

Page 1 of 21

TEST REPORT

Product Name	:	15W Car Wireless Charging Module
Brand Mark	:	N/A
Model No.	:	W015CN-09
Report Number	:	BLA-EMC-202307-A3302
FCC ID	:	2AZX2-DB000001
Date of Sample Receipt	:	2023/7/13
Date of Test	:	2023/7/13 to 2023/8/4
Date of Issue	:	2023/8/4
Test Standard	:	47 CFR Part 15, Subpart C 15.215
Test Result	:	Pass

Prepared for:

An Energy Technology Co.,Ltd 139 Huaye Road, Jintan District Changzhou City Jiang Su,213200 China

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China TEL: +86-755-23059481

Compiled by: Jozu Approved by: 13 (we Theng

Review by:

weels

Date:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd.

Add: Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

REPORT REVISE RECORD

Version No. Date		Description	
00	2023/8/4	Original	

TABLE OF CONTENTS

1	ΤE	ST SUMMARY	
2	GE	ENERAL INFORMATION	5
3	GE	ENERAL DESCRIPTION OF E.U.T.	5
4	ΤE	ST ENVIRONMENT	6
5	ТΕ	ST MODE	6
6	ME	EASUREMENT UNCERTAINTY	6
7	DE	SCRIPTION OF SUPPORT UNIT	
8		BORATORY LOCATION	
9		ST INSTRUMENTS LIST	
10	201	DB BANDWIDTH	
1	0.1	BLOCK DIAGRAM OF TEST SETUP	
1	0.2	TEST DATA	
11	RA	ADIATED SPURIOUS EMISSIONS	
1	1.1	LIMITS	
1	1.2	BLOCK DIAGRAM OF TEST SETUP	
1	1.3	PROCEDURE	13
1	1.4	TEST DATA	
APF	PEN	DIX A: PHOTOGRAPHS OF TEST SETUP	20
APF	EN	DIX B: PHOTOGRAPHS OF EUT	21

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
20dB Bandwidth	47 CFR Part 15.215	ANSI C63.10 (2013) Section 7.8.7	47 CFR Part 15, Subpart C 15.215	Pass
Radiated Spurious Emissions	47 CFR Part 15.215	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209	Pass

2 GENERAL INFORMATION

Applicant	An Energy Technology Co.,Ltd	
Address	139 Huaye Road, Jintan District Changzhou City Jiang Su,213200 China	
Manufacturer	An Energy Technology Co.,Ltd	
Address	139 Huaye Road, Jintan District Changzhou City Jiang Su,213200 China	
Factory	An Energy Technology Co.,Ltd	
Address	139 Huaye Road, Jintan District Changzhou City Jiang Su,213200 China	
Product Name	15W Car Wireless Charging Module	
Test Model No.	W015CN-09	

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	N/A
Software Version	N/A
Operation Frequency:	118.1KHz
Modulation type:	ASK
Antenna Type:	Inductive loop coil Antenna
Antenna Gain:	0dBi (Max)
Power supply	Input: 16V DC~20V DC, 1.5A (max) Output: 15W

VU

4 TEST ENVIRONMENT

Environment	Temperature	Voltage
Normal	25°C	18Vdc

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION
Wireless charging	Keep the EUT in wireless charging mode

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)		
Radiated Emission(9kHz-30MHz)	±4.34dB		
Radiated Emission(30Mz-1000MHz)	±4.24dB		
Radiated Emission(1GHz-18GHz)	±4.68dB		
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB		

Parameter	Expanded Uncertainty (Confidence of 95%)	
Occupied Channel Bandwidth	±5 %	
RF output power, conducted	±1.5 dB	
Power Spectral Density, conducted	±3.0 dB	
Unwanted Emissions, conducted	±3.0 dB	
Temperature	±3 °C	
Supply voltages	±3 %	
Time	±5 %	
Unwanted Radiated Emission (30MHz ~ 1000MHz)	±4.35 dB	
Unwanted Radiated Emission (1GHz ~ 18GHz)	±4.44 dB	

7 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
Load N/A		N/A	N/A	15W MAX

8 LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

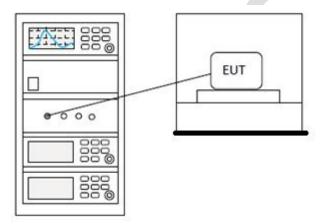
Г

٦

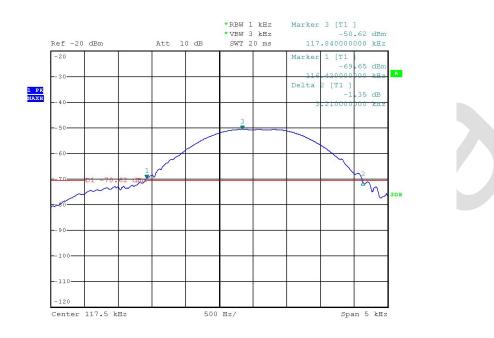
9 TEST INSTRUMENTS LIST

Test Equipment Of Radiated Spurious Emissions						
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	
Chamber 1	SKET	966	N/A	2020/11/10	2023/11/9	
Chamber 2	SKET	966	N/A	2021/07/20	2024/07/19	
Spectrum	R&S	FSP40	100817	2022/09/15	2023/09/14	
Receiver	R&S	ESR7	101199	2022/09/15	2023/09/14	
Receiver	R&S	ESPI7	101477	2022/07/16 2023/07/14	2023/07/15 2024/07/13	
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	2022/09/15	2023/09/14	
Horn Antenna	Schwarzbeck	BBHA9120D	01892 P:00331	2022/09/13	2025/09/12	
Amplifier	SKET	LNPA_30M01G-30	SK2021060801	2022/07/16 2023/07/14	2023/07/15 2024/07/13	
Amplifier	SKET	PA-000318G-45	N/A	2022/09/13	2023/09/12	
Amplifier	SKET	LNPA_18G40G-50	SK2022071301	2022/07/14 2023/07/14	2023/07/13 2024/07/13	
Filter group	SKET	2.4G/5G Filter group r	N/A	2022/07/16 2023/07/14	2023/07/15 2024/07/13	
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A	
Loop antenna	SCHNARZBECK	FMZB1519B	00102	2022/9/14	2025/9/13	
Controller	SKET	N/A	N/A	N/A	N/A	
Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A	
Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A	
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A	

٦


Test Equipment Of RF Conducted Test					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	2022/09/15	2023/09/14
Spectrum	Agilent	N9020A	MY49100060	2022/09/07	2023/09/06
Spectrum	KEYSIGHT	N9030A	MY52350152	2023/06/30	2024/06/29
Spectrum	KEYSIGHT	N9010A	MY54330814	2023/06/30	2024/06/29
Signal Generator	Agilent	N5182A	MY47420955	2022/09/07	2023/09/06
Signal Generator	Agilent	E8257D	MY44320250	2023/06/30	2024/06/29
Signal Generator	Agilent	N5181A	MY46240904	2023/08/02	2024/08/01
Signal Generator	R&S	CMW500	132429	2022/09/07	2023/09/06
BluetoothTester	Anritsu	MT8852B	06262047872	2022/09/07	2023/09/06
Power probe	DARE	RPR3006W	14100889SN042	2022/09/07	2023/09/06
DCPowersupply	zhaoxin	KXN-305D	20K305D1221363	2022/09/14	2023/09/13
DCPowersupply	zhaoxin	RXN-1505D	19R1505D050168	2022/09/14	2023/09/13
2.4GHz/5GHz RF Test sorfware	MTS	MTS 8310	Version 2.0.0.0	N/A	N/A
Audio Analyzer	Audioprecision	N/A	ATSI-41094	2023/06/30	2024/06/29

10 20DB BANDWIDTH


Test Standard	47 CFR Part 15, Subpart C 15.215		
Test Method	ANSI C63.10 (2013) Section 7.8.7		
Test Mode (Pre-Scan)	Wireless charging		
Test Mode (Final Test)	Wireless charging		
Tester	Jozu		
Temperature	25 ℃		
Humidity	60%		

10.1 BLOCK DIAGRAM OF TEST SETUP

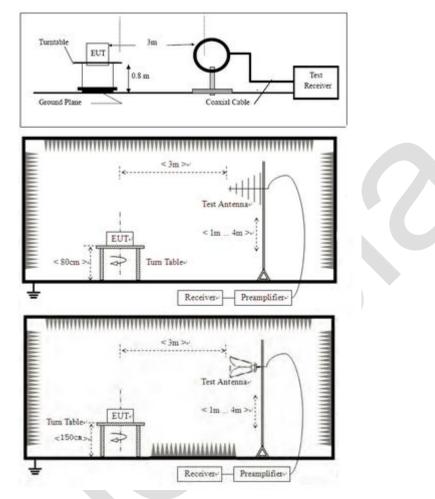
10.2 TEST DATA

jjjj
Date: 20.JUL.2023 17:03:55

20dB bandwidth (MHz)	Results
0.00321	Passed

11 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.215		
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6		
Test Mode (Pre-Scan)	Wireless charging		
Test Mode (Final Test)	Wireless charging		
Tester	Jozu		
Temperature	25°C		
Humidity	60%		


11.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

11.2 BLOCK DIAGRAM OF TEST SETUP

11.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

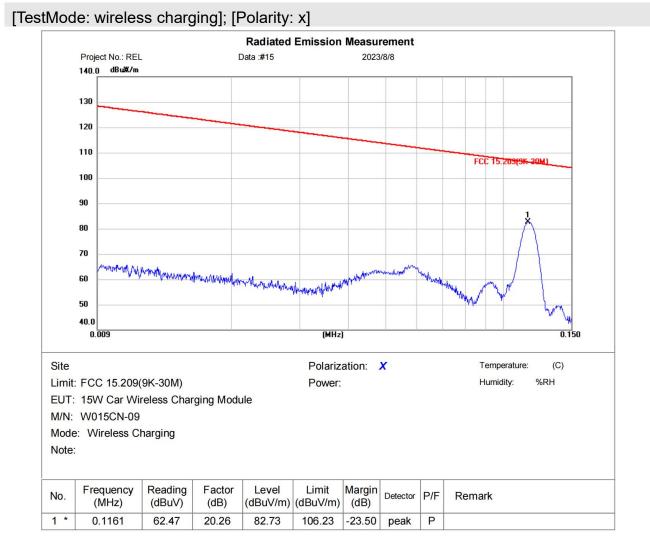
j. Repeat above procedures until all frequencies measured was complete.

Remark:

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

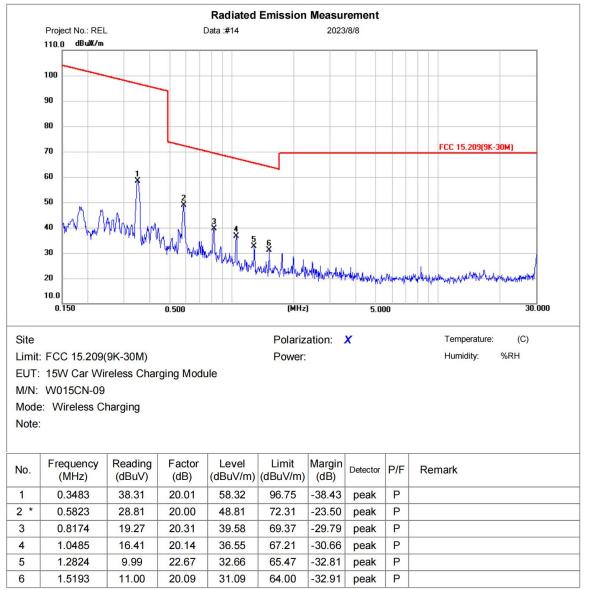
2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

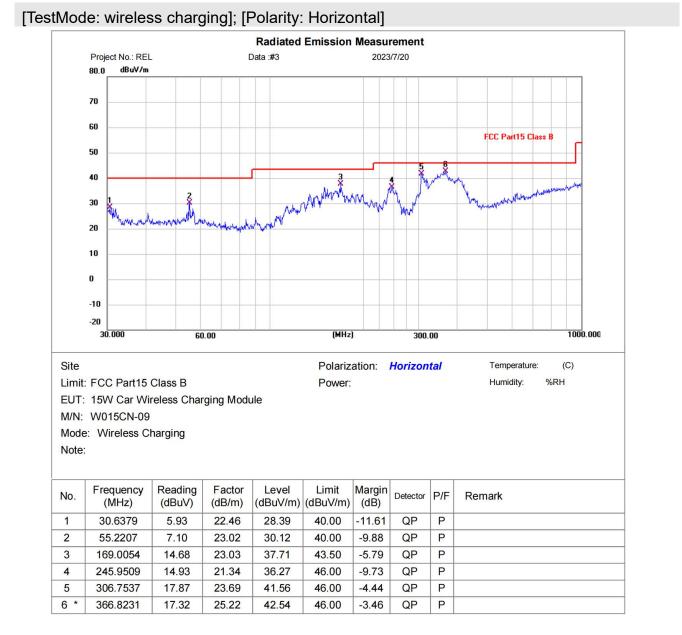

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.fundamental frequency is blocked by filter, and only spurious emission is shown.

4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

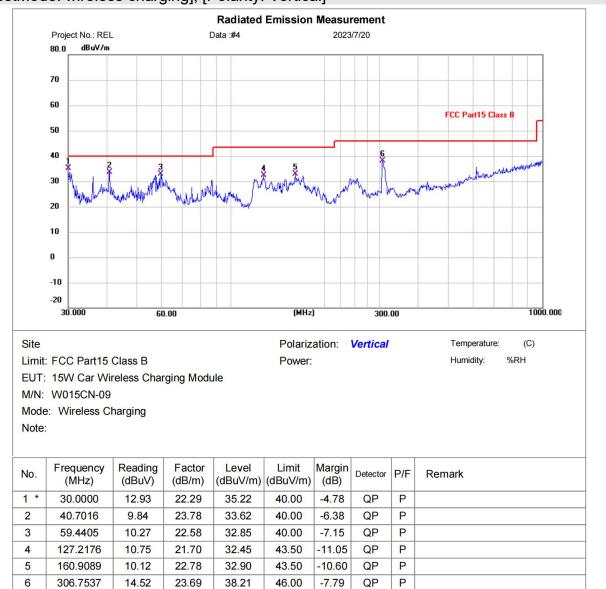
11.4 TEST DATA


9kHz-30MHz:

*:Maximum data x:Over limit !:over margin


[TestMode: wireless charging]; [Polarity: x]

*:Maximum data x:Over limit !:over margin

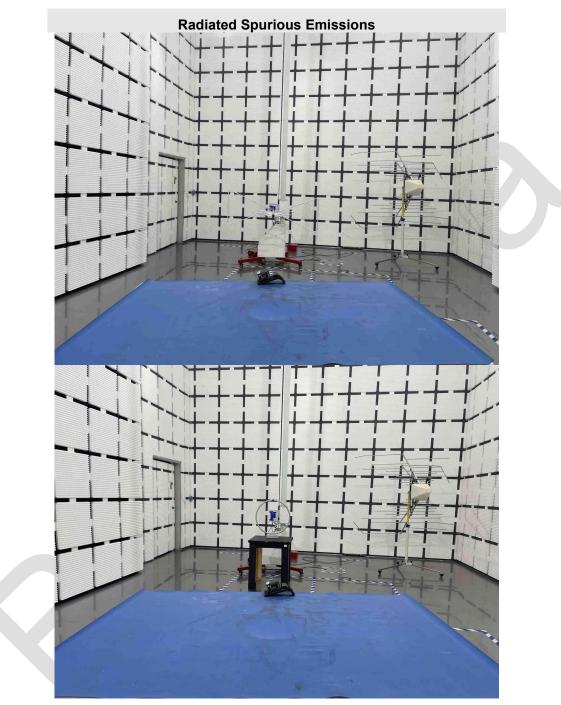


30MHz-1GHz:

*:Maximum data x:Over limit !:over margin

[TestMode: wireless charging]; [Polarity: Vertical]

*:Maximum data x:Over limit !:over margin


Report No.: BLA-EMC-202307-A3302 Page 19 of 21

Remark:

- 1. Final Level =Receiver Read level + Correct factor
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

Report No.: BLA-EMC-202307-A3302 Page 21 of 21

APPENDIX B: PHOTOGRAPHS OF EUT

Reference to the test report No. BLA-EMC-202307-A3301

----END OF REPORT----

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.