

RF Test Report

Standard(s): FCC Part 15 Subpart 15.247, RSS-247 Issue 3:2023 Unlicensed Intentional Radiators

Issued To: Elastic Care 95 Apple Creek Boulevard Markham, Ontario Canada, L3R 1C7

Product Name:Mobile ECG and multi-sensor
medical monitorModel:Lifepath-CFCC ID:2BA2T-LPC1IC:30674-LPC1

Report No.ML300116-RF00Date of Issue:June 5, 2023

Report Prepared By:

When I g

Raymond Au, Project Engineer

Reviewed By:

Amir Emami, Project Engineer

Megalab Group Inc. – 150 Addison Hall Circle, Aurora, Ontario, L4G 3X8, Canada www.megalabinc.com – (905) 752-1925 This const may not be considered assertion for written assertion of Marshab Group Inc.

Table of Contents

1.	Revi	ision History	3
2.	Sum	nmary of Test Results	4
2	2.1	Test Verdict	4
2	2.2	Test Standards	6
2	2.3	Test Facility	7
3.	Gen	eral Information	10
Э	8.1	Client Information	10
Э	3.2	Device Under Test (DUT)	10
Э	8.3	Test Setup of DUT	11
Э	8.4	Modifications for Compliance	11
4.	Test	Results	12
Z	1.1	Spurious Radiated Emissions	12
Z	1.2	Emission Bandwidth	25
Z	1.3	Maximum Output Power	32
Z	1.4	Maximum Radiated Output Power	36
Z	1.5	Antenna Spurious Conducted Emissions	43
Z	1.6	Power Spectral Density	47
5.	Test	Setup Photos	52

1. Revision History

Project No. & Revision	Report Date	Initials	Description
ML300116-RF00	June 5, 2023	RA	Initial Release
-	-	-	-

NOTE:

- The latest revision replaces previous revisions.
- This report relates only to the sample(s) identified in this report.

2. Summary of Test Results

2.1 Test Verdict

Unless otherwise stated, the results shown in this test report relate only to the sample(s) tested.

	rement	Test Type Result		Remark		
FCC	ISED	Test Type	Result	Kemark		
15.203		Antenna Requirement	Pass	Antenna is an Inventek Systems P/N W24P-U. It connects to the PCB using a U.FI connector, and is located inside the unit's enclosure. It is not accessible to, or changeable by, the user.		
15.205	RSS-GEN (Table 7)	Restricted Bands for Intentional Operation	Pass			
15.209	RSS-GEN (Tables 5 & 6)	Transmitter Spurious Radiated Emissions & Band Edges	Pass			
FCC 15.247(a)(2)	RSS-247 5.2(a)	6 dB Emission Bandwidth	Pass			
	RSS-GEN 6.7 99% Emission Bandwidth		Pass			
FCC 15.247(b)(3)	RSS-247 5.4(d)	Maximum Output Power	Pass			
FCC 15.247(b)(4)	4) Antenna Gain		Pass	Antenna has a max gain of +3.58 dBi.		
	RSS-247 5.4(d)	Max E.I.R.P Output	Pass			
FCC 15.247(d)	RSS-247 5.5	Antenna Spurious Conducted Emissions	Pass			
FCC 15.247(e) RSS-247 5.2(b) Power Spectral Density		Pass				
FCC 15.247(i) RSS-102 (Table 1)		Maximum RF exposure	Pass			

Report No.: ML300116-RF00

Issue Date: June 5, 2023

FCC 15.207	RSS-GEN (Table 4)	Power Line Conducted Emissions	N/A	DUT is powered by a battery which must be detached before being recharged in a separate charger. DUT does not have a means of transmitting while connected to mains power.
------------	----------------------	-----------------------------------	-----	---

N/A = Not Applicable

2.1.1 Test Verdict Notes

The DUT was mounted in three orthogonal axes and worst-case results were obtained with the DUT upright. Worst case results are presented. See the Test Setup Photos for test orientation.

Antenna details were obtained from the client. Max antenna gain is less than 6dBi.

As per FCC 15.203, the antenna connects to the PCB using a U.Fl connector, and is located within the unit's enclosure. It is not accessible or changeable by the user.

For testing, the DUT's output is set to transmit continuously at 100% duty cycle at the maximum output power used during the unit's operation.

The DUT is powered by a battery which must be detached before being recharged in a separate charger. It does not have a means of transmitting while connected to mains power.

2.2 Test Standards

Standard	Description
ANSI C63.4:2014	Methods of Measurement of Radio-Noise Emissions from Low-
	Voltage Electrical and Electronic Equipment in the Range of 9 kHz
	to 40 GHz
ANSI C63.10:2013	American National Standard for Testing Unlicensed Wireless
	Devices
CFR 47 FCC 15 Subpart C	Code of Federal Regulations – Radio Frequency Devices,
	Intentional Radiators
FCC KDB 558074:2019	FCC KDB 558074 Digital Transmission Systems, measurements
	and procedures
FCC KDB 447498 D01:2015	Rf Exposure Procedures and Equipment Authorization Policies for
	Mobile and Portable Devices - General RF Exposure Guidance v06
FCC KDB 447498 D04:2021	RF Exposure Procedures and Equipment Authorization Policies for
	Mobile and Portable Devices - Interim General RF Exposure
	Guidance v01
ICES-003 Issue 7:2020	Digital Apparatus - Spectrum Management and
	Telecommunications Policy Interference-Causing Equipment
	Standard
RSS-GEN Issue 5:2021	General Requirements and Information for the Certification of
	Radio Apparatus
RSS-102 Issue 5:2021	Radio Frequency (RF) Exposure Compliance of
	Radiocommunication Apparatus (All Frequency Bands)
RSS-210 Issue 10:2019	Licence-Exempt Radio Apparatus: Category I Equipment
RSS-247 Issue 3:2023	Digital Transmission Systems (DTSs), Frequency Hopping Systems
	(FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
ISO 17025:2017	General Requirements for the Competence of Testing and
	Calibration Laboratories

2.3 Test Facility

All tests were performed at Megalab Group Inc., located at 150 Addison Hall Circle, Aurora, ON, L4G 3X8, Canada.

The 10-meter semi-anechoic chamber for radiated emission and radiated immunity is designed to handle weights of up to 10,000lb and has power capability of over 100A. The turntable is capable of supporting test devices or systems either floor standing or table top of up to 4 meters wide and 3m tall. Conducted emissions, unless otherwise specified, are performed on a 2.44m x 2.48m ground plane and using a 2.44m x 2.48m vertical ground plane if applicable.

2.3.1 Accreditations

This report does not indicate any product endorsement by any government, accreditation agency, or Megalab Group Inc. Megalab Group Inc. shall have no liability for any deductions, interpretations or generalizations drawn by the client or others from the issued reports. If any opinions or interpretations are expressed in this report, they are outside Megalab Group Inc.'s scope of accreditation and do not necessarily reflect the opinions of Megalab Group Inc., unless otherwise specified.

A2LA (Certificate #5179.02)

Megalab Group Inc. is accredited to ISO/IEC 17025:2017 by the American Association for Laboratory Accreditation (A2LA) with Testing Certificate #5179.02. The laboratories current scope of accreditation can be found as listed on A2LA's website.

Innovation, Science and Economic Development Canada

ISED

Megalab Group Inc. is registered with and recognized by Innovation, Science and Economic Development Canada (ISED) as an accredited testing laboratory. Company Number: 28697

FCC

Megalab Group Inc. is registered with and recognized by the Federal Communications Commission (FCC) as an accredited testing laboratory.

Registration No. 200040

2.3.2 Measurement Uncertainty

Report No.:

ML300116-RF00

As per ISO/IEC 17025 requirements, an evaluation of the measurement uncertainties associated with the emission test results should be included in the test report.

Where relevant, the following measurement uncertainty levels have been estimated for the tests performed on the DUT as specified in CISPR 16-4-2. The measurement uncertainties given below are based on a coverage factor k = 2 which yields approximately a 95% level of confidence for the near-normal distribution typical of most measurement results.

Measurement	Frequency Range	Uncertainty
Conducted Emissions at AC Mains Power Port	150kHz to 30MHz	2.27 dB
Radiated Emissions	30MHz to 1GHz	5.22 dB
	1GHz to 18GHz	4.76 dB

2.3.3 Sample Calculations

Radiated Emissions

Emission Level (dBµV/m) =	Read Level (dBµV)	+	Antenna Factor (dB/m)	+	Cable Loss (dB)	-	Pre-Amp Gain (dB)
=	52.4	+	9.4	+	1.3	-	29.2
=	33.9						
Margin (dB) =	Limit (dBµV/	'n)	- Emission Le	vel (d	dBμV/m)		
=	50.0		- 33	3.9			
=	16.1						

2.3.4 Terms, Definitions and Abbreviations

AE	Auxiliary Equipment
DUT	Device Under Test
DTS	Digital Transmission System
EMC	Electro-Magnetic Compatibility
FHSS	Frequency Hopping Spread Spectrum
ISM	Industrial, Scientific and Medical
LISN	Line Impedance Stabilization Network
N/A	Not Applicable
NCR	No Calibration Required
RF	Radio Frequency
RBW	Resolution Bandwidth
VBW	Video Bandwidth

Auxiliary Equipment/Support Equipment

Equipment needed to exercise and/or monitor the operation of the DUT.

Artificial Mains Network

Network that provides a defined impedance to the DUT at radio frequencies, couples the disturbance voltage to the measuring receiver and decouples the test circuit from the supply mains.

Class A Equipment

Equipment suitable for use in all locations other than those allocated in residential environments and those directly connected to a low voltage power supply network which supplies buildings used for domestic purposes.

Class B Equipment

Equipment suitable for use in all locations, including in residential environments and in establishments directly connected to a low voltage power supply network which supplies buildings used for domestic purposes.

Device Under Test

Device or system being evaluated for compliance with the requirements of the Test Standards listed in this report.

Electro-Magnetic Compatibility

Ability of equipment or system to function satisfactorily in its EM environment without introducing intolerable electromagnetic disturbances to anything in that environment.

Electromagnetic Disturbance

Any electromagnetic phenomenon which may degrade the performance of a device, equipment or system.

3. General Information

3.1 Client Information

Company	Elastic Care
Address	95 Apple Creek Boulevard
	Markham, Ontario
	Canada, L3R 1C7
Contact	Akshay Kalle
Email	akshay.kalle@pathcom.com
Phone	647 274 4620

3.2 Device Under Test (DUT)

3.2.1 DUT Information

DUT Name	Lifepath-C
DUT Model(s)	Lifepath-C
Power Source (AC / DC / Battery)	Lithium Ion battery
Input Voltage (V) or Range	3.7 VDC (Nominal)
Frequency (Hz) or Range	N/A
Mode(s) of Operation	- Continuous Operation
	- 10.5% Duty Cycle Operation
Connectors Available on DUT	ECG Cable Harness
DUT Dimensions (L x W x H)	36mm x 45.5mm x 30mm (without cable harness)
	Transmitter Information
FCC ID	2BA2T-LPC1
IC	30674-LPC1
Product Name	LifePath-C
Model #	EC-0032-07
Technology Used	BLE
Operating Frequency	2402 – 2480 MHz
Modulation Type	GFSK
Number of Channels	40
Antenna Manufacturer	Inventek Systems
Antenna Model	W24P-U
Antenna Type	PCB
Antenna Gain	+3.58 dBi

Note: Above antenna information is provided by the client.

3.2.2 DUT Description

The DUT is a wearable device used to collect quantitative biometric data such as ECG, Heart Rate, Skin Temperature, Respiration Rate, and Activity data from the thoracic region of adult patients. Data collection and monitoring is done using a mobile application through a BLE connection which operates between 2.402 - 2.480 GHz.

3.3 Test Setup of DUT

3.3.1 Configuration

The DUT was configured with the following parameters

- For all the tests, the DUT was set to transmit continuously with 100% duty cycle
- Output Power: Set "High Power" [7]
- Length of Data: 8
- Packet Payload: Pseudo-Random bit sequence 9
- Channels
 - Low: 2402 MHz (Channel 0)
 - o Mid: 2440 MHz (Channel 19),
 - o High: 2480 MHz (Channel 39)
- Device is limited to 10.5% duty cycle under normal operation. Maximum output power was measured with the device configured for continuous transmission.

3.3.2 Support Equipment

Device	Manufacturer	Model	S/N
Laptop PC			
(Disconnected for	Lenovo	T410	R8-7ARBY 10/11
radiated testing)			

3.4 Modifications for Compliance

No modifications were made to the device under test to achieve compliance with the testing requirements.

Initials: RA

4. Test Results

4.1 Spurious Radiated Emissions

Test Date:	April 4, 2023
Temperature (°C)	20.8
Relative Humidity (%)	28.2
Barometric Pressure (kPa)	98.0

4.1.1 Limits

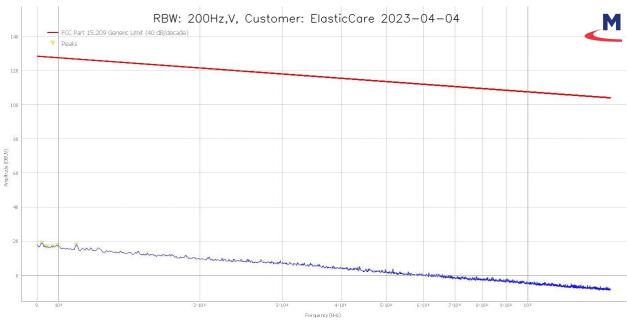
Frequency Range	Field Streng			Detector Type /	
(MHz)	μV/m	Distance	3m (dBμV/m)	Measurement Bandwidth	
0.009 - 0.150	2400/F(kHz)	300	128.5 - 104.1	Quasi-Peak‡ / 200Hz	
0.150 - 0.490	2400/F(kHz)	300	104.1 - 93.8	Quasi-Peak‡ / 9kHz	
0.490 - 1.705	24000/F(kHz)	30	73.8 - 63.0	Quasi-Peak / 9kHz	
1.705 – 30	30	30	69.5	Quasi-Peak / 9kHz	
30 – 88	100	3	40.0	Quasi-Peak / 120kHz	
88 – 216	150	3	43.5	Quasi-Peak / 120kHz	
216 - 960	200	3	46.0	Quasi-Peak / 120kHz	
960 - 1000	500	3	54.0	Quasi-Peak / 120kHz	
Above 1000	500	3	54.0	Average / 1MHz	
Above 1000	5000	3	74.0	Peak / 1MHz	

[‡]The emission limits below 1GHz shown in the above table are based on measurements employing a CISPR Quasi-Peak detector except for the frequency bands 9-90 kHz and 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.

4.1.2 Test Procedure

Tested according to ANSI C63.10 Section 6.3.

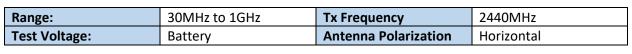
The device under test was setup inside a semi-anechoic chamber with remotely controlled turntable and antenna positioner at a 3m test distance. The DUT was placed on a non-metallic stand 0.8 meters above the ground plane for frequencies below 1GHz and 1.5 meters for frequencies above 1GHz.

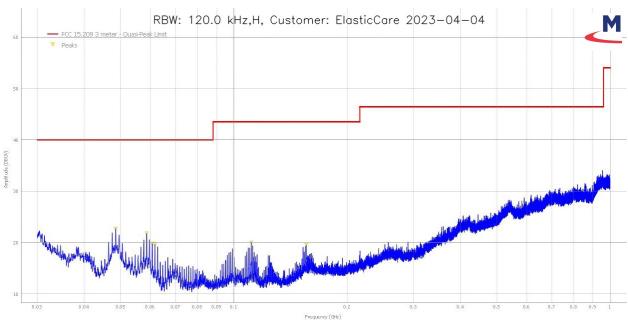

To determine the emission characteristics of the DUT, exploratory radiated emission scans were made while rotating the turntable 0° to 360° and using a Peak detector. The results were recorded in graphical form. As per FCC Part 15, Subpart A, Section 15.33, the DUT was scanned to the 10th harmonic of the highest fundamental frequency (a minimum of 24.8 GHz).

For each suspected emission, final measurements of the DUT radiated emissions with the Quasi-Peak, Average or Peak detector, as defined in the limits table above, were made with the turntable azimuth rotated 0° to 360° and antenna height varied from 1m to 4m. The antenna was positioned to receive emissions in the vertical and horizontal polarizations such that the maximum radiated emission levels were detected.

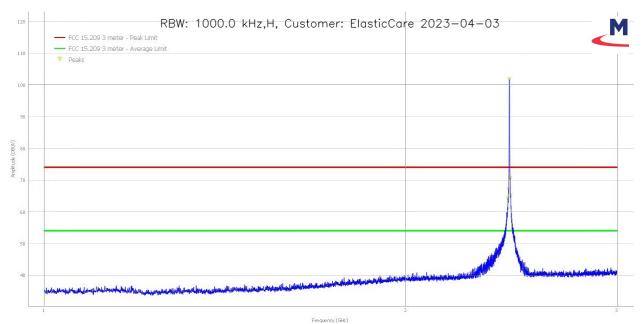
4.1.3 Test Results

Range:	9kHz to 150kHz	Tx Frequency	2440MHz
Test Voltage:	Battery	Antenna Polarization	N/A




Remark: Peak Emission Plot

Range:	150kHz to 30MHz	Tx Frequency	2440MHz
Test Voltage:	Battery	Antenna Polarization	N/A



Remark: Peak Emission Plot

Range:	1GHz to 3GHz	Tx Frequency	2440MHz
Test Voltage:	Battery	Antenna Polarization	Horizontal

Remarks: Peak Emission Plot

Peak between 2 – 3 GHz is the fundamental emission and not subjected to these limits.

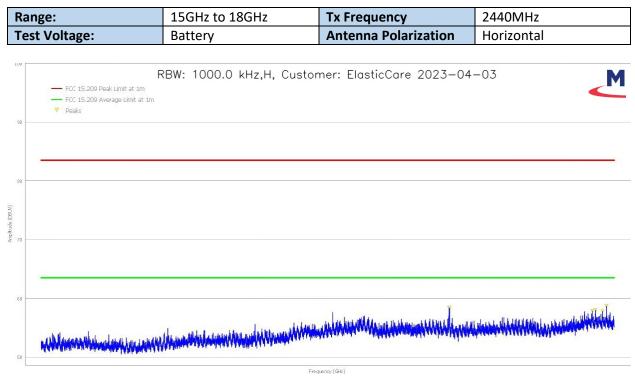
Range:	3GHz to 6GHz	Tx Frequency	2440MHz
Test Voltage:	Battery	Antenna Polarization	Horizontal

	RBW: 1000.0 kHz,H, — FCC 15.209 3 meter - Peak: Limit — FCC 15.209 3 meter - Average Limit. • Peaks	Customer: ElasticCare 2	2023-0	04-03
80				
60				
60				
50		a minlaran han din an	des be publications	
40	s and a second	Frequency (G-b)		5 6

Remark: Peak Emission Plot

Range:	6GHz to 10GHz	Tx Frequency	2440MHz
Test Voltage:	Battery	Antenna Polarization	Horizontal

	- FCC 15.209 3 meter - Peak Limit FCC 15.209 3 meter - Average Limit	H, Customer: El	asticCare 2023-04-03			M
80	Peaks					
70 (VNBd) spritting 60						
80					Ť	
50	is difetuin to to the state to be a filled to be the south rest	And decoders and a set	an den anten an an air an			
	6 7		Frequency (GHz)	8	9	101


Report No.: ML300116-RF00

Range:	10GHz to 15GHz	Tx Frequency	2440MHz
Test Voltage:	Battery	Antenna Polarization	Horizontal

Remark: Peak Emission Plot

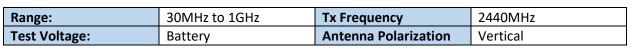
Range:	18GHz to 25GHz	Tx Frequency	2440MHz
Test Voltage:	Battery	Antenna Polarization	Horizontal
R — FCC 15.209 - 1 meter - Average Limi — FCC 15.209 - 1 meter - Peak Limit V Peaks		ner: ElasticCare 2023-04	-03
80			
70	I		
	เป็นไปอยู่สามประเทศ เพลส์ไปปฏิปัสหารสปลงประชา		

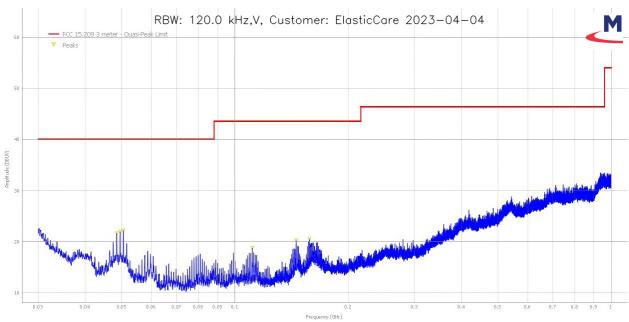
Test

Result

Horizontal Antenna Polarization							
	Frequency (MHz) Detector		Reading (dBμV)	Correction Factor (dB) Correction Level (dBµV/m)		Limit (dBµV/m)	Margin (dB)
	48.48	QP	34.8	-13.8	21.0	40.0	19.0
	4880.50	PEAK	52.9	-1.4	51.5	74.0	22.5
	4880.50	AVG	35.4	-1.4	34.0	54.0	20.1
	9759.00	PEAK	53.8	4.5	58.3	74.0	15.8
	0750.00	41/0	22.6		20.4		45.0

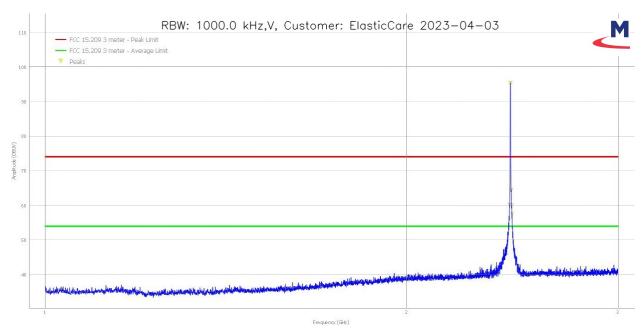
48.48	QP	34.8	-13.8	21.0	40.0	19.0	Pass
4880.50	PEAK	52.9	-1.4	51.5	74.0	22.5	Pass
4880.50	AVG	35.4	-1.4	34.0	54.0	20.1	Pass
9759.00	PEAK	53.8	4.5	58.3	74.0	15.8	Pass
9759.00	AVG	33.6	4.5	38.1	54.0	15.9	Pass
7320.75	PEAK	56.1	1.6	57.8	74.0	16.3	Pass
7320.75	AVG	34.5	1.6	36.1	54.0	17.9	Pass
14638.75	PEAK	46.8	11.1	57.9	83.5	25.6	Pass
14638.75	AVG	30.0	11.1	41.1	63.5	22.4	Pass
17955.75	PEAK	43.0	16.0	59.0	83.5	24.5	Pass
17955.75	AVG	28.1	16.0	44.1	63.5	19.4	Pass
19519.00	PEAK	48.2	19.6	67.8	83.5	15.7	Pass
19519.00	AVG	29.7	19.6	49.3	63.5	14.2	Pass


Worst case position:


Report No.:

ML300116-RF00

Angle: 69 Deg Height: 162 cm



Remark: Peak Emission Plot

Range:	1GHz to 3GHz	Tx Frequency	2440MHz
Test Voltage:	Battery	Antenna Polarization	Vertical

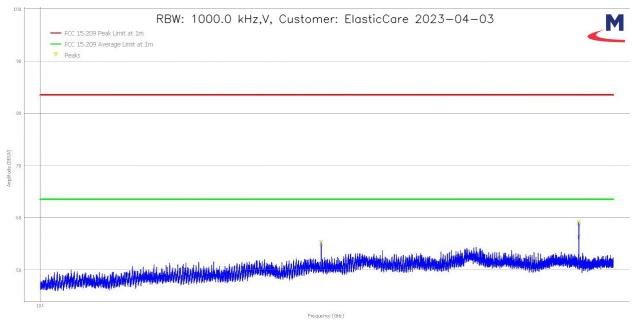
Remarks: Peak Emission Plot

Peak between 2 – 3 GHz is the fundamental emission and not subjected to these limits.

Range:	3GHz to 6GHz	Tx Frequency	2440MHz
Test Voltage:	Battery	Antenna Polarization	Vertical

	RBW: 1000.0 kHz,V,	Customer: ElasticCare 2023—0	04-03
80			
70 (WTBC) sprijduk 60			
50	kelesuk a andaniki asarih ing kanandan kan linika kiladana dishariki madan	en a best hill be have a bottom of an and the second of the second second second second second second second s	d dan selan banda selah se se se na se
40	3	4 Finguency (Git)	5 6

Remark: Peak Emission Plot


Range:	6GHz to 10GHz	Tx Frequency	2440MHz
Test Voltage:	Battery	Antenna Polarization	Vertical

		RBW: 1000.0 kHz, FCC 15.209 3 meter - Peak Limit FCC 15.209 3 meter - Average Limit	, Customer: ElasticCore 2023-04-03	M
80	-	V Peaks		
70				
Amplitude (DBUV)				
60				
			Ť.	
50				Ť
		1		
		ala and athory a gal da sala that the line days to be		and the state of the
		6	8 Frequency (GHz)	9 101

Report No.: ML300116-RF00

Range:	10GHz to 15GHz	Tx Frequency	2440MHz
Test Voltage:	Battery	Antenna Polarization	Vertical

Remark: Peak Emission Plot

Range:	15GHz to 18GHz	Tx Frequency	2440MHz
Fest Voltage:	Battery	Antenna Polarization	Vertical
	RBW: 1000.0 kHz,V, Cus	tomer: ElasticCare 2023-04	-03
FCC 15.209 Peak Limit at			
FCC 15.209 Average Limit	tat 1m		
10			
-			
1			
-			
0			
			J. J. J. J.
	a second second	المعدوم والمقال المعالية والمستعدية ومعالك الملقات المعالي والمريدان	where the set of the s
hall all the second half and a second second	Lineiher Anthony and William Weller Anthony	hereite the second second second second second	an anarita e e de e e a fillig an an e e e e e e e e e e e e e e e e e
duta interimentality	Malas a stated		
		Frequency (GHz)	

Range:	18GHz to 25GHz	Tx Frequency	2440MHz
Test Voltage:	Battery	Antenna Polarization	Vertical
		stomer: ElasticCare 2023-04	-03
FCC 15.209 - 1 meter - P			
Peaks			
20			
10			
10			
	7		
-			
International Andrew Providence of the second	ulan der	and and a state of the state of	and a strategic strategic strategic strategics
	2:101		
		Frequency (GHz)	

Report No.:	
ML300116-RF00	

Vertical Antenna Polarization							
Frequency (MHz)	Detector	Reading (dBμV)	Correction Factor (dB)	Emission Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Test Result
50.52	PEAK	36.3	-14.2	22.1	40.0	17.9	Pass
4880.50	PEAK	50.5	-1.4	49.1	74.0	24.9	Pass
4880.50	AVG	34.0	-1.4	32.6	54.0	21.4	Pass
7320.75	PEAK	55.7	1.6	57.4	74.0	16.6	Pass
7320.75	AVG	34.5	1.6	36.1	54.0	17.9	Pass
9759.25	PEAK	50.1	4.5	54.6	74.0	19.4	Pass
9759.25	AVG	32.3	4.5	36.8	54.0	17.2	Pass
14638.50	PEAK	50.4	11.1	61.5	83.5	22.0	Pass
14638.50	AVG	31.2	11.1	42.3	63.5	21.2	Pass
17081.75	PEAK	46.4	14.9	61.3	83.5	22.2	Pass
17081.75	AVG	29.3	14.9	44.2	63.5	19.3	Pass
19518.25	PEAK	47.2	19.6	66.8	83.5	16.7	Pass
19518.25	AVG	29.2	19.6	48.8	63.5	14.7	Pass

Worst case position:

Angle: 166 Deg Height: 159 cm

4.1.4 Test Equipment List

Equipment ID	Description	Manufacturer	Model	Calibration Date	Calibration Due
EQ_EMC_58	EMI Receiver	Rohde & Schwarz	ESW 44	Feb 03, 2022	Feb 03, 2024
EQ_EMC_48	Loop Antenna 9kHz – 30MHz	Com-Power	AL-130R	May 4, 2022	May 4, 2024
EQ_EMC_59	BiLog Antenna 30MHz – 1GHz	ETS Lindgren	3142E	Feb 27, 2022	Feb 27, 2024
EQ_EMC_60	Horn Antenna 1GHz – 18GHz	ETS Lindgren	3117	Mar 11, 2022	Mar 11, 2024
EQ_EMC_56	Horn Antenna 18GHz – 25GHz	A.H. Systems	SAS-574	Apr 1, 2022	Apr 1, 2024
EQ_EMC_68	6dB Attenuator	Fairview Microwave	SA3NS-06	NCR	NCR
EQ_EMC_85	RF Cable <1GHz	Times Microwave	LMR-400	NCR	NCR
EQ_EMC_75	RF Cable >1GHz	MegaPhase	EMC2	NCR	NCR
EQ_EMC_89	Preamplifier 9kHz-1GHz	Teseq	LNA 6901	May 12, 2022	May 12, 2024
EQ_EMC_42	Preamplifier 1GHz-18GHz	Com-Power	PAM-118A	Mar 24, 2022	Mar 24, 2024
EQ_EMC_43	Preamplifier 18GHz – 25GHz	Com-Power	PAM-840A	Mar 24, 2022	Mar 24, 2024
EQ_EMC_110	HPF Filter 3GHz – 18GHz	Micro-Tronics	HPM50108	NCR	NCR
EQ_EMC_96	Emissions Software	Megalab Group	EMI V1.0	NCR	NCR

NCR = No Calibration Required

Initials: RA

4.2 Emission Bandwidth

Test Date:	April 18, 2023
Temperature (°C)	20.1
Relative Humidity (%)	27.5
Barometric Pressure (kPa)	96.9

4.2.1 Limits

The minimum 6 dB bandwidth shall be at least 500 kHz when measured with a 100 kHz RBW and a 300 kHz VBW.

The 99% bandwidth is also measured for informational purposes.

4.2.2 Test Procedure

6 dB bandwidth tested according to ANSI C63.10 Section 6.9.2, FCC KDB 558074 Section 8.1, and RSS-GEN 6.7.

99% occupied bandwidth tested according to ANSI C63.10 Section 6.9.3 and RSS-GEN 6.7

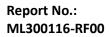
The resolution bandwidth (RBW) was set in the range of 1% to 5% of the actual occupied bandwidth and the video bandwidth (VBW) was set to no smaller than three times the RBW value.

4.2.3 Test Results

The EUT passed.

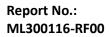
The minimum 6 dB Bandwidth measured was 664.8 kHz. The maximum 99% Occupied Bandwidth was 1.03 MHz.

	6dB (DTS) Bandwidth							
Frequency (MHz)	(MHz) F _{LOW} (MHz) F _{HIGH} (MHz)		Occupied Bandwidth (kHz)	Test Result				
2402	2401.7018	2402.3666	664.8	Pass				
2440	2439.7018	2440.3666	664.8	Pass				
2480	2479.7051	2480.3699	664.8	Pass				


	99% Bandwidth							
Frequency (MHz) F _{LOW} (MHz)		F _{ніGH} (MHz)	Occupied Bandwidth (kHz)	Test Result				
2402	2401.53865	2402.55975	1021.101227	Pass				
2440	2439.536	2440.56183	1025.830985	Pass				
2480	2479.53715	2480.56214	1024.988416	Pass				

4.2.4 Plots

Figure 1 – 6 dB Bandwidth - Low Channel



Issue Date: June 5, 2023

Figure 2 – 6 dB Bandwidth - Mid Channel

Issue Date: June 5, 2023

Figure 3 – 6 dB Bandwidth - High Channel

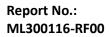


Figure 4 – 99% Bandwidth - Low Channel

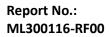


Figure 5 – 99% Bandwidth - Mid Channel

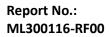


Figure 6 – 99% Bandwidth - High Channel

4.2.5 Test Equipment List

Equipment ID	Description	Manufacturer	Model	Calibration Date	Calibration Due	
EQ_EMC_58	EMI Receiver	Rohde & Schwarz	ESW 44	Feb 03, 2022	Feb 03, 2024	
EQ_EMC_116	20dB Attenuator	Fairview Microwave	SA18E-20	NCR	NCR	

NCR = No Calibration Required

4.3 Maximum Output Power

Test Date:	April 19, 2023
Temperature (°C)	18.2
Relative Humidity (%)	24.4
Barometric Pressure (kPa)	98.1

Initials: RA

4.3.1 Limits

For systems using digital modulation in the 2400 – 2483.5 MHz band, the peak limit is 1 watt (30 dBm).

4.3.2 Test Procedure

The maximum peak envelope conducted power is tested according to FCC KDB 558074 Section 8.3 and ANSI C63.10 Section 11.9.1, maximum peak conducted output power for DTS devices using an RBW \geq DTS bandwidth.

4.3.3 Test Results

The EUT passed.

Maximum Conducted Output Power							
Channel	Peak Power (dBm)	Peak Power (mW)					
Low	2402	6.69	4.67				
Mid	2440	6.82	4.81				
High	2480	6.98	4.99				

4.3.4 Conducted Output Power Plots

Note: The external attenuator and cable loss are accounted for as reference offset in the spectrum analyzer.

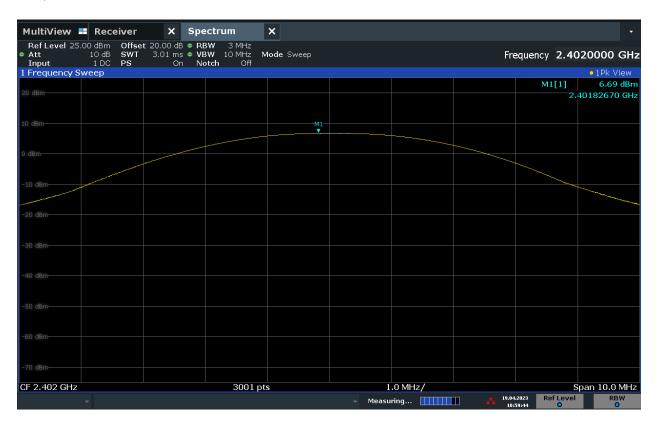
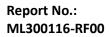
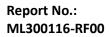



Figure 7 – Maximum Conducted Output Power - Low Channel



Issue Date: June 5, 2023

MultiView				×					•
Ref Level 25. Att Input	00 dBm Off 10 dB SW 1 DC PS	/T 3.01 ms	B • RBW 3 MHz • VBW 10 MHz • Notch Off	Mode Sweep			Fre	equency 2.44	100000 GHz
1 Frequency Sv		OI	i Noton on						●1Pk View
1110quoney of	noop							M1[1]	6.82 dBm
20 dBm									44024990 GHz
								21	HH02H990 GH2
10 dBm					M1				
									
0 dBm-									
-10 dBm	and the second se								
-10 ubiii									
									and the second s
-20 dBm-									
-30 dBm									
-40 dBm-									
-50 dBm									
-50 dBm-									
-60 dBm									
-70 dBm									
CF 2.44 GHz			3001 p	ots	1	.0 MHz/			pan 10.0 MHz
	~					ıring	19.04 1 11:	12023 Ref Level	RBW O

Figure 8 – Maximum Conducted Output Power - Mid Channel

MultiView 🖿	Receiver	X Sp	ectrum	×					•
Ref Level 25.00 Att : Input	10 dB SWT	3.01 ms 🗢 ٧	NBW 3 MHz VBW 10 MHz M Notch Off	1ode Sweep			Fre	equency 2.4	800000 GHz
1 Frequency Swe									o1Pk View
								M1[1]	6.98 dBm
20 dBm									.48001000 GHz
								-	
10 dBm					M1				
					Y				
		_							
0 dBm									
-10 dBm									
-20 dBm-									
-30 dBm									
-40 dBm-									
-50 dBm-									
co dom									
-60 dBm									
-70 dBm									
-70 ubiii									
CF 2.48 GHz				i s	1	.0 MHz/			Span 10.0 MHz
			0001 pt				19.04		
~					⊸ Measu	ring		04:22 O	а О

Figure 9 – Maximum Conducted Output Power - High Channel

4.3.5 Test Equipment List

Equipment ID	Description	Manufacturer	Model	Calibration Date	Calibration Due
EQ_EMC_58	EMI Receiver	Rohde & Schwarz	ESW 44	Feb 03, 2022	Feb 03, 2024
EQ_EMC_116	20dB Attenuator	Fairview Microwave	SA18E-20	NCR	NCR

NCR = No Calibration Required

4.4 Maximum Radiated Output Power

Test Date:	April 19, 2023
Temperature (°C)	18.2
Relative Humidity (%)	24.4
Barometric Pressure (kPa)	98.1

Initials: RA

4.4.1 Limits

For systems using digital modulation in the 2400 – 2483.5 MHz band, the peak limit is 1 watt (30 dBm) + 6 dBi antenna gain.

4.4.2 Test Procedure

The radiated peak emission level is tested according to guidance from FCC KDB 558074 Section 3, and ANSI C63.10 Section 6.3.3, using an RBW \geq DTS bandwidth.

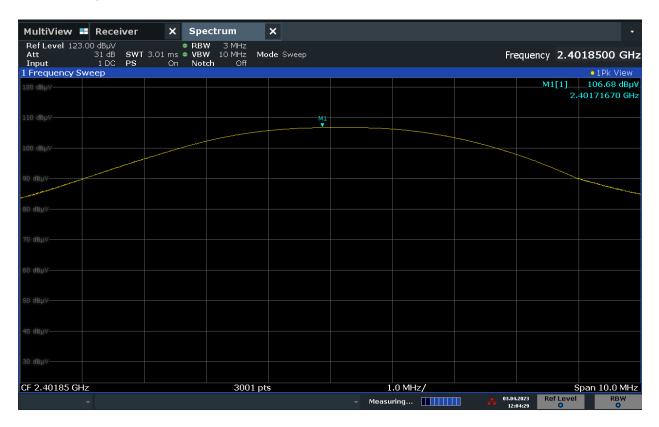
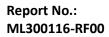
4.4.3 Test Results

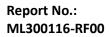
The EUT passed.

	Maximum Radiated Output										
Channel	Polarity	Frequency (MHz)	Reading (dBµV) Correction Factor (dB)		Peak Output Level (dBµV/m)	Peak Output Level (dBm)	Peak Output Level (mW)				
Low	Horizontal	2402	106.68	-5.60	101.08	5.88	3.87				
Low	Vertical	2402	100.32	-5.60	94.72	-0.48	0.90				
Mid	Horizontal	2440	107.29	-5.52	101.77	6.57	4.54				
Mid	Vertical	2440	101.24	-5.52	95.72	0.52	1.13				
High	Horizontal	2480	106.05	-5.44	100.61	5.41	3.48				
High	Vertical	2480	99.32	-5.44	93.88	-1.32	0.74				

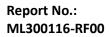
4.4.4 Radiated Output Plots

Note: The measurement factors are not incorporated into these plots. They are added in the *Maximum Radiated Output* table in section *4.4.3 Test Results*.

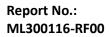




Figure 10 – Maximum Radiated Output Power - Low Channel Horizontal Antenna Polarity

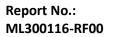
MultiView 🔳 Receiver	× Spectrum	×				•
Ref Level 112.00 dBµV ● Att 10 dB SWT Input 1 DC PS	RBW 3 MHz 3.01 ms VBW 10 MHz On Notch Of	Mode Sweep			Frequen	cy 2.4018500 GHz
1 Frequency Sweep						●1Pk View
110 dBµV					M1[1]	100.32 dBµV
10 0014			M1		WILIJ	2.40226320 GHz
100 dBµV			····· V			
90 dBµV						
						March Street Street
80 dButterna						Mary and Andrew Street and A
70 dBµV						
60 dBµV						
00 0000						
50 dBµV						
40 dBµV						
30 dBµV						
20 dBµV						
CF 2.40185 GHz	300)1 pts	1	.0 MHz/		Span 10.0 MHz
*				ring	03.04.2023	Ref Level RBW O O


Figure 11 – Maximum Radiated Output Power - Low Channel Vertical Antenna Polarity

MultiView		× s	pectrum	×					•
Ref Level 123 Att Input	3.00 dBµV 31 dB SWT 1 DC PS	● R 3.01 ms ● V On N	BWF 10 MHz I	Mode Sweep			Fre	equency 2.4	400000 GHz
1 Frequency S									●1Pk View
								M1[1]	107.29 dBµV
120 dBµV									2.44022660 GHz
								4	440ZZ660 GHZ
110 dBµ∨———					M1				
				~					
100 dBµV									
									~
90 dBµV									
and the second se									
80 dBµV									
70 dBµV									
60 dBµV									
50 dBµ∨									
40 dBµV									
30 dBµV									
CF 2.44 GHz			3001	pts		.0 MHz/			Span 10.0 MHz
	*					ıring	03.04 13:	11:36 Ref Leve	RBW O


Figure 12 – Maximum Radiated Output Power - Middle Channel Horizontal Antenna Polarity

MultiView	Receiver	×s	pectrum	×					
Ref Level 123 Att Input	31 dB SWT	● R 3.01 ms ● V On N	BW 3 MHz BW 10 MHz I otch Off	Mode Sweep			Fre	equency 2.4	400000 GHz
1 Frequency S									●1Pk View
120 dBµV								M1[1]	101.24 dBµV
150 gehv									43978340 GHz
									43976340 002
110 dBµV									
				M1					
				V III					
100 dBµV									
90 dBµV									
	- marine								
and the second sec									and the second sec
60 dBµV									
70 dBµV									
60 dBµV									
50 dBµV									
40 dΒμV									
30 dBµV									
CF 2.44 GHz			3001	pts	1	.0 MHz/			Span 10.0 MHz
	~					ıring	03.04 13:	12023 Ref Level	RBW O


Figure 13 – Maximum Radiated Output Power - Middle Channel Vertical Antenna Polarity

MultiView		xs	Spectrum	×					•
Ref Level 123. Att Input	.00 dBµV 31 dB SWT 1 DC PS			Mode Sweep			Fre	equency 2.48	300000 GHz
1 Frequency Sv									o1Pk View
								M1[1]	106.05 dBµV
120 dBµV−									48026320 GHz
110 dBµV					M1				
					V				
100 dBµV									
accordept.		- Condition and a second							
90 dBµV	and the second se								
and the stand									
80 dBµV									
70 dBµV									
60 dBµV									
aa daha									
50 dBµV									
40 dBµV									
30 dBµV									
CF 2.48 GHz			3001	nts	1	0 MHz/			pan 10.0 MHz
						iring	03.04		RBW O

Figure 14 – Maximum Radiated Output Power - High Channel Horizontal Antenna Polarity

MultiView 💶 Receiver	X Spectrum	×			
Ref Level 123.00 dBµV Att 31 dB SW Input 1 DC PS	● RBW 3 MHz T 3.01 ms ● VBW 10 MHz On Notch Off	Mode Sweep		Frequency	2.4800000 GH
l Frequency Sweep					• 1Pk View
				M1	[1] 99.32 dBµ
					2.47979670 GH
ιοο dBμV		M1			
ЭО dBµV					
of dept					
and the second state of th					
30 dBysie					
30 dBµV					
CF 2.48 GHz	300	1 pts	1.0 MHz/		Span 10.0 MH
			→ Measuring	03.04.2023 Ref	Level RBW

Figure 15 – Maximum Radiated Output Power - High Channel Vertical Antenna Polarity

4.4.5 Test Equipment List

Equipment ID	Description	Description Manufacturer Model		Calibration Date	Calibration Due
EQ_EMC_58	EMI Receiver	Rohde & Schwarz	ESW 44	Feb 03, 2022	Feb 03, 2024
EQ_EMC_60	Horn Antenna	ETS Lindgren	3117	Mar 11, 2022	Mar 11, 2024
EQ_EMC_75	RF Cable >1GHz	MegaPhase	EMC2	NCR	NCR
EQ_EMC_42	Preamplifier 1GHz-18GHz	Com-Power	PAM-118A	Mar 24, 2022	Mar 24, 2024

NCR = No Calibration Required

4.5 Antenna Spurious Conducted Emissions

Test Date:	April 18, 2023
Temperature (°C)	20.1
Relative Humidity (%)	27.5
Barometric Pressure (kPa)	96.9

Initials: RA

4.5.1 Limits

In any 100 kHz bandwidth outside the frequency band in which the intentional radiator operates, the radio's power must be \geq 20 dB below the peak power of the fundamental measured with a 100 kHz bandwidth (i.e. 20 dBc).

Emissions are assessed from 9 kHz to the 10th harmonic of the fundamental.

This requirement is applicable at the boundary frequencies of the frequency band (i.e. 2.4 GHz and 2.4835 GHz for the DUT).

4.5.2 Test Procedure

Antenna Spurious Conducted Emissions is tested according to ANSI C63.10 Section 11.11 and FCC KDB 558074 Section 8.

Maximum peak conducted output power procedure is used to determine compliance, with RBW = 100 kHz, and VBW \ge 3 x RBW. The trace is allowed to fully stabilize, and the peak marker function is used to determine spectral density.

4.5.3 Test Results

The EUT passed.

All antenna spurious conducted emissions outside the 2.4 – 2.4835 GHz band meet the -20 dBc requirement while the DUT is operating in Low, Middle, and High fundamental frequencies.

4.5.4 Plots

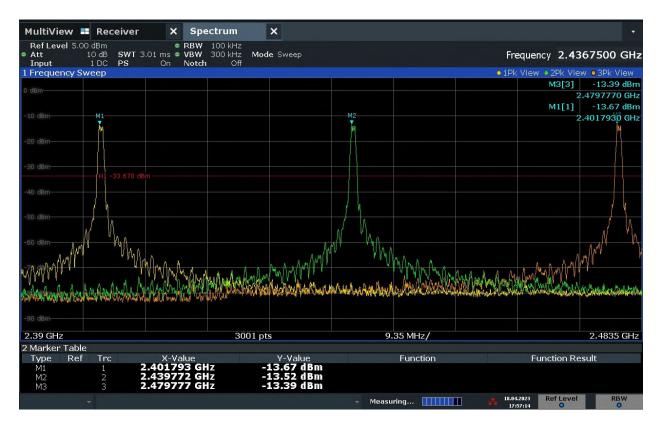


Figure 16 – -20dBc – Peak power of fundamentals operating at Low, Middle, and High Channels with 100 kHz bandwidth

Reference level of -13.67 dBm used as worst case peak for this test.

-20 dBc line shown at -33.67 dBm.

MultiVie			ver	×	Spect	rum	×							•
Ref Leve Att Input	1				3W 100 3W 300 otch		ode Sw	еер				Fr	equency 1.2	000045 GHz
1 Frequer												• 1 P	k View • 2Pk Vie	ew O3Pk View
		and and and and											M1[1]	-59.28 dBm
0 dBm														2.399599 GHz
													M2[2]	-76.42 dBm
-10 dBm														2.391599 GHz
-20 dBm														
20 0211														
-30 dBm														
-40 dBm														
-50 dBm														
-60 dBm														MI
-oo dam														
-70 dBm-														
M3														
SQ, delpil, AN	the sea but	in a line of the second		index suit		in a statistic state	distant in	houses head a sticked	Jan line	and a second	a defeating bit, model		Londoth mon all allocated	a dibut, and a stadia his
The second as				and the second of					and the second	and the second		and the second second second	and the second	
-90 dBm														
50 0011														
9.0 kHz						3001	pts			24	0.0 MHz/			2.4 GHz
2 Marker	Table													
Туре	Ref	Trc		X-Val				'-Value			Function		Function R	esult
M1		1	2.	39959	9 GHz		-59	.28 dBm						
M2 M3		2	2	39159 20.399	9 GHZ		-76	.42 dBm .69 dBm						
1913		<u>ح</u>		20.39:	2 mnz		-70							PPU
										Measu	ring		4.2023 Ref Level	RBW

Figure 17 – -20dBc – Emissions outside intentional radiator band, 9 kHz – 2.4 GHz. Plots with DUT operating at Low, Middle, and High Channels overlaid. Markers placed at the peak of each plot.

-20 dBc line shown at -33.67 dBm.

Figure 18 – -20dBc – Emissions outside intentional radiator band, 2.4835GHz – 25 GHz. Plots with DUT operating at Low, Middle, and High Channels overlaid. Markers placed at the peak of each plot.

-20 dBc line shown at -33.67 dBm.

4.5.5 Test Equipment List

Equipment ID	Description	Manufacturer	Model	Calibration Date	Calibration Due
EQ_EMC_58	EMI Receiver	Rohde & ESW 44 Schwarz		Feb 03, 2022	Feb 03, 2024
EQ_EMC_116	20dB Attenuator	Fairview Microwave	SA18E-20	NCR	NCR

NCR = No Calibration Required

4.6 Power Spectral Density

Test Date:	April 19, 2023
Temperature (°C)	18.2
Relative Humidity (%)	24.4
Barometric Pressure (kPa)	98.1

Initials: RA

4.6.1 Limits

The Power Spectral Density (PSD) conducted to the antenna by the intentional radiator must be \leq 8 dBm in any 3 kHz band during continuous transmission.

4.6.2 Test Procedure

PSD is tested according to ANSI C63.10 Section 11.10 and FCC KDB 558074 Section 8.

Peak PSD procedure is used to determine compliance, with RBW = 3 kHz, and VBW \ge 3 x RBW. The trace is allowed to fully stabilize, and the peak marker function is used to determine spectral density.

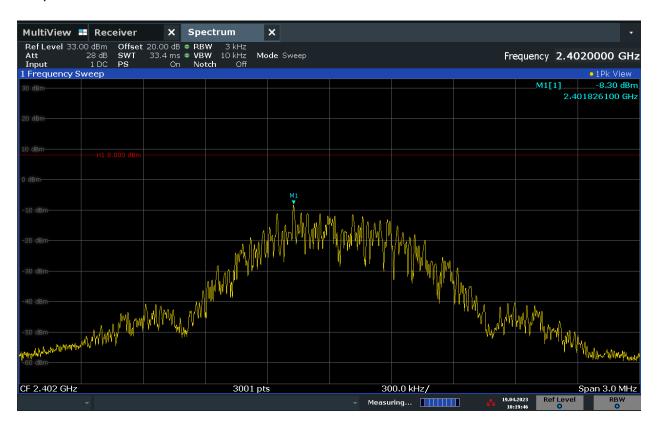
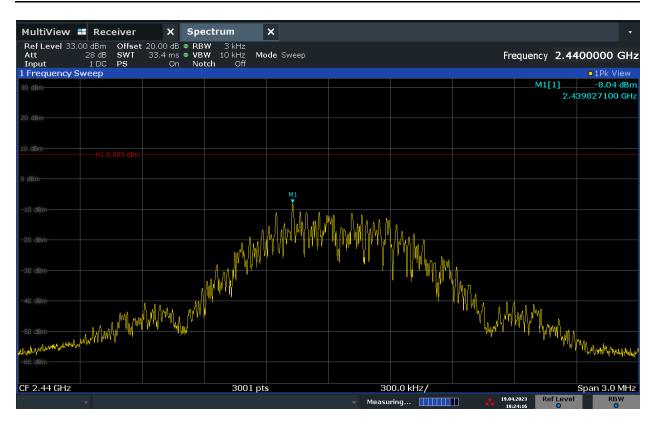
4.6.3 Test Results

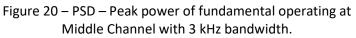
The EUT passed.

PSD from the fundamental transmissions does not exceed the 8 dBm limit while the DUT is operating in Low, Middle, and High fundamental frequencies.

4.6.4 Plots

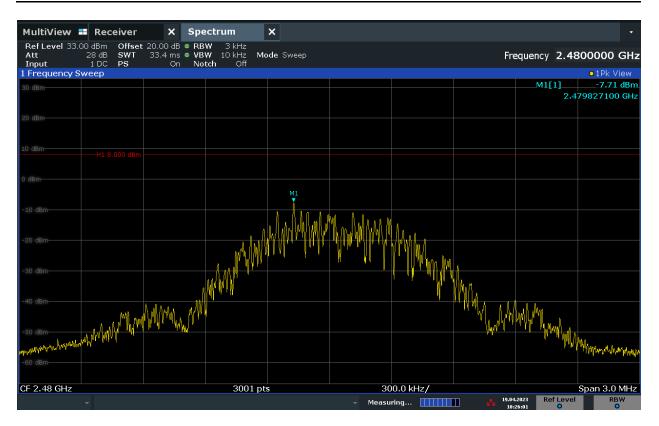
Note: The external attenuator and cable loss are accounted for as reference offset in the spectrum analyzer.

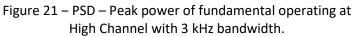




Figure 19 – PSD – Peak power of fundamental operating at Low Channel with 3 kHz bandwidth.

8 dBm limit line is shown.

Report No.: ML300116-RF00





8 dBm limit line is shown.

Report No.: ML300116-RF00

8 dBm limit line is shown.

4.6.5 Test Equipment List

Equipment ID	Description	Manufacturer	Model	Calibration Date	Calibration Due
EQ_EMC_58	EMI Receiver	Rohde & Schwarz	ESW 44	Feb 03, 2022	Feb 03, 2024
EQ_EMC_116	20dB Attenuator	Fairview Microwave	SA18E-20	NCR	NCR

NCR = No Calibration Required

5. Test Setup Photos

Refer to Test Setup Photos file separate from this report

----- End of Test Report ------