

RADIO TEST REPORT FCC ID: 2AZYA-A60L

Product: Mobile Phone Trade Mark: ACER Model No.: SOSPIRO-A60L Family Model: SOSPIRO-A60L-G Report No.: S23071202209002 Issue Date: Aug 04, 2023

Prepared for

Senwa Global International, S.A. de C.V.

Carretera Mexico-Toluca No. 5324 PB, Colonia El Yaqui Del. Cuajimalpa de Morelos, C.P. 05320 Ciudad de Mexico, Mexico

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1&5/F, Building C, 1&2/F, Building E, Fenda Science Park, Sanwei Community, Hangcheng Street, Baoan District, Shenzhen ,Guangdong, China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

 2 SUMMARY OF TEST RESULTS	.6 .6 .6 .7 .9 10 11 12 14
 3.1 FACILITIES	.6 .6 .7 .9 .0 .1 .1 .2 .4
 3.1 FACILITIES	.6 .6 .7 .9 .0 .1 .1 .2 .4
 3.2 LABORATORY ACCREDITATIONS AND LISTINGS	.6 .6 .7 .9 .0 .10 .11 .12 .14
 3.3 MEASUREMENT UNCERTAINTY	.6 .7 .9 .0 .10 .11 .12 .14
 4 GENERAL DESCRIPTION OF EUT	.7 .9 10 10 11 12 14
5 DESCRIPTION OF TEST MODES	.9 10 10 11 12 14
	10 11 12 14
	10 11 12 14
6 SETUP OF EQUIPMENT UNDER TEST	1 2 4
6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM1	2 1 4 14
6.2 SUPPORT EQUIPMENT	4 4
	4
7 TEST REQUIREMENTS	
7.1 CONDUCTED EMISSIONS TEST	
7.1.1 Applicable Standard	
7.1.2 Conformance Limit	
7.1.3 Measuring Instruments	
7.1.4 Test Configuration	
7.1.6 Test Results	
7.2 RADIATED SPURIOUS EMISSION	
7.2.1 Applicable Standard	
7.2.2 Conformance Limit	
7.2.3 Measuring Instruments	
7.2.4 Test Configuration	
7.2.5 Test Procedure	
7.2.6 Test Results 2 7.3 6DB BANDWIDTH 2	
7.5 ODB BANDWIDTH	
7.3.2 Conformance Limit	
7.3.3 Measuring Instruments	
7.3.4 Test Setup	
7.3.5 Test Procedure	
7.3.6 Test Results	
	27
7.4.1 Applicable Standard	
7.4.2 Conformance Limit	
7.4.4 Test Setup	
7.4.5 Test Procedure	
7.4.6 Test Results	
7.5 PEAK OUTPUT POWER	
7.5.1 Applicable Standard	
7.5.2 Conformance Limit	
ð	29 29
7.5.4 Test Setup	
7.5.6 Test Results	

	7.6	POWER SPECTRAL DENSITY	30
	7.6.1	Applicable Standard	30
	7.6.2	Conformance Limit	30
	7.6.3	Measuring Instruments	30
	7.6.4	Test Setup	30
	7.6.5	Test Procedure	30
	7.6.6	Test Results	
	7.7	CONDUCTED BAND EDGE MEASUREMENT	32
	7.7.1	Applicable Standard	32
	7.7.2	Conformance Limit	32
	7.7.3	Measuring Instruments	32
	7.7.4	Test Setup	32
	7.7.5	Test Procedure	32
	7.7.6	Test Results	
	7.8	SPURIOUS RF CONDUCTED EMISSIONS	33
	7.8.1	Conformance Limit	33
	7.8.2	Measuring Instruments	33
	<i>7.8.3</i>	Test Setup	33
	7.8.4	Test Procedure	33
	7.8.5	Test Results	
	7.9	ANTENNA APPLICATION	34
	7.9.1	Antenna Requirement	
	7.9.2	Result	34
8	TEST	RESULTS	35
Ŭ			
		DUTY CYCLE	
		MAXIMUM CONDUCTED OUTPUT POWER	
		-6DB BANDWIDTH	
		Occupied Channel Bandwidth	
		MAXIMUM POWER SPECTRAL DENSITY LEVEL	
		BAND EDGE	
	8.7	CONDUCTED RF SPURIOUS EMISSION	52

1 TEST RESULT CERTIFICATION

Applicant's name	Senwa Global International, S.A. de C.V.
Address:	Carretera Mexico-Toluca No. 5324 PB, Colonia El Yaqui Del. Cuajimalpa de Morelos, C.P. 05320 Ciudad de Mexico, Mexico
Manufacturer's Name:	Senwa Mobile China Ltd
Address:	A611, Languang technology building, No. 27, Gaoxin North 6th Road, songpingshan community, Xili street, Nanshan District, Shenzhen, Guangdong Province
Product description	
Product name:	Mobile Phone
Model and/or type reference:	SOSPIRO-A60L
Family Model	SOSPIRO-A60L-G
Sample number	S230712022010

Measurement Procedure Used:

APPLICABLE STANDARDS			
APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT		
FCC 47 CFR Part 2, Subpart J			
FCC 47 CFR Part 15, Subpart C	Complied		
ANSI C63.10-2013	Complied		
KDB 558074 D01 15.247 Meas Guidance v05r02			

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Testing Engineer :(Allen Liu)
(Allen Liu)
Alese
Authorized Signatory :
(Alex Li)

2 SUMMARY OF TEST RESULTS

R

ilac.M

FCC Part15 (15.247), Subpart C				
Standard Section	Test Item	Verdict	Remark	
15.207	Conducted Emission	PASS		
15.247 (a)(2)	6dB Bandwidth	PASS		
15.247 (b)	Peak Output Power	PASS		
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS		
15.247 (e)	Power Spectral Density	PASS		
15.247 (d)	Band Edge Emission	PASS		
15.247 (d)	Spurious RF Conducted Emission	PASS		
15.203	Antenna Requirement	PASS		

ACCREDITED

Certificate #4298.01

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1&5/F, Building C, 1&2/F, Building E, Fenda Science Park, Sanwei Community, Hangcheng Street, Baoan District, Shenzhen ,Guangdong, China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

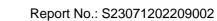
3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A. CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705. Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01 This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm Site Location	 Shenzhen NTEK Testing Technology Co., Ltd. 1&5/F, Building C, 1&2/F, Building E, Fenda Science Park, Sanwei Community, Hangcheng Street, Baoan District, Shenzhen ,Guangdong, China

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

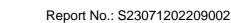
No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB


4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	Mobile Phone	
Trade Mark	ACER	
FCC ID	2AZYA-A60L	
Model No.	SOSPIRO-A60L	
Family Model	SOSPIRO-A60L-G	
Model Difference	All models are the same circuit and RF module, except the model name and colour.	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK	
Number of Channels	40 Channels	
Antenna Type	PIFA Antenna	
Antenna Gain	1dBi	
Adapter	Model: SGCH1000 Input: 100-240Vca 50/60Hz 0.2A Output: 5.0Vcc 1A	
Battery	DC 3.8V, 3000mAh	
Power supply	DC 3.8V from battery or DC 5V from adapter	
HW Version	sp9832e_1h10_go	
SW Version	ACER_A60L_TELCEL_Ver01	

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.


Revision History

ACCREDITED

Certificate #4298.01

Revision history					
Report No.	Version	Description	Issued Date		
S23071202209002	Rev.01	Initial issue of report	Aug 04, 2023		

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Certificate #4298.01

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+kx2MHz k=0 to 39

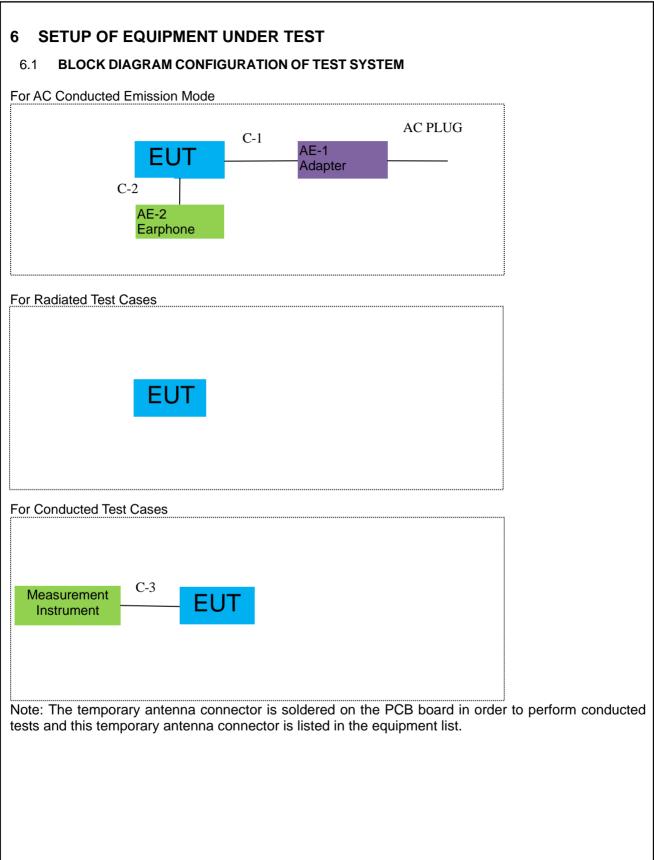
The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Test Cases	
Test Item	Data Rate/ Modulation	
AC Conducted Emission	Mode 1: GFSK Tx Ch00_2402MHz_1Mbps	
Radiated Test	Mode 1: GFSK Tx Ch00_2402MHz_1Mbps	
Cases	Mode 2: GFSK Tx Ch19_2440MHz_1Mbps	
Cases	Mode 3: GFSK Tx Ch39_2480MHz_1Mbps	
Conducted Test	Mode 1: GFSK Tx Ch00_2402MHz_1Mbps	
Conducted Test Cases	Mode 2: GFSK Tx Ch19_2440MHz_1Mbps	
Cases	Mode 3: GFSK Tx Ch39_2480MHz_1Mbps	

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode

2. AC power line Conducted Emission was tested under maximum output power.


3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

4. EUT built-in battery-powered, the battery is fully-charged.

lac.N

ACCRED

Certificate #4298.01

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

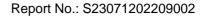
Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	SGCH1000	N/A	Peripherals
AE-2	Earphone	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS


Radiation& Conducted Test equipment

	Und Conducted	loot oquipinont					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2023.03.27	2024.03.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023.05.29	2024.05.28	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2023.03.27	2024.03.26	1 year
4	Test Receiver	R&S	ESPI7	101318	2023.03.27	2024.03.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2023.03.27	2024.03.26	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2023.03.27	2024.03.26	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.08	2023.11.07	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2023.05.29	2024.05.28	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2022.11.08	2023.11.07	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2022.11.08	2023.11.07	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2023.05.06	2026.05.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2023.05.06	2026.05.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2022.11.08	2023.11.07	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2023.03.27	2024.03.26	1 year
2	LISN	R&S	ENV216	101313	2023.03.27	2024.03.26	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2023.03.27	2024.03.26	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2023.05.06	2026.05.05	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

ACCRED

Certificate #4298.01

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

NTEK 北测[®]

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

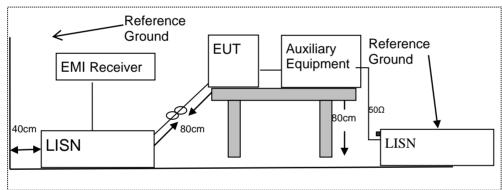
7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

	Conducted	Emission Limit
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56*	56-46*
0.5-5.0	56	46
5.0-30.0	60	50

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

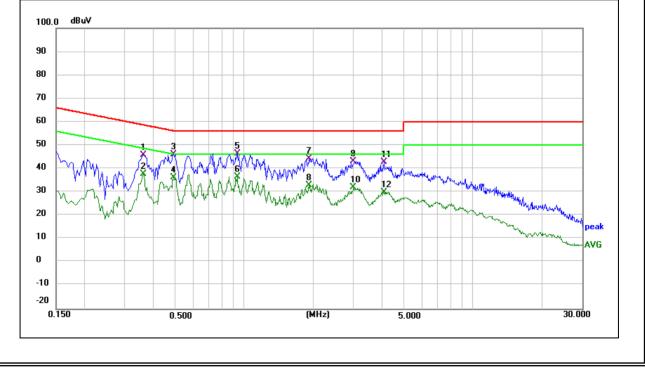
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results

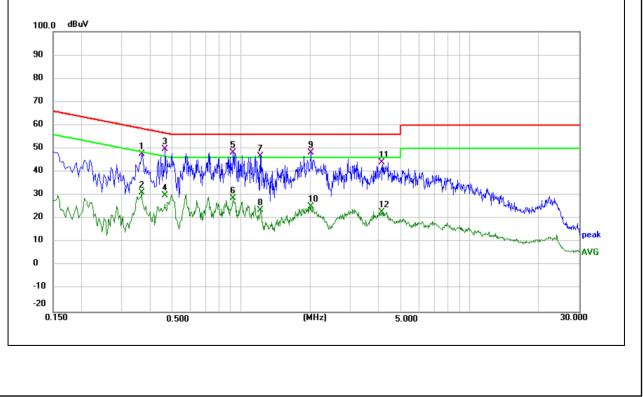

EUT:	Mobile Phone	Model Name :	SOSPIRO-A60L
Temperature:	22 °C	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.3620	35.61	10.36	45.97	58.68	-12.71	QP
0.3620	27.31	10.36	37.67	48.68	-11.01	AVG
0.4900	35.40	10.63	46.03	56.17	-10.14	QP
0.4900	25.48	10.63	36.11	46.17	-10.06	AVG
0.9300	34.94	11.52	46.46	56.00	-9.54	QP
0.9300	25.08	11.52	36.60	46.00	-9.40	AVG
1.9180	30.99	13.50	44.49	56.00	-11.51	QP
1.9180	19.37	13.50	32.87	46.00	-13.13	AVG
2.9940	33.51	9.67	43.18	56.00	-12.82	QP
2.9940	22.26	9.67	31.93	46.00	-14.07	AVG
4.0820	33.17	9.67	42.84	56.00	-13.16	QP
4.0820	20.32	9.67	29.99	46.00	-16.01	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


EUT:	Mobile Phone	Model Name :	SOSPIRO-A60L
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demeril
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.3660	37.24	10.38	47.62	58.59	-10.97	QP
0.3660	20.68	10.38	31.06	48.59	-17.53	AVG
0.4660	39.18	10.59	49.77	56.58	-6.81	QP
0.4660	19.51	10.59	30.10	46.58	-16.48	AVG
0.9220	36.84	11.50	48.34	56.00	-7.66	QP
0.9220	17.29	11.50	28.79	46.00	-17.21	AVG
1.2100	34.67	12.08	46.75	56.00	-9.25	QP
1.2100	11.43	12.08	23.51	46.00	-22.49	AVG
2.0180	38.64	9.66	48.30	56.00	-7.70	QP
2.0180	15.43	9.66	25.09	46.00	-20.91	AVG
4.1539	34.44	9.67	44.11	56.00	-11.89	QP
4.1539	13.08	9.67	22.75	46.00	-23.25	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	GHz			
16.42-16.423	399.9-410	4.5-5.15			
16.69475-16.69525	608-614	5.35-5.46			
16.80425-16.80475	960-1240	7.25-7.75			
25.5-25.67	1300-1427	8.025-8.5			
37.5-38.25	1435-1626.5	9.0-9.2			
73-74.6	1645.5-1646.5	9.3-9.5			
74.8-75.2	1660-1710	10.6-12.7			
123-138	2200-2300	14.47-14.5			
149.9-150.05	2310-2390	15.35-16.2			
156.52475-156.52525	2483.5-2500	17.7-21.4			
156.7-156.9	2690-2900	22.01-23.12			
162.0125-167.17	3260-3267	23.6-24.0			
167.72-173.2	3332-3339	31.2-31.8			
240-285	3345.8-3358	36.43-36.5			
322-335.4	3600-4400	(2)			
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

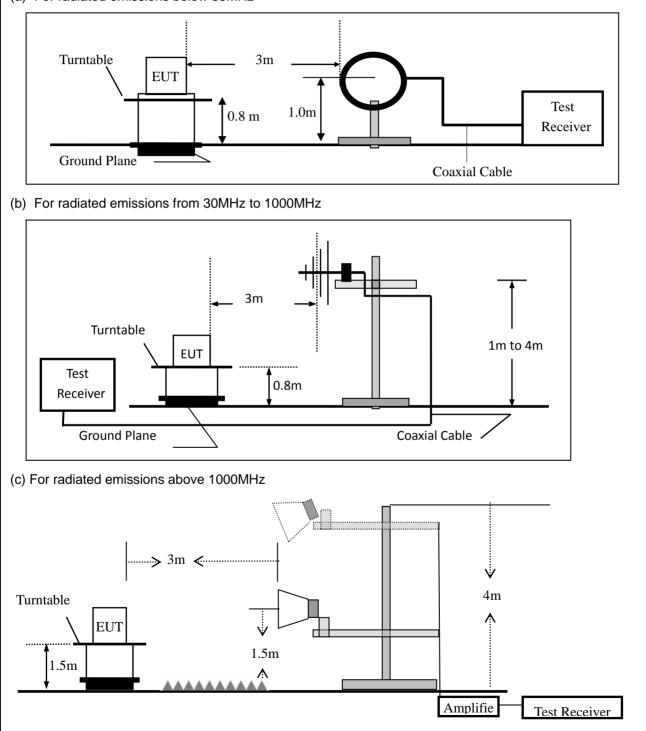
Eroguopov(MHz)	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Certificate #4298.01

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 4000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	1 MHz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

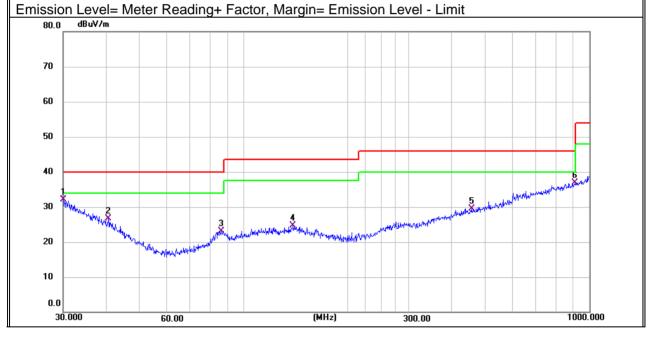
	Spurious	Emission	below	30MHz	(9KHz to 30MHz)
--	----------	----------	-------	-------	-----------------

EUT:	Mobile Phone	Model No.:	SOSPIRO-A60L
Temperature:	20 ℃	Relative Humidity:	48%
Lest Mode.	Mode1/Mode2/Mode3/ Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK			PK	AV		

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:


EUT:	Mobile Phone	Model Name :	SOSPIRO-A60L
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage :	DC 3.8V		

ACCREDITED

Certificate #4298.01

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	30.1054	5.70	26.41	32.11	40.00	-7.89	QP
V	40.5591	6.05	20.70	26.75	40.00	-13.25	QP
V	85.8984	6.99	16.19	23.18	40.00	-16.82	QP
V	138.8735	6.04	18.72	24.76	43.50	-18.74	QP
V	455.9058	5.30	24.25	29.55	46.00	-16.45	QP
V	909.6667	6.08	30.90	36.98	46.00	-9.02	QP

Remark:

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark	
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
Н	30.0000	4.47	26.47	30.94	40.00	-9.06	QP	
Н	125.4457	5.92	18.77	24.69	43.50	-18.81	QP	
Н	277.0935	5.89	19.92	25.81	46.00	-20.19	QP	
Н	383.9318	5.63	22.87	28.50	46.00	-17.50	QP	
Н	658.8362	6.79	27.37	34.16	46.00	-11.84	QP	
H Remark	758.0408	6.85	28.96	35.81	46.00	-10.19	QP	
	n Level= Meter dBuV/m	Reading+ Fa	ctor, Margin	= Emission Le	vel - Limit			
70 -								
60								
50 -								
40						5 6	Menor	
30 🆌	the work where the state of the		2		man and an and an	Ward Amilton and		
20	the share have been and the second strands	New Rest Martin Barris Martin	n Alexandria (Charles Anna Anna Anna Anna Anna Anna Anna Ann	method malashare				
10 -								
0.0								

U	Т:	Mobile Pho	ne		Model No).: 	SOSPI	RO-A60	L	
Ter	nperature:	20 ℃			Relative I	lumidity:	48%			
Tes	t Mode:	Mode1/Mod	de2/Mod	de3	Test By:		Allen Li	u		
					-					
	Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
			Lov	v Channel	(2402 MHz)	(GFSK)Abo	ove 1G			
	4804.338	62.84	5.21	35.59	44.30	59.34	74.00	-14.66	Pk	Vertical
	4804.338	41.79	5.21	35.59	44.30	38.29	54.00	-15.71	AV	Vertical
	7206.107	60.51	6.48	36.27	44.60	58.66	74.00	-15.34	Pk	Vertical
	7206.107	42.01	6.48	36.27	44.60	40.16	54.00	-13.84	AV	Vertical
	4804.169	64.10	5.21	35.55	44.30	60.56	74.00	-13.44	Pk	Horizontal
	4804.169	42.89	5.21	35.55	44.30	39.35	54.00	-14.65	AV	Horizontal
	7206.214	61.12	6.48	36.27	44.52	59.35	74.00	-14.65	Pk	Horizontal
	7206.214	41.65	6.48	36.27	44.52	39.88	54.00	-14.12	AV	Horizontal
		1	Mi	d Channel	(2440 MHz)	(GFSK)Abo	ove 1G	n	n	
	4880.473	62.97	5.21	35.66	44.20	59.64	74.00	-14.36	Pk	Vertical
	4880.473	44.55	5.21	35.66	44.20	41.22	54.00	-12.78	AV	Vertical
	7320.265	65.34	7.10	36.50	44.43	64.51	74.00	-9.49	Pk	Vertical
	7320.265	41.08	7.10	36.50	44.43	40.25	54.00	-13.75	AV	Vertical
	4880.366	63.73	5.21	35.66	44.20	60.40	74.00	-13.60	Pk	Horizontal
	4880.366	41.58	5.21	35.66	44.20	38.25	54.00	-15.75	AV	Horizontal
	7320.234	60.01	7.10	36.50	44.43	59.18	74.00	-14.82	Pk	Horizontal
	7320.234	45.06	7.10	36.50	44.43	44.23	54.00	-9.77	AV	Horizontal
		1	Hig	h Channel	(2480 MHz)	(GFSK) Ab	ove 1G	I		
	4960.482	64.24	5.21	35.52	44.21	60.76	74.00	-13.24	Pk	Vertical
	4960.482	42.67	5.21	35.52	44.21	39.19	54.00	-14.81	AV	Vertical
	7440.131	65.32	7.10	36.53	44.60	64.35	74.00	-9.65	Pk	Vertical
	7440.131	48.81	7.10	36.53	44.60	47.84	54.00	-6.16	AV	Vertical
	4960.326	62.74	5.21	35.52	44.21	59.26	74.00	-14.74	Pk	Horizontal
	4960.326	43.88	5.21	35.52	44.21	40.40	54.00	-13.60	AV	Horizontal
	7440.199	64.59	7.10	36.53	44.60	63.62	74.00	-10.38	Pk	Horizontal
	7440.199	45.61	7.10	36.53	44.60	44.64	54.00	-9.36	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

2483.50

2483.50

2483.50

2483.50

62.13

43.67

64.41

43.18

Pk

AV

Pk

AV

-24.59

-23.05

-22.31

-23.54

Vertical

Vertical

Horizontal

Horizontal

Sp	ourious Er	mission in F	Restricte	ed Band 2	2310-239	0MHz and	2483.	5-2500MHz		
EUT:		Mobile Pho	one		Mode	el No.:	SOSPIRO-A60L			
Tempe	erature:	20 ℃			Relat	ive Humidi	48%			
Test N	est Mode: Mode1/ Mode3			Test	By:		Allen Liu			
	Frequenc	y Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limit	s Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV	/m) (dB)	Туре	
					1Mbp	os(GFSK)				
	2310.00	63.74	2.97	27.80	43.80	50.71	74	-23.29	Pk	Horizontal
	2310.00	42.26	2.97	27.80	43.80	29.23	54	-24.77	AV	Horizontal
	2310.00	62.45	2.97	27.80	43.80	49.42	74	-24.58	Pk	Vertical
	2310.00	41.58	2.97	27.80	43.80	28.55	54	-25.45	AV	Vertical
	2390.00	63.45	3.14	27.21	43.80	50.00	74	-24.00	Pk	Vertical
	2390.00	42.23	3.14	27.21	43.80	28.78	54	-25.22	AV	Vertical
	2390.00	64.02	3.14	27.21	43.80	50.57	74	-23.43	Pk	Horizontal
	2390.00	42.21	3.14	27.21	43.80	28.76	54	-25.24	AV	Horizontal

...... _

Note: (1) All other emissions more than 20dB below the limit.

3.58

3.58

3.58

3.58

27.70

27.70

27.70

27.70

44.00

44.00

44.00

44.00

49.41

30.95

51.69

30.46

74

54

74

54

UT:	Mobile	Phone		Model	No.:	SOS	SOSPIRO-A60L			
emperature:	20 ℃			Relativ	e Humidity	: 48%	48%			
est Mode: Mode1/ Mode3				Test By	/:	Alle	n Liu			
Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
3260	64.01	4.04	29.57	44.70	52.92	74	-21.08	Pk	Vertical	
3260	56.91	4.04	29.57	44.70	45.82	54	-8.18	AV	Vertical	
3260	66.69	4.04	29.57	44.70	55.60	74	-18.40	Pk	Horizontal	
3260	59.35	4.04	29.57	44.70	48.26	54	-5.74	AV	Horizontal	
3332	64.75	4.26	29.87	44.40	54.48	74	-19.52	Pk	Vertical	
3332	57.83	4.26	29.87	44.40	47.56	54	-6.44	AV	Vertical	
3332	65.50	4.26	29.87	44.40	55.23	74	-18.77	Pk	Horizontal	
3332	52.91	4.26	29.87	44.40	42.64	54	-11.36	AV	Horizontal	
17797	45.51	10.99	43.95	43.50	56.95	74	-17.05	Pk	Vertical	
17797	34.73	10.99	43.95	43.50	46.17	54	-7.83	AV	Vertical	
17788	45.04	11.81	43.69	44.60	55.94	74	-18.06	Pk	Horizontal	
17788	35.63	11.81	43.69	44.60	46.53	54	-7.47	AV	Horizontal	

ilac-MF

ACCRED

Certificate #4298.01

TED

Note: (1) All other emissions more than 20dB below the limit.

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

Certificate #4298.01

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Mobile Phone	Model No.:	SOSPIRO-A60L
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3	Test By:	Allen Liu

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

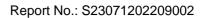
The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)


The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\ge RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	Mobile Phone	Model No.:	SOSPIRO-A60L
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3	Test By:	Allen Liu

ACCREDITED

Certificate #4298.01

7.5 PEAK OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

Certificate #4298.01

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Mobile Phone	Model No.:	SOSPIRO-A60L
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3	Test By:	Allen Liu

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

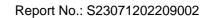
7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.


The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5*DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Mobile Phone	Model No.:	SOSPIRO-A60L
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3	Test By:	Allen Liu

ACCREDITED

Certificate #4298.01

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

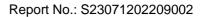
The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.


Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Mobile Phone	Model No.:	SOSPIRO-A60L
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode3	Test By:	Allen Liu

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

Certificate #4298.01

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

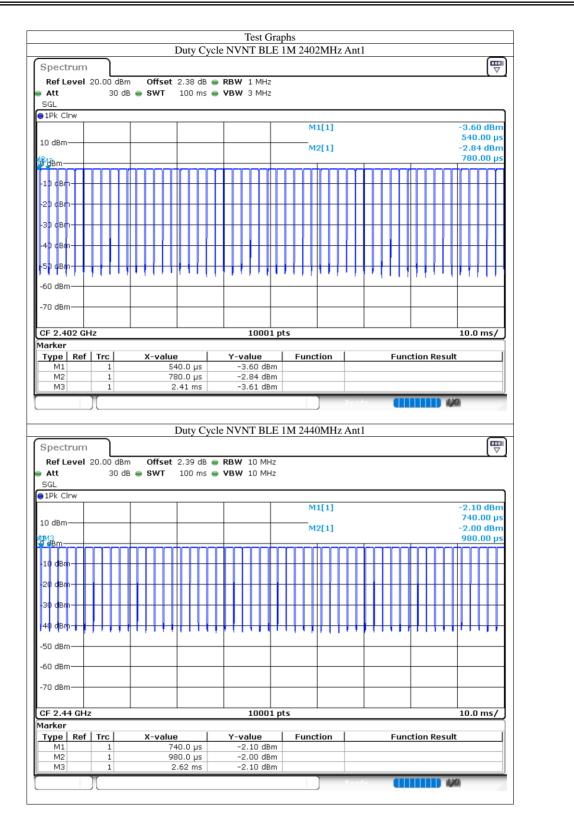
7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

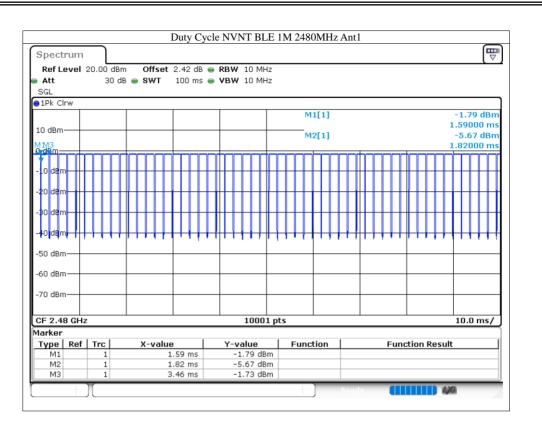
15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

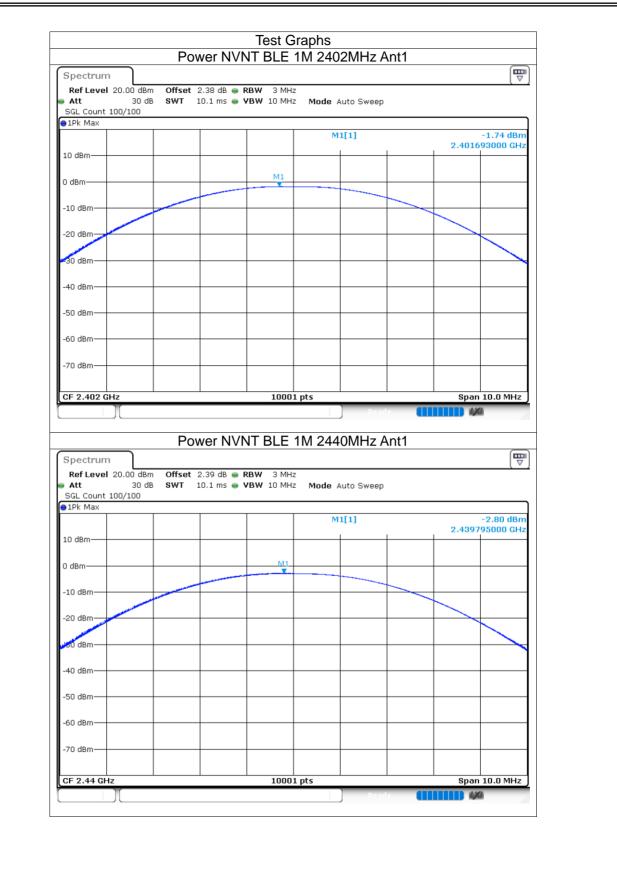
The EUT antenna is permanent attached PIFA antenna (Gain: 1 dBi). It comply with the standard requirement.


8 TEST RESULTS

8.1 **DUTY CYCLE**

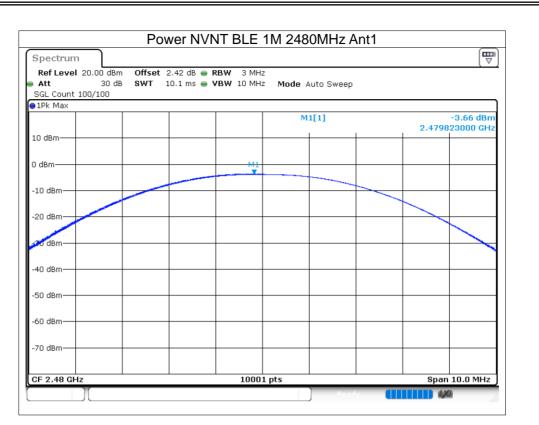

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 1M	2402	Ant1	87.72	0.57	0.61
NVNT	BLE 1M	2440	Ant1	88.07	0.55	0.61
NVNT	BLE 1M	2480	Ant1	88.08	0.55	0.61

ACCREDITED Certificate #4298.01


ACCREDITED

Certificate #4298.01

8.2 MAXIMUM CONDUCTED OUTPUT POWER

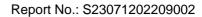

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-1.74	30	Pass
NVNT	BLE 1M	2440	Ant1	-2.8	30	Pass
NVNT	BLE 1M	2480	Ant1	-3.66	30	Pass

ACCREDITED

ACCREDITED

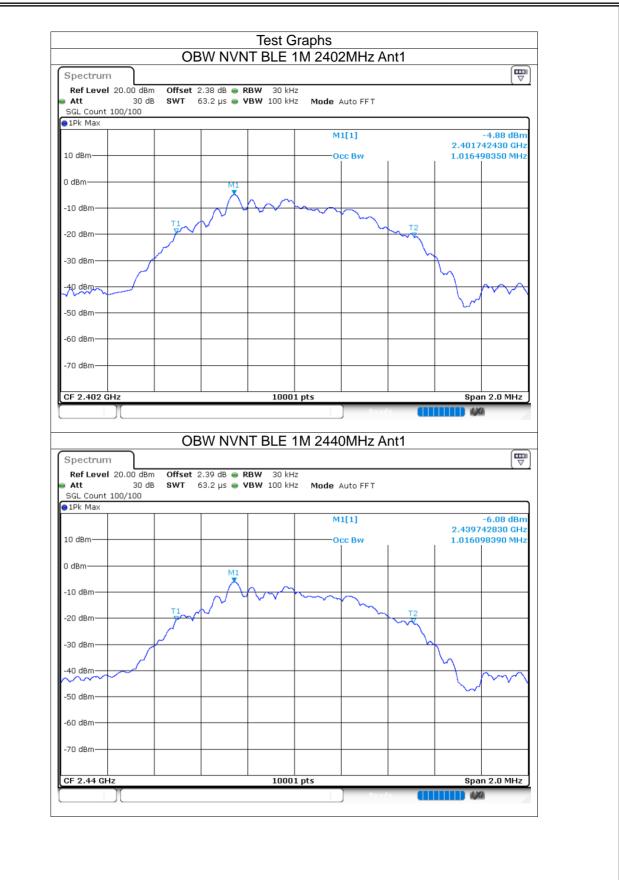
8.3 -6DB BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	0.657	0.5	Pass
NVNT	BLE 1M	2440	Ant1	0.663	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.657	0.5	Pass


ACCREDITED

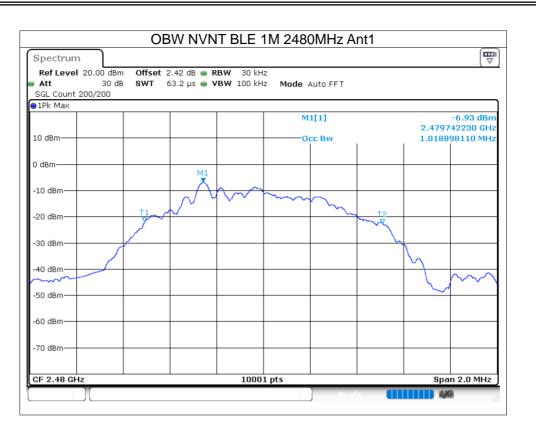
Spectrum									
-									[⊽]
Ref Level			-	• RBW 100 kHz					
Att	30 c	18 SWT 18	3.9 µs 🧉	• VBW 300 kHz	Mode 4	uto FFT			
GL Count 3 1Pk Max	00/300								
TEK MIGY					5.4.1	1[1]			-3.99 dBm
					DAT .	111		2.479	-3.99 uBm 742630 GHz
0 dBm					M3	2[1]		2.475	-9.99 dBm
			м					2.479	660000 GHz
dBm			M2			МЗ			
			MZ		~~~~	11/13			
							1		
20 dBm —									
30 dBm —		+ +							
50 dBm							_		
i0 dBm		++						+	
70 dBm —								1	
F 2.48 GHz	2			10001 p	ts			Sp	an 2.0 MHz
arker									
	Trc	X-value		Y-value	Funct	ion	Fun	ction Resu	t l
M1 M2	1	2.4797426		-3.99 dBm					
M2 M3	1	2.4796		-9.99 dBm -9.96 dBm					

ACCREDITED



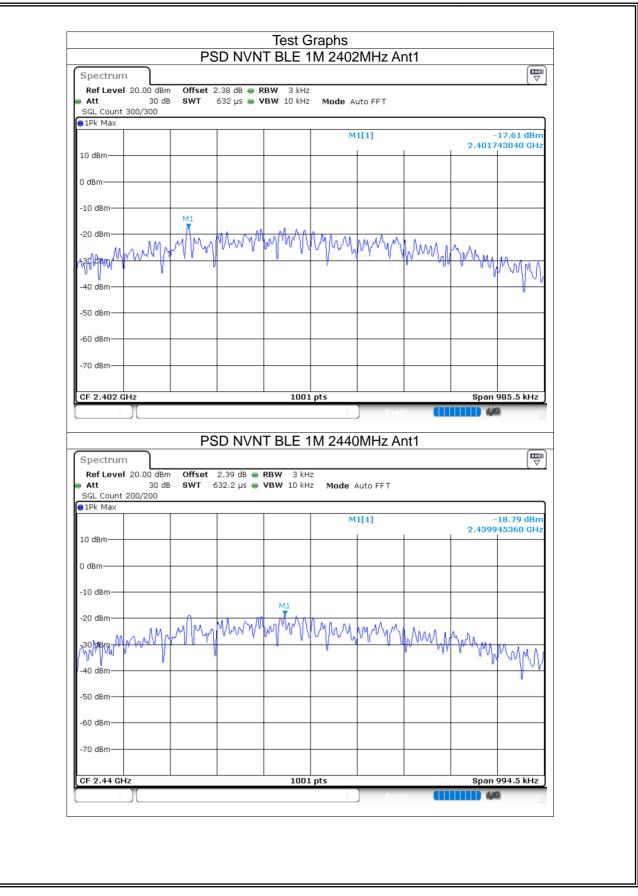
8.4 OCCUPIED CHANNEL BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.016
NVNT	BLE 1M	2440	Ant1	1.016
NVNT	BLE 1M	2480	Ant1	1.019


ACCREDITED

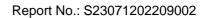
ACCREDITED

ACCREDITED



8.5 MAXIMUM POWER SPECTRAL DENSITY LEVEL

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-17.61	8	Pass
NVNT	BLE 1M	2440	Ant1	-18.79	8	Pass
NVNT	BLE 1M	2480	Ant1	-19.65	8	Pass


ACCREDITED

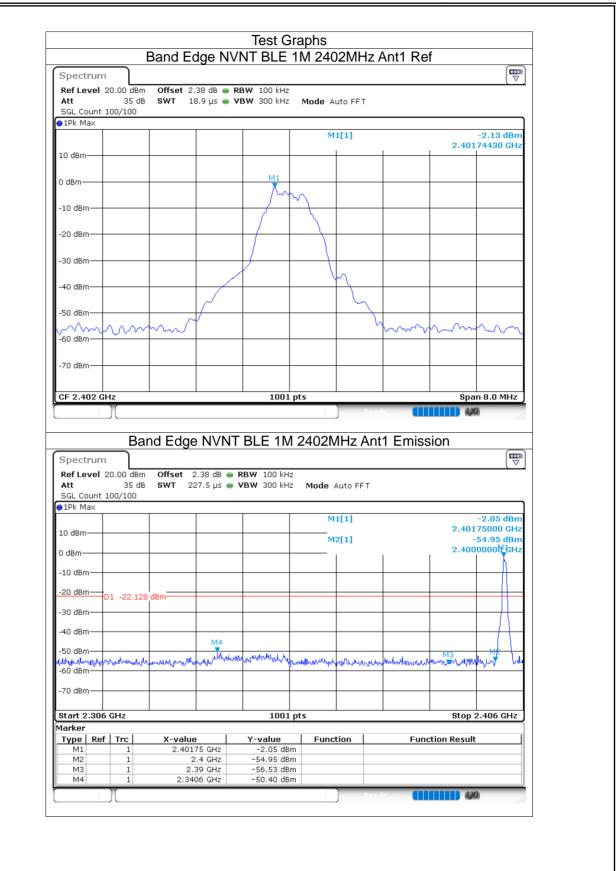
Spectrum)							
Ref Level 20.0 Att		.42 dB 👄 RBV						
GL Count 300/3		632 µs 👄 VBN	N IU KHZ	Mode Au	JTO FF I			
1Pk Max								
				M	1[1]			19.65 dBm 41070 GHz
10 dBm								
) dBm								
-10 dBm								
	M1							
-20 dBm			M. AA	1				
	Manan	MMMM	J. M. J. A	MMM.	MANA	LAMA 1	M A.	
-39 1,4 8m 7/441471/201 401/11/14			•	1 7	- 1 4	լV **** կ	WWW.	MALMA
-40 dBm	1						• · V	<u>,</u>
								V
-50 dBm								
-60 dBm								
-70 dBm								
CF 2.48 GHz			1001	nts			Snan	985.5 kHz

ACCREDITED

8.6 BAND EDGE

С	Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
	NVNT	BLE 1M	2402	Ant1	-48.27	-20	Pass
	NVNT	BLE 1M	2480	Ant1	-38.54	-20	Pass

ACCREDITED



ilac-MR

ACCREDITED

Certificate #4298.01

Report No.: S23071202209002



Spectrum		Band Ed							Ē)
Ref Level 3		Offect 2.4	2 de 👝 🛛	BW 100 kHz					ĮΨ	1
Att		SWT 18.			Mode Aut	0 FFT				
SGL Count 1	.00/100									
⊜1Pk Max										
					M1[1]		2.47	-4.05 dBm 974430 GHz	
20 dBm		++							+	
10 dBm										1
0 dBm				M1						1
10 40				1 M	\sim					
-10 dBm										1
-20 dBm					<u>\</u>					
LO GDIII										
-30 dBm				\parallel						4
				1						
-40 dBm		+		4						1
m	\sim	pmp	\mathcal{N}°			have	$h \sim h$	$\neg \neg \neg$	h	1
-50 dBm										1
() , () ,										
-60 dBm										1
CF 2.48 GH	Z			1001	pts			Spa	an 8.0 MHz	1
	Ва	Ind Edge	NVNT	BLE 1M	2480Mł	Hz Ant	1 Emiss			
Spectrum Ref Level 3						Hz Ant	1 Emiss]
Ref Level 3 Att	30.00 dBm 45 dE		42 dB 😑	RBW 100 kHz	:		1 Emiss]
Ref Level 3 Att SGL Count 1	30.00 dBm 45 dE	n Offset 2.4	42 dB 😑	RBW 100 kHz	:		1 Emiss]
Ref Level 3 Att	30.00 dBm 45 dE	n Offset 2.4	42 dB 😑	RBW 100 kHz	:	to FFT	1 Emiss			1
Ref Level 3 Att SGL Count 1	30.00 dBm 45 dE	n Offset 2.4	42 dB 😑	RBW 100 kHz	Mode Au M1[to FFT 1]	1 Emiss	sion 2.47	-5.30 dBm 995000 GH2	
Ref Level 3 Att SGL Count 1 1Pk Max 20 dBm	30.00 dBm 45 dE	n Offset 2.4	42 dB 😑	RBW 100 kHz	Mode Au	to FFT 1]	1 Emiss	sion 2.47	-5.30 dBm 995000 GHz -46.78 dBm	
Ref Level 3 Att SGL Count 1 1Pk Max	30.00 dBm 45 dE	n Offset 2.4	42 dB 😑	RBW 100 kHz	Mode Au M1[to FFT 1]	1 Emiss	sion 2.47	-5.30 dBm 995000 GH2	
Ref Level 3 Att SGL Count 1 1Pk Max 20 dBm	30.00 dBm 45 dE	n Offset 2.4	42 dB 😑	RBW 100 kHz	Mode Au M1[to FFT 1]	1 Emiss	sion 2.47	-5.30 dBm 995000 GHz -46.78 dBm	
Ref Level 3 Att SGL Count 1 1Pk Max 20 dBm 10 dBm	30.00 dBm 45 dE	n Offset 2.4	42 dB 😑	RBW 100 kHz	Mode Au M1[to FFT 1]	1 Emiss	sion 2.47	-5.30 dBm 995000 GHz -46.78 dBm	
Ref Level 3 Att SGL Count 1 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm	30.00 dBm 45 dE	n Offset 2.4	42 dB 😑	RBW 100 kHz	Mode Au M1[to FFT 1]	1 Emiss	sion 2.47	-5.30 dBm 995000 GHz -46.78 dBm	
Ref Level 3 Att SGL Count 2 1Pk Max 20 dBm 10 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm	30.00 dBm 45 dE	Offset 2	42 dB 😑	RBW 100 kHz	Mode Au M1[to FFT 1]	1 Emiss	sion 2.47	-5.30 dBm 995000 GHz -46.78 dBm	
Ref Level 3 Att SGL Count 2 1Pk Max 20 dBm 10 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm	00.00 dBm 45 dE 00/100	Offset 2	42 dB 😑	RBW 100 kHz	Mode Au M1[to FFT 1]	1 Emiss	sion 2.47	-5.30 dBm 995000 GHz -46.78 dBm	
Ref Level 3 Att SGL Count 3 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 cBm -30 cBm	00.00 dBm 45 dE 00/100	B Offset 2. B SWT 227	42 dB ● 7.5 μs ●	RBW 100 kHz VBW 300 kHz	Mode Au M1[to FFT 1] 1]		2.47 [/] 2.48 [/]	-5.30 dBm 995000 GHz -46.78 dBm 350000 GHz	
Ref Level 3 Att SGL Count 2 IPk Max 20 dBm 10 dBm 0 dBm -20 dBm -20 dBm -30 dBm -40 dBm	0.00 dBm 45 dE 00/100	B Offset 2. B SWT 227	42 dB ● 7.5 μs ●	RBW 100 kHz	Mode Au M1[to FFT 1] 1]		2.47 [/] 2.48 [/]	-5.30 dBm 995000 GHz -46.78 dBm 350000 GHz	
Ref Level 3 Att SGL Count 3 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 cBm -30 cBm	0.00 dBm 45 dE 00/100 01 -24.05 M4	B Offset 2. B SWT 227	42 dB ● 7.5 μs ●	RBW 100 kHz VBW 300 kHz	Mode Au M1[to FFT 1] 1]		2.47 [/] 2.48 [/]	-5.30 dBm 995000 GHz -46.78 dBm 350000 GHz	
Ref Level 3 Att SGL Count 2 IPk Max 20 dBm 10 dBm 0 dBm -20 dBm -20 dBm -30 dBm -40 dBm	0.00 dBm 45 dE 00/100 01 -24.05 M4	B Offset 2. B SWT 227	42 dB ● 7.5 μs ●	RBW 100 kHz VBW 300 kHz	Mode Au M1[to FFT 1] 1]		2.47 [/] 2.48 [/]	-5.30 dBm 995000 GHz -46.78 dBm 350000 GHz	
Ref Level 3 Att SGL Count 3 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 cBm -30 cBm -40 dBm -50 dBm	0.00 dBm 45 dE 00/100	B Offset 2. B SWT 227	42 dB ● 7.5 μs ●	RBW 100 kHz VBW 300 kHz	Mode Au M1[M2[to FFT 1] 1]		2.47 ⁴ 2.48	-5.30 dBm 995000 GHz -46.78 dBm 350000 GHz	
Ref Level 3 Att SGL Count 3 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -60 dBm -60 dBm	0.00 dBm 45 dE 00/100	B Offset 2. B SWT 227	42 dB ● 7.5 μs ●	RBW 100 kHz VBW 300 kHz	Mode Au M1[M2[to FFT 1] 1]		2.47 ⁴ 2.48	-5.30 dBm 995000 GHz -46.78 dBm 350000 GHz	
Ref Level 3 Att SGL Count 3 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -60 dBm -60 dBm Start 2.476	80.00 dBm 45 dE 800/100 91 -24.05 M4 M4 M4 M4	B Offset 2. B SWT 227	42 dB ● 7.5 μs ●	RBW 100 kHz VBW 300 kHz	Mode Au M1[M2[M2[M2[M2] M2[M2] M2[M2] M2[M2] M2] M2] M2] M2] M2] M2] M2]	to FFT 1] 1]	l l l l l l l l l l l l l l l l l l l	2.47 [,] 2.48 [,]	-5.30 dBm 995000 GHz -46.78 dBm 46.78 dBm	
Ref Level 3 Att SGL Count 3 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 cBm -20 cBm -30 cBm -50 dBm -60 dBm Start 2.476 M1	0.00 dBm 45 dE 000/100 01 -24.05 M4 GHz GHz	3 dBm 3 dBm 3 dBm 3 dBm 3 dBm 3 dBm 3 dBm 3 dBm 2 47995	42 dB 7.5 μs 42 dB 7.5 μs 5 GHz	RBW 100 kHz VBW 300 kHz	Mode Au M1[M2[M2[M2[M2[M2[M2[M2[M2	to FFT 1] 1]	l l l l l l l l l l l l l l l l l l l	2.47 ⁴ 2.48	-5.30 dBm 995000 GHz -46.78 dBm 46.78 dBm	
Ref Level 3 Att SGL Count 2 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -60 dBm -60 dBm -80 dBm -70 dBm -70 dBm -10 dBm -30 dBm -30 dBm -50 dBm -60 dBm Start 2.476 Marker Type Ref M1 M2	00.00 dBm 45 dE 000/100 01 -24.05 M4 GHz GHz 1 1	3 dBm 3 dBm 3 dBm 3 dBm 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	42 dB 7.5 μs 42 dB 5 GHz 5 GH	RBW 100 kHz VBW 300 kHz	Mode Au M1[M2[M2[M2] M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	to FFT 1] 1]	l l l l l l l l l l l l l l l l l l l	2.47 [,] 2.48 [,]	-5.30 dBm 995000 GHz -46.78 dBm 46.78 dBm	
Ref Level 3 Att SGL Count 3 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 cBm -20 cBm -30 cBm -50 dBm -60 dBm Start 2.476 M1	0.00 dBm 45 dE 000/100 01 -24.05 M4 GHz GHz	3 dBm 3 dBm 3 dBm 3 dBm 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	42 dB 7.5 μs 7.5 μs 5 GHz 5 G	RBW 100 kHz VBW 300 kHz	Mode Au M1[M2[M2[M2[M2[M2[M2[M2[M2	to FFT 1] 1]	l l l l l l l l l l l l l l l l l l l	2.47 [,] 2.48 [,]	-5.30 dBm 995000 GHz -46.78 dBm 46.78 dBm	
Ref Level 3 Att SGL Count 3 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -60 dBm -60 dBm Start 2.476 Marker Type M1 M2 M3	80.00 dBm 45 dE 100/100 01 -24.05 M4 M4 GHz I Trc 1 1 1 1	A Offset 2 SWT 227 SWT 227 3 dBm 3 dBm X-value 2.47993 2.4833 2.5	42 dB ● 7.5 μs ● 	RBW 100 kHz VBW 300 kHz VBW 300 kHz VBW 300 kHz VBW 300 kHz VBW 300 kHz VE VE VBW 300 kHz VE VE VE VE VE VE VE VE VE VE	Mode Au M1[M2[M2[M2[M2[M2[M2[M2[M2	to FFT 1] 1]	լինչչԿուլրիյանգայ Func	2.47 [,] 2.48 [,]	-5.30 dBm 995000 GHz -46.78 dBm 46.78 dBm 46.78 dBm 2.576 GHz t	

ACCREDITED

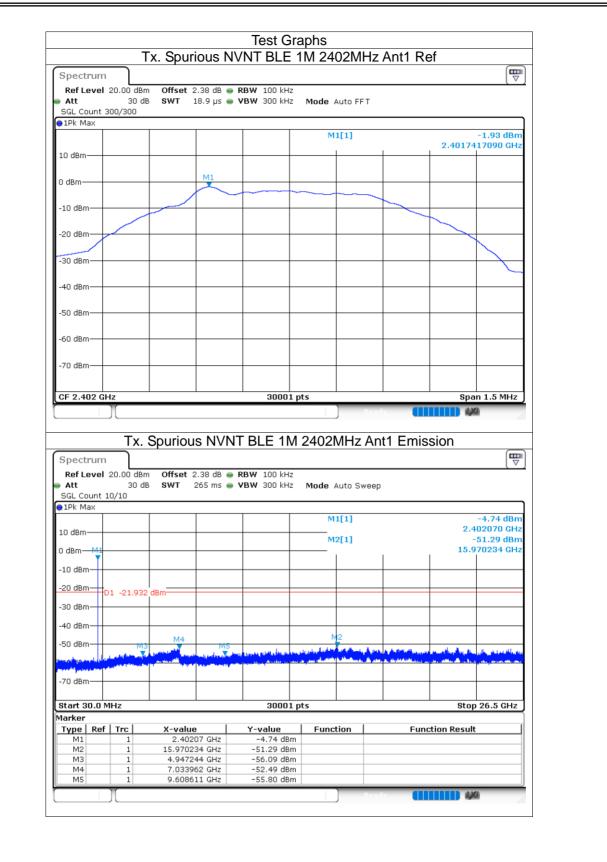
8.7 CONDUCTED RF SPURIOUS EMISSION

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-49.36	-20	Pass
NVNT	BLE 1M	2440	Ant1	-47.49	-20	Pass
NVNT	BLE 1M	2480	Ant1	-47.47	-20	Pass

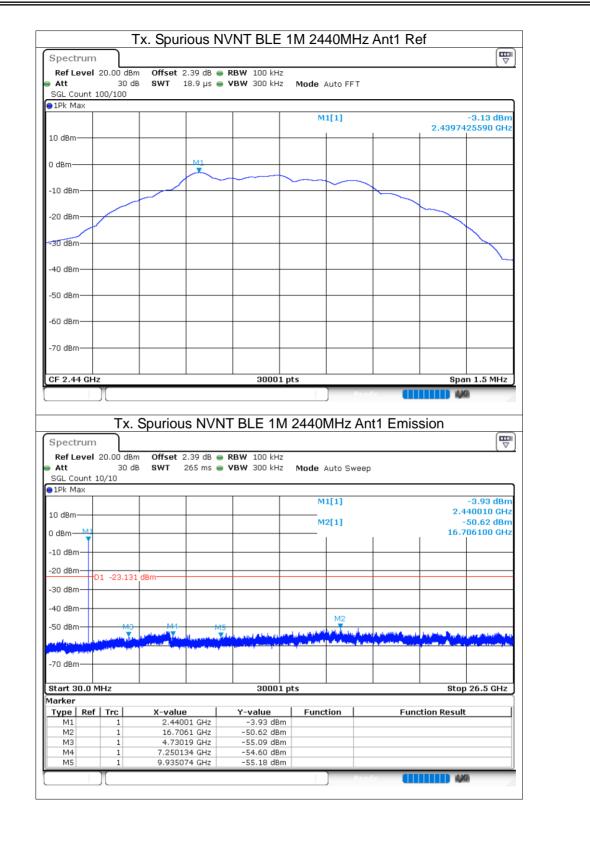
ACCRED

Certificate #4298.01

TED

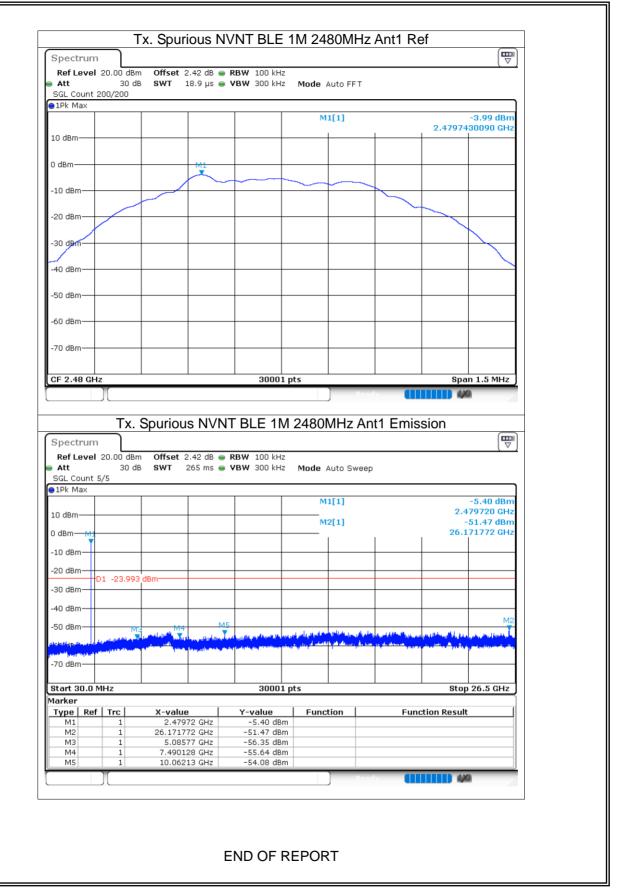


ilac-MR


ACCREDITED

Certificate #4298.01

Report No.: S23071202209002



ACCREDITED

ACCREDITED