

RADIO TEST REPORT FCC ID: 2AZYA-AX61

Certificate #4298 0

Product: Mobile Phone Trade Mark: ACER Model No.: SOSPIRO-AX61 Family Model: SOSPIRO-AX61-B, SOSPIRO-AX61-N Report No.: S23081105002002 Issue Date: Aug 31, 2023

Prepared for

Senwa Global International, S.A. de C.V.

Carretera Mexico-Toluca No. 5324 PB, Colonia El Yaqui Del. Cuajimalpa de Morelos, C.P. 05320 Ciudad de Mexico, Mexico

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1&5/F, Building C, 1&2/F, Building E, Fenda Science Park, Sanwei Community, Hangcheng Street, Baoan District, Shenzhen ,Guangdong, China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

1	EST RESULT CERTIFICATION	4
2	UMMARY OF TEST RESULTS	5
3	ACILITIES AND ACCREDITATIONS	
-		
3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS	
3	MEASUREMENT UNCERTAINTY	
4	SENERAL DESCRIPTION OF EUT	
5	DESCRIPTION OF TEST MODES	
6	ETUP OF EQUIPMENT UNDER TEST	10
6	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	10
6	SUPPORT EQUIPMENT	11
6	EQUIPMENTS LIST FOR ALL TEST ITEMS	12
7	EST REQUIREMENTS	14
7	CONDUCTED EMISSIONS TEST	
/	1.1 Applicable Standard	
	1.2 Conformance Limit	
	1.3 Measuring Instruments	14
	1.1.4 Test Configuration	
	.1.5 Test Procedure	
-	1.1.6 Test Results	
7		
	2.1 Applicable Standard	
	2.2.3 Measuring Instruments	
	2.2.4 Test Configuration	
	.2.5 Test Procedure	
	.2.6 Test Results	20
7		
	.3.1 Applicable Standard	
	.3.2 Conformance Limit	
	.3.3 Measuring Instruments	
	.3.4 Test Setup .3.5 Test Procedure	
	3.6 Test Results	
7	DUTY CYCLE	
	.4.1 Applicable Standard	
	4.2 Conformance Limit	27
	.4.3 Measuring Instruments	
	.4.4 Test Setup	
	4.5 Test Procedure	
7	.4.6 Test Results PEAK OUTPUT POWER	
/	.5.1 Applicable Standard	
	5.2 Conformance Limit	
	5.3 Measuring Instruments	
	.5.4 Test Setup	
	.5.5 Test Procedure	
	5.6 Test Results	29

NTEK 北测[®]

	6 P	OWER SPECTRAL DENSITY	30
	7.6.1	Applicable Standard	
	7.6.2	Conformance Limit	
	7.6.3	Measuring Instruments	
	7.6.4	Test Setup	
	7.6.5	Test Procedure	
	7.6.6	Test Results	
7.	.7 C	ONDUCTED BAND EDGE MEASUREMENT	32
	7.7.1	Applicable Standard	
	7.7.2	Conformance Limit	32
	7.7.3	Measuring Instruments	32
	7.7.4	Test Setup	
	7.7.5	Test Procedure	32
	7.7.6	Test Results	
7.	8 S	PURIOUS RF CONDUCTED EMISSIONS	33
	7.8.1	Conformance Limit	
	7.8.2	Measuring Instruments	
	7.8. <i>3</i>	Test Setup	
	7.8.4	Test Procedure	
	7.8.5	Test Results	
7.	.9 A	NTENNA APPLICATION	
	7.9.1	Antenna Requirement	
	7.9.2	Result	34
8	TEST	RESULTS	35
			35
	M:	Duty Cycle	35 <i>35</i>
	M: 8.1.1	Duty Cycle Maximum Conducted Output Power	35 35 38
	M: 8.1.1 8.1.2	Duty Cycle	35 35 38 41
	M: 8.1.1 8.1.2 8.1.3	Duty Cycle Maximum Conducted Output Power -6dB Bandwidth	35 35 38 41 44
	M: 8.1.1 8.1.2 8.1.3 8.1.4	Duty Cycle Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth	35 35 38 41 44 47
	M: 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5	Duty Cycle Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth Maximum Power Spectral Density Level	35 35 38 41 44 47 50
11	M: 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7	Duty Cycle Maximum Conducted Output Power	35 38 41 44 47 50 53
11	M: 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7	Duty Cycle Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth. Maximum Power Spectral Density Level Band Edge Conducted RF Spurious Emission Duty Cycle	35 35 41 44 47 50 53 57 57
11	M: 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 M:	Duty Cycle Maximum Conducted Output Power	35 35 38 41 44 47 50 53 57 57 60
11	M: 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 M: 8.1.8	Duty Cycle Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth Maximum Power Spectral Density Level Band Edge Conducted RF Spurious Emission Duty Cycle Maximum Conducted Output Power -6dB Bandwidth	35 38 41 44 47 50 53 57 60 63
11	M: 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 M: 8.1.8 8.1.9	Duty Cycle Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth Maximum Power Spectral Density Level Band Edge Conducted RF Spurious Emission Duty Cycle Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth	35 38 41 44 47 50 53 57 60 63 66
11	M: 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 M: 8.1.8 8.1.9 8.1.10	Duty Cycle Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth Maximum Power Spectral Density Level Band Edge Conducted RF Spurious Emission Duty Cycle Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth Maximum Power Spectral Density Level	35 38 41 44 47 50 53 57 60 63 66 69
11	M: 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 M: 8.1.8 8.1.9 8.1.10 8.1.11	Duty Cycle Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth Maximum Power Spectral Density Level Band Edge Conducted RF Spurious Emission Duty Cycle Maximum Conducted Output Power -6dB Bandwidth Occupied Channel Bandwidth	35 35 38 41 44 47 50 53 57 60 63 66 69 72

NTEK 北测

1 TEST RESULT CERTIFICATION

Applicant's name:	Senwa Global International, S.A. de C.V.
Address:	Carretera Mexico-Toluca No. 5324 PB, Colonia El Yaqui Del. Cuajimalpa de Morelos, C.P. 05320 Ciudad de Mexico, Mexico
Manufacturer's Name:	Senwa Mobile China Ltd
Address:	A611, Languang technology building, No. 27, Gaoxin North 6th Road, songpingshan community, Xili street, Nanshan District, Shenzhen, Guangdong Province
Product description	
Product name:	Mobile Phone
Model and/or type reference:	SOSPIRO-AX61
Family Model	SOSPIRO-AX61-B, SOSPIRO-AX61-N
Sample number	S230811050003

Measurement Procedure Used:

APPLICABLE STANDARDSAPPLICABLE STANDARD/ TEST PROCEDURETEST RESULTFCC 47 CFR Part 2, Subpart JFCC 47 CFR Part 15, Subpart CFCC 47 CFR Part 15, Subpart CCompliedANSI C63.10-2013KDB 558074 D01 15.247 Meas Guidance v05r02

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Testing Engineer :	Aven bin
	11.0
	(Allen Liu)
Authorized Signatory :	Aless
	(Alex Li)

NTEK 北测

2 SUMMARY OF TEST RESULTS

R

ilac.M

FCC Part15 (15.247), Subpart C						
Standard Section Test Item Verdict Remai						
15.207	Conducted Emission	PASS				
15.247 (a)(2)	6dB Bandwidth	PASS				
15.247 (b)	Peak Output Power	PASS				
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS				
15.247 (e)	Power Spectral Density	PASS				
15.247 (d)	Band Edge Emission	PASS				
15.247 (d)	Spurious RF Conducted Emission	PASS				
15.203	Antenna Requirement	PASS				

ACCREDITED

Certificate #4298.01

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1&5/F, Building C, 1&2/F, Building E, Fenda Science Park, Sanwei Community, Hangcheng Street, Baoan District, Shenzhen ,Guangdong, China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1&5/F, Building C, 1&2/F, Building E, Fenda Science Park, Sanwei
	Community, Hangcheng Street, Baoan District, Shenzhen ,Guangdong, China

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

NTEK 北测

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment	Mobile Phone			
Trade Mark	ACER			
FCC ID	2AZYA-AX61			
Model No.	SOSPIRO-AX61			
Family Model	SOSPIRO-AX61-B, SOSPIRO-AX61-N			
Model Difference	All models are the same circuit and RF module, except the model name and colour.			
Operating Frequency	2402MHz~2480MHz			
Modulation	GFSK			
Number of Channels	40 Channels			
Antenna Type	PIFA Antenna			
Antenna Gain	-1.3 dBi			
Adapter	Model: SGCH0018 Input: 100-240Vca 50/60Hz 0.5A Output: 5.0Vcc 3A, 9.0Vcc 2A 18W			
Battery	DC 3.87V, 4900mAh			
Power supply	DC 3.87V from battery or DC 5V from adapter			
HW Version	ums5121h10_V1.0			
SW Version	Acer_AX61_Ver01			

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Revision History

Revision history				
Report No.	Version	Description	Issued Date	
S23081105002002	Rev.01	Initial issue of report	Aug 31, 2023	

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps/2Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+kx2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

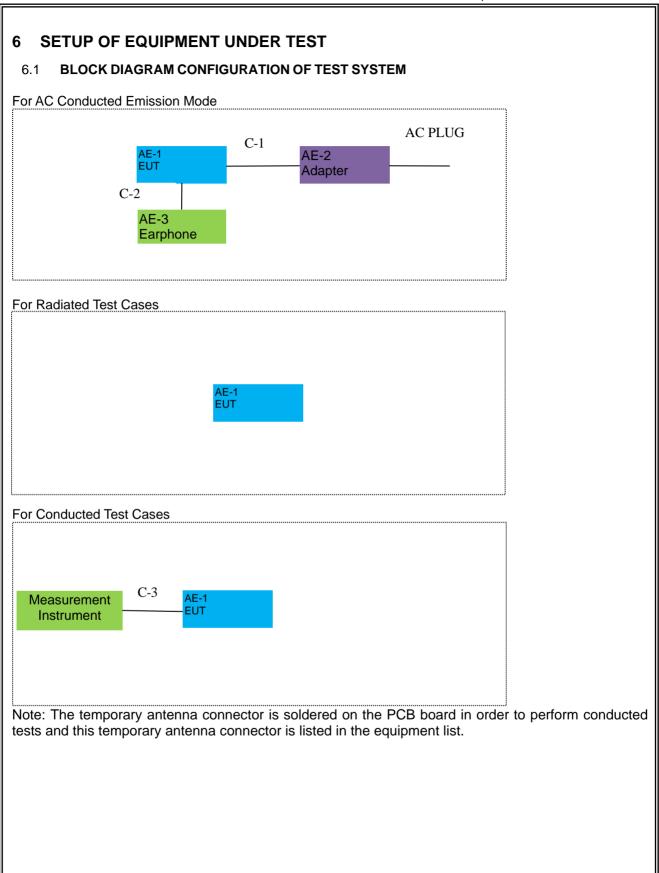
Test Cases		
Test Item Data Rate/ Modulation		
AC Conducted Emission	Mode 1: normal link mode	
	Mode 1: normal link mode	
Radiated Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps	
Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps	
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps	
	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps	
Conducted Test	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps	
Cases	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps	

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode(duty cycle =100% during the test)

2. AC power line Conducted Emission was tested under maximum output power.

3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.


4. EUT built-in battery-powered, the battery is fully-charged.

NTEK 北测

ac.

ACCREDITED

Certificate #4298.01

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ACC

Certificate #4298.01

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Mobile Phone	SOSPIRO-AX61	N/A	EUT
AE-2	Adapter	SGCH0018	N/A	Peripherals
AE-3	Earphone	N/A	N/A	Peripherals

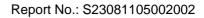
Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK 北测

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS


Radiation& Conducted Test equipment

	Und Conducted	loot oquipinont					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2023.03.27	2024.03.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023.05.29	2024.05.28	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2023.03.27	2024.03.26	1 year
4	Test Receiver	R&S	ESPI7	101318	2023.03.27	2024.03.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2023.03.27	2024.03.26	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2023.03.27	2024.03.26	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.08	2023.11.07	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2023.05.29	2024.05.28	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2022.11.08	2023.11.07	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2022.11.08	2023.11.07	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2023.05.06	2026.05.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2023.05.06	2026.05.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2022.11.08	2023.11.07	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2023.03.27	2024.03.26	1 year
2	LISN	R&S	ENV216	101313	2023.03.27	2024.03.26	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2023.03.27	2024.03.26	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2023.05.06	2026.05.05	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

ACCRED

Certificate #4298.01

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

NTEK 北测[®]

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

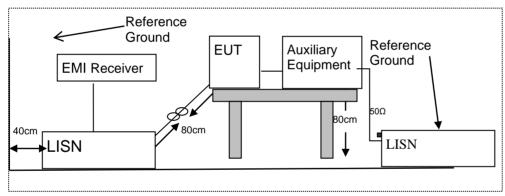
7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

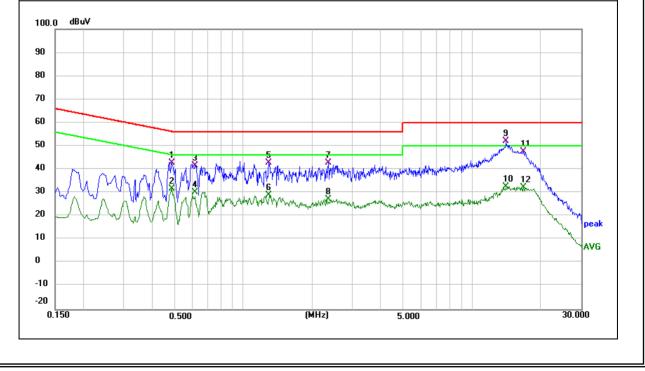
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.6 Test Results

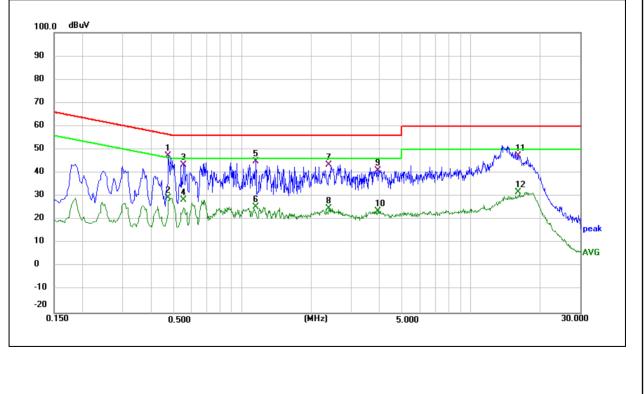

EUT:	Mobile Phone	Model Name :	SOSPIRO-AX61
Temperature:	22 °C	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.4860	31.85	11.06	42.91	56.24	-13.33	QP
0.4860	20.66	11.06	31.72	46.24	-14.52	AVG
0.6140	30.55	11.24	41.79	56.00	-14.21	QP
0.6140	19.15	11.24	30.39	46.00	-15.61	AVG
1.2940	30.12	12.58	42.70	56.00	-13.30	QP
1.2940	16.38	12.58	28.96	46.00	-17.04	AVG
2.3500	28.09	14.67	42.76	56.00	-13.24	QP
2.3500	12.62	14.67	27.29	46.00	-18.71	AVG
14.0740	41.77	10.27	52.04	60.00	-7.96	QP
14.0740	22.45	10.27	32.72	50.00	-17.28	AVG
16.7540	37.44	10.25	47.69	60.00	-12.31	QP
16.7540	21.97	10.25	32.22	50.00	-17.78	AVG

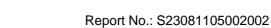
Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


EUT:	Mobile Phone	Model Name :	SOSPIRO-AX61
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demorile
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.4740	36.45	11.01	47.46	56.44	-8.98	QP
0.4740	18.38	11.01	29.39	46.44	-17.05	AVG
0.5540	32.26	11.15	43.41	56.00	-12.59	QP
0.5540	17.32	11.15	28.47	46.00	-17.53	AVG
1.1460	32.52	12.31	44.83	56.00	-11.17	QP
1.1460	13.03	12.31	25.34	46.00	-20.66	AVG
2.3940	28.84	14.75	43.59	56.00	-12.41	QP
2.3940	10.03	14.75	24.78	46.00	-21.22	AVG
3.9060	31.15	9.88	41.03	56.00	-14.97	QP
3.9060	13.91	9.88	23.79	46.00	-22.21	AVG
16.1220	37.21	10.27	47.48	60.00	-12.52	QP
16.1220	21.57	10.27	31.84	50.00	-18.16	AVG


Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

Certificate #4298.01

MHz	MHz	GHz	
16.42-16.423	399.9-410	4.5-5.15	
16.69475-16.69525	608-614	5.35-5.46	
16.80425-16.80475	960-1240	7.25-7.75	
25.5-25.67	1300-1427	8.025-8.5	
37.5-38.25	1435-1626.5	9.0-9.2	
73-74.6	1645.5-1646.5	9.3-9.5	
74.8-75.2	1660-1710	10.6-12.7	
123-138	2200-2300	14.47-14.5	
149.9-150.05	2310-2390	15.35-16.2	
156.52475-156.52525	2483.5-2500	17.7-21.4	
156.7-156.9	2690-2900	22.01-23.12	
162.0125-167.17	3260-3267	23.6-24.0	
167.72-173.2	3332-3339	31.2-31.8	
240-285	3345.8-3358	36.43-36.5	
322-335.4	3600-4400	(2)	
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358	

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

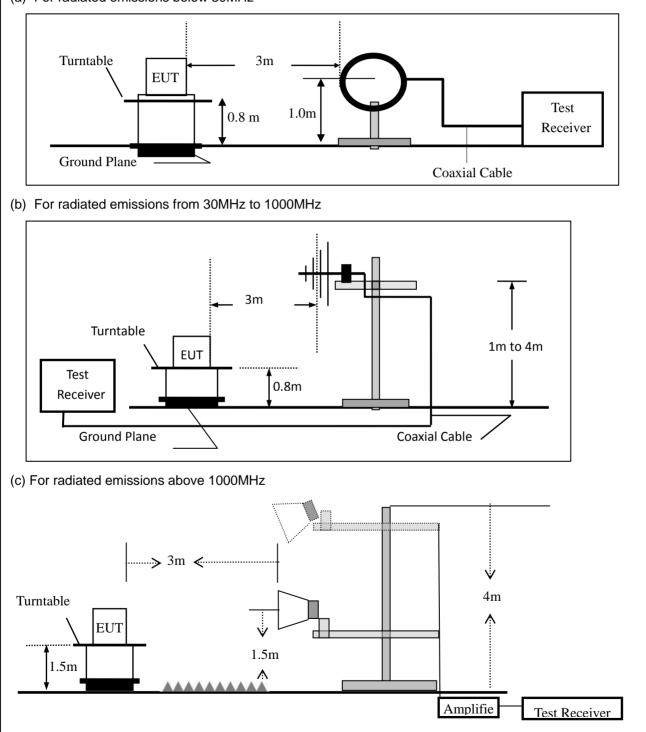
Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

NTEK 北测



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Certificate #4298.01

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 4000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	1 MHz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

	Spurious	Emission	below	30MHz	(9KHz to 30MHz)
--	----------	----------	-------	-------	-----------------

EUT:	Mobile Phone	Model No.:	SOSPIRO-AX61
Temperature:	20 ℃	Relative Humidity:	48%
Lest Mode.	Mode1/Mode2/Mode3/ Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK AV		PK	AV	PK	AV	

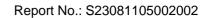
Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

ACCRED

Certificate #4298.01

EUT:	Mobile Phone	Model Name :	SOSPIRO-AX61
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	Mode 4 2Mbps
Test Voltage :	DC 3.87V		


Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	44.5867	8.18	20.69	28.87	40.00	-11.13	QP
V	59.6492	6.24	19.85	26.09	40.00	-13.91	QP
V	99.5279	3.57	18.86	22.43	43.50	-21.07	QP
V	191.0738	11.24	17.45	28.69	43.50	-14.81	QP
V	287.9904	4.21	19.80	24.01	46.00	-21.99	QP
V	893.8565	0.87	28.98	29.85	46.00	-16.15	QP

Remark:

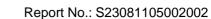
Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Polar	Frequ	ency		leter ading		Factor	r	missio Level	-	Lin	nits	Mar	gin	R	emark
(H/V)	(MH	(MHz) (dBuV) (dB) (dBu		lBuV/r	m)	(dBu	ıV/m)	(dl	В)						
Н	48.50	J15	C	0.08		21.09		21.17	,	40	.00	-18	.83		QP
Н	72.08		2	2.47		15.81		18.28		40	.00	-21	.72		QP
Н	99.52			1.96		18.86		23.82			.50	-19			QP
Н	191.0			0.07		17.45		27.52			.50	-15			QP
Н	297.2	240		5.84		20.00		26.84	-	46	.00	-19	.16	-	QP
Н	866.0	880	<u> </u>	1.16		28.80		29.96	;	46	.00	-16	.04		QP
Remark Emissio 72.0	k: on Level= dBuV/m	Meter F	Readi	ng+	Fac	stor, Marg	gin= Er	nissio	<u>n Le</u>	vel - Lir	mit				
62															
52 42				f											
32					3		4			5	polonemius	- un happy have	Antonial	6	
22	ne Martin Jon Marthan	1 Martin and the part	Waln y	he mark	and the second	Content of the Article	many	Vmum	NUM	Hummun	welforeneration	4 ⁰ mm			
2															
-8															
30	0.000	6	0.00		<u> </u>		(MHz)			300.00		1		1000.0	100

ACCREDITED

Certificate #4298.01

JT:	Mob	ile Phon	е]	Мос	lel No.:		SOSPIRC)-AX61		
emperature:	20 °C	2			Rela	ative Hum	idity:	48%			
est Mode:	Mode: Mode2/Mode3/Mode4					t By:		Allen Liu			
Frequency	Read Level	Cable loss	Antenna Factor	Prear Facto		Emission Level	Limits	Margin	Remark	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB	5)	(dBµV/m)	(dBµV/m) (dB)			
			Low C	hannel	(240	2 MHz)(GFS	K)Above	1G		-	
4804.338	62.22	5.21	35.59	44.3	30	58.72	74.00	-15.28	Pk	Vertical	
4804.338	42.62	5.21	35.59	44.3	30	39.12	54.00	-14.88	AV	Vertical	
7206.107	61.32	6.48	36.27	44.6	60	59.47	74.00	-14.53	Pk	Vertical	
7206.107	42.47	6.48	36.27	44.6	60	40.62	54.00	-13.38	AV	Vertical	
4804.169	63.81	5.21	35.55	44.3	80	60.27	74.00	-13.73	Pk	Horizontal	
4804.169	42.50	5.21	35.55	44.3	30	38.96	54.00	-15.04	AV	Horizontal	
7206.214	61.83	6.48	36.27	44.5	52	60.06	74.00	-13.94	Pk	Horizontal	
7206.214	41.37	6.48	36.27	44.5	52	39.60	54.00	-14.40	AV	Horizontal	
Mid Channel (2440 MHz)(GFSK)Above 1G											
4880.473	63.71	5.21	35.66	44.2	20	60.38	74.00	-13.62	Pk	Vertical	
4880.473	43.78	5.21	35.66	44.2	20	40.45	54.00	-13.55	AV	Vertical	
7320.265	65.71	7.10	36.50	44.4	3	64.88	74.00	-9.12	Pk	Vertical	
7320.265	42.65	7.10	36.50	44.4	3	41.82	54.00	-12.18	AV	Vertical	
4880.366	63.77	5.21	35.66	44.2	20	60.44	74.00	-13.56	Pk	Horizontal	
4880.366	40.87	5.21	35.66	44.2	20	37.54	54.00	-16.46	AV	Horizontal	
7320.234	59.63	7.10	36.50	44.4	3	58.80	74.00	-15.20	Pk	Horizontal	
7320.234	43.37	7.10	36.50	44.4	13	42.54	54.00	-11.46	AV	Horizontal	
			High Cl	hannel	(248	0 MHz)(GFS	K) Above	e 1G		-	
4960.482	63.75	5.21	35.52	44.2	21	60.27	74.00	-13.73	Pk	Vertical	
4960.482	42.60	5.21	35.52	44.2	21	39.12	54.00	-14.88	AV	Vertical	
7440.131	64.00	7.10	36.53	44.6	60	63.03	74.00	-10.97	Pk	Vertical	
7440.131	50.10	7.10	36.53	44.6	60	49.13	54.00	-4.87	AV	Vertical	
4960.326	64.62	5.21	35.52	44.2	21	61.14	74.00	-12.86	Pk	Horizontal	
4960.326	45.27	5.21	35.52	44.2	21	41.79	54.00	-12.21	AV	Horizontal	
7440.199	65.15	7.10	36.53	44.6	60	64.18	74.00	-9.82	Pk	Horizontal	
7440.199	45.36	7.10	36.53	44.6	50	44.39	54.00	-9.61	AV	Horizontal	


Note:

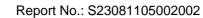
(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2)All other emissions more than 20dB below the limit.

(3)Only the worst data is recorded in the report, the data rates (2Mbps for GFSK modulation) test result is the worst

∎ Sp	ourious Ei	mis	ssion in R	lestricte	ed Band 2	2310-23	390MHz and	2483	.5-25	500MHz		
EUT:		M	obile Pho	ne		Mo	del No.:		SO	SPIRO-	AX61	
Tempe	erature:	20) °C			Rel	Relative Humidity: 48			8%		
Test M	lode:	M	ode2/ Mo	de4		Tes	Test By: Alle					
	Frequenc	у	Meter Reading	Cable Loss	Antenna Factor	Pream Factor		Limi	ts	Margin	Detector	Comment
	(MHz)		(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ∖	//m)	(dB)	Туре	
						1N	lbps(GFSK)					
	2310.00)	62.80	2.97	27.80	43.80) 49.77	74		-24.23	Pk	Horizontal
	2310.00)	43.06	2.97	27.80	43.80) 30.03	54		-23.97	AV	Horizontal
	2310.00)	62.20	2.97	27.80	43.80) 49.17	74		-24.83	Pk	Vertical
	2310.00)	42.28	2.97	27.80	43.80) 29.25	54		-24.75	AV	Vertical
	2390.00)	63.39	3.14	27.21	43.80	49.94	74		-24.06	Pk	Vertical
	2390.00)	42.22	3.14	27.21	43.80) 28.77	54		-25.23	AV	Vertical
	2390.00)	63.61	3.14	27.21	43.80	50.16	74		-23.84	Pk	Horizontal
	2390.00)	42.06	3.14	27.21	43.80	28.61	54		-25.39	AV	Horizontal
	2483.50)	62.94	3.58	27.70	44.00	50.22	74		-23.78	Pk	Vertical
	2483.50)	42.64	3.58	27.70	44.00	29.92	54		-24.08	AV	Vertical
	2483.50)	65.69	3.58	27.70	44.00) 52.97	74		-21.03	Pk	Horizontal
	2483.50)	43.29	3.58	27.70	44.00	30.57	54		-23.43	AV	Horizontal

Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz


ilac.M

ACCRED

Certificate #4298.01

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (2Mbps for GFSK modulation) test result is the worst

T:	Mobile F	Phone		Model	No.:		SOSPIRO-AX61			
mperature:	20 ℃			Relativ	Relative Humidity:					
est Mode:	ode: Mode2/ Mode4 Test				y:		Allen	Liu		
Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lin	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	V/m)	(dB)	Туре	
3260	63.08	4.04	29.57	44.70	51.99	7	4	-22.01	Pk	Vertical
3260	56.68	4.04	29.57	44.70	45.59	5	4	-8.41	AV	Vertical
3260	65.99	4.04	29.57	44.70	54.90	7	4	-19.10	Pk	Horizontal
3260	57.93	4.04	29.57	44.70	46.84	5	4	-7.16	AV	Horizontal
3332	65.42	4.26	29.87	44.40	55.15	7	4	-18.85	Pk	Vertical
3332	57.96	4.26	29.87	44.40	47.69	5	4	-6.31	AV	Vertical
3332	66.07	4.26	29.87	44.40	55.80	7	4	-18.20	Pk	Horizontal
3332	52.58	4.26	29.87	44.40	42.31	5	4	-11.69	AV	Horizontal
17797	44.50	10.99	43.95	43.50	55.94	7	4	-18.06	Pk	Vertical
17797	34.65	10.99	43.95	43.50	46.09	5	4	-7.91	AV	Vertical
17788	45.76	11.81	43.69	44.60	56.66	7	4	-17.34	Pk	Horizontal
17788	36.06	11.81	43.69	44.60	46.96	5	4	-7.04	AV	Horizontal

ACCREE

Certificate #4298.01

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (2Mbps for GFSK modulation) test result is the worst

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

Certificate #4298.01

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Mobile Phone	Model No.:	SOSPIRO-AX61
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

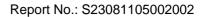
The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}



7.4.6 Test Results

EUT:	Mobile Phone	Model No.:	SOSPIRO-AX61
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.5 **PEAK OUTPUT POWER**

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

Certificate #4298.01

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Mobile Phone	Model No.:	SOSPIRO-AX61
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

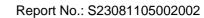
7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.


The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5*DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Mobile Phone	Model No.:	SOSPIRO-AX61
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

ACCREDITED

Certificate #4298.01

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

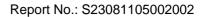
The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.


Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Mobile Phone	Model No.:	SOSPIRO-AX61
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Allen Liu

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

Certificate #4298.01

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

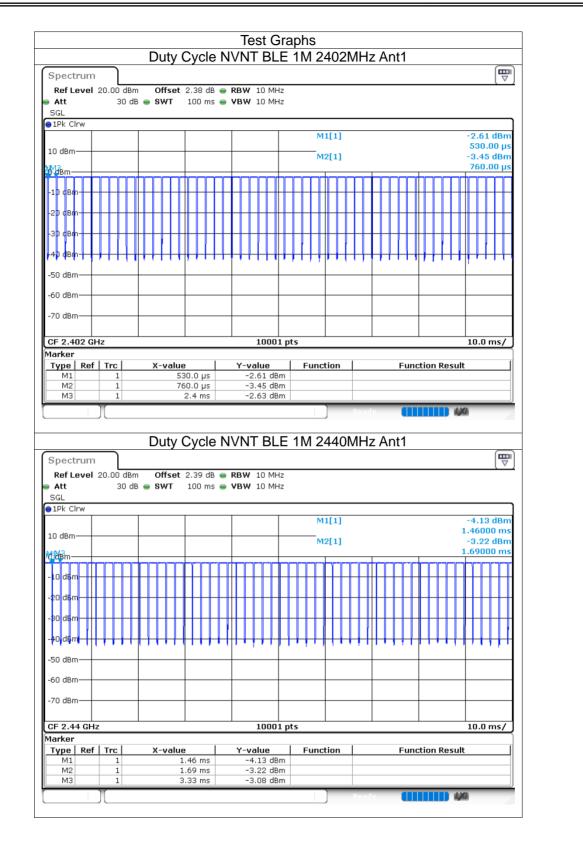
The EUT antenna is permanent attached PIFA antenna (Gain: -1.3 dBi). It comply with the standard requirement.

8 TEST RESULTS

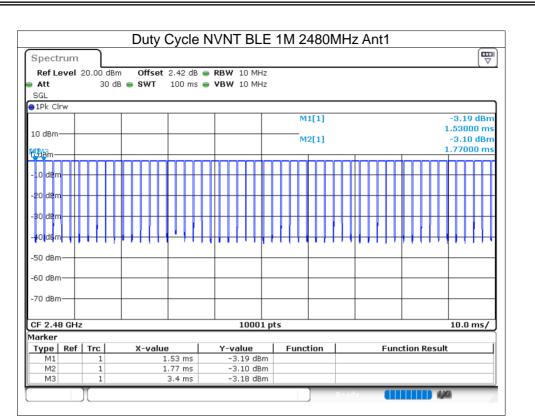
1M:

8.1.1 **Duty Cycle**

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 1M	2402	Ant1	87.98	0.56	0.61
NVNT	BLE 1M	2440	Ant1	88.08	0.55	0.61
NVNT	BLE 1M	2480	Ant1	87.81	0.56	0.61

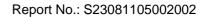


ilac-MR/

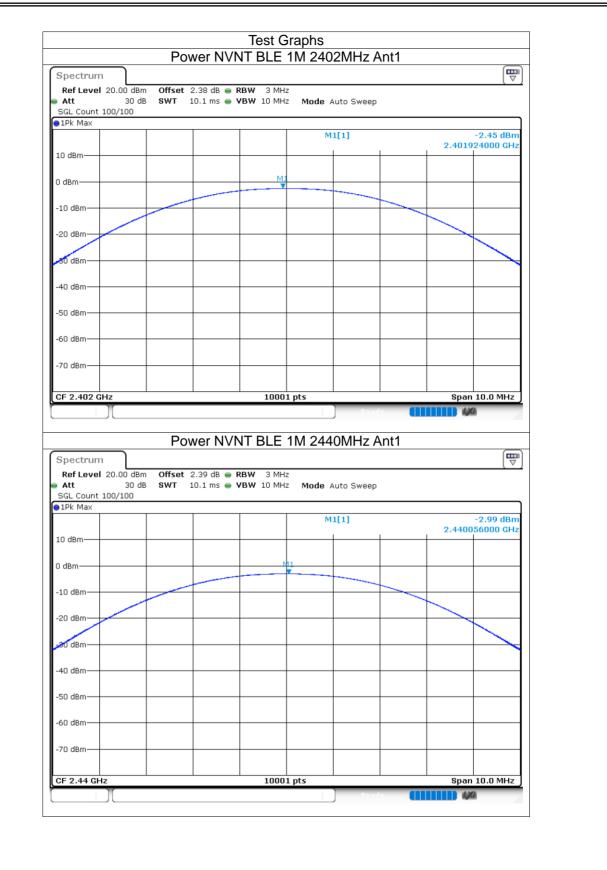

ACCREDITED

Certificate #4298.01

Report No.: S23081105002002

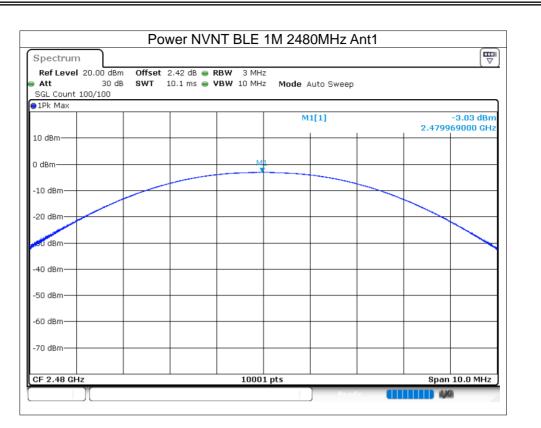


ACCREDITED



8.1.2 Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-2.45	30	Pass
NVNT	BLE 1M	2440	Ant1	-2.99	30	Pass
NVNT	BLE 1M	2480	Ant1	-3.03	30	Pass

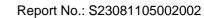

ACCREL

ACCREDITED

ACCREDITED

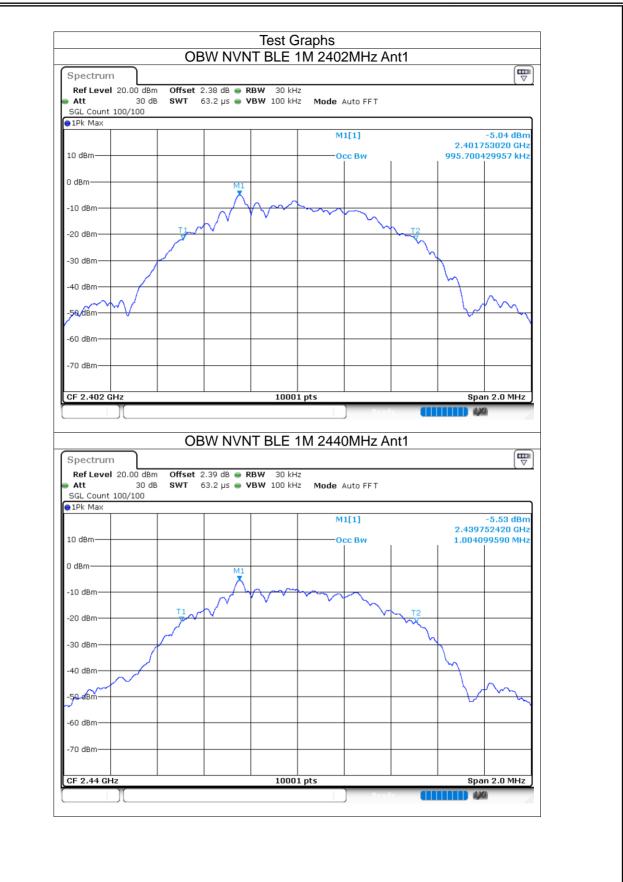
8.1.3 -6dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	0.731	0.5	Pass
NVNT	BLE 1M	2440	Ant1	0.658	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.692	0.5	Pass


ACCREDITED

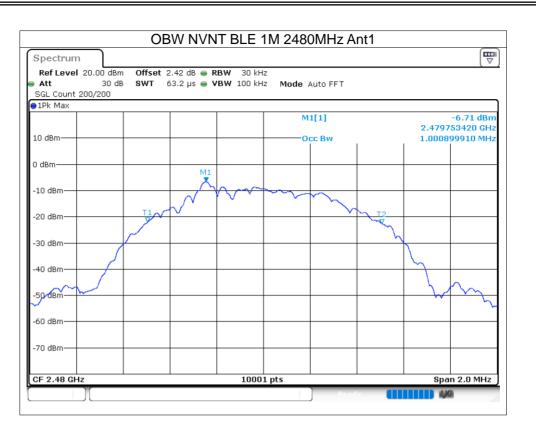
Spectrum						
Ref Level 20.00 di	m Offcot 0.40 dp	RBW 100 kHz				(v
Att 30		-	Mode Auto FFT			
GL Count 300/300	ab 0111 1015 ps	• 1011 000 Mile	Hous Autorn			
1Pk Max						
			M1[1]			-4.02 dBm
) dBm					2.4800	05600 GHz
U dBm			M2[1]		-	10.03 dBm
dBm-		ba1			2.4796	51000 GHz
ubiii	M2		M	3		
LO dBm				š		
20 dBm				\rightarrow		
30 dBm /						
O dBm						
i0 dBm						
i0 dBm						
'0 dBm						
F 2.48 GHz		10001 pt	<u> </u>		 Snai	1 2.0 MHz
arker		10001 pt	-		000	. 2.0 1112
ype Ref Trc	X-value	Y-value	Function	Fun	ction Result	
M1 1	2.4800056 GHz	-4.02 dBm				
M2 1	2.479651 GHz	-10.03 dBm				
M3 1	2.480344 GHz	-10.03 dBm				

ACCREDITED



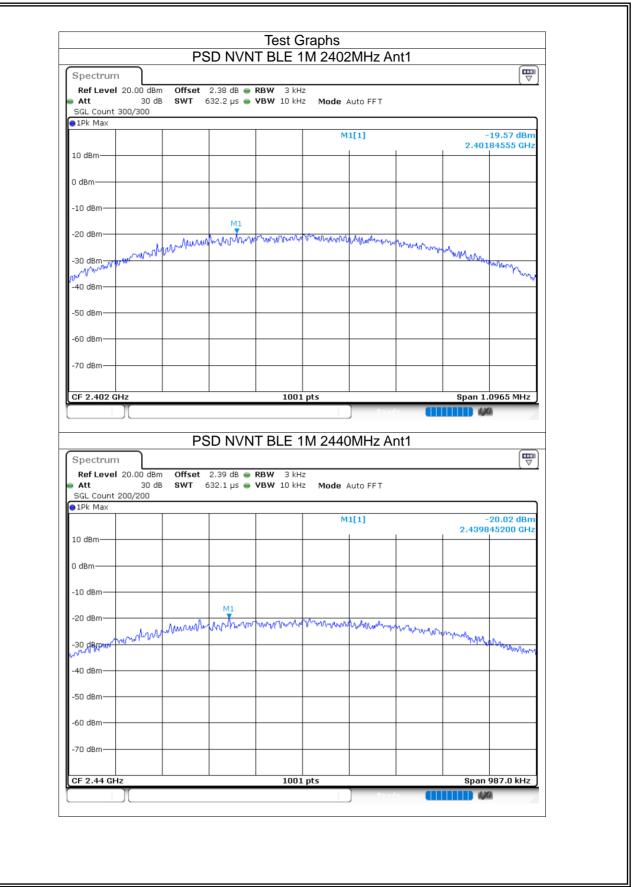
8.1.4 Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	0.996
NVNT	BLE 1M	2440	Ant1	1.004
NVNT	BLE 1M	2480	Ant1	1.001


ACCREDITED

ACCREDITED

ACCREDITED



8.1.5 Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-19.57	8	Pass
NVNT	BLE 1M	2440	Ant1	-20.02	8	Pass
NVNT	BLE 1M	2480	Ant1	-20.07	8	Pass

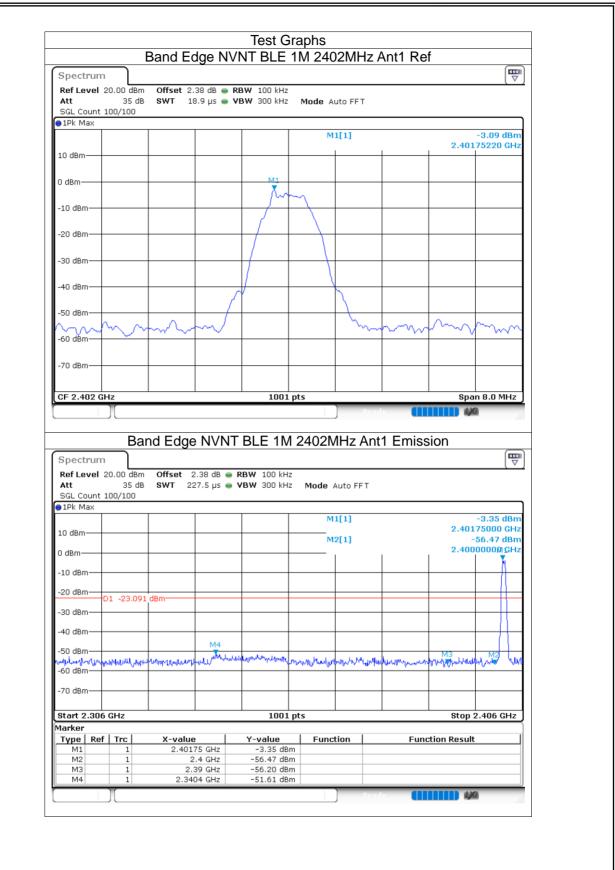
ACCREDITED

Spectrum								
Ref Level Att	30 di		2.42 dB ● 632.2 µs ●	RBW 3 kH VBW 10 kH	-	FFT		(•
SGL Count 3 1Pk Max	300/300							,
					M1[1]			20.07 dBm 84450 GHz
10 dBm								
D dBm								
-10 dBm								
20 dBm		ļ	M1		h.			
20 dbm	munh	man	h www.	(Control Vine Vine)	n. memorian and	whenproventer	mundupplan	
And a Bally and a second								on marine marine
-40 dBm			-					
-50 dBm								
-60 dBm								
70 dBm								
CF 2.48 GH	z	1	1	1001	pts	1	Span 1	.038 MHz

ACCREDITED

8.1.6 Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-48.52	-20	Pass
NVNT	BLE 1M	2480	Ant1	-39.02	-20	Pass



ilac-MR

ACCREDITED

Certificate #4298.01

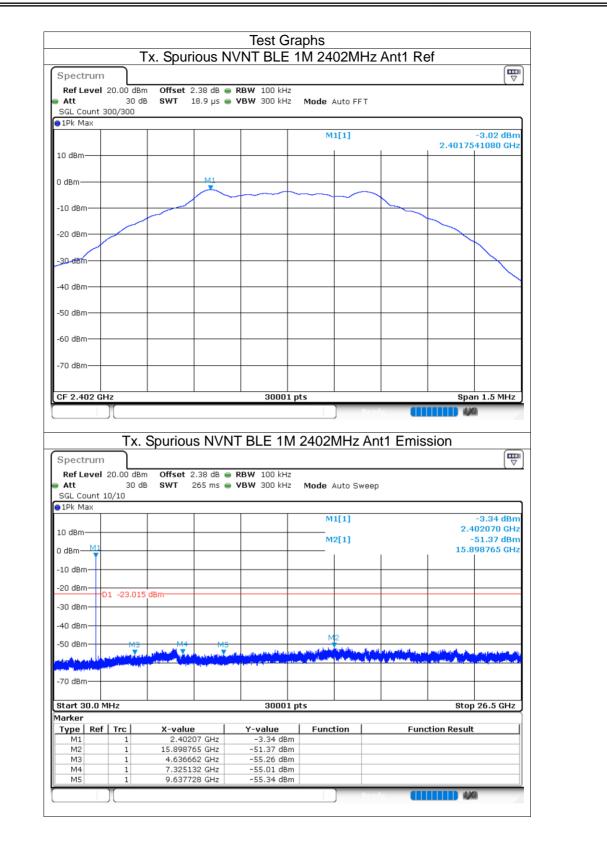
Report No.: S23081105002002

Spect	rum				VNT BLE					
-			m Offcot	0.40 dB 🔿	RBW 100 kHz					[\Box]
Att	vera				VBW 300 kHz		uto FET			
SGL C	ount :	100/100								
1Pk M	ах									
						M	1[1]			-3.91 dBm
20 dBm								1	2.479	75220 GHz
LO dBm										
) dBm-				_	M1					
					X.	h.				
10 dBr	n					[m				
20 dBr	n			_		\vdash				
30 dBr	n					\vdash				
						\				
40 dBr	n		_	_	1	<u>↓ </u>		-		
m	$ \downarrow $	\sim	m	m	/		- hm	Mm	mm	mm
50 dBr	n₩	** : = :	- ···	V~`					· · V · *	
60 dBr	n-+									
- - - - - - - - - - - - - - - - - - -					1001	ntc				n 8.0 MHz
	8 GH	7								
	8 GH	J B	and Edg	je NVN	IT BLE 1N) 1Hz Ant	t1 Emis		
Spect Ref Le	rum	B 30.00 de	m Offset	2.42 dB (RBW 100 KH	1 2480N		t1 Emiss		
Spect Ref Le Att	rum evel 3	B 30.00 dB 45 (m Offset	2.42 dB (IT BLE 1N	1 2480N		t1 Emiss		
Spect Ref Le Att	rum evel :	B 30.00 de	m Offset	2.42 dB (RBW 100 KH	1 2480N		t1 Emiss		
Spect Ref Le Att SGL Ci	rum evel :	B 30.00 dB 45 (m Offset	2.42 dB (RBW 100 KH	1 2480N		t1 Emiss		
Spect Ref Le Att SGL Ci	erum evel 3 ount :	B 30.00 dB 45 (m Offset	2.42 dB (RBW 100 KH	1 2480N	Auto FFT 1[1]	t1 Emiss	sion 2.479	-3.76 dBm 75000 GHz
Spect RefLe SGL Ci 1Pk M 20 dBm	evel 3	B 30.00 dB 45 (m Offset	2.42 dB (RBW 100 KH	1 2480N	Auto FFT	t1 Emiss	sion 2.475	-3.76 dBm 75000 GHz 44.97 dBm
Spect Ref Le Att SGL Ci JPk M	evel 3	B 30.00 dB 45 (m Offset	2.42 dB (RBW 100 KH	1 2480N	Auto FFT 1[1]	t1 Emiss	sion 2.475	-3.76 dBm 75000 GHz
Spect RefLe SGL Ci 1Pk M 20 dBm	evel 3	B 30.00 dB 45 (m Offset	2.42 dB (RBW 100 KH	1 2480N	Auto FFT 1[1]	t1 Emiss	sion 2.475	-3.76 dBm 75000 GHz 44.97 dBm
Spect Ref Le SGL Co 1Pk M 20 dBm L0 dBm	evel 3	B 30.00 dB 45 (m Offset	2.42 dB (RBW 100 KH	1 2480N	Auto FFT 1[1]	t1 Emiss	sion 2.475	-3.76 dBm 75000 GHz 44.97 dBm
Spect Ref Le SGL Co 1Pk M 20 dBm L0 dBm	evel 3	B 30.00 dB 45 (m Offset	2.42 dB (RBW 100 KH	1 2480N	Auto FFT 1[1]	t1 Emiss	sion 2.475	-3.76 dBm 75000 GHz 44.97 dBm
Spect Ref Le Att SGL Cr 1Pk M 20 dBm 20 dBm - 10 dBm - 10 dBm - 20 dBr	n	B 30.00 dE 45 (100/100	m Offset IB SWT	2.42 dB (RBW 100 KH	1 2480N	Auto FFT 1[1]	t1 Emiss	sion 2.475	-3.76 dBm 75000 GHz 44.97 dBm
Spect Ref Le Att SGL Cr 1Pk M 20 dBm 20 dBm - 10 dBm - 10 dBm - 20 dBr	n	B 30.00 dB 45 (m Offset IB SWT	2.42 dB (RBW 100 KH	1 2480N	Auto FFT 1[1]	t1 Emiss	sion 2.475	-3.76 dBm 75000 GHz 44.97 dBm
Spect Ref Le SGL C. 1Pk M 20 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	n	B 30.00 dE 45 (100/100	m Offset IB SWT	2.42 dB 227.5 µs	RBW 100 KH	1 2480N	Auto FFT 1[1]	t1 Emiss	sion 2.475	-3.76 dBm 75000 GHz 44.97 dBm
Spect Ref Le SGL Cr) 1Pk M 20 dBm -10 dBm -20 dBm -30 dBm -30 dBm	n n n n	B 30.00 dE 45 (100/100	m Offset IB SWT	2.42 dB 227.5 µs	RBW 100 KH VBW 300 KH	1 2480N	Auto FFT 1[1] 2[1]		2.475 2.485	-3.76 dBm 75000 GHz 44.97 dBm 50000 GHz
Spect Ref Le SGL Cr) 1Pk M 20 dBm -10 dBm -20 dBm -30 dBm -30 dBm	n n n n n n n n n n n n n n	B 30.00 dE 45 (100/100	m Offset IB SWT	2.42 dB 227.5 µs	RBW 100 KH	1 2480N	Auto FFT 1[1] 2[1]		2.475 2.485	-3.76 dBm 75000 GHz 44.97 dBm 50000 GHz
Spect Ref Le Att SGL Cr 1Pk M 20 dBm 20 dBm 20 dBm 20 dBm 30 dBm 30 dBm 30 dBm 30 dBm 30 dBm 30 dBm 30 dBm 30 dBm 30 dBm	n	B 30.00 dE 45 (100/100	m Offset IB SWT	2.42 dB 227.5 µs	RBW 100 KH VBW 300 KH	1 2480N	Auto FFT 1[1] 2[1]		2.475 2.485	-3.76 dBm 75000 GHz 44.97 dBm 50000 GHz
Spect Ref Le Att SGL C 1Pk M 20 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -40 dBm -40 dBm	n	B 30.00 dE 45 (100/100	m Offset IB SWT	2.42 dB 227.5 µs	RBW 100 KH VBW 300 KH	1 2480N	Auto FFT 1[1] 2[1]		2.475 2.485	-3.76 dBm 75000 GHz 44.97 dBm 50000 GHz
Spect Ref Le Att SGL C: 1Pk M 20 dBm 20 dBm 20 dBm 30 dBm 30 dBm 30 dBm 40 dBm 50 dBr 60 dBr	n n n n n n n n n n n	B 30.00 dE 45 (100/100	m Offset IB SWT	2.42 dB 227.5 µs	IT BLE 1N	1 2480N	Auto FFT 1[1] 2[1]		2.479 2.483	-3.76 dBm 75000 GHz 44.97 dBm 950000 GHz
Spect Ref Le Att SGL C 1Pk M 20 dBm 20 dBm 2	n n n n n n n n n n n n n n n n n n n	B 30.00 dE 45 (100/100	m Offset IB SWT	2.42 dB 227.5 µs	RBW 100 KH VBW 300 KH	1 2480N	Auto FFT 1[1] 2[1]		2.479 2.483	-3.76 dBm 75000 GHz 44.97 dBm 50000 GHz
Spect Ref Le Att SGL C. 11Pk M 20 dBm 20 dBm 20 dBm 30 dBm 30 dBm 30 dBm 40 dBm 30 dBm	n n n n n n n n n n n n n n n n n n n	B 30.00 dB 45 (100/100 01 -23.9 01 -23.9 01 -23.9 01 -23.9	m Offset IB SWT	2.42 dB 227.5 μs	IT BLE 1N	1 2480N	Auto FFT 1[1] 2[1]		2.475 2.485	-3.76 dBm 75000 GHz 44.97 dBm 50000 GHz
Spect Ref Le Att SGL C: 1Pk M 20 dBm 20 dBm 20 dBm 20 dBm 30 dBm 30 dBm 30 dBm 40 dBm 30 dBm 40 dBm 30 dBm 40 dBm	n n n n n n n n n n n n n n n n n n n	B 30.00 dP 45 (100/100 01 -23.9 (GHz GHz 1	m Offset B SWT 09 dBm 09 dBm M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	2.42 dB 227.5 µs	IT BLE 1N	1 2480N	Auto FFT 1[1] 2[1]		2.479 2.483	-3.76 dBm 75000 GHz 44.97 dBm 50000 GHz
Spect Ref Le Att SGL C: 1Pk M 20 dBm 20 dBm 20 dBm 30 dBm 30 dBm 30 dBm 30 dBm 40 dBm	n n n n n n n n n n n n n n n n n n n	B 30.00 dE 45 (100/100))))))))))))))))))	m Offset B SWT 09 dBm 09 dBm M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	2.42 dB 227.5 μs 227.5 μs	IT BLE 1N RBW 100 kH VBW 300 kH VBW 300 kH 100 kH 100 kH 100 kH	1 2480N	Auto FFT 1[1] 2[1]		2.475 2.485	-3.76 dBm 75000 GHz 44.97 dBm 50000 GHz
Spect Ref Le SGL C. 1Pk M 20 dBm 20 dBm 10 dBm 20 dBm 30 dBm 30 dBm 30 dBm 30 dBm 30 dBm 30 dBm 30 dBm 40 dBm 30 dBm 40 d	n n n n n n n n n n n n n n n n n n n	B 30.00 dB 45 (100/100 01 -23.9 01 -23.9 0 GHz GHz 1 1	m Offset B SwT 09 dBm 09 dBm M4 V3 V4 V3 V4 V3 V4 V3 V4 V3 V4 V3 V4 V3 V4 V3 V4 V3 V4 V3 V4 V3 V4 V3 V4 V4 V4 V4 V4 V4 V4 V4 V4 V4	2.42 dB 227.5 μs	IT BLE 1N	1 2480N	Auto FFT 1[1] 2[1]		2.475 2.485	-3.76 dBm 75000 GHz 44.97 dBm 50000 GHz
Spect Ref Le Att SGL C: 1Pk M 20 dBm 20 dBm 20 dBm 30 dBm 30 dBm 30 dBm 30 dBm 40 dBm	n n n n n n n n n n n n n n n n n n n	B 30.00 dE 45 (100/100))))))))))))))))))	m Offset B SwT 09 dBm 09 dBm M4 V3 V4 V3 V4 V3 V4 V3 V4 V3 V4 V3 V4 V3 V4 V3 V4 V3 V4 V3 V4 V3 V4 V3 V4 V4 V4 V4 V4 V4 V4 V4 V4 V4	2.42 dB 227.5 μs 227.5 μs	IT BLE 1N RBW 100 kH VBW 300 kH VBW 300 kH 100 kH 100 kH 100 kH	1 2480N	Auto FFT 1[1] 2[1]	Fun	2.475 2.485	-3.76 dBm 75000 GHz 44.97 dBm 50000 GHz

ACCREDITED

8.1.7 Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-48.34	-20	Pass
NVNT	BLE 1M	2440	Ant1	-47.3	-20	Pass
NVNT	BLE 1M	2480	Ant1	-47.9	-20	Pass

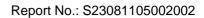


ilac-MR

ACCREDITED

Certificate #4298.01

Report No.: S23081105002002


ACCREDITED

Spectrur	n								
	el 20.00 dBm			RBW 100 kHz	Manda Autor			(' '	2
SGL Count	30 dB 200/200	awi 1	гога Нг 🖷	YOW JUU KHZ	Mode Auto P				
1Pk Max	. 200/200								
					M1[1]			-3.56 dBm	
							2.47	97507580 GHz	
10 dBm				+ +					
0 dBm			M1	+					
			\sim						
-10 dBm—							-		
-20 dBm—									
/	T I								
-30 dBm—									
-40 dBm—				+ +					
-50 dBm—				+ +					
-60 dBm—				+ +					
-70 dBm—				+ +					
CF 2.48 G	l Hz	1	I	30001	pts			Span 1.5 MHz	
								·	
Spectrur		Spuriou	s NVN	IT BLE 1M	2480MHz	Ready z Ant1 Em	nission		
Ref Leve Att	n I 20.00 dBm 30 dB	n Offset 2	2.42 dB 👄	RBW 100 kHz VBW 300 kHz			nission		
Ref Leve Att SGL Count	n I 20.00 dBm 30 dB	n Offset 2	2.42 dB 👄	RBW 100 kHz			iission]
Ref Leve Att	n I 20.00 dBm 30 dB	n Offset 2	2.42 dB 👄	RBW 100 kHz	Mode Auto S		iission		
Ref Leve Att SGL Count 1Pk Max	n I 20.00 dBm 30 dB	n Offset 2	2.42 dB 👄	RBW 100 kHz				-8.13 dBm]
Ref Leve Att SGL Count	n I 20.00 dBm 30 dB	n Offset 2	2.42 dB 👄	RBW 100 kHz	Mode Auto S				
Ref Leve Att SGL Count 1Pk Max 10 dBm	n 1 20.00 dBn 30 dE 5/5	n Offset 2	2.42 dB 👄	RBW 100 kHz	Mode Auto 9			-8.13 dBm 2.479720 GHz	
Ref Leve Att SGL Count 1Pk Max 10 dBm	n 1 20.00 dBn 30 dE : 5/5	n Offset 2	2.42 dB 👄	RBW 100 kHz	Mode Auto 9			-8.13 dBm 2.479720 GHz -51.46 dBm]
Ref Leve Att SGL Count 1Pk Max 10 dBm- 0 dBm- M -10 dBm-	n 1 20.00 dBn 30 dE : 5/5	n Offset 2	2.42 dB 👄	RBW 100 kHz	Mode Auto 9			-8.13 dBm 2.479720 GHz -51.46 dBm]
Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	n 20.00 dBm 30 dE : 5/5	n Offset 2 3 SWT 2	2.42 dB 👄	RBW 100 kHz	Mode Auto 9			-8.13 dBm 2.479720 GHz -51.46 dBm	
Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	n 1 20.00 dBn 30 dE : 5/5	n Offset 2 3 SWT 2	2.42 dB 👄	RBW 100 kHz	Mode Auto 9			-8.13 dBm 2.479720 GHz -51.46 dBm	
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	n 20.00 dBm 30 dE : 5/5	n Offset 2 3 SWT 2	2.42 dB 👄	RBW 100 kHz	Mode Auto 9			-8.13 dBm 2.479720 GHz -51.46 dBm	
Ref Leve Att SGL Count 1Pk Max 10 dBm- 0 dBm- M -10 dBm- -20 dBm-	n 20.00 dBm 30 dE : 5/5	n Offset 2 3 SWT 2	2.42 dB 👄	RBW 100 kHz	Mode Auto S M1[1] M2[1]			-8.13 dBm 2.479720 GHz -51.46 dBm	
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	n 20.00 dBm 30 dE : 5/5	n Offset 2 3 SWT 2	2.42 dB 👄	RBW 100 kHz VBW 300 kHz	Mode Auto 9			-8.13 dBm 2.479720 GHz -51.46 dBm	
Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm	n30 dBm 30 dE : 5/5	n Offset 2 3 SWT 2	2.42 dB	RBW 100 kHz VBW 300 kHz	Mode Auto S M1[1] M2[1]			-8.13 dBm 2.479720 GHz -51.46 dBm	
Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	n30 dBm 30 dE : 5/5	n Offset 2 3 SWT 2	2.42 dB	RBW 100 kHz VBW 300 kHz	Mode Auto S M1[1] M2[1]			-8.13 dBm 2.479720 GHz -51.46 dBm	
Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm	n30 dBm 30 dE : 5/5	n Offset 2 3 SWT 2	2.42 dB	RBW 100 kHz VBW 300 kHz	Mode Auto S M1[1] M2[1]			-8.13 dBm 2.479720 GHz -51.46 dBm	
Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm	n 30 dE 30 dE 5/5	n Offset 2 3 SWT 2	2.42 dB	RBW 100 kHz VBW 300 kHz	Mode Auto S M1[1] M2[1] M2[1] M2 M2 M2 M2			-8.13 dBm 2.479720 GHz -51.46 dBm 16.371696 GHz	
Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm SGL Count SGL Count -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm Start 30.0	n 30 dE 30 dE 5/5	n Offset 2 3 SWT 2	2.42 dB	RBW 100 kHz VBW 300 kHz	Mode Auto S M1[1] M2[1] M2[1] M2 M2 M2 M2			-8.13 dBm 2.479720 GHz -51.46 dBm	
Ref Level Att SGL Count IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm SGL Count Start 30.0	n 30 dB 30 dE 5/5	dBm	2.42 dB	RBW 100 kHz VBW 300 kHz	Mode Auto S M1[1]M2[1]			-8.13 dBm 2.479720 GHz -51.46 dBm 16.371696 GHz	
Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm SGL Count SGL Count -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm Start 30.0	n 30 dB 30 dE 5/5	dBm	2.42 dB	RBW 100 kHz	Mode Auto S M1[1] M2[1] M2[1] M2[1] M2 M2 M2 M2 M2 M2 M2 M			-8.13 dBm 2.479720 GHz -51.46 dBm 16.371696 GHz	
Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm SGL Count -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30.0 M1 M2	n 30 dB 30 dE 5/5 01 -23.563 MHz MHz ef Trc 1 1	A Offset 2 3 SWT 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2.42 dB 265 ms	RBW 100 kHz VBW 300 kHz	Mode Auto S M1[1] M2[1]			-8.13 dBm 2.479720 GHz -51.46 dBm 16.371696 GHz	
Ref Level Att SGL Count IPk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30.0 Marker Type Re M1 M2	n 30 dB 30 dE 5/5	A Offset 2 3 SWT 2 dBm dBm x-value 2.479 16.3716 4.8537	2.42 dB 265 ms 265 ms 76 77 72 GHz 76 GHz 76 GHz	RBW 100 kHz VBW 300 kHz 	Mode Auto S M1[1] M2[1] M2[1] M2 M2 M2 M2 M2 M2 M2 M			-8.13 dBm 2.479720 GHz -51.46 dBm 16.371696 GHz	
Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -70 dBm -70 dBm Start 30.0 M1 M2 M3 M4	n 30 dE 30 dE 5/5 1 1 1 1 1 1 1 1 1 1 1 1 1	A Offset 2 3 SWT 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2.42 dB 265 ms 265 ms	RBW 100 kHz VBW 300 kHz	Mode Auto S M1[1] M2[1] M2[1] M2[1] M2 M2 M2 M2 M2 M2 M2 M			-8.13 dBm 2.479720 GHz -51.46 dBm 16.371696 GHz	
Ref Level Att SGL Count IPk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30.0 Marker Type Re M1 M2	n 30 dB 30 dE 5/5	M Offset 2 3 SWT 3 SWT dBm	2.42 dB 265 ms 265 ms	RBW 100 kHz VBW 300 kHz 	Mode Auto S M1[1] M2[1] M2[1] M2[1] M2 M2 M2 M2 M2 M2 M2 M			-8.13 dBm 2.479720 GHz -51.46 dBm 16.371696 GHz	

ACCREDITED

2M:

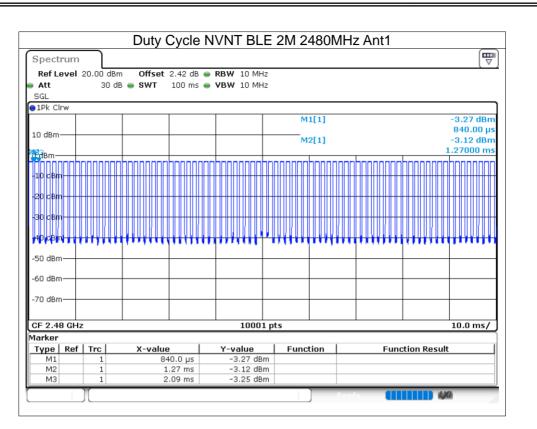
8.1.8 **Duty Cycle**

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 2M	2402	Ant1	66.4	1.78	1.22
NVNT	BLE 2M	2440	Ant1	66.39	1.78	1.22
NVNT	BLE 2M	2480	Ant1	66.39	1.78	1.22

ACCREDITED



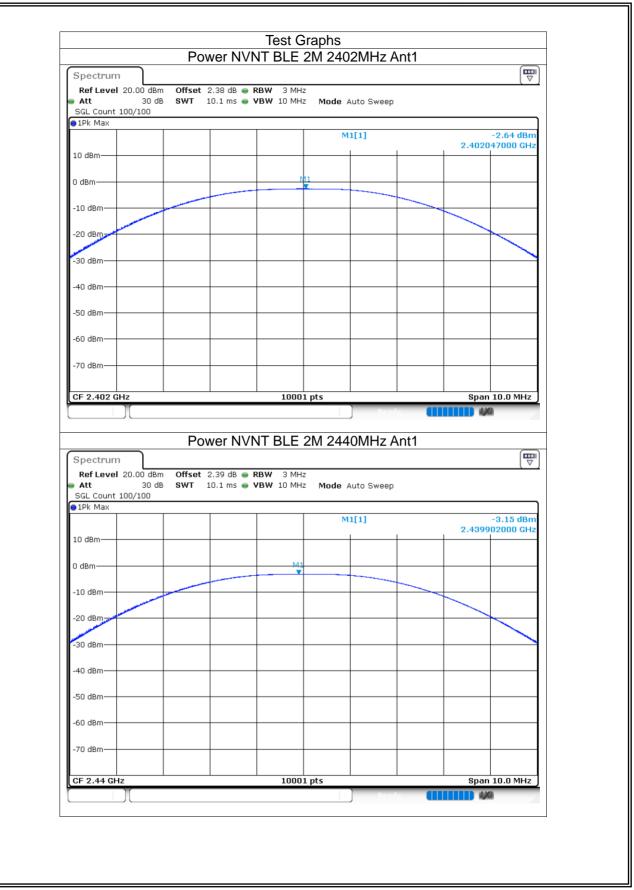
ILAC-MR


ACCREDITED

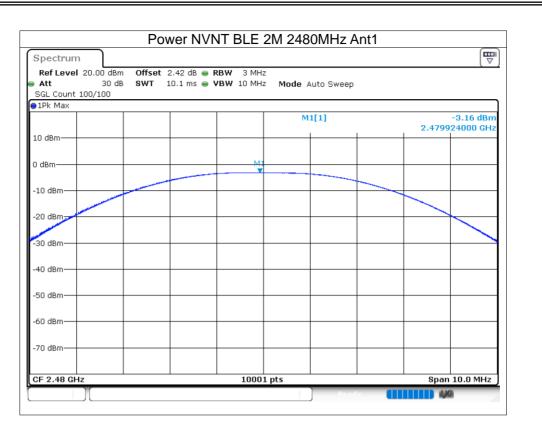
Certificate #4298.01

Report No.: S23081105002002

ACCREDITED



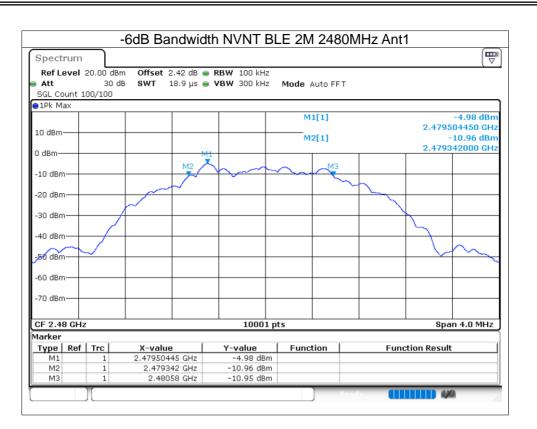
8.1.9 Maximum Conducted Output Power

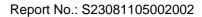

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	-2.64	30	Pass
NVNT	BLE 2M	2440	Ant1	-3.15	30	Pass
NVNT	BLE 2M	2480	Ant1	-3.16	30	Pass

ACCREDITED

ACCREDITED

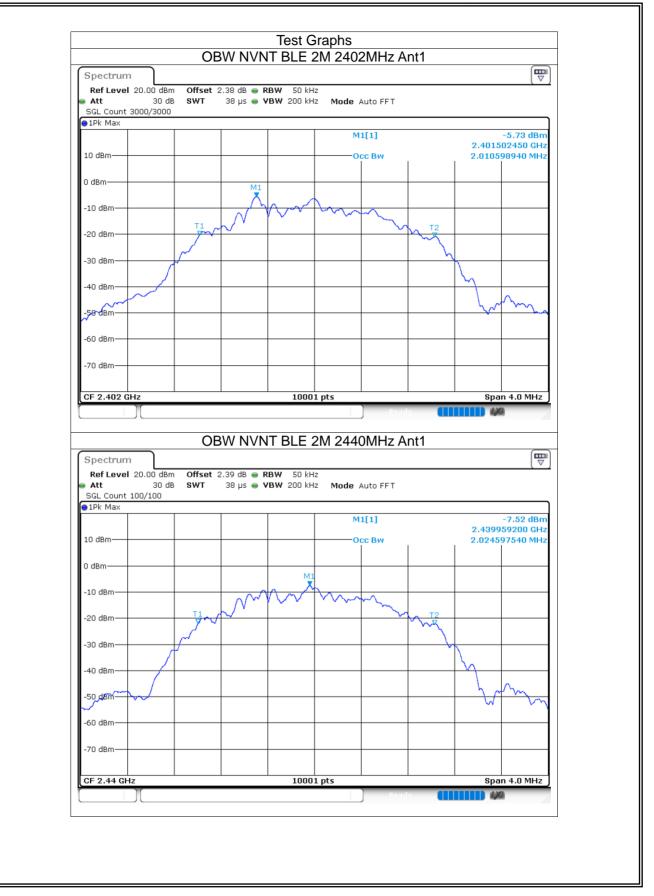
8.1.10 -6dB Bandwidth


Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 2M	2402	Ant1	1.161	0.5	Pass
NVNT	BLE 2M	2440	Ant1	1.242	0.5	Pass
NVNT	BLE 2M	2480	Ant1	1.238	0.5	Pass


ACCREDITED

ACCREDITED

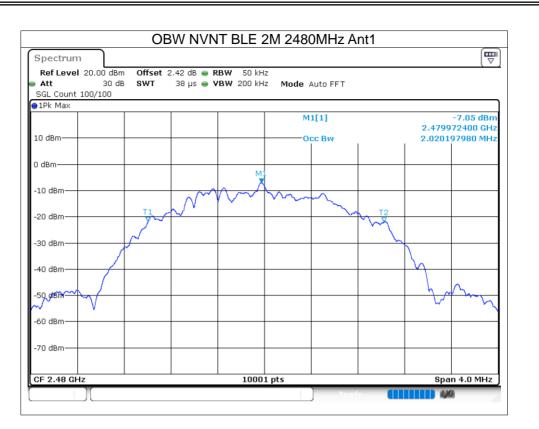
8.1.11 Occupied Channel Bandwidth


Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 2M	2402	Ant1	2.011
NVNT	BLE 2M	2440	Ant1	2.025
NVNT	BLE 2M	2480	Ant1	2.02

ACCRED

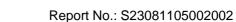
Certificate #4298.01

ITED

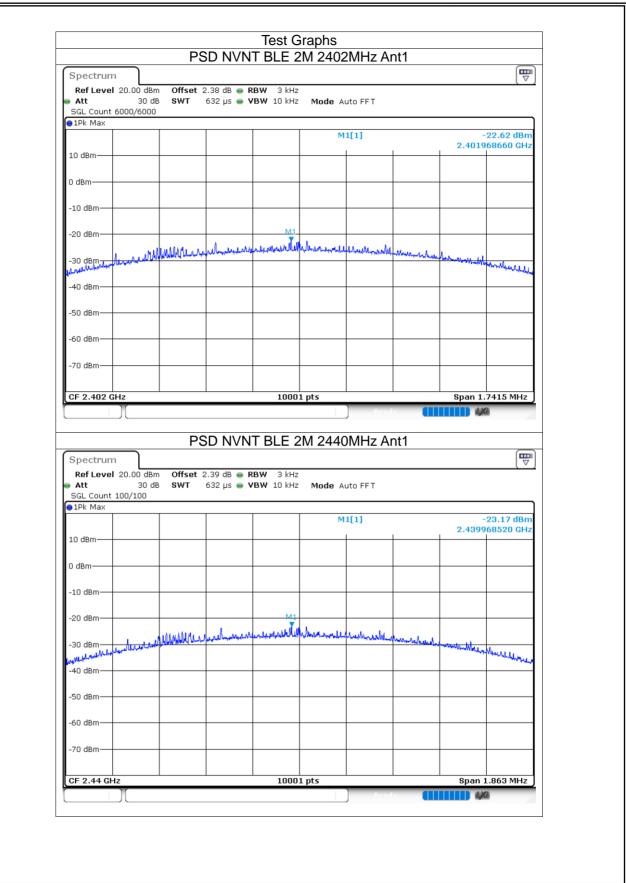


ACCREDITED

Certificate #4298.01


Version.1.3

ACCREDITED



8.1.12 Maximum Power Spectral Density Level

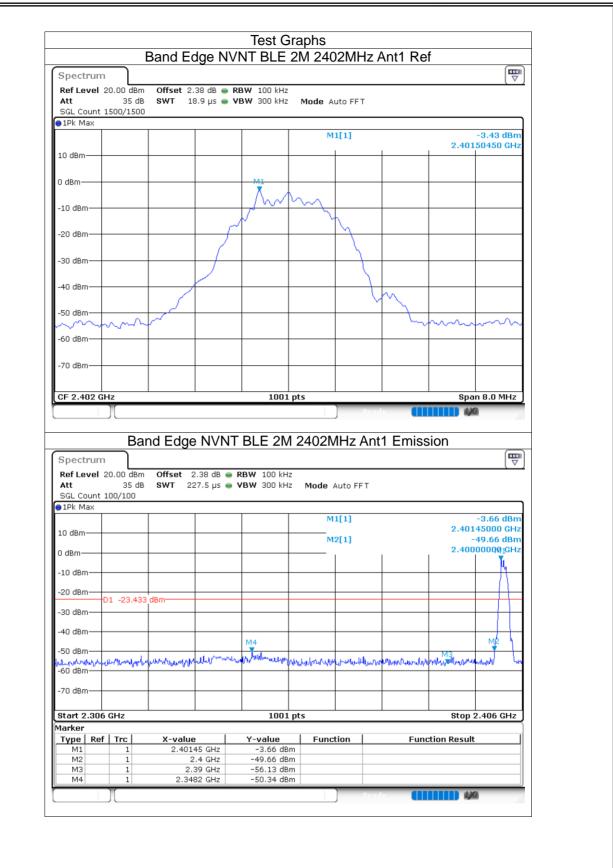
Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	-22.62	8	Pass
NVNT	BLE 2M	2440	Ant1	-23.17	8	Pass
NVNT	BLE 2M	2480	Ant1	-23.05	8	Pass

ACCRE

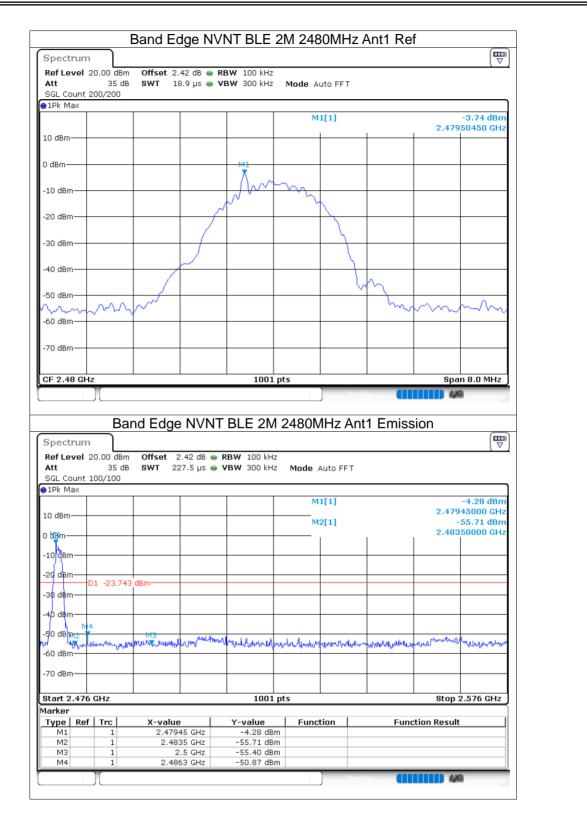
ACCREDITED

Spectrum		
Ref Level 20.00 dBm Offset 2.42 dB ● Att 30 dB SWT 632.1 µs ●		('
SGL Count 100/100 1Pk Max		
	M1[1]	-23.05 dBm 2.479968430 GHz
LO dBm		
) dBm		
10 dBm		
20 dBm	M1	
30 dBm	ender while a los of a superior and the second and the second	a
SU dBM		and a second and a
40 dBm		
50 dBm		
60 dBm		
70 dBm		
CF 2.48 GHz	10001 pts	Span 1.857 MHz

ACCREDITED



8.1.13 Band Edge


Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 2M	2402	Ant1	-46.9	-20	Pass
NVNT	BLE 2M	2480	Ant1	-47.13	-20	Pass

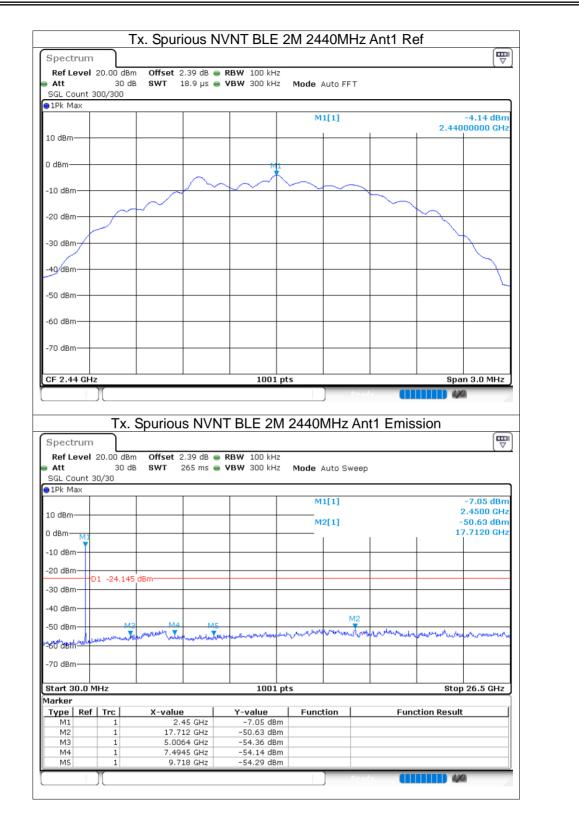
ACCREDITED

ACCREDITED

8.1.14 Conducted RF Spurious Emission

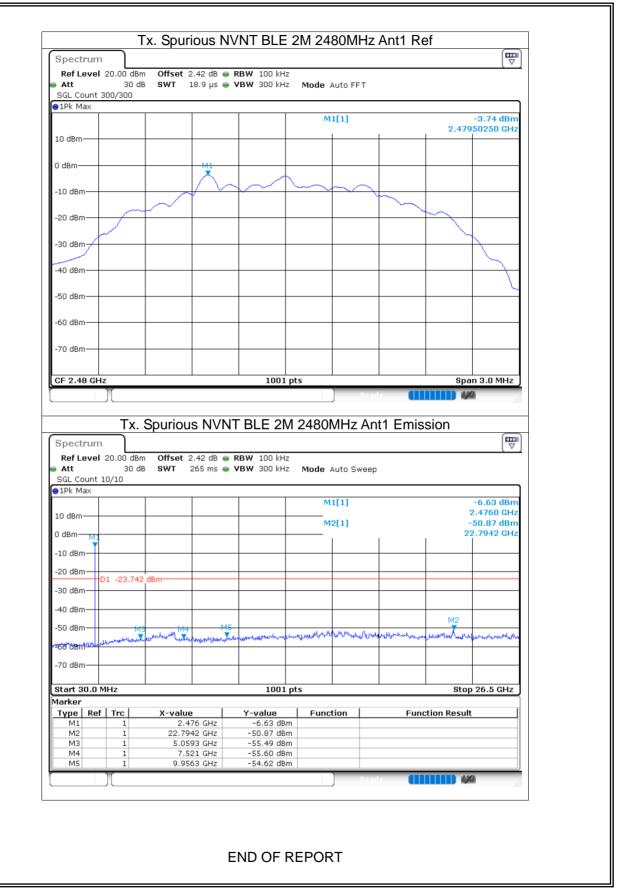
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 2M	2402	Ant1	-46.8	-20	Pass
NVNT	BLE 2M	2440	Ant1	-46.48	-20	Pass
NVNT	BLE 2M	2480	Ant1	-47.13	-20	Pass

ilac-MR


ACCREDITED

Certificate #4298.01

Report No.: S23081105002002



ACCREDITED

ACCREDITED