

FCC PART 15 SUBPART C TEST REPORT							
FCC PART 15.247							
Report Reference No: FCC ID							
Compiled by (position+printed name+signature) .:	File administrators Alisa Luo	Alisa Luo					
Supervised by (position+printed name+signature) .:	Test Engineer Sunny Deng	Aisa Luo Sunny Deng Jutter					
Approved by (position+printed name+signature) .:	Manager Yvette Zhou	petter					
Date of issue	July.17,2023						
Representative Laboratory Name.:	Shenzhen Most Technology Ser	vice Co., Ltd.					
Address:	No.5, 2nd Langshan Road, North I Nanshan, Shenzhen, Guangdong,						
Applicant's name	KAWA ELECTRONICS COMPAN	Y LIMITED					
Address	FLAT A 21/F CHEUNG LEE IND BLDG 9 CHEUNG LEE ST CHAI WAN HONG KONG , China						
Test specification:							
Standard	FCC Part 15.247						
TRF Originator		ce Co., Ltd.					
Shenzhen Most Technology Service This publication may be reproduced in Most Technology Service Co., Ltd. is a Most Technology Service Co., Ltd. tak resulting from the reader's interpretation	whole or in part for non-commercia acknowledged as copyright owner a es no responsibility for and will not a	nd source of the material. Shenzhen assume liability for damages					
Test item description	DASH CAMERA						
Trade Mark	KAWA,APICAL						
Manufacturer	KAWA ELECTRONICS COMPAN	Y LIMITED					
Model/Type reference	D5						
Listed Models	2506						
Modulation Type	CCK/DSSS/ OFDM						
Operation Frequency	From 2412 - 2472MHz						
Rating	DC 5V by Car Charger						
Hardware version:	2505R-MAIN-01A-01						
Software version	0.0.7						
Result	PASS						

TEST REPORT

Equipment under Test	:	DASH CAMERA
Model /Type	:	D5
Listed Models	:	2506
Remark		difference in model name.
Applicant	:	KAWA ELECTRONICS COMPANY LIMITED
Address	:	FLAT A 21/F CHEUNG LEE IND BLDG 9 CHEUNG LEE ST CHAI WAN HONG KONG , China
Manufacturer	:	KAWA ELECTRONICS COMPANY LIMITED
Address	:	FLAT A 21/F CHEUNG LEE IND BLDG 9 CHEUNG LEE ST CHAI WAN HONG KONG , China

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1</u>	REVISION HISTORY	. 4
<u>2</u>	TEST STANDARDS	. 5
<u>3</u>	SUMMARY	. 6
3.2.Prod 3.3.Equi 3.4.Shor 3.5.EUT 3.6.Bloc 3.7.Test 3.8.Auxi 3.9.Ante	eral Remarks luct Description pment Under Test Power supply system utilised rt description of the Equipment under Test (EUT) operation mode k Diagram of Test Setup Item (Equipment Under Test) Description* liary Equipment (AE) Description onna Information* ated Submittal(s) / Grant (s)	6 6 6 7 7 7 7 7 7
	difications	8
<u>4</u>	TEST ENVIRONMENT	. 9
4.2.est F 4.3.Envi 4.4.Test 4.5.State		9 9 10 10 11
<u>5</u>	TEST CONDITIONS AND RESULTS	12
5.2.Radi 5.3.Maxi 5.4.Pow 5.5.6dB 5.6.Out- 5.7.Duty	Power Conducted Emission ated Emission imum Conducted Output Power er Spectral Density Bandwidth of-band Emissions of Cycle Information onna Requirement	12 13 30 31 32 33 34 35
<u>6</u>	TEST SETUP PHOTOS OF THE EUT	36
<u>7</u>	PHOTOS OF THE EUT	. 37
	Conducted Peak Output Power	38
APPEND	99% Bandwidth	39
APPEN	6dB Bandwidth	41
APPEN	Conducted Out Of Band Emission	44
APPEN	Duty Cycle	49
	Power Spectral Density	54

1 <u>Revision History</u>

Revision	Issue Date	Revisions	Revised By
00	2023-07-17	Initial Issue	Alisa Luo

2 TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices <u>KDB558074 D01 v05r02</u>: Guidance for Compliance Measurements on Digital Transmission Systems (DTS) ,Frequency Hopping Spread Spectrum System(HFSS), and Hybrid System Devices Operating Under §15.247 of The FCC rules.

3 <u>SUMMARY</u>

3.1.General Remarks

Date of receipt of test sample	:	Jul.09,2023
Testing commenced on	• •	Jul.10,2023
Testing concluded on	:	Jul.14,2023

3.2.Product Description

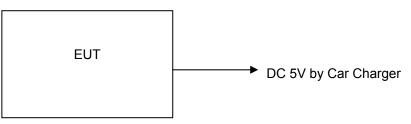
Product Name:	DASH CAMERA
Model/Type reference:	D5
Nodeli i ype reference.	53
Power Supply :	DC 5V by Car Charger
Testing sample ID :	MTYP02072
WIFI :	
Supported type:	802.11b/802.11g/802.11n(H20)
Modulation:	802.11b: DSSS
	802.11g/802.11n(H20: OFDM
Operation frequency:	802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz
Channel number:	802.11b/802.11g/802.11n(H20):11
Channel separation:	5MHz
Antenna type:	FPC antenna
Antenna gain:	2.68dBi

3.3. Equipment Under Test Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank below))

3.4. Short description of the Equipment under Test (EUT)

This is a DASH CAMERA For more details, refer to the user's manual of the EUT.


3.5.EUT operation mode

The application provider specific test software(AT command) to control sample in continuous TX and RX for testing meet KDB558074 test requirement

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432		
6	2437		
7	2442		

IEEE 802.11b/g/n: Thirteen channels are provided to the EUT.

3.6.Block Diagram of Test Setup

3.7.Test Item (Equipment Under Test) Description*

Short designation	EUT Name	EUT Description	Serial number	Hardware status	Software status
EUT A	/	/	/	/	/
EUT B	/	/	/	/	/

*: declared by the applicant. According to customers information EUTs A and B are the same devices.

3.8. Auxiliary Equipment (AE) Description

AE short designation	EUT Name (if available)	EUT Description	Serial number (if available)	Software (if used)
AE 1	1	1	1	1
AE 2	1	1	1	1

3.9. Antenna Information*

Short designation	Antenna Name	Antenna Type	Frequency Range	Serial number	Antenna Peak Gain
Antenna 1		FPC antenna	2.4 – 2.5 GHz		2.68dBi
Antenna 2					

*: declared by the applicant.

3.10.Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2AZWZ-D5 filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

No modifications were implemented to meet testing criteria.

4 <u>TEST ENVIRONMENT</u>

4.1.Address of the test laboratory

Shenzhen Most Technology Service Co., Ltd.

No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China. The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

4.2.est Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 0031192610

Shenzhen Most Technology Service Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

A2LA-Lab Cert. No.: 6343.01

Shenzhen Most Technology Service Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

4.3. Environmental conditions

Radiated Emission:

24 ° C
48 %
950-1050mbar

AC Main Conducted testing:

Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

Conducted testing:

Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

4.4.Test Description

FCC PART 15.247			
FCC Part 15.207	AC Power Conducted Emission	N/A	
FCC Part 15.247(a)(2)	6dB Bandwidth	PASS	
FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS	
FCC Part 15.247(b)	Maximum Conducted Output Power	PASS	
FCC Part 15.247(e)	Power Spectral Density	PASS	
FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS	
FCC Part 15.247(d)	Band Edge	PASS	
FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS	

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel
Maximum Peak Conducted Output Power	11b/DSSS	1 Mbps	1/6/11
Power Spectral Density 6dB Bandwidth Spurious RF conducted emission Radiated Emission 9KHz~1GHz& Radiated Emission 1GHz~10 th Harmonic	11g/OFDM	6 Mbps	1/6/11
	11n(20MHz)/OFDM	6.5Mbps	1/6/11
	1	1	/
	11b/DSSS	1 Mbps	1/11
Band Edge	11g/OFDM	6 Mbps	1/11
	11n(20MHz)/OFDM	6.5Mbps	1/11

4.5. Statement of the measurement uncertainty

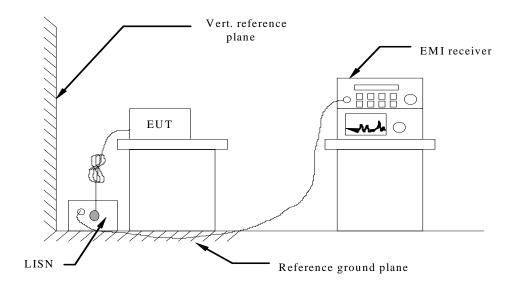
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Most Technology Service Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Most Technology Service Co., Ltd. is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.6.Equipments Used during the Test


Item	Equipment	Manufacturer	Model No.	Serial No.	Firmware versions	Last Cal.	Cal. Interval
1.	L.I.S.N.	R&S	ENV216	100093	/	2023/03/17	1 Year
2	Three-phase artificial power network	Schwarzback Mess	NNLK8129	8129178	/	2023/03/17	1 Year
3.	Receiver	R&S	ESCI	100492	V3.0-10-2	2023/03/17	1 Year
4	Receiver	R&S	ESPI	101202	V3.0-10-2	2023/03/17	1 Year
5	Spectrum analyzer	Agilent	9020A	MT-E306	A14.16	2023/03/17	1 Year
6	Bilong Antenna	Sunol Sciences	JB3	A121206	/	2023/03/17	1 Year
7	Horn antenna	HF Antenna	HF Antenna	MT-E158	/	2023/03/17	1 Year
8	Loop antenna	Beijing Daze	ZN30900B	1	/	2023/03/17	1 Year
9	Horn antenna	R&S	OBH100400	26999002	/	2023/03/17	1 Year
10	Wireless Communication Test Set	R&S	CMW500	1	CMW-BASE- 3.7.21	2023/03/17	1 Year
11	Spectrum analyzer	R&S	FSP	100019	V4.40 SP2	2023/03/17	1 Year
12	High gain antenna	Schwarzbeck	LB-180400KF	MT-E389	/	2023/03/17	1 Year
13	Preamplifier	Schwarzbeck	BBV 9743	MT-E390	/	2023/03/17	1 Year
14	Pre-amplifier	EMCI	EMC051845S E	MT-E391	/	2023/03/17	1 Year
15	Pre-amplifier	Agilent	83051A	MT-E392	/	2023/03/17	1 Year
16	High pass filter unit	Tonscend	JS0806-F	MT-E393	/	2023/03/17	1 Year
17	RF Cable(below1GHz)	Times	9kHz-1GHz	MT-E394	1	2023/03/17	1 Year
18	RF Cable(above 1GHz)	Times	1-40G	MT-E395	/	2023/03/17	1 Year
19	RF Cable (9KHz-40GHz)	Tonscend	170660	N/A	/	2023/03/17	1 Year

Note: The Cal.Interval was one year.

5 TEST CONDITIONS AND RESULTS

5.1.AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

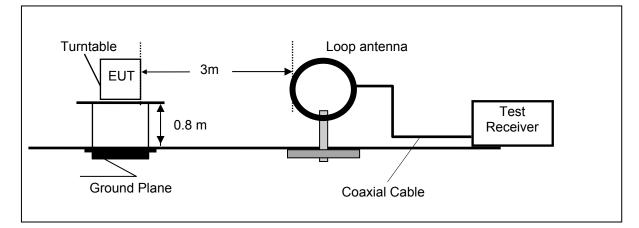
6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

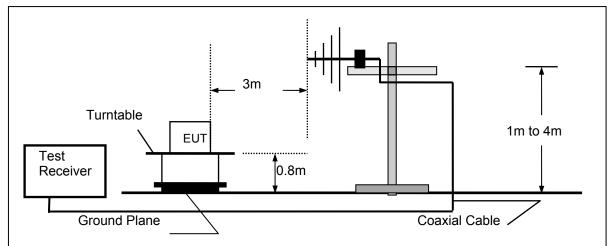
8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

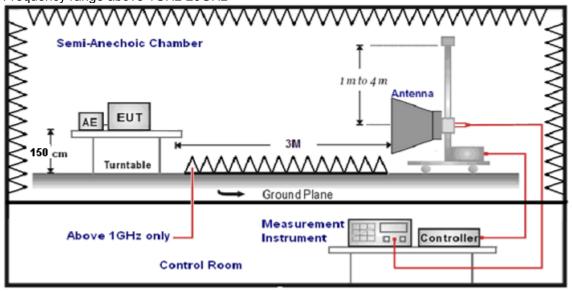
For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :


Frequency range (MHz)	Limit (d	dBuV)	
	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	
* Decreases with the logarithm of the frequency.			

TEST RESULTS


5.2.Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance			
9KHz-30MHz	Active Loop Antenna	3			
30MHz-1GHz	Ultra-Broadband Antenna	3			
1GHz-18GHz	Double Ridged Horn Antenna	3			
18GHz-25GHz	Horn Anternna	1			

7. Setting test receiver/spectrum as following table states:

Octaing test receiver/spectrum as following table states.			
Test Frequency range	Test Receiver/Spectrum Setting	Detector	
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP	
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP	
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP	
	Peak Value: RBW=1MHz/VBW=3MHz,		
	Sweep time=Auto	Peak	
19112-409112	Average Value: RBW=1MHz/VBW=10Hz,	FEak	
	Sweep time=Auto		
	Test Frequency range 9KHz-150KHz 150KHz-30MHz	Test Frequency rangeTest Receiver/Spectrum Setting9KHz-150KHzRBW=200Hz/VBW=3KHz,Sweep time=Auto150KHz-30MHzRBW=9KHz/VBW=100KHz,Sweep time=Auto30MHz-1GHzRBW=120KHz/VBW=1000KHz,Sweep time=Auto1GHz-40GHzPeak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto1GHz-40GHzAverage Value: RBW=1MHz/VBW=10Hz,	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

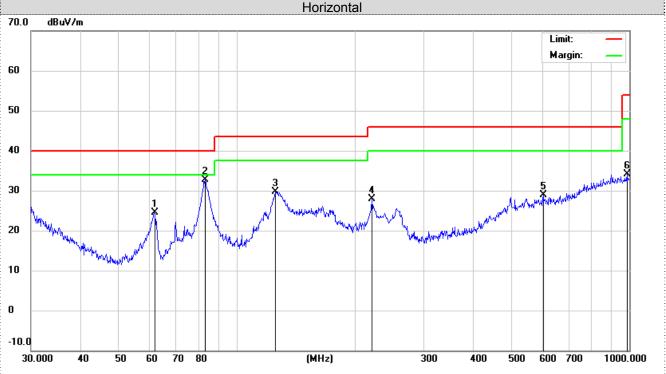
Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
	RA = Reading Amplitude	AG = Amplifier Gain
	AF = Antenna Factor	

Transd=AF +CL-AG

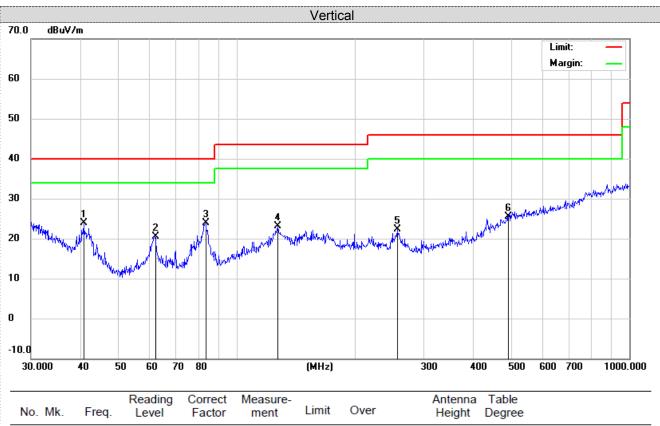
RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.


Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200

TEST RESULTS


Remark:

- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. All three channels (lowest/middle/highest) of each mode were measured below 1GHz and recorded worst case at 802.11b low channel.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.
- 4. Remark: Result=Reading value+Factor

For 30MHz-1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		61.7781	15.82	8.72	24.54	40.00	-15.46	QP	200	105	
2	*	83.2298	22.66	10.04	32.70	40.00	-7.30	QP	200	112	
3		125.4457	13.67	16.01	29.68	43.50	-13.82	QP	200	168	
4		221.3921	13.21	14.60	27.81	46.00	-18.19	QP	200	198	
5		603.5392	4.96	23.85	28.81	46.00	-17.19	QP	200	87	
6		986.0717	4.22	29.86	34.08	54.00	-19.92	QP	200	46	

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		Height	Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	40.8446	10.71	13.24	23.95	40.00	-16.05	QP	100	168	
2		61.9951	11.78	8.74	20.52	40.00	-19.48	QP	100	331	
3		83.5222	13.84	10.03	23.87	40.00	-16.13	QP	100	25	
4		127.6645	7.04	16. 07	23.11	43.50	-20.39	QP	100	254	
5		256.5211	8.28	14.02	22.30	46.00	-23.70	QP	100	36	
6		490.7447	3.31	22.21	25.52	46.00	-20.48	QP	100	178	

*:Maximum data x:Over limit !:over margin

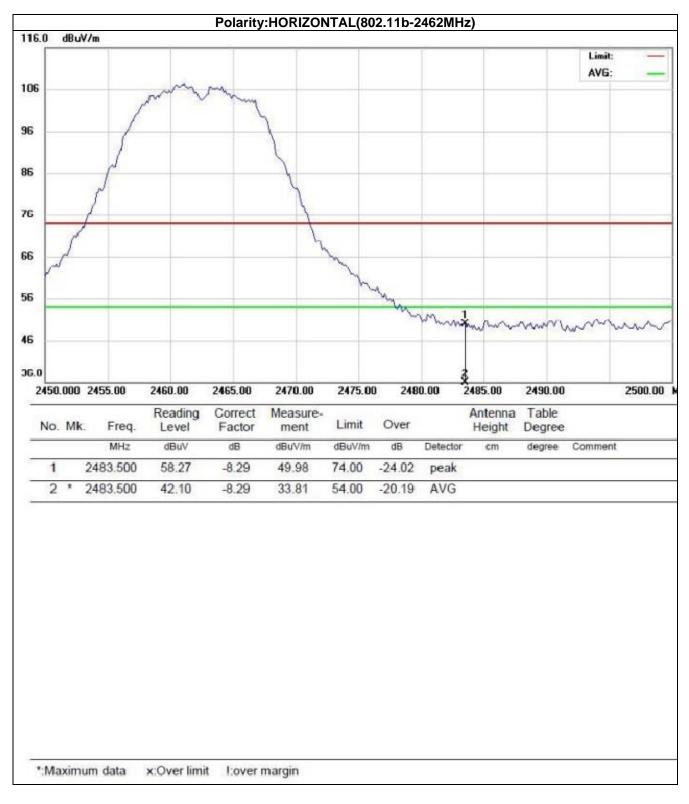
For 1GHz to 25GHz

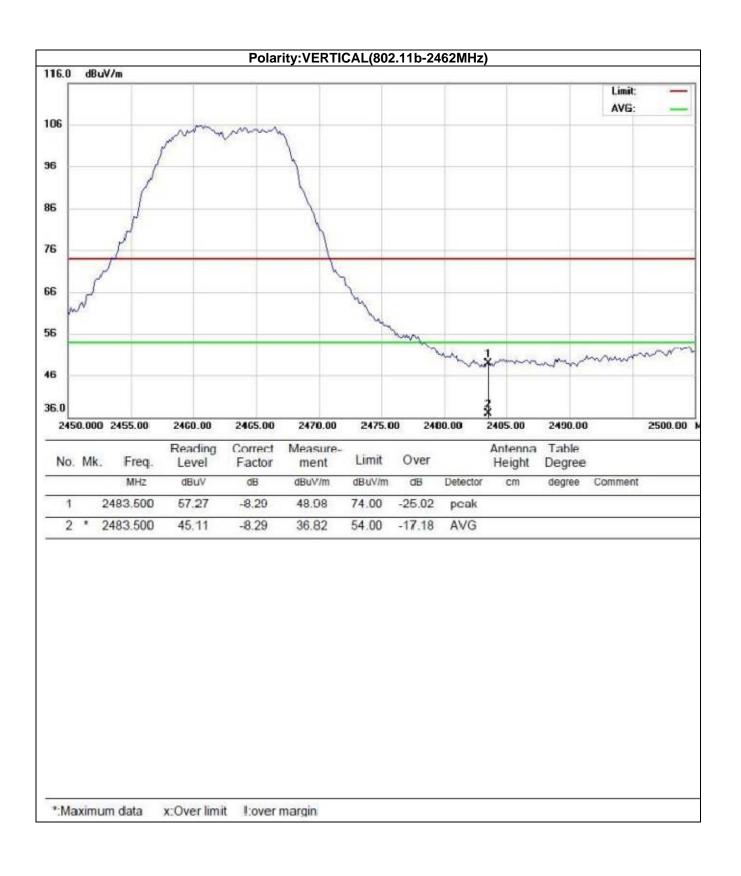
Note: 802.11b/802.11g/802.11n (H20) /802.11n (H40) all have been tested, only worse case 802.11b mode is reported

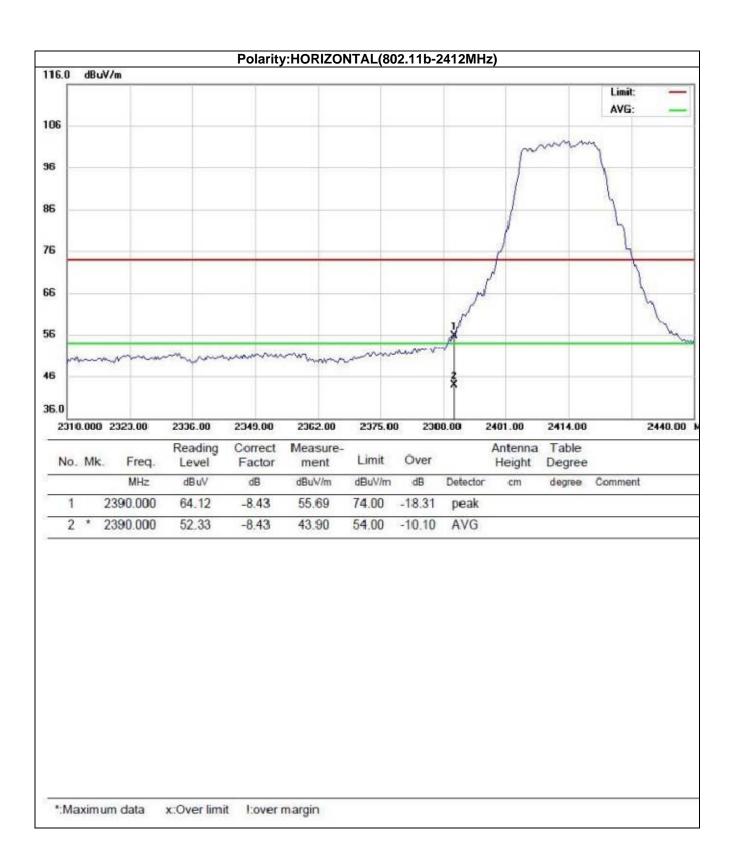
Polar (H/V)	Frequency	Meter Reading	Antenna Factor	Cable loss	Preamp factor	Emission Level	Limits	Margin	Detector Type			
	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)				
802.11b-2412MHz												
V	4824	53.4	30.28	7.01	36.5	54.19	74	19.81	PK			
V	4824	41.12	30.28	7.01	36.5	41.91	54	12.09	AV			
Н	4824	57.65	30.28	7.01	36.5	58.44	74	15.56	PK			
Н	4824	40.82	30.28	7.01	36.5	41.61	54	12.39	AV			
V	7236	42.09	36.59	8.91	35.3	52.29	74	21.71	PK			
V	7236	29.85	36.59	8.91	35.3	40.05	54	13.95	AV			
Н	7236	42.19	36.59	8.91	35.3	52.39	74	21.61	PK			
Н	7236	31.76	36.59	8.91	35.3	41.96	54	12.04	AV			
	802.11b -2437MHz											
V	4874	55.64	30.36	7.62	36.5	57.12	74	16.88	PK			
V	4874	40.51	30.36	7.62	36.5	41.99	54	12.01	AV			
Н	4874	53.92	30.36	7.62	36.5	55.4	74	18.6	PK			
Н	4874	40.6	30.36	7.62	36.5	42.08	54	11.92	AV			
V	7311	42.74	36.61	8.84	35.3	52.89	74	21.11	PK			
V	7311	31.92	36.61	8.84	35.3	42.07	54	11.93	AV			
Н	7311	43.11	36.61	8.84	35.3	53.26	74	20.74	PK			
Н	7311	31.16	36.61	8.84	35.3	41.31	54	12.69	AV			
				802.11	b -2462M⊦	lz						
V	4924	54.34	30.43	7.94	36.2	56.51	74	17.49	PK			
V	4924	40.6	30.43	7.94	36.2	42.77	54	11.23	AV			
Н	4924	53.86	30.43	7.94	36.2	56.03	74	17.97	PK			
Н	4924	40.4	30.43	7.94	36.2	42.57	54	11.43	AV			
V	7386	42.61	36.78	8.45	35.3	52.54	74	21.46	PK			
V	7386	29.34	36.78	8.45	35.3	39.27	54	14.73	AV			
Н	7386	43.02	36.78	8.45	35.3	52.95	74	21.05	РК			
Н	7386	29.76	36.78	8.45	35.3	39.69	54	14.31	AV			

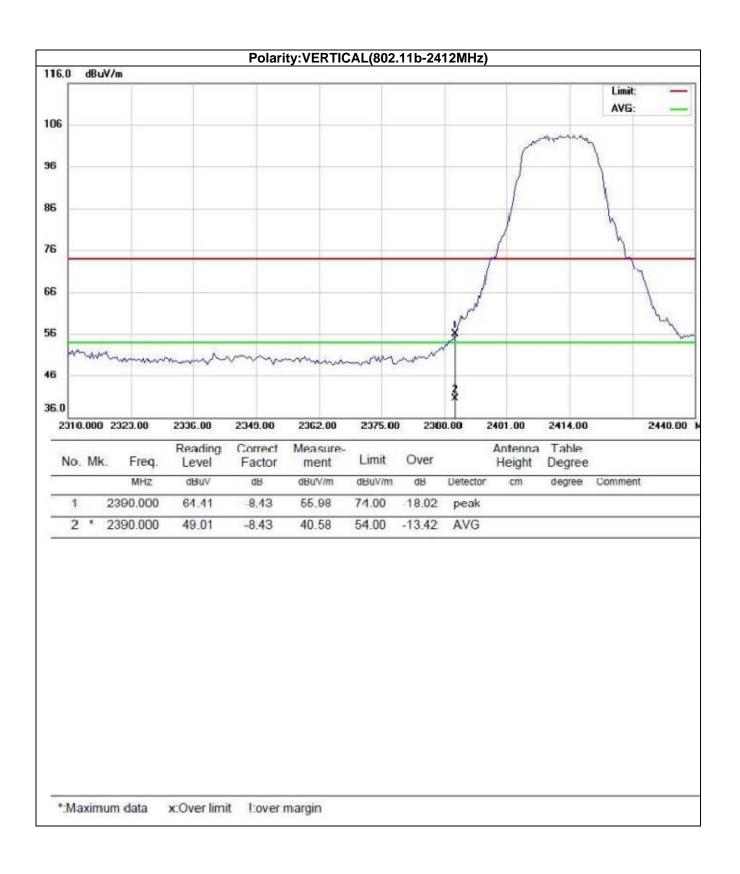
Note:

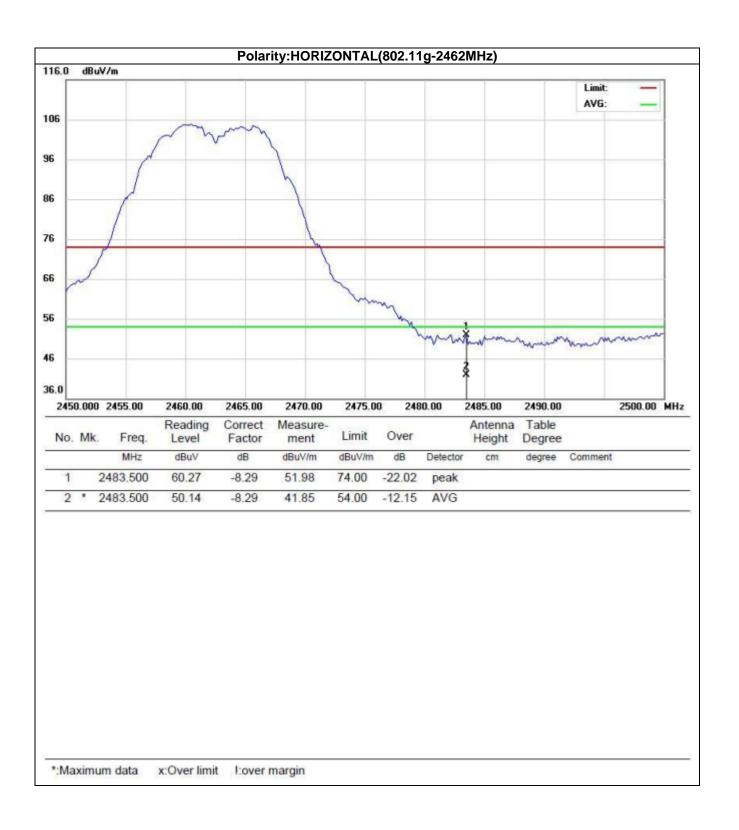
1) Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor.

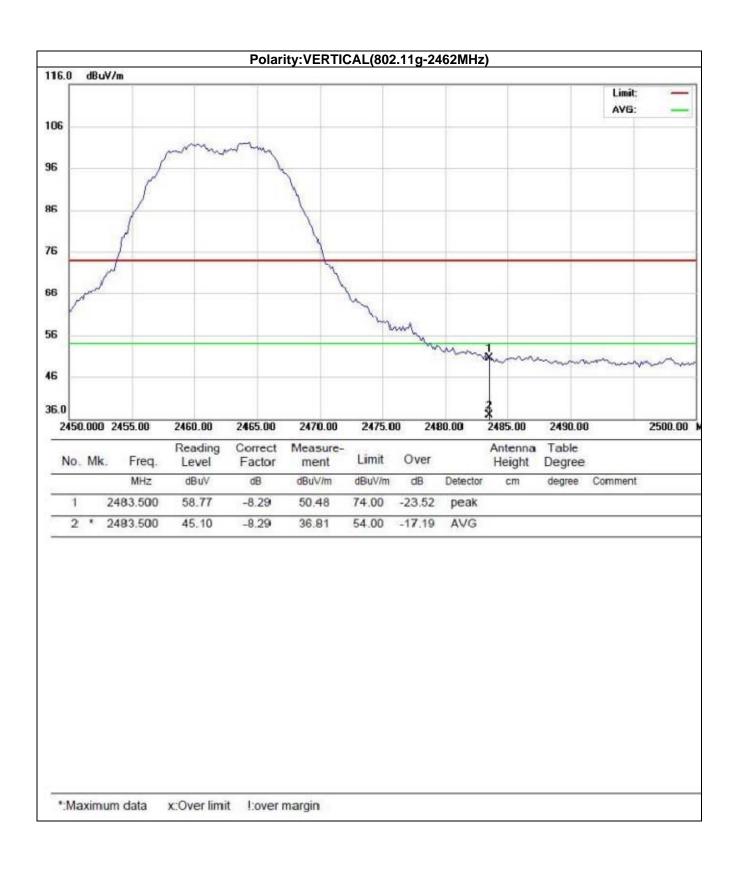

2) Margin value = Limits-Emission level.

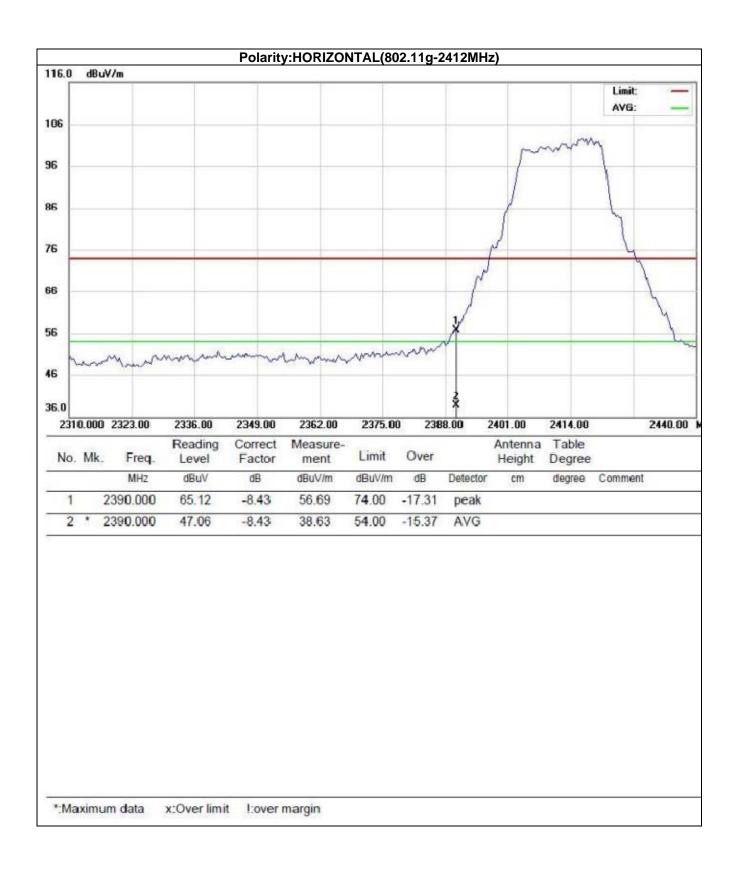

3) -- Mean the PK detector measured value is below average limit.

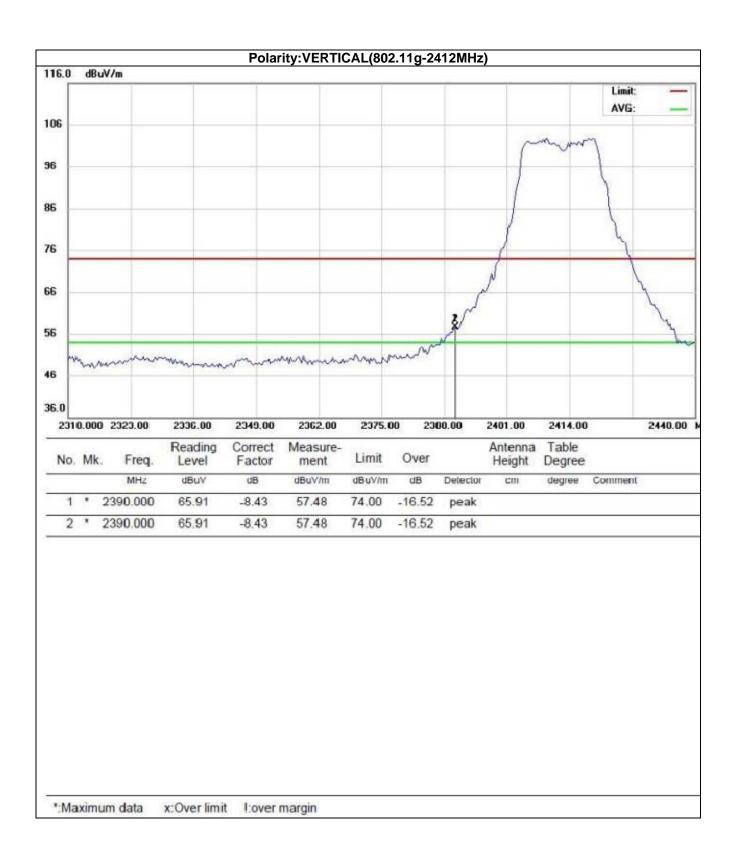

4) The other emission levels were very low against the limit.

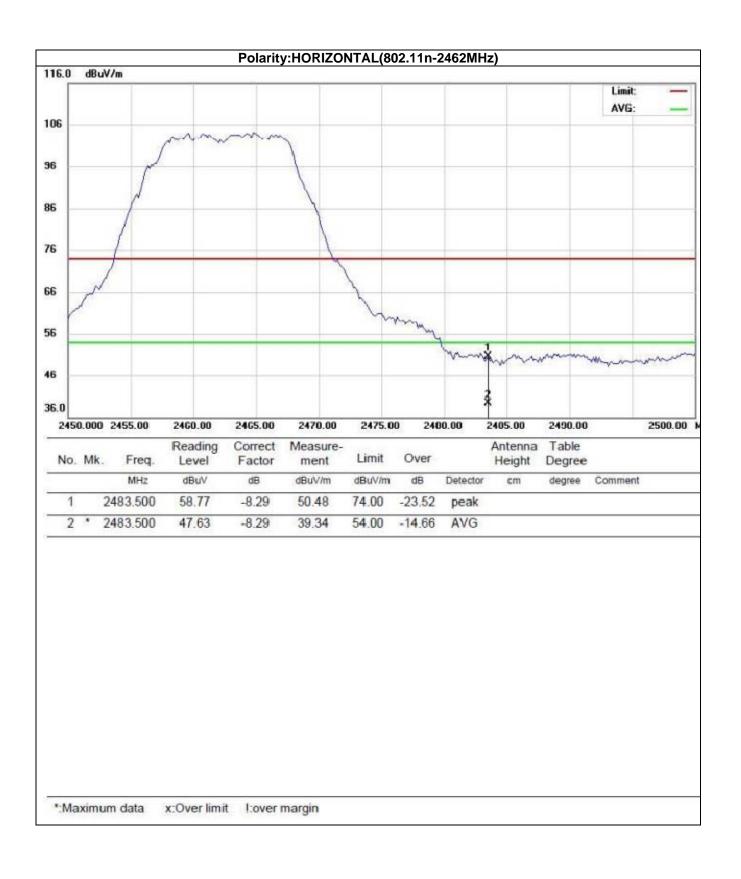

5) RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

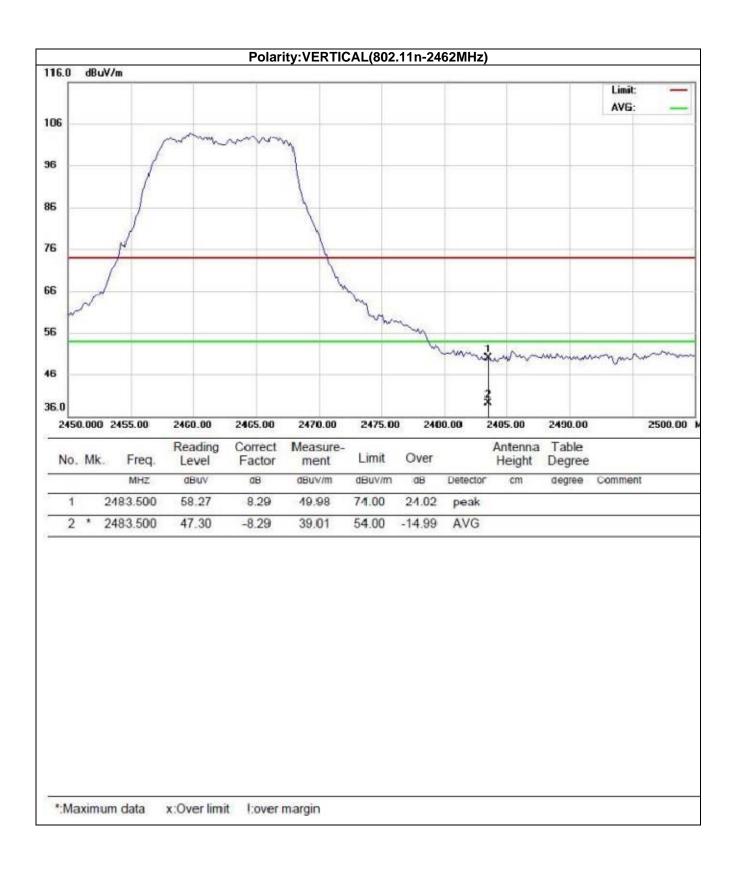

Results of Band Edges Test (Radiated)

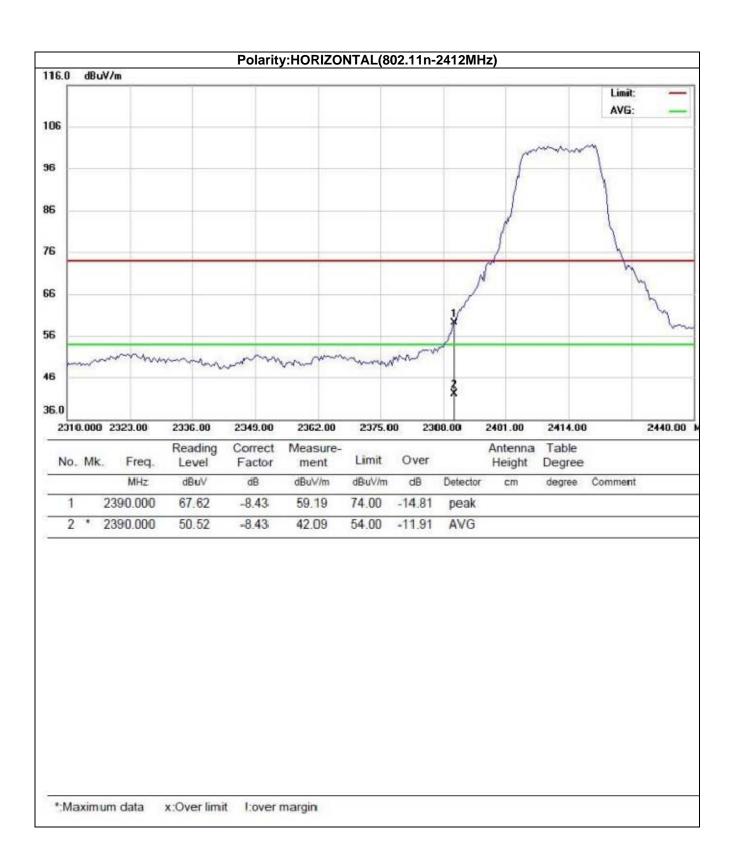


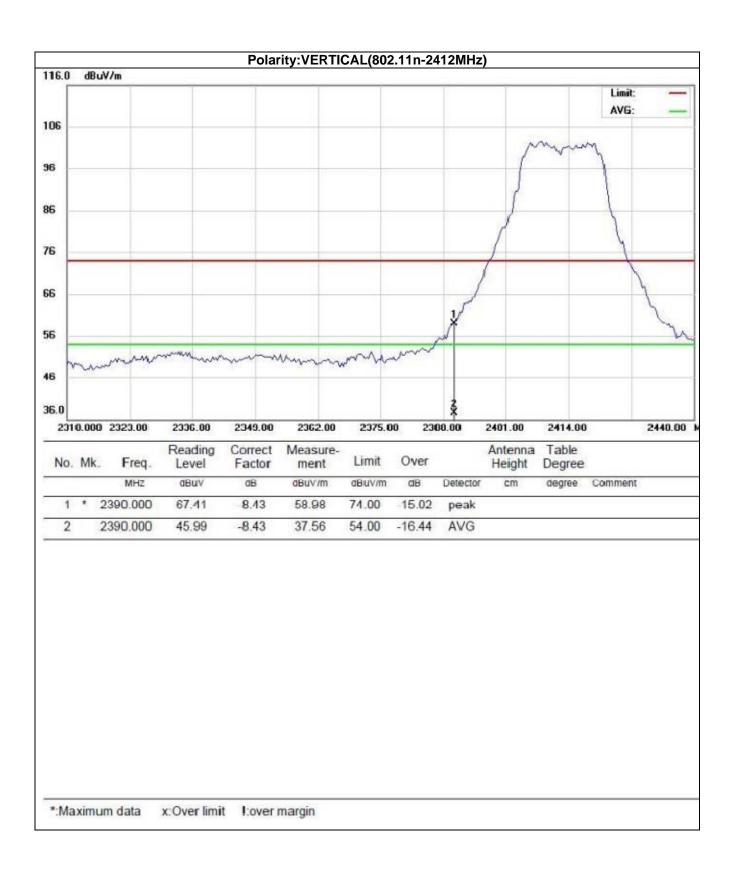












Note:

- 1) Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor.
- 2) Margin value = Limits-Emission level.
- 3) -- Mean the PK detector measured value is below average limit.
- 4) The other emission levels were very low against the limit.
- 5) RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

5.3.Maximum Conducted Output Power

<u>Limit</u>

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

See Appendix I

5.4. Power Spectral Density

<u>Limit</u>

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW \geq 3 kHz.
- 3. Set the VBW \geq 3× RBW.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration

Test Results

See APPENDIX VI

5.5.6dB Bandwidth

<u>Limit</u>

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

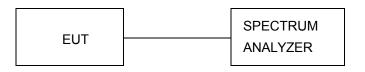
The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

See APPENDIX III

5.6.Out-of-band Emissions


<u>Limit</u>

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

Test Results

See APPENDIX IV

5.7. Duty Cycle Information

See APPENDIX V

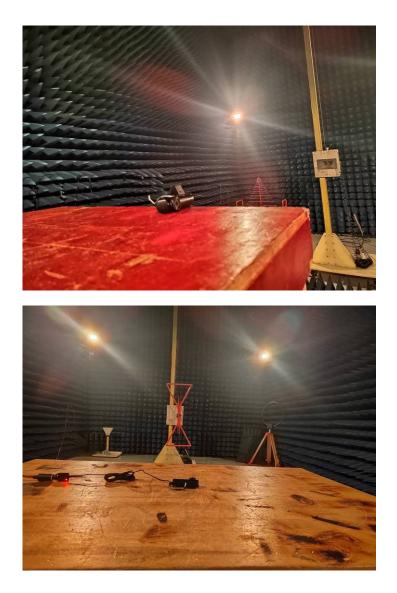
5.8.Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):


(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result:

The directional gains of antenna used for transmitting is 2.68dBi, and the antenna is an FPC antenna and no consideration of replacement. Please see EUT photo for details.

Results: Compliance.

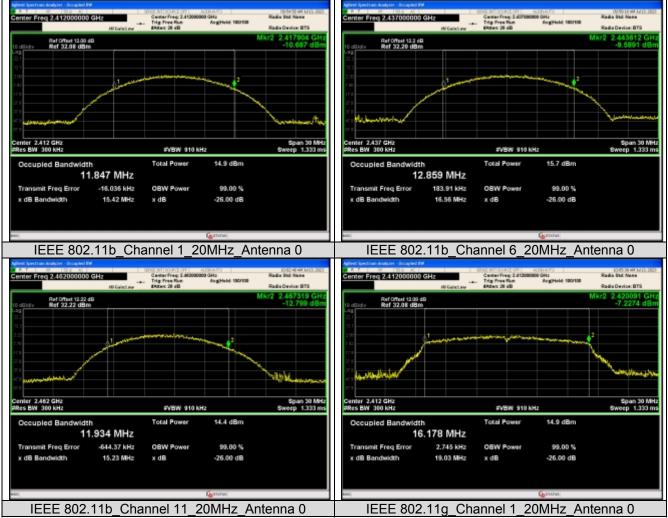
6 Test Setup Photos of the EUT

7 Photos of the EUT

See related photo report.

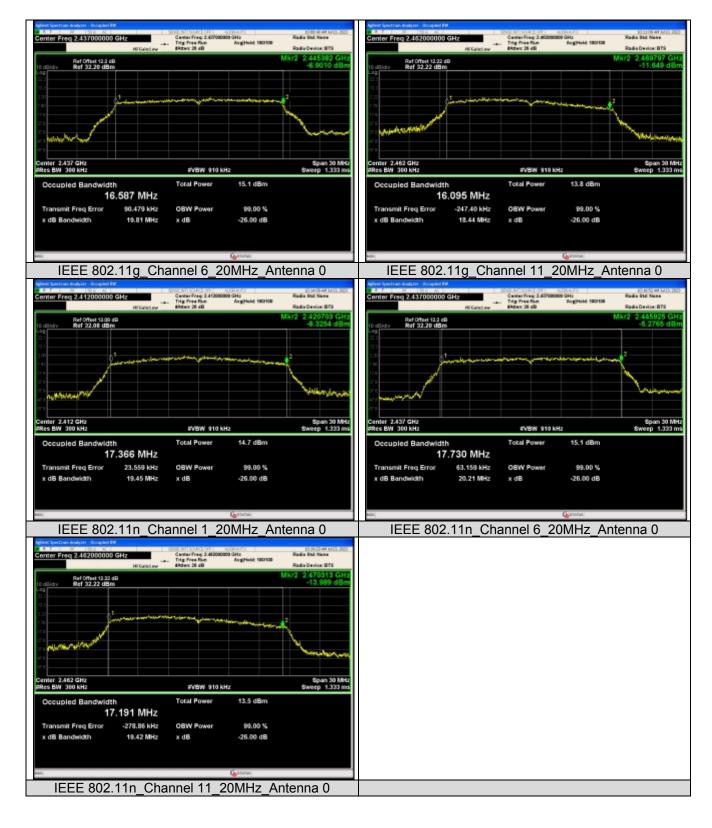
APPENDIX I. Conducted Peak Output Power

Test Result


Conducted peak output power

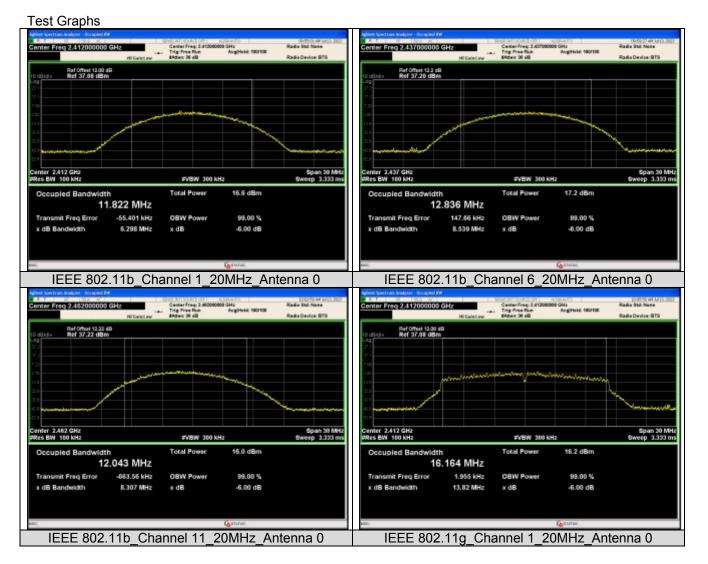
Mode	Channel	Ant. 0 (dBm)	Total (dBm)	Limit (dBm)	Result
IEEE	1	13.90	N/A	30	PASS
802.11b	6	14.83	N/A	30	PASS
002.110	11	13.50	N/A	30	PASS
IEEE	1	16.09	N/A	30	PASS
802.11g	6	16.54	N/A	30	PASS
002.TTY	11	14.38	N/A	30	PASS
IEEE 802.11n_20	1	15.93	N/A	30	PASS
	6	16.41	N/A	30	PASS
	11	14.05	N/A	30	PASS

APPENDIX II. 99% Bandwidth


Test Result

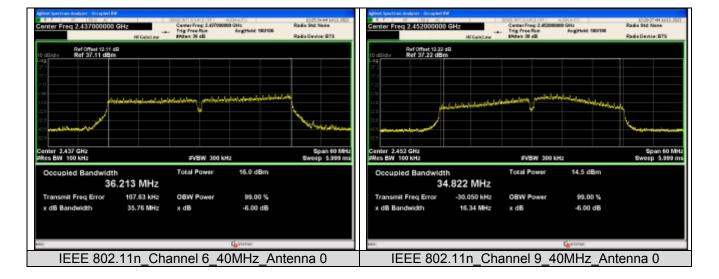
Mode	Channel	Ant.	99% BW (MHz)
	1		11.847
IEEE 802.11b	6		12.859
	11		11.934
	1		16.178
IEEE 802.11g	6	0	16.587
	11		16.095
	1		17.366
IEEE 802.11n_20	6		17.730
	11		17.191

Test Graphs


Page 40 of 55

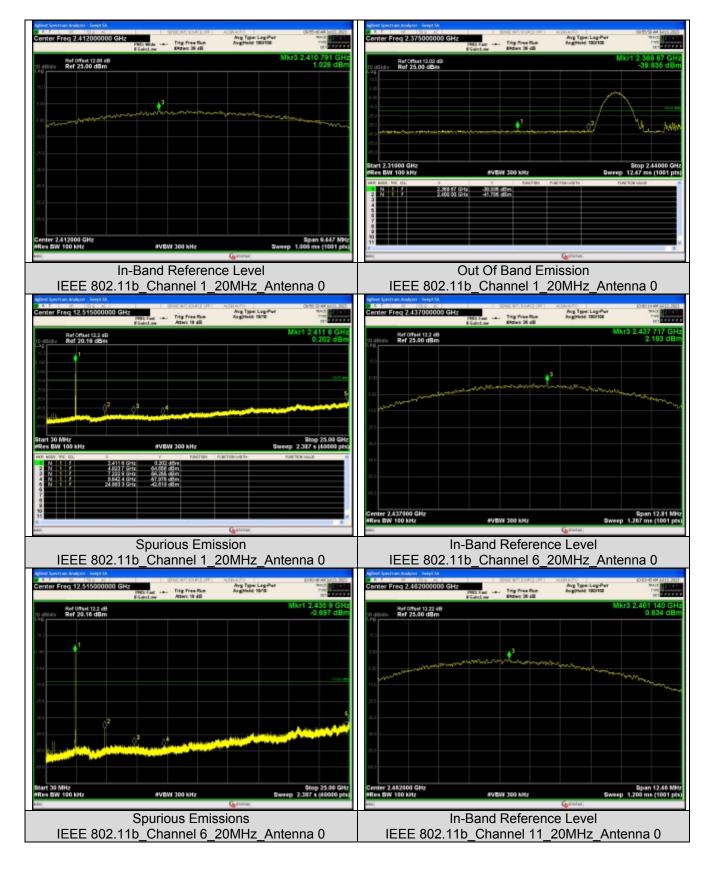
APPENDIX III. 6dB Bandwidth

Test Result


Mode	Channel	Ant.	Center Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)	Result
	1		2412	6.298		PASS
IEEE 802.11b	6		2437	8.539		PASS
	11		2462	8.307		PASS
IEEE 802.11g	1		2412	13.82		PASS
	6	0	2437	16.33	0.5	PASS
	11		2462	11.94		PASS
IEEE - 802.11n_20 -	1		2412	15.02		PASS
	6		2437	17.29		PASS
	11		2462	12.52		PASS

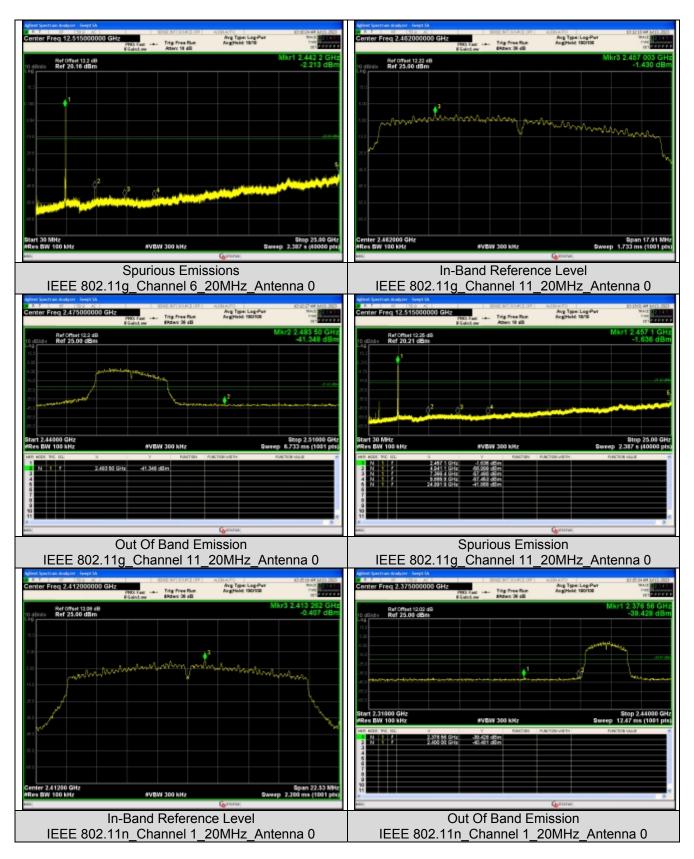
Page 42 of 55

Page 43 of 55

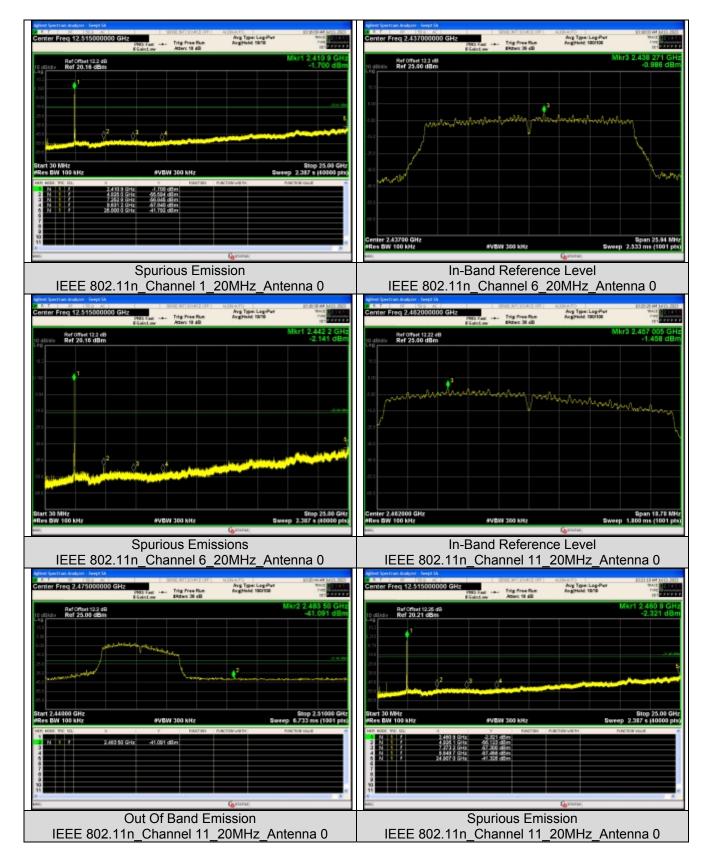


APPENDIX IV. Conducted Out Of Band Emission


Mode Channel 1 IEEE	Ant.	Emission Frequency (MHz) 2400.00 2369.67 4823.70 7222.80 9642.40 24883.3 4874.30	Emission Level (dBm) -41.785 -39.935 -54.656 -56.255 -57.975 -42.618	Limit (dBm) -18.97 -18.97 -18.97 -18.97 -18.97	Over Limit (dB) -22.815 -20.965 -35.686 -37.285	Result PASS PASS PASS
IEEE	Ant.	(MHz) 2400.00 2369.67 4823.70 7222.80 9642.40 24883.3 4874.30	(dBm) -41.785 -39.935 -54.656 -56.255 -57.975	-18.97 -18.97 -18.97 -18.97	-22.815 -20.965 -35.686	PASS PASS PASS
IEEE		2400.00 2369.67 4823.70 7222.80 9642.40 24883.3 4874.30	-41.785 -39.935 -54.656 -56.255 -57.975	-18.97 -18.97 -18.97	-20.965 -35.686	PASS PASS
IEEE		2369.67 4823.70 7222.80 9642.40 24883.3 4874.30	-39.935 -54.656 -56.255 -57.975	-18.97 -18.97 -18.97	-20.965 -35.686	PASS PASS
IEEE		4823.70 7222.80 9642.40 24883.3 4874.30	-54.656 -56.255 -57.975	-18.97 -18.97	-35.686	PASS
IEEE		7222.80 9642.40 24883.3 4874.30	-56.255 -57.975	-18.97		
IEEE		9642.40 24883.3 4874.30	-57.975		37 285	
		24883.3 4874.30		10.07	-37.205	PASS
		4874.30	12619	-18.97	-39.005	PASS
			-42.010	-18.97	-23.648	PASS
			-46.960	-17.81	-29.150	PASS
802.11b 6		7291.46	-56.761	-17.81	-38.951	PASS
002.110 0		9737.33	-57.751	-17.81	-39.941	PASS
		24997.5	-42.394	-17.81	-24.584	PASS
		2483.50	-42.804	-19.37	-23	PASS
		4941.72	-57.913	-19.37	-38.543	PASS
11		7375.11	-57.555	-19.37	-38.185	PASS
		9841.58	-57.596	-19.37	-38.226	PASS
		24906.4	-41.659	-19.37	-22.289	PASS
		2400.00	-40.815	-20.36	-20.455	PASS
		2384.75	-39.965	-20.36	-19.605	PASS
		4831.20	-57.360	-20.36	-37.000	PASS
1		7217.80	-56.809	-20.36	-36.449	PASS
		9663.00	-57.038	-20.36	-36.678	PASS
		24963.2	-41.744	-20.36	-21.384	PASS
		4872.43	-51.671	-20.89	-30.781	PASS
IEEE 802.11g 6	0	7322.67	-56.632	-20.89	-35.742	PASS
802.11g 6		9762.30	-57.093	-20.89	-36.203	PASS
		24912.6	-41.668	-20.89	-20.778	PASS
		2483.50	-41.348	-21.43	-20	PASS
		4941.10	-56.999	-21.43	-35.569	PASS
11		7366.37	-57.480	-21.43	-36.050	PASS
		9865.93	-57.453	-21.43	-36.023	PASS
		24991.9	-41.868	-21.43	-20.438	PASS
		2400.00	-40.481	-20.41	-20.071	PASS
		2376.56	-39.428	-20.41	-19.018	PASS
1		4825.00	-55.594	-20.41	-35.184	PASS
1		7252.80	-56.845	-20.41	-36.435	PASS
		9631.20	-57.840	-20.41	-37.430	PASS
		25000.0	-41.792	-20.41	-21.382	PASS
		4875.55	-53.561	-20.99	-32.571	PASS
IEEE 802.11n 20 6		7330.79	-57.004	-20.99	-36.014	PASS
802.11n_20 6		9731.71	-57.104	-20.99	-36.114	PASS
		24957.5	-42.230	-20.99	-21.240	PASS
	1	2483.50	-41.091	-21.46	-20	PASS
		4926.12	-56.123	-21.46	-34.663	PASS
11		7373.24	-57.300	-21.46	-35.840	PASS
	F	9849.70	-57.456	-21.46	-35.996	PASS
		24907.0	-41.326	-21.46	-19.866	PASS

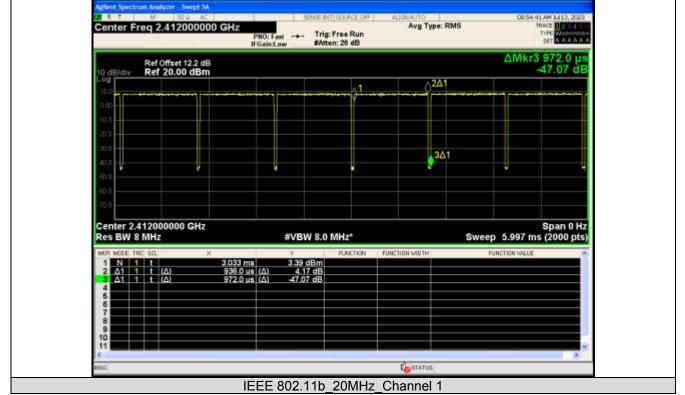

Test Graphs

Page 45 of 55

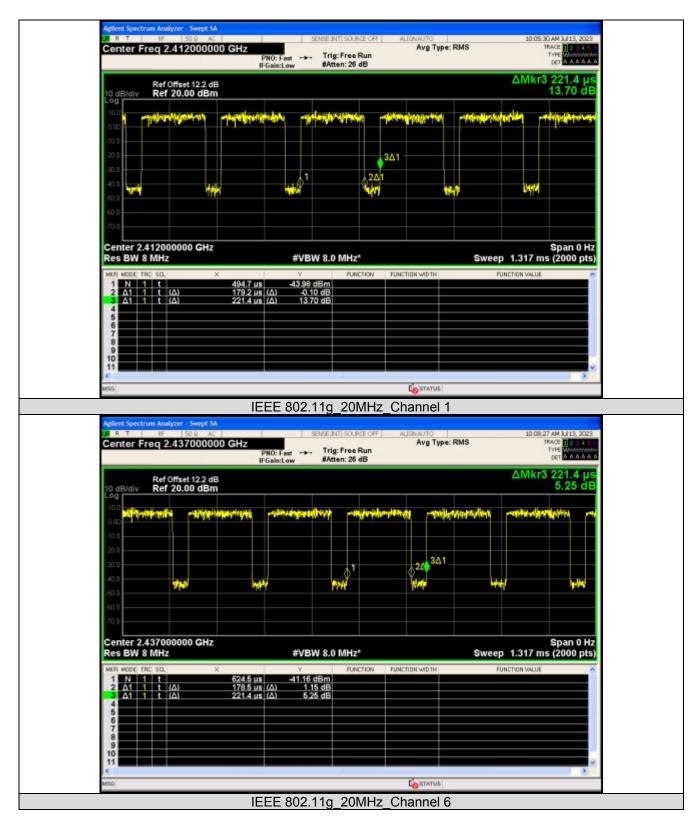


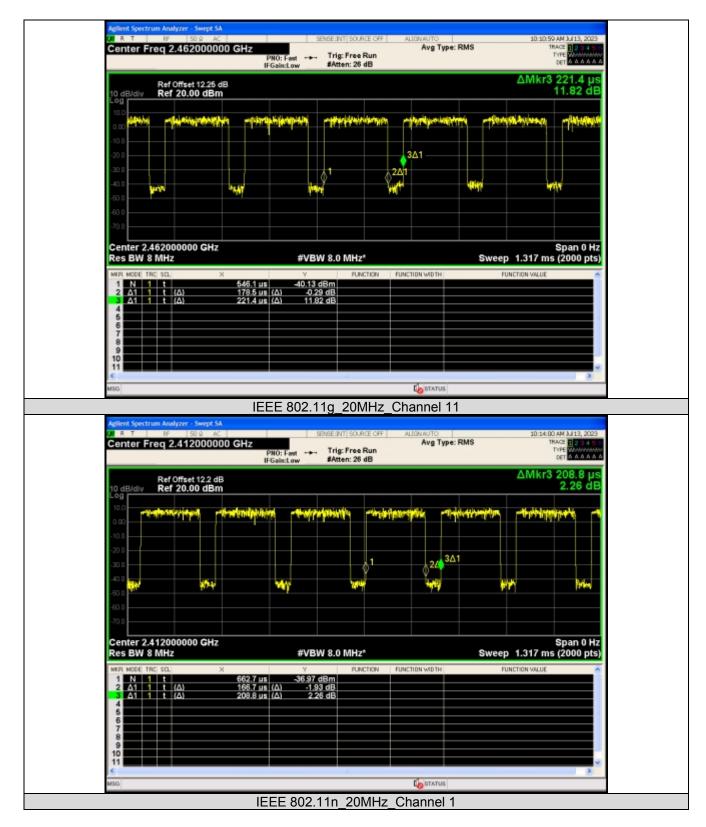
Page 46 of 55

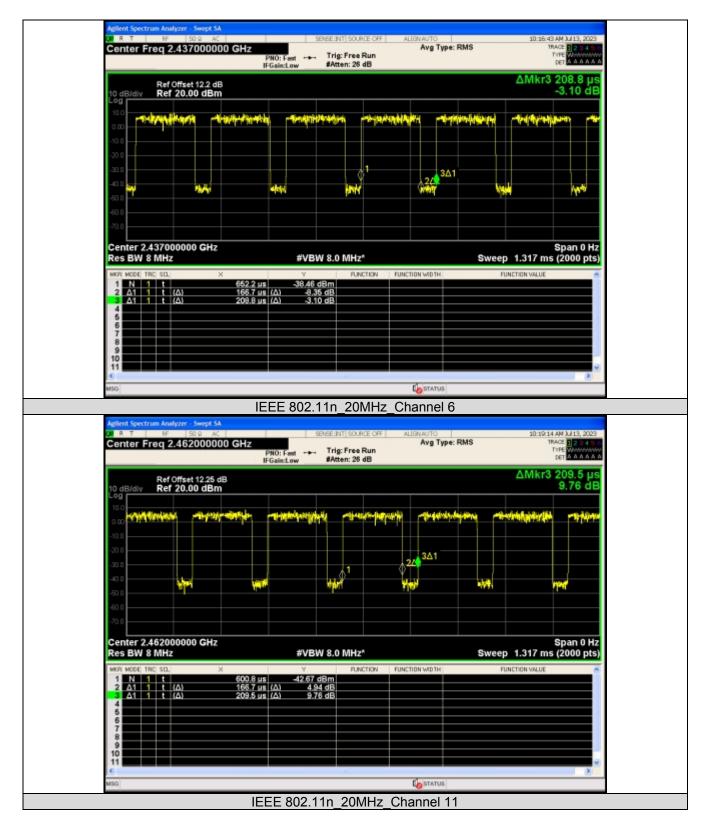
Page 48 of 55



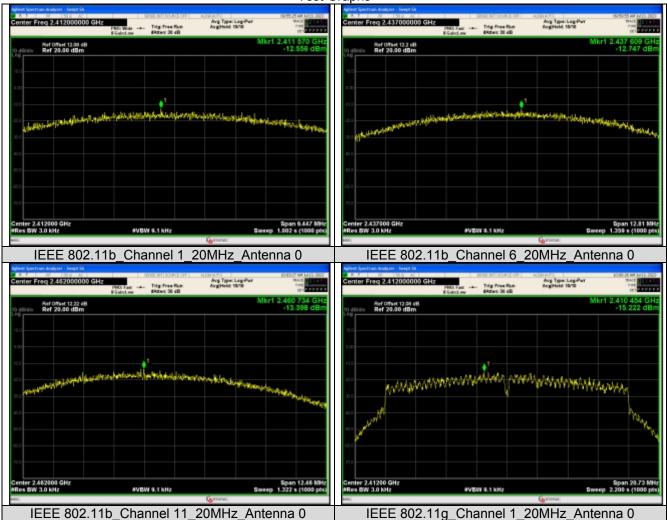
APPENDIX V. Duty Cycle


Test Result

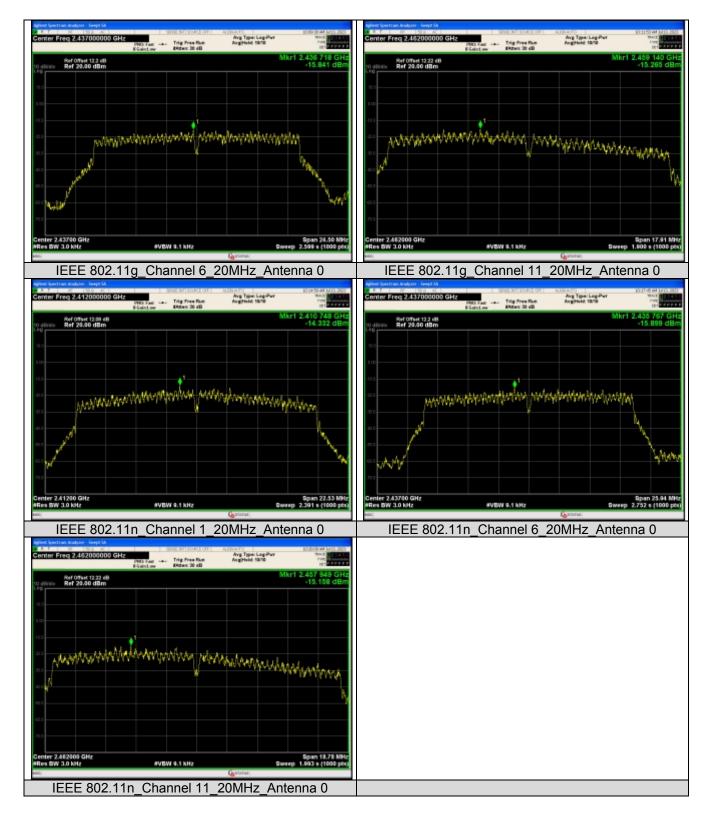

Mode	Data rates	Channel	On Time (ms)	Period (ms)	Duty Cycle (%)	Duty Cycle (linear)	Duty Cycle Factor (dB)
IEEE		1	0.936	0.972	96.30	0.9630	0.1637
802.11b	11	6	0.936	0.969	96.59	0.9659	0.1507
002.110		11	0.939	0.972	96.60	0.9660	0.1502
IEEE 54 802.11g		1	0.179	0.221	80.95	0.8095	0.9178
	54	6	0.179	0.221	80.65	0.8065	0.934
		11	0.179	0.221	80.65	0.8065	0.934
IEEE 802.11n_20	MCS 7	1	0.167	0.209	79.81	0.7981	0.9794
		6	0.167	0.209	79.81	0.7981	0.9794
		11	0.167	0.209	79.56	0.7956	0.9931



Center Freq 2.43700000	DO GHZ	E:INT SOURCE OFF Trig: Free Run #Atten: 26 dB	ALIGNAUTO Avg Type: RMS	09.59.07 AM 3.413, 2023 TRACE 2 2 4 5 TYPE DET 4 4 4 4 4 4
Ref Offset 12.2 dl	8			ΔMkr3 969.0 μs
10 dB/div Ref 20.00 dBn	n 			-52.36 dB
	l	 ^{2Δ1}		
-10.0				
-20.0				
-30.0		3∆1		
-50.0	• •	4	• •	, ,
-60.0				
Center 2.437000000 GHz				Poop 0 Hz
Res BW 8 MHz		8.0 MHz*	Swe	Span 0 Hz ep 5.997 ms (2000 pts)
1 N 1 t	× ¥ 2.232 ms 8.95 dB	m	NCTION WIDTH	FUNCTION WALUE
2 Δ1 1 t (Δ) 3 Δ1 1 t (Δ)	936.0 μs (Δ) -7.30 d 969.0 μs (Δ) -52.36 d	B		
4 5 6				
7 8				
9 10 11				
11 C				>
MSG				
		b_20MHz_C		
Agilent Spectrum Analyzer Swept Sk 20 R. T RF 50 St AC	SEN.	SE:INT SOURCE OFF		10.02.99 AM Jul 13, 2029 TRACE DE 14
Agilent Spectrum Analyzer - Swept S/	00 GHz		Channel 6	10:02:39 AM Jul 13, 2023 TRACE [] 7:14 TYPE [2010.000 DET [] & A A A A A
Agilent Spectrum Analyzer Swept S/ 9 R. T IF SO A AC Center Freq 2.4620000 Ref Offset 12.25 d	00 GHz PNO; Fast IFGalin:Low	ELINT SOURCE OFF	Channel 6	Trife Trife CET Δ Δ Δ Δ Δ Δ ΔMkr3 972.0 μs
Agilent Spectrum Analyzer - Swept S/ 28 R. T FF 50.0 AC Center Freq 2.46200000 Ref Offset 12.25 c 10 dB/div Ref 20.00 dBm	00 GHz PNO; Fast IFGalin:Low	ELINT SOURCE OFF	Channel 6	TRACE 2 2 4 4 5 TYPE DET A A A A A A
Agilent Spectrum Analyzer - Swept S/ 28 R. T. FF. 50.0. AC Center Freq 2.46200000 Ref Offset 12.25 o 10 dBJdiv Ref 20.00 dBn	00 GHz PNO; Fast IFGalin:Low	SEINT SOURCE OFF	Channel 6	Trife Trife CET Δ Δ Δ Δ Δ Δ ΔMkr3 972.0 μs
Agilent Spectrum Analyzer - Swept S/ 28 R. T FF 50.0 AC Center Freq 2.46200000 Ref Offset 12.25 c 10 dB/div Ref 20.00 dBn	00 GHz PNO; Fast IFGalin:Low	ELINT SOURCE OFF	Channel 6	Trife Trife CET Δ Δ Δ Δ Δ Δ ΔMkr3 972.0 μs
Agilent Spectrum Analyzer Swept S/ 30 R. T IP 50.0 AC Center Freq 2.46200000 Ref Offset 12.25 c 10 dB/div Ref 20.00 dBm 10 0 10 0 20 0	00 GHz PNO; Fast IFGalin:Low	SEINT SOURCE OFF	Channel 6	Trife Trife CET Δ Δ Δ Δ Δ Δ ΔMkr3 972.0 μs
Agilent Spectrum Analyzer : Swept S/ 30 R. T IF S0.9 AC Center Freq 2.46200000 Ref Offset 12.25 d 10 dB/dlv Ref 20.00 dBn	00 GHz PNO; Fast IFGalin:Low	SEINT SOURCE OFF	Channel 6	Trife Trife CET Δ Δ Δ Δ Δ Δ ΔMkr3 972.0 μs
Aglient Spectrum Analyzer Swept S/ 20 R. T IP 50 0 AC Center Freq 2.46200000 Ref Offset 12.25 0 10 dB/div Ref 20.00 dBm 10 0 10 0 1	00 GHz PNO; Fast IFGalin:Low	SEINT SOURCE OFF	Augusto	Trife Trife CET Δ Δ Δ Δ Δ Δ ΔMkr3 972.0 μs
Aglient Spectrum Analyzer Swept S/ 20 R. T IP 50 0 AC Center Freq 2.46200000 Ref Offset 12.25 0 10 dB/div Ref 20.00 dBm 10 0 10 0 1	00 GHz PNO; Fast IFGalin:Low	SEINT SOURCE OFF	Augusto	Trife Trife CET Δ Δ Δ Δ Δ Δ ΔMkr3 972.0 μs
Agilent Spectrum Analyzer - Swept S/ R T R S SO AC Center Freq 2.46200000 Ref Offset 12.25 o 10 dB/dlv Ref 20.00 dBn 10 0 10 0	DO GHZ PNO: Fast IFGalintLow	SEINT SOURCE OFF	Augusto	1842 0.2 0.45 TYPE 2440444 ΔMkr3 972.0 μs -28.95 dB
Aglient Spectrum Analyzer - Swept S/ R T IP 50 0 AC Center Freq 2.46200000 Ref Offset 12:25 0 10 dB/div Ref 20.00 dBm 0 00 -0 0 -0	DO GHz PNO: Fast IFGalin:Low	SEINT SOURCE OFF	Channel 6 ALIGNAUTO Avg Type: RMS 201 3∆1	Trife Trife CET Δ Δ Δ Δ Δ Δ ΔMkr3 972.0 μs
Agilent Spectrum Analyzer - Swept S/ R T BP 50 0 AC Center Freq 2.46200000 Ref Offset 12.25 0 10 dB/div Ref 20.00 dBn 0 00 -10 0 -0	SEN PHO: Fast IFGalintLow B B B C B C C C C C C C C C C C C C	Editi Source OFF	Channel 6 ALIGNAUTO Avg Type: RMS 201 3∆1	ΔMkr3 972.0 μs -28.95 dB
Agilent Spectrum Analyzer _ Swept 5/ R T BP 50 0 // Center Freq 2.46200000 Ref Offset 12.25 0 10 dB/div Ref 20.00 dBn 100 100 100 100 100 100 100 10	DO GHZ PHO: Fast IFGalacLow IB IB IB IB IB IB IB IB IB IB	EUNTI SOURCE OFF	Channel 6 Aug Type: RMS	Тила: 0.2 0.4 % Тите 2.0 µs -28.95 dB -28.95 dB -2
Aglient Spectrum Analyzer _ Swept S/ R T BP 50.0 //C Center Freq 2.46200000 Ref Offset 12.25 o 10 dB/div Ref 20.00 dBn 10 0 10	2.892 ms -14.96 dB 939.0 us (Δ) 14.17 (EUNTI SOURCE OFF	Channel 6 Aug Type: RMS	Тила: 0.2 0.4 % Тите 2.0 µs -28.95 dB -28.95 dB -2
Agilent Spectrum Analyzer - Swipt S/ 20 R. 7 19 19 200 22 Center Freq 2.46200000 Ref Offset 12.25 of 10 of B/div Ref 20.00 dBm 10 of 20 of B/div Ref 20.00 dBm 10 of 20 of B/div Ref 20.00 dBm 20 of B/di	2.892 ms -14.96 dB 939.0 us (Δ) 14.17 (EUNTI SOURCE OFF	Channel 6 Aug Type: RMS	Тила: 0.2 0.4 % Тите 2.0 µs -28.95 dB -28.95 dB -2
Agilent Spectrum Analyzer Swept S/ R T IP SO 0 Ac Center Freq 2.46200000 Ref Offset 12.25 c IO	2.892 ms -14.96 dB 939.0 us (Δ) 14.17 (EUNTI SOURCE OFF	Channel 6 Aug Type: RMS	Тила: 0.2 0.4 % Тите 2.0 µs -28.95 dB -28.95 dB -2
Agilent Spectrum Analyzer Swept S/ R. T 12 50.0 Ac Center Freq 2.46200000 Ref Offset 12.25 c 10.0	2.892 ms -14.96 dB 939.0 us (Δ) 14.17 (EUNTI SOURCE OFF	Channel 6 Aug Type: RMS	Тила: 0.2 0.4 % Тите 2.0 µs -28.95 dB -28.95 dB -2



APPENDIX VI. Power Spectral Density


Test Result

Mode	Channel	PSD (dBm/3kHz) Ant. 0	Limit (dBm/3kHz)	Result
	1	-12.556		PASS
IEEE 802.11b	6	-12.747		PASS
	11	-13.398		PASS
	1	-15.222		PASS
	6	-15.841	8	PASS
	11	-15.265		PASS
	1	-14.332		PASS
IEEE 802.11n_20	6	-15.899		PASS
	11	-15.158		PASS

Test Graphs

Page 55 of 55

