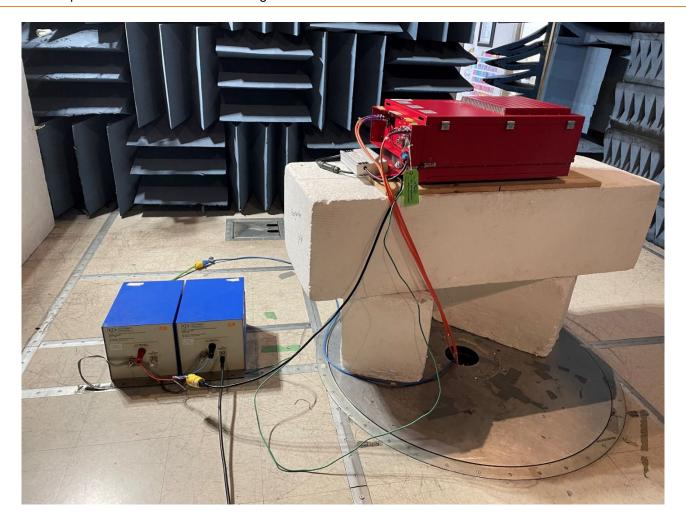
Report No.: 20.01.22105-1

Revision No.:

10 Conducted Emissions at AC Power Port

	1						
Standard	FCC Part 15 Subpart B						
Basic Standard(s)	ANSI	C63.4, CISPR 16-2	<u>?</u> -1				
Tested by	Jack	Qin					
Test date	2023-	-08-30					
Test location	in SA	C, Richmond					
Test Equipment		Manufacturer	Model	LabTest ID	Calibration date	Calibration due	
EMC Analyzer	Keys	ight Technologies	N9038A	702	02-Nov-2022	01-Nov-2023	
LISN		Com-Power	LI-150A	13-Apr-23	13-Apr-25		
LISN		Com-Power LI-150A 1528 13-Apr-23 13-Ap					
Applied limit		Conducted emissions Class A limits (AC mains power terminals)					
	ı	requency (MHz)	Quas	i-Peak (dBμV)	Average	(dBμV)	
		0.15 - 0.50		79	66	6	
		0.5 - 30		73	60)	
	Note	e 1 The lower limit s	shall apply at the	e transition frequenc	cies		
Test set-up		Set-up Type A (40	cm distance to	vertical ground plane	e, 80 cm over ground	plane)	
description		Set-up Type B (40	cm distance to	horizontal ground pla	ane)	· · · · ·	
		Floor standing equ	ıipment set-up (10 cm over ground p	lane)		
		Other:		<u> </u>	<u> </u>		
Test method applied		Artificial mains net	work (AMN)				
		Voltage Probe					
VERDICT: PASS							

Date Issued: 2024-03-21 Project No.: 22105

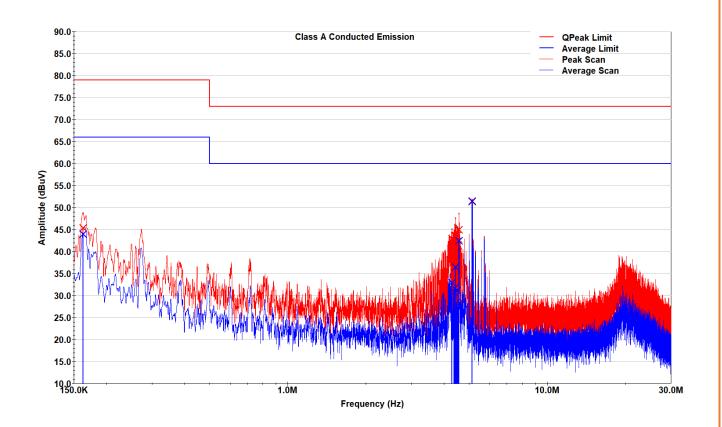

Revision No.: 0

Test method

This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices. Testing was performed in accordance with the test standard(s) referenced in the test summary section of this report. The Equipment Under Test (EUT) was configured based upon the requirements of the applicable test standard. Initially a scan was made with an EMC Analyzer, controlled by EMC Test Software, Tile7!, from 150 kHz to 30 MHz on each phase with the receiver in the peak mode. The measuring bandwidth was set up 9 kHz. Measurements were then made using CISPR16-1 quasi peak and averaging detectors when the peak readings were within 10dB of the Quasi-peak limit line.

Test setup

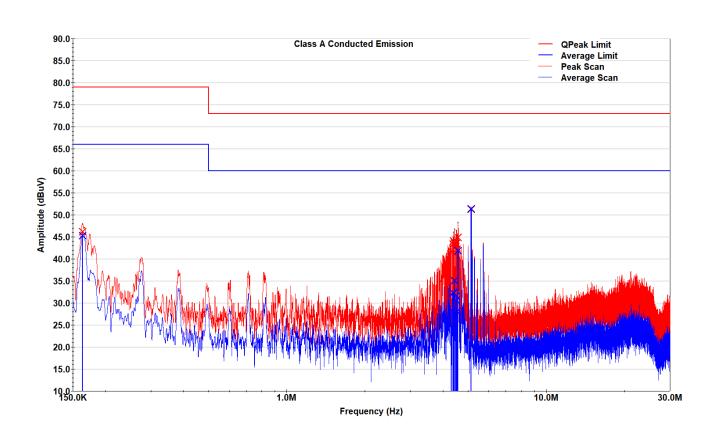
The EUT was placed on a 0.8m non-conducting table above GRP.


Project No.: 22105 Revision No.: 0

Measurement data and plot

Note:

Conducted Emission (dBuV) = Measured Emission (dBuV) + Correction Factor (dB) Correction Factor (dB) = LISN Transduce Factor (dB) + Cable loss(dB) + 20 dB limiter(dB)


Conducted Emission 150 kHz - 30MHz Class A, 120V/60Hz AC Main L1

Frequency	Correction Factor	QPeak	QPeak Margin	QPeak Limit	Average	Average Margin	Average Limit
MHz	dB	dBuV	dB	dBuV	dBuV	dB	dBuV
0.163	20.627	45.4	33.6	79	44.042	21.96	66
4.288	20.653	42.93	30.07	73	33.016	26.98	60
4.377	20.647	42.71	30.29	73	30.759	29.24	60
4.4	20.646	43.7	29.3	73	31.722	28.28	60
4.43	20.644	43.65	29.35	73	36.462	23.54	60
4.457	20.643	42.44	30.56	73	28.348	31.65	60
4.504	20.642	43.71	29.29	73	31.182	28.82	60
4.542	20.641	41.48	31.52	73	27.319	32.68	60
4.577	20.64	45.01	27.99	73	42.506	17.49	60
5.146	20.66	51.44	21.56	73	51.538	8.46	60

Project No.: 22105 Revision No.: 0

Conducted Emission 150 kHz - 30MHz Class A, 120V/60Hz AC Main L2

Frequency	Correction Factor	QPeak	QPeak Margin	QPeak Limit	Average	Average Margin	Average Limit
MHz	dB	dBuV	dB	dBuV	dBuV	dB	dBuV
0.163	20.627	46.16	32.84	79	45.281	20.72	66
4.306	20.652	41.74	31.26	73	28.423	31.58	60
4.372	20.647	43.39	29.61	73	32.364	27.64	60
4.396	20.646	44.1	28.9	73	32.313	27.69	60
4.429	20.644	43.56	29.44	73	35.091	24.91	60
4.487	20.642	42.83	30.17	73	30.717	29.28	60
4.508	20.642	43.53	29.47	73	31.58	28.42	60
4.532	20.641	42.24	30.76	73	28.111	31.89	60
4.577	20.64	44.9	28.1	73	41.942	18.06	60
5.147	20.66	51.34	21.66	73	51.383	8.62	60

Project No.: 22105 Revision No.: 0

Annex

Annex 1 – Measurement Uncertainties

Where relevant, the following measurement uncertainty levels have been estimated for tests:

Parameter	Uncertainty			
Radio Frequency	± 1 ppm			
Total RF Power: Conducted	± 1 dB			
RF Power Density: Conducted	± 2.75 dB			
Spurious Emissions: Conducted	± 3.0 dB			
Temperature	± 1.0 °C			
Humidity	± 5.0 %			
DC and Low Frequency Voltages	± 3.0 %			
Radiated Emission, 30 to 6,000MHz	± 4.93 dB			
Conducted Measurements, 0.15 to 30MHz	± 3.52 dB			

Uncertainty figures are valid to a confidence level of 95%.

Annex 2 - ISO 17025 ACCREDITATION CERTIFICATE

For complete scope of certification use

https://labtestcert.com/wp-content/uploads/2023/07/LabTestCertificationCertScope-V017.pdf

END OF REPORT