Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Compiled by

(position+printed name+signature)..: File administrators Zoey Cao

Supervised by

(position+printed name+signature)..: Project Engineer Amy Wen

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Date of issue...... Apr. 25, 2023

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... Shenzhen Yimushengxue Technology Co., Ltd

Room 1209, 12th Floor, Block A, Jindingsheng Kechuangyuan,

China

Test specification

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description TWS bluetooth earphone

Trade Mark: N/A

Manufacturer Shenzhen Yimushengxue Technology Co., Ltd

Model/Type reference..... FD08

Listed Models FD07, FD09, FD10, FD11, J108, J109, A8, A9, L1

Modulation GFSK, Π/4DQPSK

Frequency...... From 2402MHz to 2480MHz

Rating DC 3.7V From Battery and DC 5.0V From external circuit

Result.....: PASS

Page 2 of 48 Report No.: CTA23041900601

TEST REPORT

Equipment under Test TWS bluetooth earphone

FD08 Model /Type

FD07, FD09, FD10, FD11, J108, J109, A8, A9, L1 **Listed Models**

Shenzhen Yimushengxue Technology Co., Ltd Applicant

Address Room 1209, 12th Floor, Block A, Jindingsheng Kechuangyuan, clear

lake Community, Longhua Street, Longhua District, Shenzhen, China

Shenzhen Yimushengxue Technology Co., Ltd Manufacturer

Room 1209, 12th Floor, Block A, Jindingsheng Kechuangyuan, clear Address

lake Community, Longhua Street, Longhua District, Shenzhen, China

Test Result:	PASS
CTA	LING

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: CTA23041900601 Page 3 of 48

Contents

		Contents	
	1	TEST STANDARDS	ı
	C	-c7M	_
	CALL		_
	2	SUMMARY	<u>)</u>
	2.1	General Remarks 5 Product Description 5 Equipment Under Test 5	
	2.2	Product Description 5	
	2.3	Equipment Under Test 5	
	2.4	Equipment Under Test Short description of the Equipment under Test (EUT) 5	
	2.5	EUT operation mode	
	2.6	Block Diagram of Test Setup 6	
	2.7	Related Submittal(s) / Grant (s) 6	
	2.8	Modifications 6	
, 0		ES7111	
1		ATE OF THE STATE O	
	<u>3</u>	TEST ENVIRONMENT	<u>′</u>
	3.1	Address of the test laboratory Test Facility 7	
	3.2	Test Facility 7	
	3.3	Environmental conditions 7	
	3.4	Address of the test laboratory 7 Test Facility 7 Environmental conditions 7 Summary of measurement results 8 Statement of the measurement uncertainty 8	
	3.5	Statement of the measurement uncertainty 8	
	3.6	Equipments Used during the Test 9	
	0.0	Equipments osca during the rest	
	<u>4</u>	TEST CONDITIONS AND RESULTS 10	<u>) </u>
		TA I G	
	4.1	AC Power Conducted Emission 10	
	4.2	AC Power Conducted Emission Radiated Emission 13 Maximum Peak Output Power 20dB Bandwidth 20 Frequency Separation Number of hopping frequency Time of Occupancy (Dwell Time) 20 10 21 22 23 24 25 25 27	
	4.3	Maximum Peak Output Power 19	
	4.4	20dB Bandwidth	
	4.5	Frequency Separation 23	
	4.6	Number of hopping frequency 25	
	4.7	Time of Occupancy (Dwell Time)	
	4.8	Out-of-band Emissions 30	G
	49.6	Antenna Requirement 37	
	-11NO	Antenna requirement	
CTATE			
C.T.A.	<u>5</u>	TEST SETUP PHOTOS OF THE EUT 38	3
	<u>6</u>	PHOTOS OF THE EUT	١
	<u>o</u>		_
		CTATESTIN	

Page 4 of 48 Report No.: CTA23041900601

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

Page 5 of 48 Report No.: CTA23041900601

SUMMARY

2.1 General Remarks

Date of receipt of test sample		Apr. 19, 2023
Testing commenced on	DESCRIPTION OF THE PERSON OF T	Apr. 19, 2023
Testing concluded on	:	Apr. 25, 2023

2.2 Product Description

	Testing commenced on		Apr. 19, 2023	CTA.	
	Testing concluded on	:	Apr. 25, 2023	CAL	CTAT
	2.2 Product Descrip	tion			
TE	Product Name:	TWS blue	etooth earphone		
CIL	Model/Type reference:	FD08			
	Power supply:	DC 3.7V F	From Battery and DC 5.	0V From external circuit	
	Adapter information (Auxiliary test supplied by test Lab):		P-TA20CBC 100-240V 50/60Hz C 5V 2A	ATES	TATESTING
	Hardware version:	Q8-6973D	04-20230327	(EM)	2,1
>	Software version:	HYH_Q8_	_6983D4_V1.0		
	Testing sample ID:		19006-1# (Engineer sar 19006-2# (Normal samր		
	Bluetooth :				
	Supported Type:	Bluetooth	BR/EDR		b_
	Modulation:	GFSK, π/4	4DQPSK	ESTING	
	Operation frequency:	2402MHz	~2480MHz	CTATA	
	Channel number:	79		GI	TAT
	Channel separation:	1MHz			(EW)
75	Antenna type:	Ceramic a	antenna		
TATE	Antenna gain:	2.50 dBi	1G		
		TES			

2.3 Equipment Under Test

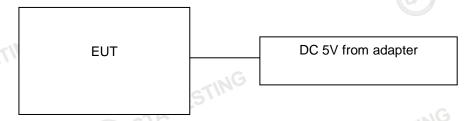
TATES			.510	3
2.3 Equipment Under Test			STIM	
Power supply system utilised	d			
Power supply voltage	: 0	230V / 50 Hz	0	120V / 60Hz
	0	12 V DC	0	24 V DC
	•	Other (specified in bla	ank below	

DC 3.7V From Battery and DC 5.0V From external circuit

Short description of the Equipment under Test (EUT)

This is a TWS bluetooth earphone.

For more details, refer to the user's manual of the EUT.


Page 6 of 48 Report No.: CTA23041900601

2.5 EUT operation mode

The Applicant provides communication tools software (Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

provided to the EUT and Channel 00/39/78 were selection	ected to test.	
	TESTING	
Operation Frequency:		
Channel	Frequency (MHz)	
00	2402	
01	2403	
TING		N. C.
38	2440	
39	2441	
40	2442	
	ESTING	
77	2479	.210
78	2480	

Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria.

Page 7 of 48 Report No.: CTA23041900601

TEST ENVIRONMENT

Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory
Accreditation to perform electromagnetic emission measurement

CAB identifier: CN0127 ISED#: 27890

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

CTA TESTING During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission:

Temperature:	25 ° C
TESI	
Humidity:	46 %
Atmospheric pressure:	950-1050mbar

Conducted testina:

C
6
-1050mbar
· 1050IIIbai

Report No.: CTA23041900601 Page 8 of 48

3.4 Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel	Recorded In Report		Test result
§15.247(a)(1)	Carrier Frequency separation	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	GFSK Π/4DQPSK		Compliant
§15.247(a)(1)	Number of Hopping channels	GFSK Π/4DQPSK	⊠ Full	GFSK	⊠ Full	Compliant
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	GFSK Π/4DQPSK		Compliant
§15.247(a)(1)	Spectrumbandwidth of aFHSS system20dB bandwidth	GFSK П/4DQPSK	☑ Lowest☑ Middle☑ Highest	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(b)(1)	Maximum output peak power	GFSK Π/4DQPSK	✓ Lowest✓ Middle✓ Highest	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(d)	Band edgecompliance conducted	GFSK Π/4DQPSK	✓ Lowest✓ Highest	GFSK Π/4DQPSK	✓ Lowest✓ Highest	Compliant
§15.205	Band edgecompliance radiated	GFSK Π/4DQPSK	☑ Lowest☑ Highest	GFSK Π/4DQPSK	☑ Lowest☑ Highest	Compliant
§15.247(d)	TX spuriousemissions conducted	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(d)	TX spuriousemissions radiated	GFSK Π/4DQPSK	✓ Lowest✓ Middle✓ Highest	GFSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK П/4DQPSK	☑ Lowest☑ Middle☑ Highest	GFSK	⊠ Middle	Compliant
§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GFSK Π/4DQPSK	✓ Lowest✓ Middle✓ Highest	GFSK		Compliant

Remark:

- The measurement uncertainty is not included in the test result. 1.
- 2. We tested all test mode and recorded worst case in report

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

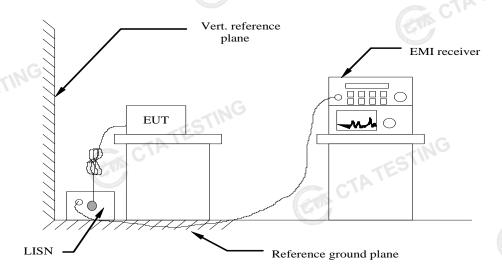
Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 9 of 48 Report No.: CTA23041900601

3.6 Equipments Used during the Test


Manufacturer R&S	Model No.	Equipment No.	Calibration Date	Calibration
D&C		_	Date	Due Date
Ras	ENV216	CTA-308	2022/08/03	2023/08/02
R&S	ENV216	CTA-314	2022/08/03	2023/08/02
r R&S	ESPI	CTA-307	2022/08/03	2023/08/02
r R&S	ESCI	CTA-306	2022/08/03	2023/08/02
er Agilent	N9020A	CTA-301	2022/08/03	2023/08/02
er R&S	FSP	CTA-337	2022/08/03	2023/08/02
Agilent	N5182A	CTA-305	2022/08/03	2023/08/02
R&S	SML03	CTA-304	2022/08/03	2023/08/02
CMW500	R&S	CTA-302	2022/08/03	2023/08/02
Chigo	ZG-7020	CTA-326	2022/08/03	2023/08/02
Schwarzbeck	VULB9163	CTA-310	2021/08/07	2024/08/06
Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2024/08/06
Zhinan	ZN30900C	CTA-311	2021/08/07	2024/08/06
Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
Schwarzbeck	BBV 9745	CTA-312	2022/08/03	2023/08/02
Taiwan chengyi	EMC051845B	CTA-313	2022/08/03	2023/08/02
er NARDA	4226-10	CTA-303	2022/08/03	2023/08/02
XingBo	XBLBQ-GTA18	CTA-402	2022/08/03	2023/08/02
XingBo	XBLBQ-GTA27	CTA-403	2022/08/03	2023/08/02
Tonscend	JS0806-F	CTA-404	2022/08/03	2023/08/02
Agilent	U2021XA	CTA-405	2022/08/03	2023/08/02
Schwarzbeck	BBV9719	CTA-406	2022/08/03	2023/08/02
	Schwarzbeck	Schwarzbeck BBV9719	Schwarzbeck BBV9719 CTA-406	

Report No.: CTA23041900601 Page 10 of 48

TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

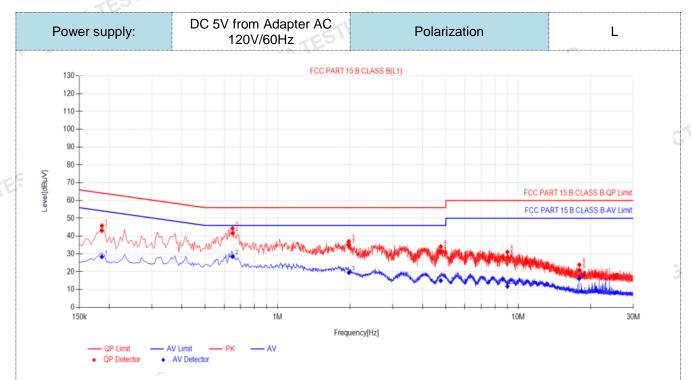
TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

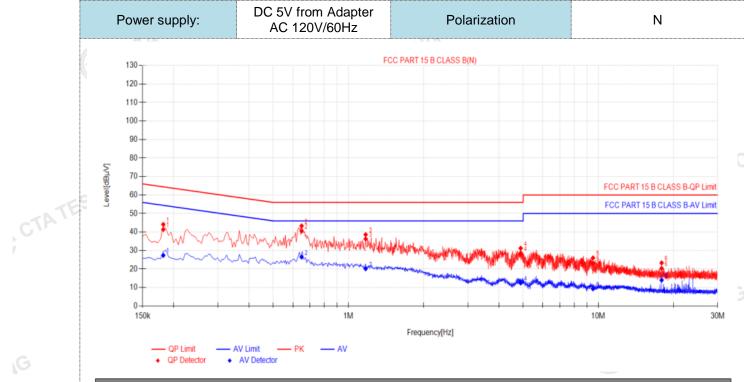

Fraguency range (MHz)	Limit (dBuV)							
Frequency range (MHz)	Quasi-peak	Average						
0.15-0.5	66 to 56*	56 to 46*						
0.5-5	56	46						
5-30	60	50						
* Decreases with the logarithm of the frequency.								

TEST RESULTS

1. All modes of GFSK, П/4 DQPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:

Report No.: CTA23041900601

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:



Final	Data Lis	st									
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dΒμV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict
1	0.186	10.50	32.60	43.10	64.21	21.11	17.91	28.41	54.21	25.80	PASS
2	0.6495	10.50	31.12	41.62	56.00	14.38	17.98	28.48	46.00	17.52	PASS
3	1.977	10.50	24.46	34.96	56.00	21.04	8.99	19.49	46.00	26.51	PASS
4	4.7625	10.50	21.04	31.54	56.00	24.46	4.54	15.04	46.00	30.96	PASS
5	9.006	10.50	17.70	28.20	60.00	31.80	1.30	11.80	50.00	38.20	PASS
6	17.9205	10.50	10.40	20.90	60.00	39.10	5.76	16.26	50.00	33.74	PASS
											EL WOOL V

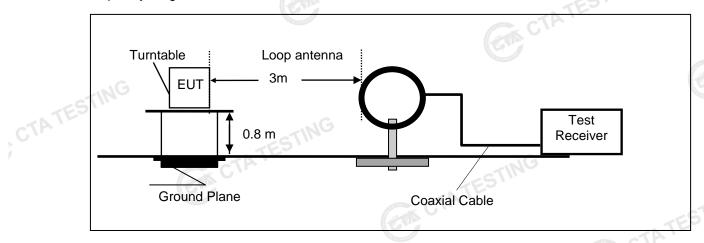
Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - 4). AVMargin(dB) = AV Limit (dBμV) AV Value (dBμV) CTA TESTING

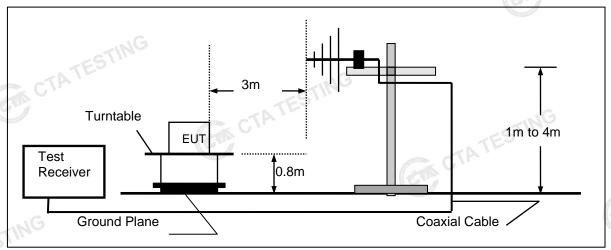
Page 12 of 48 Report No.: CTA23041900601

NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dBµV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict
1	0.1815	10.50	30.88	41.38	64.42	23.04	16.87	27.37	54.42	27.05	PASS
2	0.6495	10.50	30.07	40.57	56.00	15.43	15.98	26.48	46.00	19.52	PASS
3	1.1715	10.50	25.77	36.27	56.00	19.73	9.65	20.15	46.00	25.85	PASS
4	4.8885	10.50	18.09	28.59	56.00	27.41	1.93	12.43	46.00	33.57	PASS
5	9.519	10.50	12.65	23.15	60.00	36.85	-1.18	9.32	50.00	40.68	PASS
6	17.916	10.50	9.85	20.35	60.00	39.65	3.51	14.01	50.00	35.99	PASS
_	QP Value						Visual		50.00	35.99	PASS

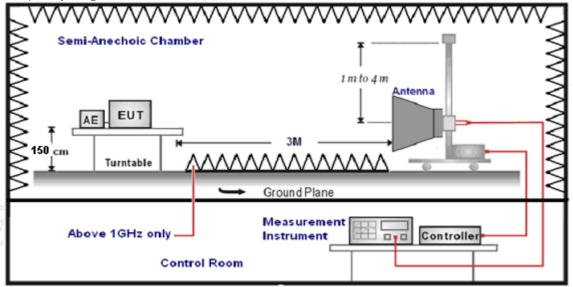
CTA TESTING


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$

Page 13 of 48 Report No.: CTA23041900601


4.2 **Radiated Emission**


TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Page 14 of 48 Report No.: CTA23041900601

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- Radiated emission test frequency band from 9KHz to 25GHz. 5.
- The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance	(C)
9KHz-30MHz	Active Loop Antenna	3	725 WAR
30MHz-1GHz	Ultra-Broadband Antenna	3	
1GHz-18GHz	Double Ridged Horn Antenna	3	
18GHz-25GHz	Horn Anternna	1	

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
104- 4004-	Sweep time=Auto	Peak
1GHz-40GHz	Average Value: RBW=1MHz/VBW=10Hz,	reak
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

sample calculation is as follows:	STINE
FS = RA + AF + CL - AG	CTATE
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	1.500

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

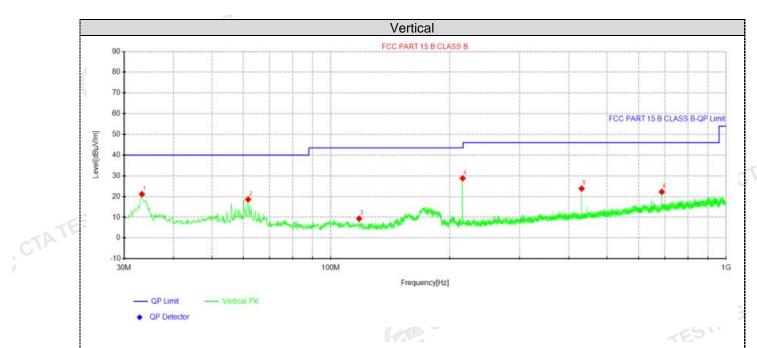
Page 15 of 48 Report No.: CTA23041900601

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- We measured Radiated Emission at GFSK, π/4 DQPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- For below 1GHz testing recorded worst at GFSK DH5 middle channel. 3.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz


Suspe	ected Data	List								
NO	Freq.	Freq. Reading		Factor	Limit	Margin	Height	Angle	Dolonitus	
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	33.1525	29.04	10.86	-18.18	40.00	29.14	100	353	Horizontal	
2	56.0688	28.18	10.82	-17.36	40.00	29.18	100	360	Horizontal	
3	158.888	32.43	10.80	-21.63	43.50	32.70	100	10	Horizontal	
4	215.512	37.83	18.89	-18.94	43.50	24.61	100	224	Horizontal	
5	430.973	37.57	22.36	-15.21	46.00	23.64	100	206	Horizontal	
6	687.538	31.06	19.32	-11.74	46.00	26.68	100	359	Horizontal	

CTATESTING

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Page 16 of 48 Report No.: CTA23041900601

Susp	ected Data	List											
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Doloritu				
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity				
1	33.2738	39.34	21.18	-18.16	40.00	18.82	100	222	Vertical				
2	61.7675	37.31	18.62	-18.69	40.00	21.38	100	0	Vertical				
3	117.906	29.37	9.38	-19.99	43.50	34.12	100	317	Vertical				
4	215.512	47.77	28.83	-18.94	43.50	14.67	100	326	Vertical				
5	430.973	39.07	23.86	-15.21	46.00	22.14	100	197	Vertical				
6	687.538	34.01	22.27	-11.74	46.00	23.73	100	266	Vertical				
	Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)												
Note:1)	.Level (dE	βμV/m)= Re	ading (dBµ	V)+ Fact	or (dB/m)								

CTATE

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTA TESTING

For 1GHz to 25GHz

Note: GFSK , $\pi/4$ DQPSK all have been tested, only worse case GFSK is reported.

GFSK (above 1GHz)

Freque	Frequency(MHz):			02	Pola	arity:	HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	60.64	PK	74	13.36	64.91	32.33	5.12	41.72	-4.27	
4804.00	44.96	AV	54	9.04	49.23	32.33	5.12	41.72	-4.27	
7206.00	54.93	PK	74	19.07	55.45	36.6	6.49	43.61	-0.52	
7206.00	43.17	AV	54	10.83	43.69	36.6	6.49	43.61	-0.52	

Freque	ncy(MHz)):	24	02	Pola	arity:	VERTICAL			
Frequency (MHz)	_	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	59.74	PK	74	14.26	64.01	32.33	5.12	41.72	-4.27	
4804.00	43.34	AV	54	10.66	47.61	32.33	5.12	41.72	-4.27	
7206.00	52.62	PK	74	21.38	53.14	36.6	6.49	43.61	-0.52	
7206.00	41.83	AV	54	12.17	42.35	36.6	6.49	43.61	-0.52	

Freque	ncy(MHz)):	24	41	Pola	arity:	HORIZONTAL			
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4882.00	60.27	PK	74	13.73	64.15	32.6	5.34	41.82	-3.88	
4882.00	45.61	AV	54	8.39	49.49	32.6	5.34	41.82	-3.88	
7323.00	54.28	PK	74	19.72	54.39	36.8	6.81	43.72	-0.11	
7323.00	42.56	AV	54	11.44	42.67	36.8	6.81	43.72	-0.11	

Frequency(MHz):		2441		Polarity:		VERTICAL			
Frequency (MHz)	Emis Le (dBu	_	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	58.43	PK	74	15.57	62.31	32.6	5.34	41.82	-3.88
4882.00	44.03	AV	54	9.97	47.91	32.6	5.34	41.82	-3.88
7323.00	53.28	PK	74	20.72	53.39	36.8	6.81	43.72	-0.11
7323.00	40.05	AV	54	13.95	40.16	36.8	6.81	43.72	-0.11

Frequency(MHz):		2480		Polarity:		HORIZONTAL			
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	59.82	PK	74	14.18	62.90	32.73	5.66	41.47	-3.08
4960.00	44.40	AV	54	9.60	47.48	32.73	5.66	41.47	-3.08
7440.00	55.29	PK	74	18.71	54.84	37.04	7.25	43.84	0.45
7440.00	43.72	PK	54	10.28	43.27	37.04	7.25	43.84	0.45

		JG.							
Freque	Frequency(MHz):		2480		Polarity:		VERTICAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	58.54	PK	74	15.46	61.62	32.73	5.66	41.47	-3.08
4960.00	42.33	AV	54	11.67	45.41	32.73	5.66	41.47	-3.08
7440.00	53.18	PK	74	20.82	52.73	37.04	7.25	43.84	0.45
7440.00	41.30	PK	54	12.70	40.85	37.04	7.25	43.84	0.45

Page 18 of 48 Report No.: CTA23041900601

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Note: GFSK, Pi/4 DQPSK all have been tested, only worse case GFSK is reported.

GFSK

Freque	ncy(MHz)	:	24	02	Pola	rity:	HORIZONTAL		۱L
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	60.87	PK	74	13.13	71.29	27.42	4.31	42.15	-10.42
2390.00	44.16	AV	54	9.84	54.58	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	02	Pola	rity:		VERTICAL	
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	58.79	PK	74	15.21	69.21	27.42	4.31	42.15	-10.42
2390.00	42.24	AV	54	11.76	52.66	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	2480 Polarity:		rity:	HORIZONTAL			
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	59.48	PK	74	14.52	69.59	27.7	4.47	42.28	-10.11
2483.50	42.35	AV	54	11.65	52.46	27.7	4.47	42.28	-10.11
Freque	Frequency(MHz):		2480		Polarity:		VERTICAL		
	-) (
Frequency (MHz)	Emis Le	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
	Emis Le	vel			Value	Factor	Factor	amplifier	Factor

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- CTA TESTING 5. The other emission levels were very low against the limit.

Page 19 of 48 Report No.: CTA23041900601

Maximum Peak Output Power

Limit

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to CTATE the powersensor.

Test Configuration

Test Results

Channel	Output power (dBm)	Limit (dBm)	Result
00	0.21		TES
39	0.86	20.97	Pass
78	1.45		
3 00	1.10		
39	1.77	20.97	Pass
78	2.29		
ults including the	cable lose.	CTATESTING	
	00 39 78 00 39 78	00 0.21 39 0.86 78 1.45 00 1.10 39 1.77 78 2.29	00 0.21 39 0.86 78 1.45 00 1.10 39 1.77 78 2.29

Page 20 of 48 Report No.: CTA23041900601

20dB Bandwidth

Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

Test Results

EUI			
Test Results			CTA TESTING
Modulation	Channel	20dB bandwidth (MHz)	Result
TING	CH00	0.972	
GFSK	CH39	CH39 1.023	
CTA.	CH78	1.011	Door
	CH00	1.326	Pass
π/4DQPSK	CH39	1.305	STING
	CH78	1.293	

Test plot as follows:

Report No.: CTA23041900601

Report No.: CTA23041900601

Page 23 of 48 Report No.: CTA23041900601

4.5 Frequency Separation

LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

TEST RESULTS

	FIN.	ANALIZ			
TEST RESULTS				TATESTING	
Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result	
GFSK	CH38	1.020	25KHz or 2/3*20dB	Pass	
GI SIX	CH39	1.020	bandwidth	1 855	
π/4DQPSK	CH38	1.124	25KHz or 2/3*20dB	Desa	
11/4DQP3K	CH39	51.124	bandwidth	Pass	

Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle

Test plot as follows:

Report No.: CTA23041900601 Page 24 of 48

Page 25 of 48 Report No.: CTA23041900601

Number of hopping frequency

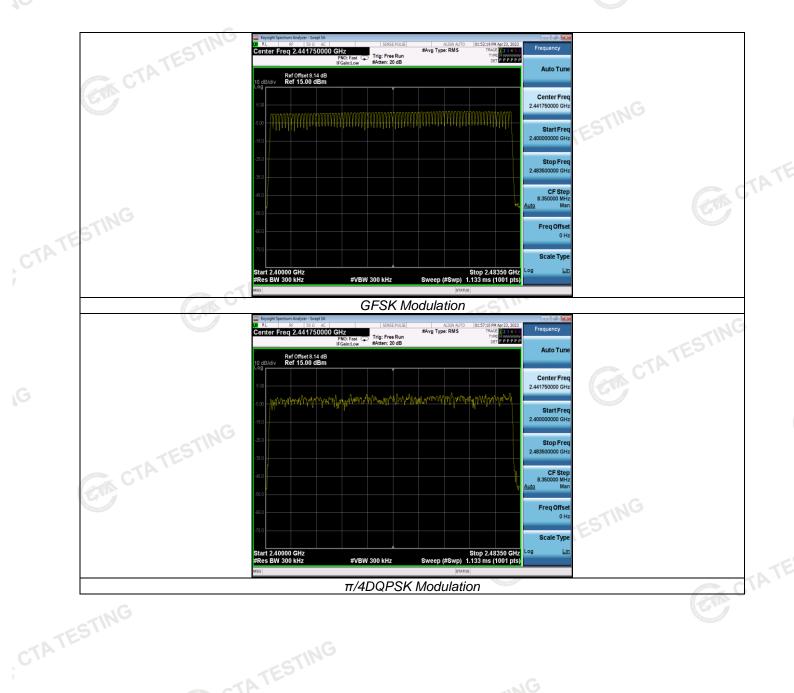
Limit

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

CTATE The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration



Test Results

Test Results	CTAT		
Modulation	Number of Hopping Channel	Limit	Result
GFSK	79	≥15	Pass
π/4DQPSK	79	215	Pass

Test plot as follows: CTATES

Page 26 of 48 Report No.: CTA23041900601

Page 27 of 48 Report No.: CTA23041900601

Time of Occupancy (Dwell Time)

Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

Test Configuration

Test Results

Test Results			CTATES		TESTING
Modulation	Packet	Burst time (ms)	Dwell time (s)	Limit (s)	Result
	DH1	0.37	0.118		
GFSK	DH3	1.62	0.259	0.40	Pass
TES	DH5	2.87	0.306		
CIL	2-DH1	0.37	0.118		
π/4DQPSK	2-DH3	1.62	0.259	0.40	Pass
	2-DH5	2.87	0.306	TESTIN	

Note: We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1, 3-DH1

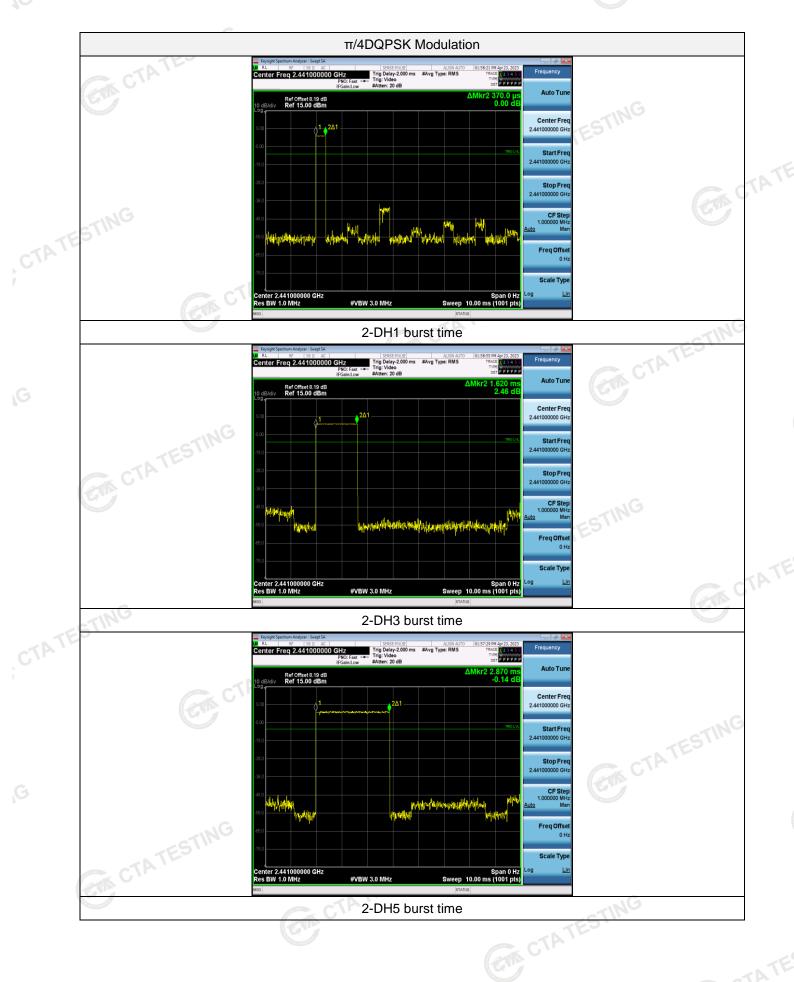
Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

CTA TESTING

Page 28 of 48 Report No.: CTA23041900601

Test plot as follows: **GFSK Modulation** Center Freq 2.441000000 GHz Auto Tun Ref Offset 8.19 dB Ref 15.00 dBm Center Free CON CTATE CTATESTING Scale Typ Span 0 Hz Sweep 10.00 ms (1001 pts) #VBW 3.0 MHz CTATESTING DH1 burst time Center Freq 2.441000000 GHz Ref Offset 8.19 dB Ref 15.00 dBm CTA TESTING Freq Offse CTATE Scale Typ enter 2.441000000 GHz es BW 1.0 MHz Span 0 Hz Sweep 10.00 ms (1001 pts) DH3 burst time enter Freq 2.441000000 GHz Auto Tun Ref Offset 8.19 dB Ref 15.00 dBm CTA TESTING CF Ste 1.000000 MH CTATESTING


DH5 burst time

#VBW 3.0 MHz

Span 0 Hz Sweep 10.00 ms (1001 pts

CTATES:

Page 29 of 48 Report No.: CTA23041900601

Page 30 of 48 Report No.: CTA23041900601

Out-of-band Emissions 4.8

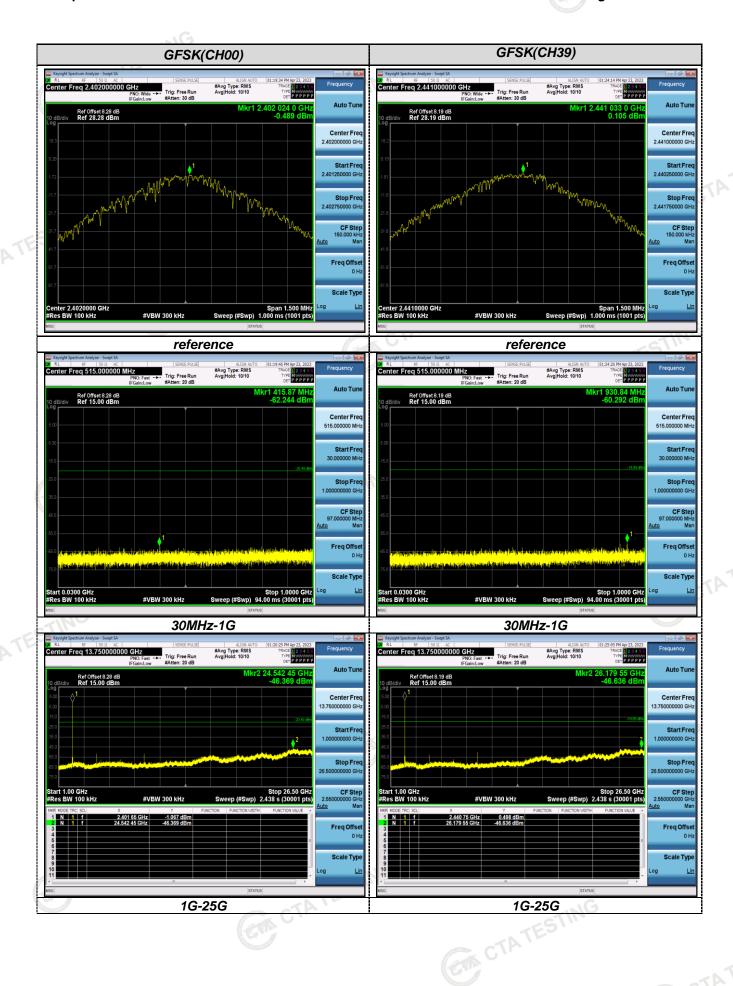
Limit

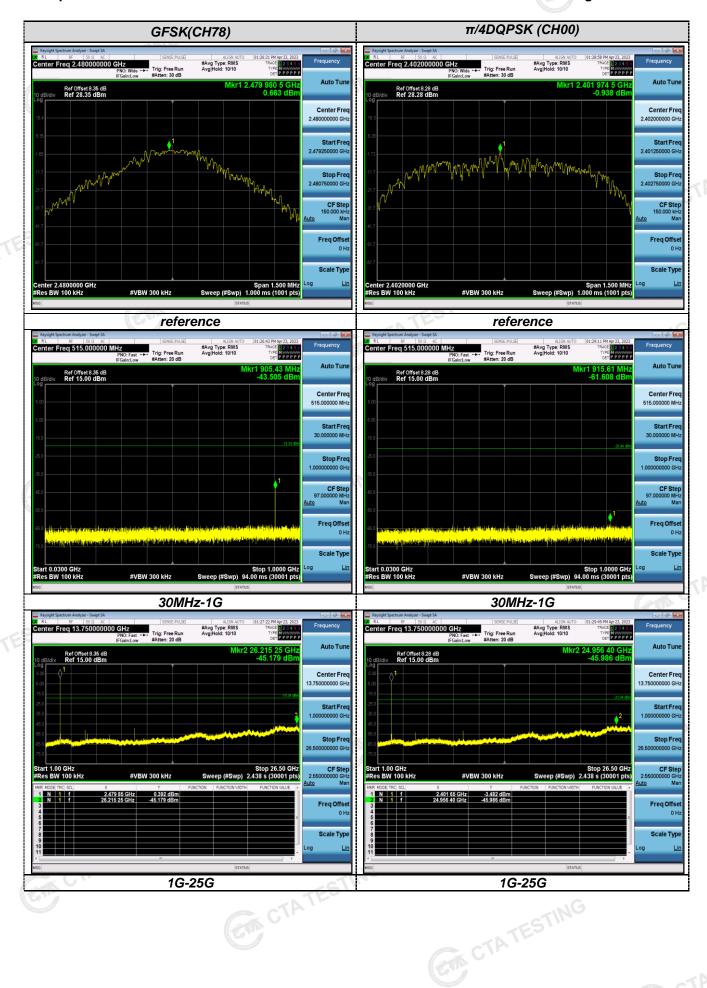
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

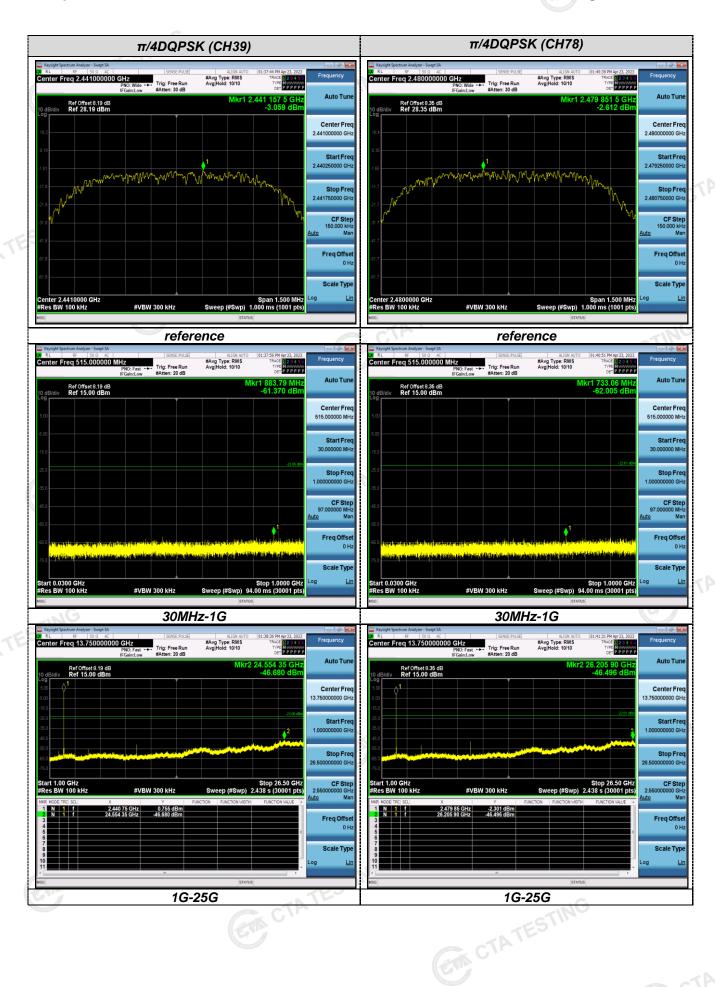
Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTATES made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration




Test Results


Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5

Test plot as follows:

