

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No.....: CTA24103100401 FCC ID.....: 2BA4J-TNC335R

Compiled by

(position+printed name+signature)..: File administrators Xudong Zhang

Supervised by

(position+printed name+signature)..: Project Engineer Zoey Cao

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Date of issue...... Nov. 08, 2024

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name......Pangao Photoelectric

Building 06, Unit 501, No. 16 Wenchang Road Hunan Xiangxiang

Economic Development Zone, Hunan Province, China

CTA TESTIN

Test specification:

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Equipment description......ThermNight Scope

Trade Mark: DNT OPTICS

Manufacturer Pangao Photoelectric

Model/Type reference.....: TNC335R

Listed ModelsTNC635R, TNC650R, ELS335R, ELS650R

Modulation: GFSK

Frequency...... From 2402MHz to 2480MHz

RatingsDC 3.7V From battery and DC 5.0V From external circuit

Result..... PASS

Report No.: CTA24103100401 Page 2 of 42

TEST REPORT

Equipment under Test ThermNight Scope

Model /Type TNC335R

Listed Models TNC635R, TNC650R, ELS335R, ELS650R

Pangao Photoelectric Applicant

Building 06, Unit 501, No. 16 Wenchang Road Hunan Xiangxiang Address CTA TESTING

Economic Development Zone, Hunan Province, China

Manufacturer Pangao Photoelectric

Building 06, Unit 501, No. 16 Wenchang Road Hunan Xiangxiang Address

Economic Development Zone, Hunan Province, China

d	C/L	INC
	Test Result:	PASS
uav	CTP	TING

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory. CTATESTING

Page 3 of 42 Report No.: CTA24103100401

Contents

		Co	entents	
	1	TEST STANDARDS	TING	4
		CTATE	717-	1G
	<u>2</u>	SUMMARY		<u>5</u>
	2.1	General Remarks		5
	2.2	Product Description*		5
	2.3	Equipment Under Test		5
	2.4	Short description of the Equipment under	er Test (FIIT)	5
	2.5	EUT operation mode	i lest (LOT)	6
	2.6	Block Diagram of Test Setup		6
	2.7	Related Submittal(s) / Grant (s)		6
. 0	2.8	Modifications		6
1	2.0	WoullCations		U
		G\P		
	<u>3_</u>	TEST ENVIRONMENT	<u></u>	7
	_	To sent the sent to the sent t	CIP.	TIN
	0.4	A Library of the decidal condens		7 7 7 8
	3.1	Address of the test laboratory		7
	3.2	Test Facility		G 11
	3.3	Environmental conditions		7
	3.4	Summary of measurement results		•
	3.5	Statement of the measurement uncertain	ıty	8
	3.6	Equipments Used during the Test		9
		ESTIT		
	4	TEST CONDITIONS AND RESU	JLTS	
	Cark	/ C		
		TE TE		C
	4.1	AC Power Conducted Emission		10
	4.2	Radiated Emissions and Band Edge	TESI	13
	4.3	Maximum Peak Output Power	CTA	20
	4.4	Power Spectral Density		21
	4.5	6dB Bandwidth	CTA TESTIN	23
	4.6	Out-of-band Emissions		25
	4.7	Antenna Requirement		29
	EZ	TEST SETUP PHOTOS OF THE	FIIT	30
	<u>5</u>	TEST SETOT THOTOS OF THE		
		55711		
	<u>6</u>	PHOTOS OF THE EUT	<u></u>	<u> 31</u>
			CTATESTING	~ES\\"
				CTATESTING
				(' / ,

Report No.: CTA24103100401 Page 4 of 42

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices CTATE KDB558074 D01 V05r02: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 CTATESTING

Page 5 of 42 Report No.: CTA24103100401

SUMMARY

General Remarks

CTATE			
2.1 General Remarks		TESI	
Date of receipt of test sample	THE THE PARTY OF T	Oct. 31, 2024	TESTING
Testing commenced on		Oct. 31, 2024	CTA
Testing concluded on	:	Nov. 08, 2024	

2.2 Product Description*

Testing commenced on	: Oct. 31, 2024					
Testing concluded on	: Nov. 08, 2024					
2.2 Product Descrip	ption*					
Product Description:	ThermNight Scope					
Model/Type reference:	TNC335R					
Power supply:	DC 3.7V From battery and DC 5.0V From external circuit					
Adapter information (Auxiliary test supplied by test Lab):	Model: EP-TA20CBC Input: AC 100-240V 50/60Hz Output: DC 5V 2A					
Hardware version:	V1.0					
Software version:	V1.0					
Testing sample ID:	CTA241031004-1# (Engineer sample) CTA241031004-2# (Normal sample)					
Bluetooth BLE						
Supported type:	Bluetooth low Energy					
Modulation:	GFSK					
Operation frequency:	2402MHz to 2480MHz					
Channel number:	40					
Channel separation:	2 MHz					
Antenna type:	PIFA antenna					
Antenna gain:	-1.74 dBi					

2.3 Equipment Under Test

Power supply system utilised

2.3 Equipment Und	er Test					
Power supply system	utilised					
Power supply voltage	:	0	230V / 50 Hz	(○ 120V / 60Hz	was the same
	- 1	0	12 V DC	(○ 24 V DC	
	-711		Other (specified in bl	ank belo	w)	

DC 3.7V From battery and DC 5.0V From external circuit

2.4 Short description of the Equipment under Test (EUT)

This is a ThermNight Scope.

For more details, refer to the user's manual of the EUT.

Page 6 of 42 Report No.: CTA24103100401

2.5 EUT operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing. There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test.

Operation Frequency:

porument requestey:	
Channel	Frequency (MHz)
00	2402
01	2404
02	2406
UNG	
19	2440
TESTIN	:
37	2476
38	2478
39	2480
2.6 Block Diagram of Test Setup	CTATES III

Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria. CTA TESTING Report No.: CTA24103100401 Page 7 of 42

TEST ENVIRONMENT

Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

T	emperature:	23 ° C
3		TES
200	łumidity:	44 %
Α	Atmospheric pressure:	950-1050mbar

AC Main Conducted testing:

Temperature:	24 ° C
Tomporatoro.	21 0
(3	
Humidity:	47 %
	. C.
Atmospheric pressure:	950-1050mbar

	Allilosphenc pressure.	330-103011Ibai	
С	onducted testing:	TES.	TING
	Temperature:	24 ° C	TESI
	No. of the last of	110	(A)
	Humidity:	46 %	
	Atmospheric pressure:	950-1050mbar	

Report No.: CTA24103100401 Page 8 of 42

Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel		ecorded Report	Test result
§15.247(e)	Power spectral density	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	complies
§15.247(b)(3)	Maximum output Peak power	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	complies
§15.247(d)	Band edge compliance conducted	BLE 1Mpbs	☑ Lowest☑ Highest	BLE 1Mpbs	☑ Lowest☑ Highest	complies
§15.205	Band edge compliance radiated	BLE 1Mpbs	☑ Lowest☑ Highest	BLE 1Mpbs	☑ Lowest☑ Highest	complies
§15.247(d)	TX spurious emissions conducted	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
§15.247(d)	TX spurious emissions radiated	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
§15.209(a)	TX spurious Emissions radiated Below 1GHz	BLE 1Mpbs	-/-	BLE 1Mpbs	-/-	complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	BLE 1Mpbs	-1NG -/-	BLE 1Mpbs	-/-	complies

Remark:

- The measurement uncertainty is not included in the test result.
- We tested all test mode and recorded worst case in report

Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

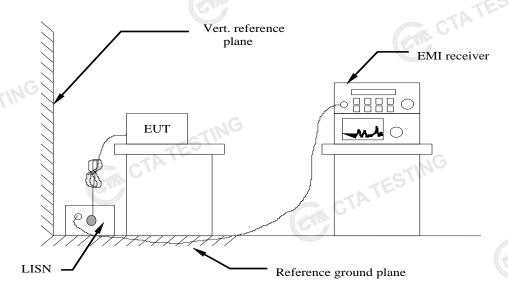
Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	-ING/	0.57 dB	(1)
Spectrum bandwidth	-25 /	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

Page 9 of 42 Report No.: CTA24103100401

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

	A TO MATTER	C				
	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02
	LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02
	EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02
	EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02
	Spectrum Analyzer	R&S	FSU	CTA-337	2024/08/03	2025/08/02
	Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02
	Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02
	WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/02
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/16
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/12
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/16
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2023/10/17	2026/10/16
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02
	Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02
TE	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02
	Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02
						TES


Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A
	CIM C	TATESIN	= cTP	TESTING	

Report No.: CTA24103100401 Page 10 of 42

TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

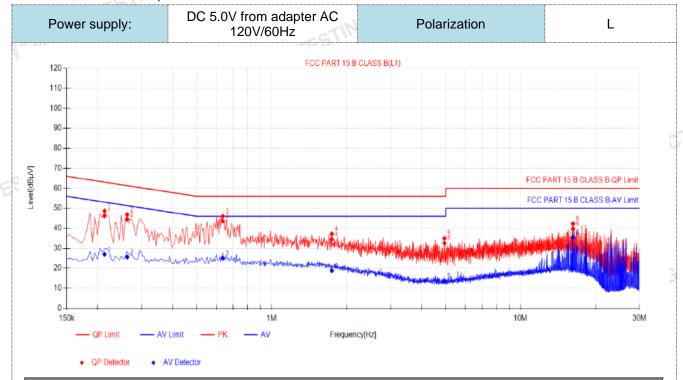
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency rang	no (MHz)	Limit ((dBuV)
Frequency rang	ge (IVII 12)	Quasi-peak	Average
0.15-0.	5	66 to 56*	56 to 46*
0.5-5		56	46
5-30		60	50
* Decreases with the loga	arithm of the frequency	STING	
TEST RESULTS	CTAT		ESTING
Remark:			CATES

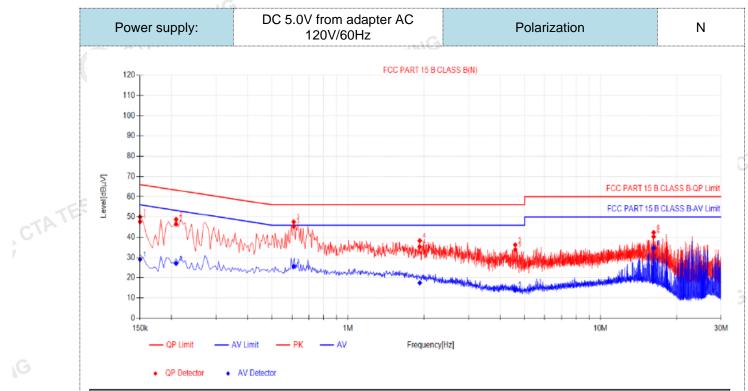

TEST RESULTS

Remark:

1. BLE 1Mpbs was tested at Low, Middle, and High channel; only the worst result of BLE 1Mpbs High channel

Report No.: CTA24103100401 Page 11 of 42

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:


Final	Data Lis	t									
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dΒμV]	ΑV Value [dBμV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict
1	0.213	10.06	36.13	46.19	63.09	16.90	16.93	26.99	53.09	26.10	PASS
2	0.2625	9.94	34.51	44.45	61.35	16.90	15.70	25.64	51.35	25.71	PASS
3	0.636	10.00	33.59	43.59	56.00	12.41	15.08	25.08	46.00	20.92	PASS
4	1.743	9.91	24.53	34.44	56.00	21.56	8.94	18.85	46.00	27.15	PASS
5	4.938	9.99	22.57	32.56	56.00	23.44	3.78	13.77	46.00	32.23	PASS
6	16.2285	10.33	29.45	39.78	60.00	20.22	25.27	35.60	50.00	14.40	PASS

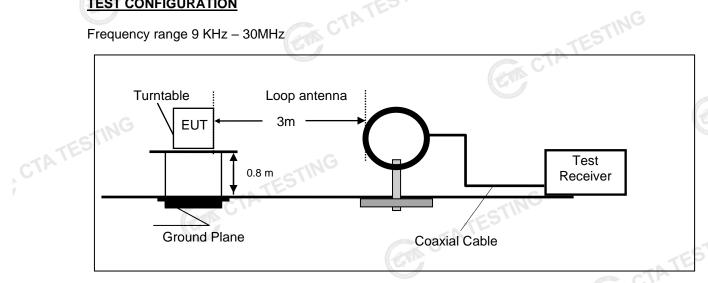
Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$ CTATESTING

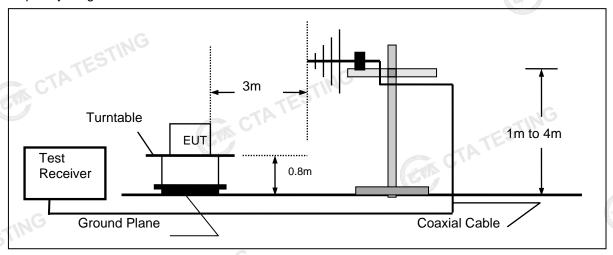
CTA TESTING

Report No.: CTA24103100401 Page 12 of 42

2 0.2085 9.96 36.51 46.47 63.26 16.79 17.10 27.06 53.26 26.20 PASS 3 0.609 10.15 35.10 45.25 56.00 10.75 15.43 25.58 46.00 20.42 PASS 4 1.923 10.18 25.13 35.31 56.00 20.69 7.28 17.46 46.00 28.54 PASS	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	ΑV Reading [dBμV]	ΑV Value [dBμV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict
3 0.609 10.15 35.10 45.25 56.00 10.75 15.43 25.58 46.00 20.42 PASS 4 1.923 10.18 25.13 35.31 56.00 20.69 7.28 17.46 46.00 28.54 PASS	1	0.15	9.98	37.71	47.69	66.00	18.31	19.05	29.03	56.00	26.97	PASS
4 1.923 10.18 25.13 35.31 56.00 20.69 7.28 17.46 46.00 28.54 PASS	2	0.2085	9.96	36.51	46.47	63.26	16.79	17.10	27.06	53.26	26.20	PASS
	3	0.609	10.15	35.10	45.25	56.00	10.75	15.43	25.58	46.00	20.42	PASS
5 45045 40.40 90.70 90.00 50.00 90.40 40.40 40.00 90.00 50.00	4	1.923	10.18	25.13	35.31	56.00	20.69	7.28	17.46	46.00	28.54	PASS
5 4.5915 10.10 23.78 33.88 56.00 22.12 3.94 14.04 46.00 31.96 PASS	5	4.5915	10.10	23.78	33.88	56.00	22.12	3.94	14.04	46.00	31.96	PASS
6 16.2285 10.45 29.84 40.29 60.00 19.71 24.21 34.66 50.00 15.34 PASS	6	16.2285	10.45	29.84	40.29	60.00	19.71	24.21	34.66	50.00	15.34	PASS

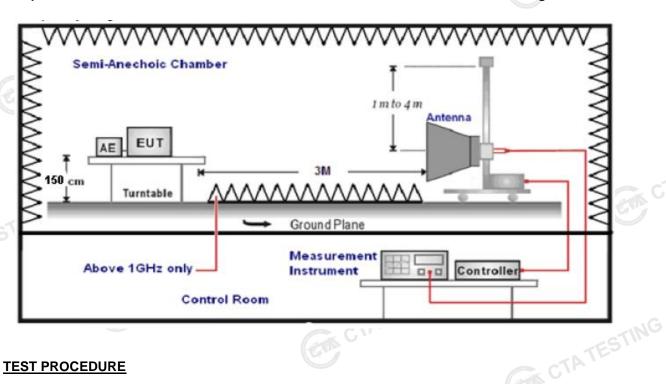

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
 - 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$ CTA TESTING

Page 13 of 42 Report No.: CTA24103100401


4.2 Radiated Emissions and Band Edge

TEST CONFIGURATION

Frequency range 9 KHz – 30MHz



Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Page 14 of 42 Report No.: CTA24103100401

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.

The distance between test antenna and EUT as following table states: 6.

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector		
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP		
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP		
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP		
3100	Peak Value: RBW=1MHz/VBW=3MHz,	TING		
1GHz-40GHz	Hz-40GHz Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz,			
	Sween time=Auto			

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

le calculation is as follows:	
RA + AF + CL - AG	
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	(-CVA

Report No.: CTA24103100401 Page 15 of 42

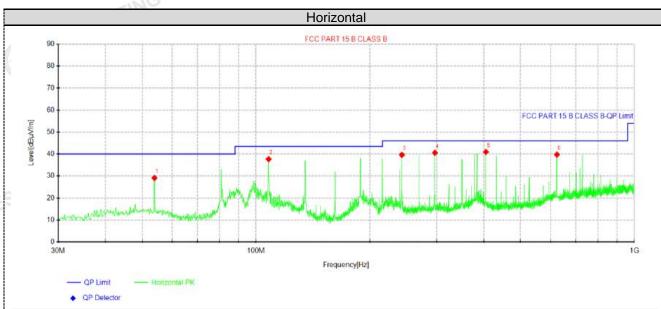
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)		
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)		
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)		
1.705-30	3	20log(30)+ 40log(30/3)	30		
30-88	3	40.0	100		
88-216	3	43.5	150		
216-960	3	46.0	200		
Above 960	3	54.0	500		


TEST RESULTS

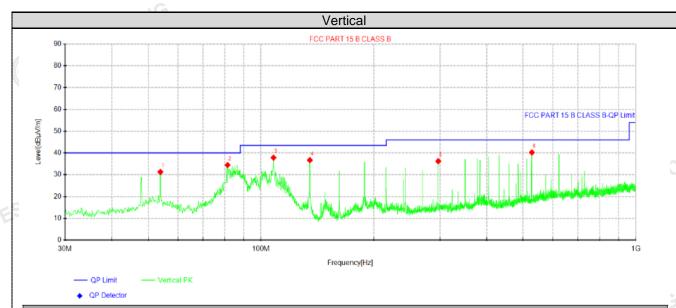
Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- 2. BLE 1Mpbs were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report. CTATESTING

For 30MHz-1GHz

Page 16 of 42 Report No.: CTA24103100401

Suspe	ected Data	List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dalavitu
NO.	[MHz]	[dBµ∨]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	53.8862	40.61	29.16	-11.45	40.00	10.84	100	350	Horizontal
2	107.963	50.92	37.70	-13.22	43.50	5.80	100	189	Horizontal
3	242.915	51.95	39.67	-12.28	46.00	6.33	100	270	Horizontal
4	296.992	51.58	40.58	-11.00	46.00	5.42	100	106	Horizontal
5	405.026	51.03	40.93	-10.10	46.00	5.07	100	258	Horizontal
6	624.003	45.49	39.77	-5.72	46.00	6.23	100	94	Horizontal


CTATE

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTATESTING

Report No.: CTA24103100401 Page 17 of 42

Susp	Suspected Data List													
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolovitu					
NO.	[MHz]	[dBµ∨]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity					
1	53.8862	42.76	31.31	-11.45	40.00	8.69	100	299	Vertical					
2	81.41	50.97	34.46	-16.51	40.00	5.54	100	253	Vertical					
3	107.963	51.10	37.88	-13.22	43.50	5.62	100	185	Vertical					
4	135.002	52.82	36.73	-16.09	43.50	6.77	100	150	Vertical					
5	296.992	47.24	36.24	-11.00	46.00	9.76	100	3	Vertical					
6	527.973	49.19	40.26	-8.93	46.00	5.74	100	78	Vertical					

CTATE

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Page 18 of 42 Report No.: CTA24103100401

For 1GHz to 25GHz

GFSK (above 1GHz)

Freque	Frequency(MHz):			2402		Polarity:		HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
4804.00	61.95	PK	74	12.05	66.22	32.33	5.12	41.72	-4.27		
4804.00	45.07	AV	54	8.93	49.34	32.33	5.12	41.72	-4.27		
7206.00	53.75	PK	74	20.25	54.27	36.6	6.49	43.61	-0.52		
7206.00	43.07	AV	54	10.93	43.59	36.6	6.49	43.61	-0.52		

Frequency(MHz):			24	02	Polarity:		VERTICAL		
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	59.70	PK	74	14.30	63.97	32.33	5.12	41.72	-4.27
4804.00	43.34	AV	54	10.66	47.61	32.33	5.12	41.72	-4.27
7206.00	51.48	PK	74	22.52	52.00	36.6	6.49	43.61	-0.52
7206.00	41.22	AV	54	12.78	41.74	36.6	6.49	43.61	-0.52

Frequency(MHz):			2440		Polarity:		HORIZONTAL		
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	61.21	PK	74	12.79	65.09	32.6	5.34	41.82	-3.88
4880.00	44.18	AV	54	9.82	48.06	32.6	5.34	41.82	-3.88
7320.00	53.21	PK	74	20.79	53.32	36.8	6.81	43.72	-0.11
7320.00	42.23	AV	54	11.77	42.34	36.8	6.81	43.72	-0.11
75 usus			- Table 1	P			-IN	G	

Freque	Frequency(MHz):		2440		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	59.35	PK	74	14.65	63.23	32.6	5.34	41.82	-3.88
4880.00	41.97	AV	54	12.03	45.85	32.6	5.34	41.82	-3.88
7320.00	51.20	PK	74	22.80	51.31	36.8	6.81	43.72	-0.11
7320.00	40.02	AV	54	13.98	40.13	36.8	6.81	43.72	-0.11
			GTIN						

Frequency(MHz):		2480		Polarity:		HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.63	PK	74	13.37	63.71	32.73	5.66	41.47	-3.08
4960.00	43.35	AV	54	10.65	46.43	32.73	5.66	41.47	-3.08
7440.00	52.61	PK	74	21.39	52.16	37.04	7.25	43.84	0.45
7440.00	41.73	PK	54	12.27	41.28	37.04	7.25	43.84	0.45

Freque	Frequency(MHz):			2480		Polarity:		VERTICAL		
Frequency (MHz)	Emis	ssion vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4960.00	58.87	PK	74	15.13	61.95	32.73	5.66	3 41.47	-3.08	
4960.00	41.60	AV	54	12.40	44.68	32.73	5.66	41.47	-3.08	
7440.00	50.78	PK	74	23.22	50.33	37.04	7.25	43.84	0.45	
7440.00	39.89	PK	54	14.11	39.44	37.04	7.25	43.84	0.45	

REMARKS:

Page 19 of 42 Report No.: CTA24103100401

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Frequency(MHz):		24	02	Pola	Polarity:		HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2390.00	61.81	PK	74	12.19	72.23	27.42	4.31	42.15	-10.42	
2390.00	43.66	AV	54	10.34	54.08	27.42	4.31	42.15	-10.42	
Freque	ncy(MHz)):	24	02	Pola	Polarity:		VERTICAL	-	
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2390.00	59.24	PK	74	14.76	69.66	27.42	4.31	42.15	-10.42	
2390.00	41.36	AV	54	12.64	51.78	27.42	4.31	42.15	-10.42	
Frequency(MHz):):	2480		Polarity:		HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2483.50	61.21	PK	74	12.79	71.32	27.7	4.47	42.28	-10.11	
2483.50	42.93	AV	54	11.07	53.04	27.7	4.47	42.28	-10.11	
Freque	ncy(MHz)):	24	80	Polarity:		VERTICAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2483.50	59.41	PK	74	14.59	69.52	27.7	4.47	42.28	-10.11	
2483.50	40.81	AV	54	13.19	50.92	27.7	4.47	42.28	-10.11	
REMARKS 1. Emissior 2. Correction 3. Margin v	: n level (dB on Factor (ralue = Lin	BuV/m) =R (dB/m) = A nit value-	Raw Value (dE Antenna Fact Emission leve	BuV)+Correct or (dB/m)+Ca	ion Factor (able Factor	dB/m)		72.20	CT CT	

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Page 20 of 42 Report No.: CTA24103100401

Maximum Peak Output Power

Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

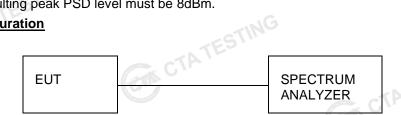
Test Configuration

Test Results

			ATESTIN
Channel	Output power (dBm)	Limit (dBm)	Result
00	-1.62		
19	-1.80	30.00	Pass
39	-2.06		
	TES!	CTATESTING	
	00 19 39	19 -1.80 39 -2.06	Channel Output power (dBm) Limit (dBm) 00 -1.62 19 -1.80 39 -2.06

Report No.: CTA24103100401 Page 21 of 42

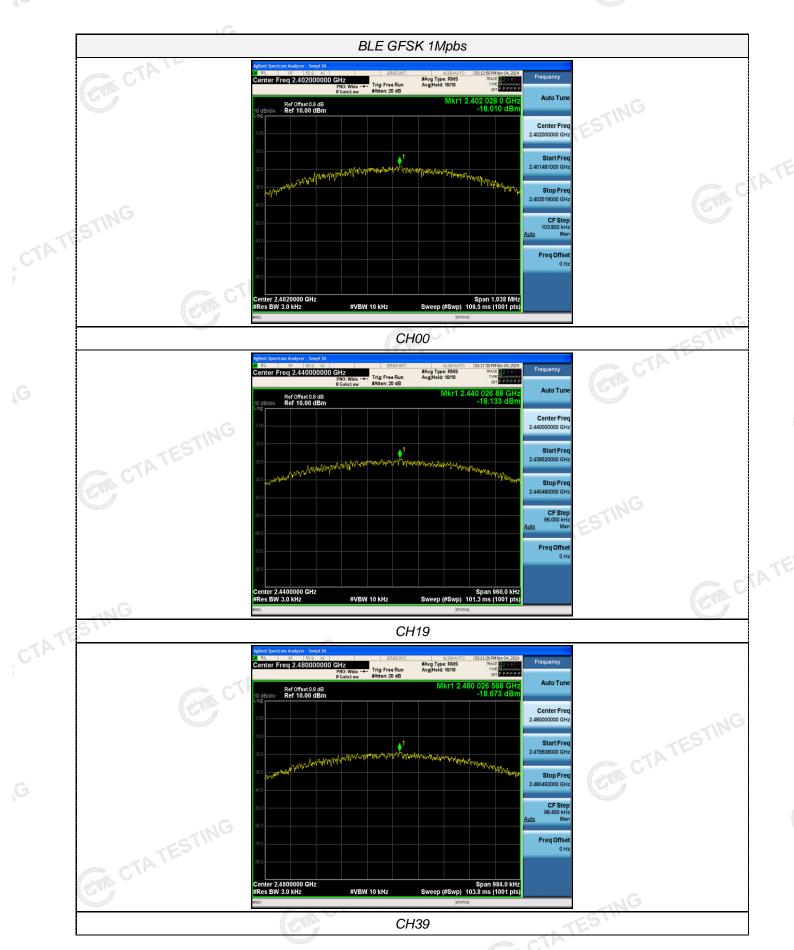
Power Spectral Density


Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- Set the VBW ≥ 3× RBW.
- CTA TESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.


Test Configuration

Test Results

Г			Power Spectral Density		
-=(Type	Channel	(dBm/3KHz)	Limit (dBm/3KHz)	Result
7,7		00	-18.01		
	GFSK 1Mbps	19	-18.13	8.00	Pass
		39	-18.67	-1G	
	Test plot as follows	31			0

Report No.: CTA24103100401 Page 22 of 42

Report No.: CTA24103100401 Page 23 of 42

4.5 6dB Bandwidth

Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

		2.2	CTATESTIN
	6dB Bandwidth	(Carr	
Channel	(MHz)	Limit (KHz)	Result
00	0.692		
19	0.640	≥500	Pass
39	0.656		
Con Co	TATES	CTATESTIN	
	19	Channel 6dB Bandwidth (MHz) 00 0.692 19 0.640 39 0.656	Channel 6dB Bandwidth (MHz) Limit (KHz) 00 0.692 19 0.640 ≥500

Report No.: CTA24103100401 Page 25 of 42

Out-of-band Emissions 4.6

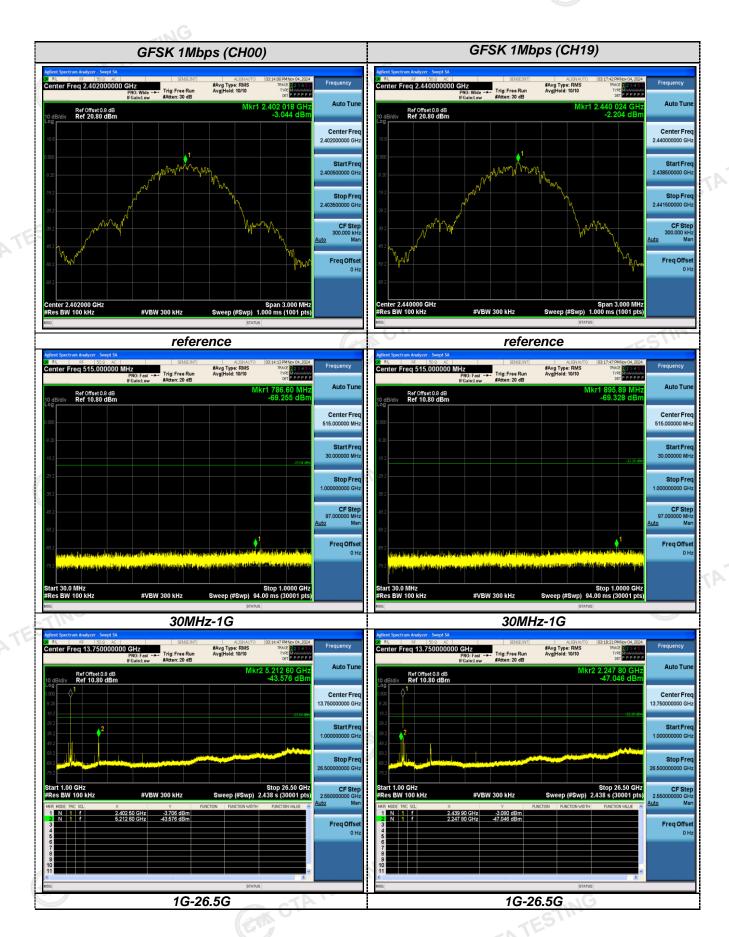
Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

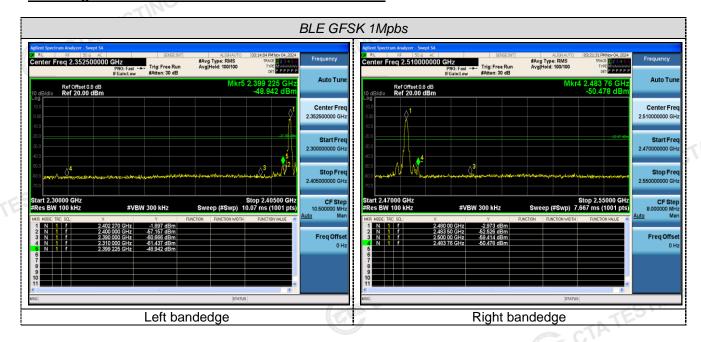


Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage CTATE measurement data.

Test plot as follows:

Report No.: CTA24103100401 Page 26 of 42



Report No.: CTA24103100401 Page 27 of 42

Page 28 of 42 Report No.: CTA24103100401

Band-edge Measurements for RF Conducted Emissions:

Report No.: CTA24103100401 Page 29 of 42

Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The gain of antenna was -1.74 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility. CTATESTING

Report No.: CTA24103100401 Page 30 of 42

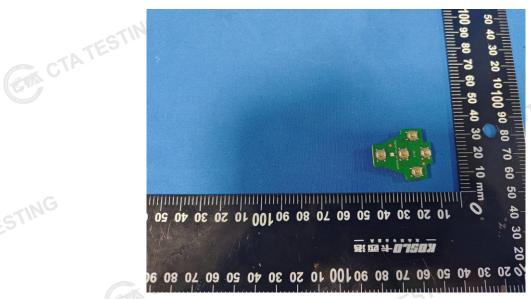
5 Test Setup Photos of the EUT

Page 31 of 42 Report No.: CTA24103100401

Photos of the EUT

Page 32 of 42 Report No.: CTA24103100401

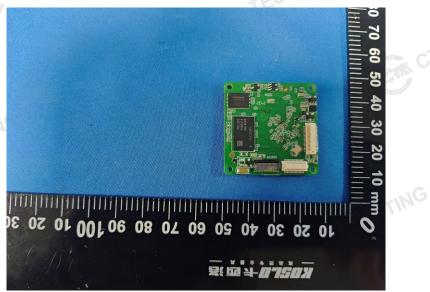
Report No.: CTA24103100401 Page 33 of 42

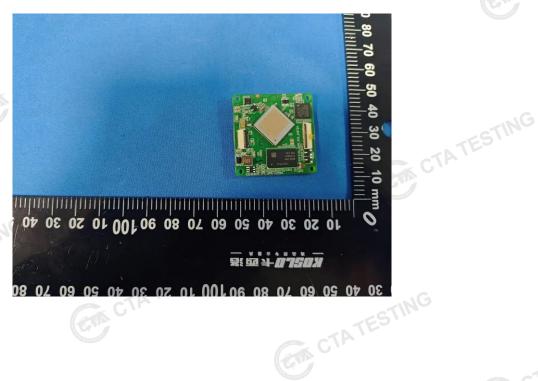

Page 34 of 42 Report No.: CTA24103100401


Report No.: CTA24103100401 Page 35 of 42

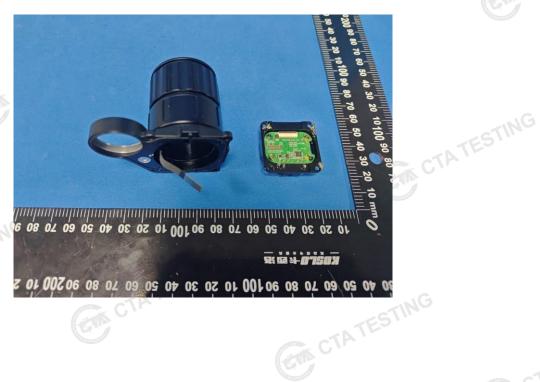
Report No.: CTA24103100401 Page 36 of 42

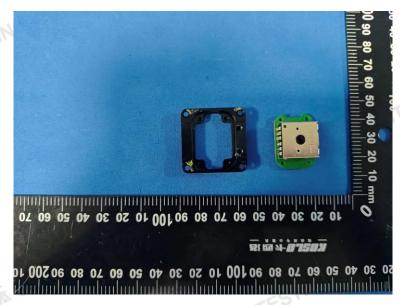
Page 37 of 42 Report No.: CTA24103100401

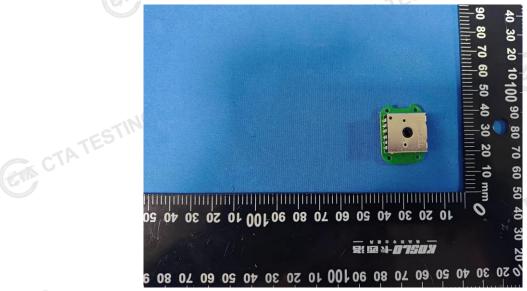


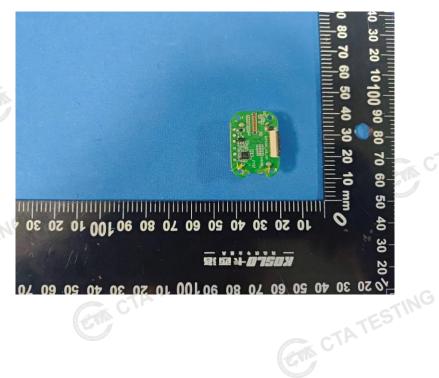


Page 38 of 42 Report No.: CTA24103100401

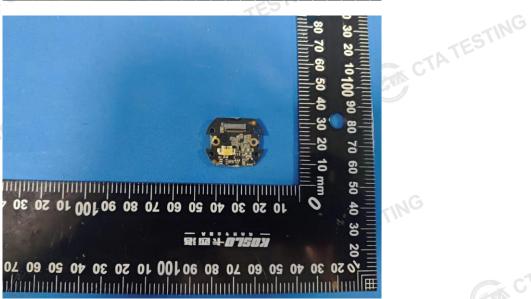



Page 39 of 42 Report No.: CTA24103100401





Report No.: CTA24103100401 Page 40 of 42



Report No.: CTA24103100401 Page 41 of 42

Page 42 of 42 Report No.: CTA24103100401

