

RADIO TEST REPORT FCC ID: 2AZWI-3375LEQI

Product: Portable Selfie Stick Tripod Trade Mark: SmallRig Model No.: ST20 Family Model: 3375B Report No.: S22041401809001 Issue Date: 27 Apr. 2022

Prepared for

Shenzhen Leqi Network Technology Co., LTD

Rooms 103, 501 and 601, Building 5, Fenghe Industrial Park, Nos. 1301-50 Guanguang Road, Longhua District, Shenzhen, Guangdong, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

1 TEST	RESULT CERTIFICATION	4
2 SUM	MARY OF TEST RESULTS	5
3 FACI	LITIES AND ACCREDITATIONS	6
	ACILITIES	
	ABORATORY ACCREDITATIONS AND LISTINGS	
3.3 1	MEASUREMENT UNCERTAINTY	6
4 GEN	ERAL DESCRIPTION OF EUT	7
	RIPTION OF TEST MODES	
	P OF EQUIPMENT UNDER TEST	
	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
	SUPPORT EQUIPMENT	
	EQUIPMENTS LIST FOR ALL TEST ITEMS	
7 TEST	REQUIREMENTS	.14
	CONDUCTED EMISSIONS TEST	
7.1 (7.1.1	Applicable Standard	
7.1.1	Conformance Limit	
7.1.2	Measuring Instruments	
7.1.4	Test Configuration	
7.1.5	Test Procedure	.14
7.1.6	Test Results	
	RADIATED SPURIOUS EMISSION	
7.2.1	Applicable Standard	
7.2.2	Conformance Limit	
7.2.3	Measuring Instruments	
7.2.4	Test Configuration	.17
7.2.5	Test Procedure	. 18
7.2.6	Test Results	
7.3 6	DB BANDWIDTH	
7.3.1	Applicable Standard	
7.3.2	Conformance Limit	
7.3.3	Measuring Instruments	
7.3.4	Test Setup	
7.3.5	Test Procedure	.25
7.3.6		. 25
7.4 I 7.4.1	DUTY CYCLE Applicable Standard	
7.4.1	Conformance Limit	
7.4.3	Measuring Instruments	
7.4.4	Test Setup	
7.4.5	Test Procedure	
7.4.6	Test Results	
	PEAK OUTPUT POWER	
7.5.1	Applicable Standard	
7.5.2	Conformance Limit	
7.5.3	Measuring Instruments	
7.5.4	Test Setup	
7.5.5	Test Procedure	. 28
7.5.6	Test Results	
7.6 I	POWER SPECTRAL DENSITY	.29

7.6.	1 Applicable Standard	
7.6.2	2 Conformance Limit	
7.6.	3 Measuring Instruments	
7.6.4	4 Test Setup	
7.6.	5 Test Procedure	
7.6.		
7.7	CONDUCTED BAND EDGE MEASUREMENT	
7.7.	1 Applicable Standard	
7.7.2	2 Conformance Limit	
7.7.	3 Measuring Instruments	
7.7.4		
7.7.	5 Test Procedure	
7.7.		
7.8	SPURIOUS RF CONDUCTED EMISSIONS	
7.8.	1 Conformance Limit	
7.8.2	2 Measuring Instruments	
7.8.	3 Test Setup	
7.8.4	4 Test Procedure	
7.8.	5 Test Results	
7.9	ANTENNA APPLICATION	
7.9.	1 Antenna Requirement	
7.9.	2 Result	
8 TES	ST RESULTS	
8.1	1M:	24
0.1 <i>8.1</i> .		
8.1.	-	
8.1.	•	
8.1. 8.1.		
8.1.		
8.2	2M:	
8.2. 8.2.		
8.2.	•	
8.2 8.2		
8.2 8.2.	1 V	
8.2. 8.2.		
0.2		

1 TEST RESULT CERTIFICATION

Applicant's name:	Shenzhen Leqi Network Technology Co., LTD
Address:	Rooms 103, 501 and 601, Building 5,Fenghe Industrial Park, Nos. 1301-50 Guanguang Road, Longhua District, Shenzhen, Guangdong,China
Manufacturer's Name:	Shenzhen Leqi Network Technology Co., LTD
Address:	Rooms 103, 501 and 601, Building 5,Fenghe Industrial Park, Nos. 1301-50 Guanguang Road, Longhua District, Shenzhen, Guangdong,China
Product description	
Product name:	Portable Selfie Stick Tripod
Model and/or type reference:	ST20
Family Model	3375B

Measurement Procedure Used:

APPLICABLE STANDARD	S
APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J	
FCC 47 CFR Part 15, Subpart C	Complied
ANSI C63.10-2013	Complied
KDB 558074 D01 15.247 Meas Guidance v05r02	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	14 Apr. 2022 ~ 25 Apr. 2022
Testing Engineer	:	Susan Li
		(Susan Li)
Authorized Signatory	:	Adess
0,		(Alex Li)

	FCC Part15 (15.247), Subpart	С	
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	N/A	
15.247 (a)(2)	6dB Bandwidth	PASS	
15.247 (b)	Peak Output Power	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247 (e)	Power Spectral Density	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
-	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Sp	Product Feature and Specification				
Equipment	Portable Selfie Stick Tripod				
Trade Mark	SmallRig				
FCC ID	2AZWI-3375LEQI				
Model No.	ST20				
Family Model	3375B				
Model Difference	All models are identical circuits and RF modules, except for the naming.				
Operating Frequency	2402MHz~2480MHz				
Modulation	GFSK				
Number of Channels	40 Channels				
Antenna Type	PCB Antenna				
Antenna Gain	1 dBi				
Power supply	DC 3V from Battery				
Adapter	N/A				
HW Version	N/A				
SW Version	N/A				

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Revision History

22041401809001 Rev.01 Initial issue of report 27 Apr. 2022	Report No.	Version	Description	Issued Date
	S22041401809001	Rev.01	Initial issue of report	27 Apr. 2022

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+k×2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Test Cases		
Test Item	Data Rate/ Modulation		
	Mode 1: normal link mode		
Radiated Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps		
Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps		
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps		
Conducted Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps		
Conducted Test	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps		
00365	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps		

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode(duty cycle =100% during the test)

2. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

3. EUT built-in battery-powered, the battery is fully-charged.

6 SETUP OF EQUIPMENT UNDER TEST 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
For Radiated Test Cases	
EUT	
For Conducted Test Cases	1
Measurement C-1 EUT	
Note: The temporary antenna connector is soldered on the PCB board in order tests and this temporary antenna connector is listed in the equipment list.	r to perform conducted

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
E-1	Portable Selfie Stick Tripod	ST20	N/A	EUT

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		col equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.01	2023.03.31	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2021.07.01	2022.06.30	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2021.07.01	2022.06.30	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2021.11.07	2022.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2021.07.01	2022.06.30	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2021.11.07	2022.11.06	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2021.07.01	2022.06.30	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.06	2022.08.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.06	2022.08.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.06.28	2022.06.27	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2019.08.06	2022.08.05	3 year
16	Filter	TRILTHIC	2400MHz	29	2021.07.01	2022.06.30	1 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06	2023.04.05	1 year
2	LISN	R&S	ENV216	101313	2021.06.22	2022.06.21	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

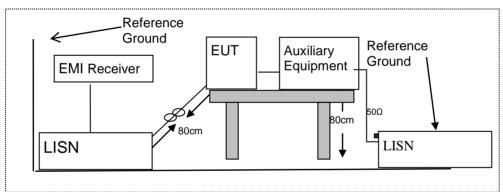
7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results

EUT:	Portable Selfie Stick Tripod	Model Name :	ST20
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	N/A
Test Voltage :	N/A	Test Mode:	N/A

Note: The EUT is powered by battery, so this item is not applicable

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	GHz		
16.42-16.423	399.9-410	4.5-5.15		
16.69475-16.69525	608-614	5.35-5.46		
16.80425-16.80475	960-1240	7.25-7.75		
25.5-25.67	1300-1427	8.025-8.5		
37.5-38.25	1435-1626.5	9.0-9.2		
73-74.6	1645.5-1646.5	9.3-9.5		
74.8-75.2	1660-1710	10.6-12.7		
123-138	2200-2300	14.47-14.5		
149.9-150.05	2310-2390	15.35-16.2		
156.52475-156.52525	2483.5-2500	17.7-21.4		
156.7-156.9	2690-2900	22.01-23.12		
162.0125-167.17	3260-3267	23.6-24.0		
167.72-173.2	3332-3339	31.2-31.8		
240-285	3345.8-3358	36.43-36.5		
322-335.4	3600-4400	(2)		
	16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358		

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

	Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
ſ	0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
F	0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
	1.705~30.0	30	29.5	30
	30-88	100	40	3
ſ	88-216	150	43.5	3
	216-960	200	46	3
	Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

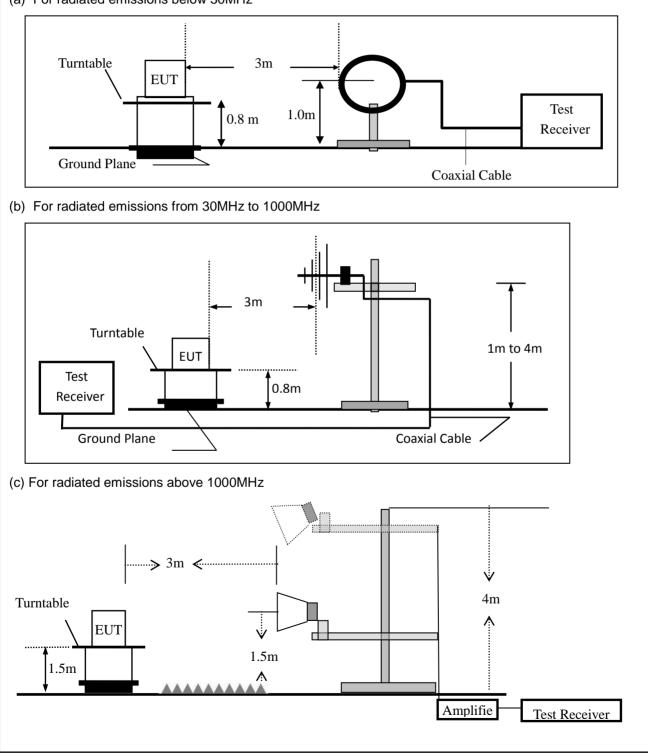
Frequency(MHz)	Class B (dBuV/m) (at 3M)		
	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average
Receiver Parameter	Setting

Setting
Auto
9kHz~150kHz / RB 200Hz for QP
150kHz~30MHz / RB 9kHz for QP
30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

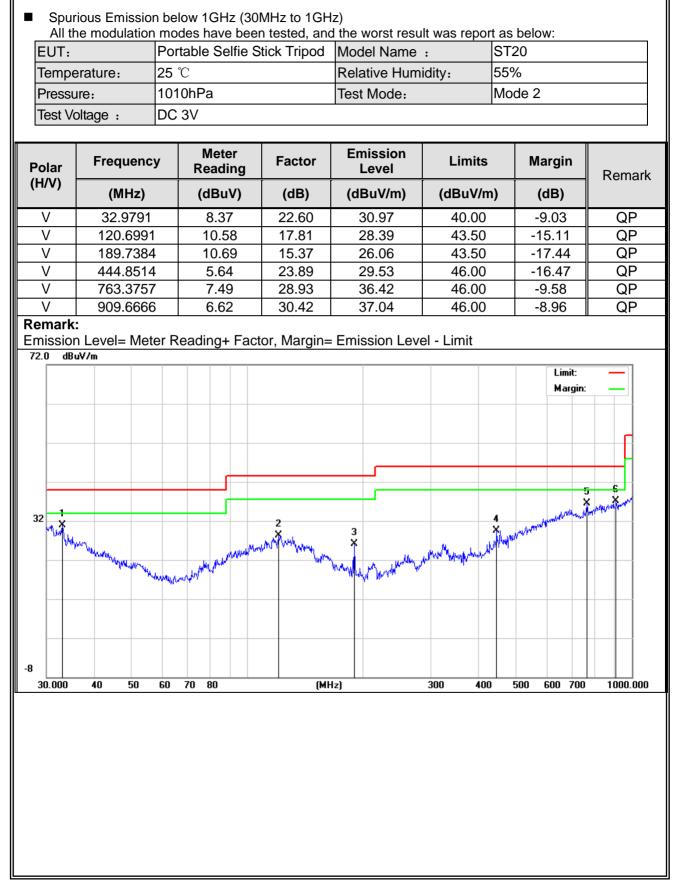
Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission t	During the radiated emission test, the Spectrum Analyzer was set with the following configurations:							
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth					
30 to 1000	QP	120 kHz	300 kHz					
Ab aug 4000	Peak	1 MHz	1 MHz					
Above 1000	Average	1 MHz	1 MHz					

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

	Spurious	Emission	below	30MHz	(9KHz to 30MHz)
--	----------	----------	-------	-------	----------------	---


EUT:	Portable Selfie Stick Tripod	Model No.:	ST20
Temperature:	20 ℃	Relative Humidity:	48%
Lest Mode:	Mode2/Mode3/ Mode4	Test By:	Susan Li

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3	m(dBuV/m)	Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	30.5304	6.16	24.73	30.89	40.00	-9.11	QP
Н	122.8340	10.12	17.69	27.81	43.50	-15.69	QP
Н	140.8351	8.80	18.55	27.35	43.50	-16.15	QP
Н	269.4284	6.69	20.39	27.08	46.00	-18.92	QP
Н	684.7454	7.04	28.04	35.08	46.00	-10.92	QP
Н	996.4995	6.19	32.16	38.35	54.00	-15.65	QP
						Limit: Margin:	
32 <mark>1</mark>			2 2			5 X Munut	6 X
-8	Marine Marille Marine			Waynood an all and a second	ndyWarmburganandar		
30.000	40 50 60	70 80	(MH	z)	300 400	500 600 700	1000.000

Spurious EUT:		sion Above	,		1	,		ST2	<u></u>			
-		Portable Se	SILIE STICK	проа			114					
Temperature		20 ℃			Relative Humidity: 48%							
Test Mode:	Test Mode: Mode2/Mode3/Mode4			<u>+</u>	Tes	st By:		Susa	an Li			
Frequency	Read Level		Antenna Factor	Pream Facto		Emission Level	Lim	its	Margin	Rema	ırk	Comment
(MHz)	(dBµV	′) (dB)	dB/m	(dB))	(dBµV/m)	(dBµ∖	V/m)	(dB)			
	<u>.</u>		Low Cha	annel (2	402	MHz)(GFSK	()Abo	ve 1G	i			
4804	68.07	7 5.21	35.59	44.30	0	64.57	74.0	00	-9.43	Pk		Vertical
4804	47.18	5.21	35.59	44.30	0	43.68	54.0	00	-10.32	AV		Vertical
7206	68.35	6.48	36.27	44.60	0	66.50	74.0	00	-7.50	Pk		Vertical
7206	45.84	6.48	36.27	44.60	0	43.99	54.0	00	-10.01	AV		Vertical
4804	70.13	5.21	35.55	44.30	0	66.59	74.(00	-7.41	Pk	Н	lorizontal
4804	50.05	5 5.21	35.55	44.30	0	46.51	54.0	00	-7.49	AV	H	lorizontal
7206	68.88	6.48	36.27	44.52	2	67.11	74.0	00	-6.89	Pk	H	lorizontal
7206	45.71	6.48	36.27	44.52	2	43.94	54.0	00	-10.06	AV	Н	lorizontal
Mid Channel (2440 MHz)(GFSK)Above 1G												
4880	68.53	5.21	35.66	44.20	0	65.20	74.0	00	-8.80	Pk		Vertical
4880	47.37	7 5.21	35.66	44.20	0	44.04	54.0	00	-9.96	AV		Vertical
7320	70.10	7.10	36.50	44.43	3	69.27	74.0	00	-4.73	Pk		Vertical
7320	49.96	5 7.10	36.50	44.43	3	49.13	54.0	00	-4.87	AV		Vertical
4880	68.69	5.21	35.66	44.20	0	65.36	74.0	00	-8.64	Pk	Η	lorizontal
4880	47.72	2 5.21	35.66	44.20	0	44.39	54.0	00	-9.61	AV	Η	lorizontal
7320	70.53	3 7.10	36.50	44.43	3	69.70	74.0	00	-4.30	Pk	Η	lorizontal
7320	47.24	7.10	36.50	44.43		46.41	54.0		-7.59	AV	Η	lorizontal
ļ			High Cha	annel (2	2480) MHz)(GFSk	<)Abo	ve 10	6			
4960	68.04	5.21	35.52	44.2	1	64.56	74.0	00	-9.44	Pk		Vertical
4960	48.65	5 5.21	35.52	44.2 ⁻	1	45.17	54.0	00	-8.83	AV		Vertical
7440	69.62	2 7.10	36.53	44.60	0	68.65	74.0	00	-5.35	Pk		Vertical
7440	46.79	7.10	36.53	44.60	0	45.82	54.0	00	-8.18	AV		Vertical
4960	70.95	5 5.21	35.52	44.2	1	67.47	74.0	00	-6.53	Pk	Н	lorizontal
4960	48.58	5.21	35.52	44.2	1	45.10	54.0	00	-8.90	AV	Η	lorizontal
7440	70.47	7.10	36.53	44.60	0	69.50	74.0	00	-4.50	Pk	Н	lorizontal
7440	45.80	7.10	36.53	44.60	0	44.83	54.0	00	-9.17	AV	H	lorizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2)All other emissions more than 20dB below the limit.(3)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

EUT:	Portable	e Selfie	Stick Tripo	d N	Mode	el No.:		ST20	ST20		
Temperature:	20 ℃			F	Relative Humidity: 48%						
Fest Mode:	Mode2/ Mode4			٦	Гest	By:		Susa	an Li		
Frequency	Meter Reading	Cable Loss	Antenna Factor	Prea Fac	•	Emission Level	Lim	iits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dE	3)	(dBµV/m)	(dBµ	V/m)	(dB)	Туре	
	1Mbps(GFSK)										
2310.00	70.98	2.97	27.80	43.	80	57.95	74	4	-16.05	Pk	Horizontal
2310.00	45.30	2.97	27.80	43.8	80	32.27	54	4	-21.73	AV	Horizontal
2310.00	69.14	2.97	27.80	43.8	80	56.11	74	4	-17.89	Pk	Vertical
2310.00	46.87	2.97	27.80	43.8	80	33.84	54	4	-20.16	AV	Vertical
2390.00	70.57	3.14	27.21	43.8	80	57.12	74	4	-16.88	Pk	Vertical
2390.00	47.16	3.14	27.21	43.8	80	33.71	54	4	-20.29	AV	Vertical
2390.00	69.65	3.14	27.21	43.8	80	56.20	74	4	-17.80	Pk	Horizontal
2390.00	50.10	3.14	27.21	43.8	80	36.65	54	4	-17.35	AV	Horizontal
2483.50	70.88	3.58	27.70	44.0	00	58.16	74	4	-15.84	Pk	Vertical
2483.50	46.76	3.58	27.70	44.0	00	34.04	54	4	-19.96	AV	Vertical
2483.50	70.40	3.58	27.70	44.0	00	57.68	74	4	-16.32	Pk	Horizontal
2483.50	47.36	3.58	27.70	44.0	00	34.64	54	4	-19.36	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit. (2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

JT:	Portab	le Selfie	Stick Trip	od Mo	del No.:		ST20	ST20			
emperature:	20 ℃			Re	Relative Humidity:			48%			
est Mode: Mode2/ Mode4			Те	st By:		Susa	n Li				
Frequency	Reading Level	Cable Loss	Antenna Factor	Pream Facto	•	Lin	nits	Margin	Detector	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	ıV/m)	(dB)	Туре		
3260	68.9	4.04	29.57	44.70) 57.81	7	'4	-16.19	Pk	Vertical	
3260	50.2	4.04	29.57	44.70) 39.11	5	54	-14.89	AV	Vertical	
3260	70.02	4.04	29.57	44.7() 58.93	7	'4	-15.07	Pk	Horizontal	
3260	45.41	4.04	29.57	44.7() 34.32	5	54	-19.68	AV	Horizontal	
3332	68.14	4.26	29.87	44.4() 57.87	7	'4	-16.13	Pk	Vertical	
3332	48.25	4.26	29.87	44.4() 37.98	5	54	-16.02	AV	Vertical	
3332	70.38	4.26	29.87	44.4(60.11	7	'4	-13.89	Pk	Horizontal	
3332	50.36	4.26	29.87	44.4() 40.09	5	54	-13.91	AV	Horizontal	
17797	52.75	10.99	43.95	43.50) 64.19	7	'4	-9.81	Pk	Vertical	
17797	31.11	10.99	43.95	43.50) 42.55	5	54	-11.45	AV	Vertical	
17788	51.39	11.81	43.69	44.60) 62.29	7	'4	-11.71	Pk	Horizontal	
17788	35.07	11.81	43.69	44.60) 45.97	5	54	-8.03	AV	Horizontal	

Note: (1) All other emissions more than 20dB below the limit. (2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Portable Selfie Stick Tripod	Model No.:	ST20
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Susan Li

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	Portable Selfie Stick Tripod	Model No.:	ST20
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	N/A	Test By:	N/A

Note: Not Applicable

7.5 **PEAK OUTPUT POWER**

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Portable Selfie Stick Tripod	Model No.:	ST20
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Susan Li

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

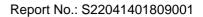
The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.


- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5*DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Portable Selfie Stick Tripod	Model No.:	ST20
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Susan Li

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

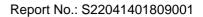
The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.


Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Portable Selfie Stick Tripod	Model No.:	ST20
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Susan Li

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

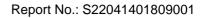
Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 25GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

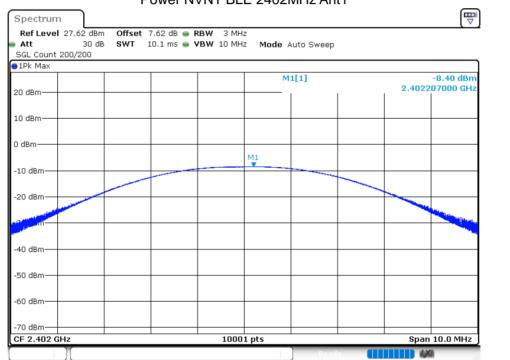

7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

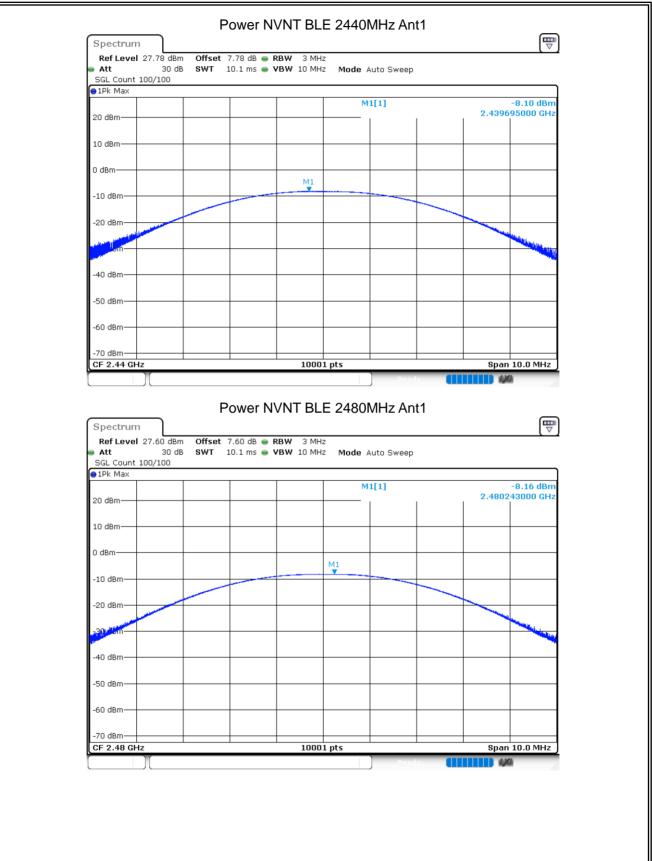
The EUT antenna is permanent attached PCB antenna (Gain: 1 dBi). It comply with the standard requirement.



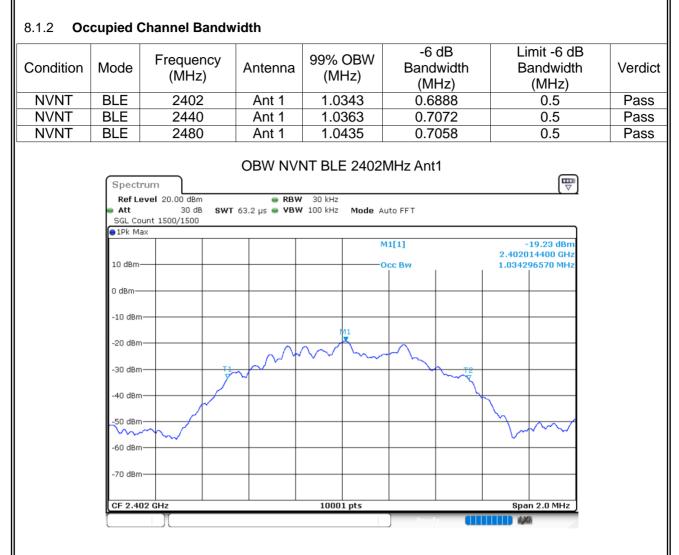
8 TEST RESULTS

8.1 **1M:**

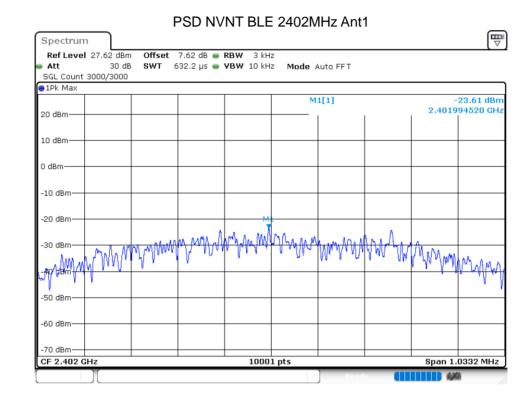
8.1.1 Maximum Conducted Output Power

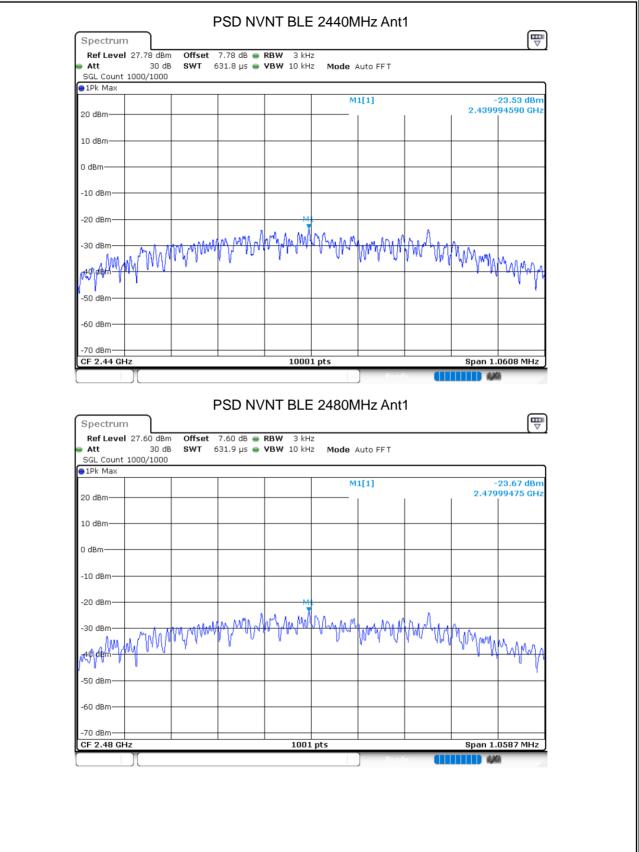

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant 1	-8.396	30	Pass
NVNT	BLE	2440	Ant 1	-8.099	30	Pass
NVNT	BLE	2480	Ant 1	-8.157	30	Pass

Power NVNT BLE 2402MHz Ant1



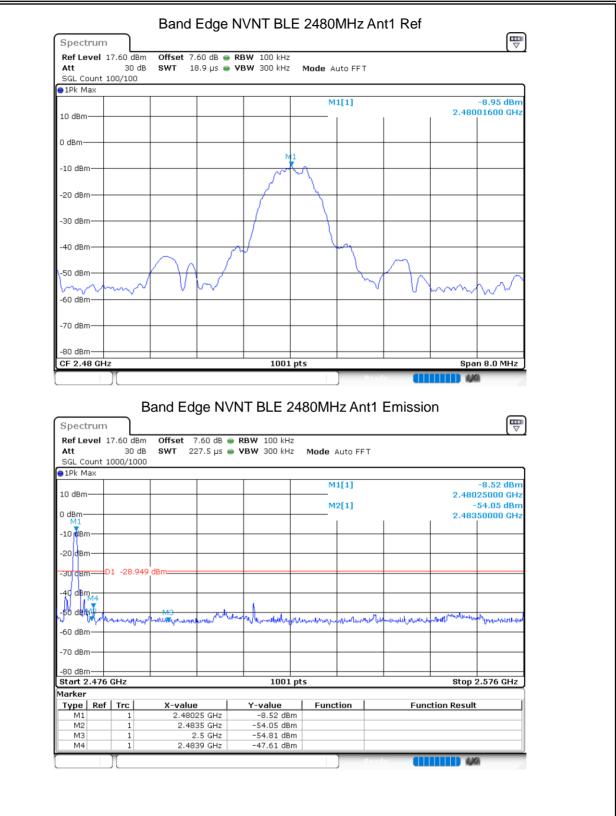
110


-6 dB BW NVNT BLE 2480MHz Ant1 ₽ Spectrum Ref Level 20.00 dBm 🔵 RBW 100 kHz Att 30 dB SWT 18.9 µs 🖷 VBW 300 kHz Mode Auto FFT SGL Count 2000/2000 ●1Pk Max M1[1] -16.11 dBm 2.480264970 GHz 10 dBm-M2[1] -22.11 dBm 2.479670800 GHz 0 dBm--10 dBm-M1 M2 M: -20 dBm--30 dBm· -40 dBm· -50 dBm -60 dBm -70 dBm· CF 2.48 GHz 10001 pts Span 2.0 MHz Marker Type | Ref | Trc X-value Y-value Function Function Result 2.48026497 GHz 2.4796708 GHz -16.11 dBm M1 M2 1 1 -22.11 dBm МЗ 2.4803766 GHz -22.10 dBm 1


8.1.3 Maximum Power Spectral Density Level

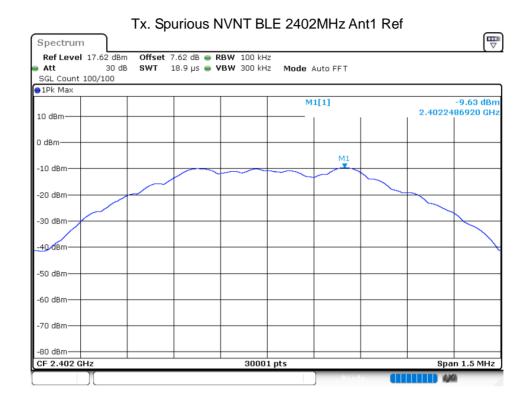
Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	BLE	2402	Ant 1	-23.611	8	Pass
Condition NVNT NVNT NVNT	BLE	2440	Ant 1	-23.529	8	Pass
NVNT	BLE	2480	Ant 1	-23.668	8	Pass

NTEK 北测[®]



8.1.4 Band Edge

1T	Mode BLE	Frequer	402		enna I nt 1		ue (dBc .76		t (dBc) ·20	Verdict Pass
IT I	BLE		480		nt 1		.66		·20	Pass
		2-	100	7 41						1 455
			Band E	Edge N	VNT BI	_E 2402	MHz Ar	nt1 Ref		
	Spectr	um		J						
	Ref Lev	el 17.62 dBm			3W 100 kH					(``.
	Att SGL Cou	30 dE unt 100/100	B SWT 18	.a ha 😐 🖊	BW 300 kH	z Mode Ar	uto FFT			
	●1Pk Ma	×					1[1]			-9.26 dBm
	10 dBm-						1[1]		2.402	-9.26 uBm 201600 GHz
	0 dBm—							+		
	-10 dBm-									
					/ "	1.				
	-20 dBm-				1					
	-30 dBm-					+		+		
	10 10				/					
	-40 dBm-			M	V					
	-50 dBm-							+		
	-60 dBm	m	V hom	\sim			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	from	m	\sim
	-00 ubm-									
	-70 dBm-							+	+	
	00 d 0 -						1	1	1	
	-80 asm-						L	<u> </u>		
	-80 dBm- CF 2.40				100	1 pts		<u> </u>	Spa	in 8.0 MHz)
					100	1 pts) Rea	dv 🕕	Spa	n 8.0 MHz
		2 GHz	Band Edd] Pear Iz Δnt1			n 8.0 MHz
	CF 2.40		Band Edg	je NVN] Prov Iz Ant1	Emissic		•
	GF 2.40					2402MF] Prod	Emissic		un 8.0 MHz) 4
	CF 2.40 Spectr Ref Lev Att	2 GHz [um rel 17.62 dBm 30 dE	n Offset 7.	.62 dB 👄 🖡	IT BLE	2402MF		Emissic		•
	CF 2.40 Spectr Ref Lev Att	2 GHz	n Offset 7.	.62 dB 👄 🖡	IT BLE	2402MH Hz Hz Mode A	Auto FFT	Emissic	on	
	Spectr Ref Lev Att SGL Cou	2 GHz	n Offset 7.	.62 dB 👄 🖡	IT BLE	2402MH Hz Hz Mode A		Emissic	on	•
	CF 2.40 Spectr Ref Lev Att SGL Cou In Ma 10 dBm-	2 GHz	n Offset 7.	.62 dB 👄 🖡	IT BLE	2402MH	Auto FFT	Emissic	2.402	-9.21 dBm 225000 GHz -41.27 dBm
	Spectr Ref Lev Att SGL Cou PIPk Ma 10 dBm- 0 dBm-	2 GHz um rel 17.62 dBm 30 dE int 100/100 ×	n Offset 7.	.62 dB 👄 🖡	IT BLE	2402MH	Auto FFT		2.402 2.400	-9.21 dBm 225000 GHz
	CF 2.40 Spectr Ref Lev Att SGL Cou P1Pk Ma 10 dBm- 0 dBm- -10 dBm-	2 GHz um rel 17.62 dBm 30 dE int 100/100 ×	n Offset 7.	.62 dB 👄 🖡	IT BLE	2402MH	Auto FFT 1[1] 2[1]		2.402 2.400	-9.21 dBm 225000 GHz 41.27 dBm 000000 GHz
	Spectr Ref Lev Att SGL Cou I D dBm- 0 dBm- -10 dBm- -20 dBm-	2 GHz	n Offset 7. B SWT 22	.62 dB 👄 🖡	IT BLE	2402MH	Auto FFT 1[1] 2[1]		2.402 2.400	-9.21 dBm 225000 GHz 41.27 dBm 000000 GHz
	CF 2.40 Spectr Ref Lev Att SGL Cou P1Pk Ma 10 dBm- 0 dBm- -10 dBm-	2 GHz	n Offset 7. B SWT 22	.62 dB 👄 🖡	IT BLE	2402MH	Auto FFT 1[1] 2[1]		2.402 2.400	-9.21 dBm 225000 GHz 41.27 dBm 000000 GHz
	Spectr Ref Lev Att SGL Cou I D dBm- 0 dBm- -10 dBm- -20 dBm-	2 GHz	n Offset 7. B SWT 22	.62 dB	IT BLE	2402MH	Auto FFT 1[1] 2[1]		2.402 2.400	-9.21 dBm 225000 GHz 41.27 dBm 000000 GHz
	CF 2.40 Spectr Ref Lev Att SGL Cou 9 1Pk Ma 10 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm- -50 dBm-	2 GHz I Um rel 17.62 dBm 30 dE unt 100/100 x D1 -29.25	n Offset 7. B SWT 22	.62 dB ● F 7.5 μs ● V 		2402MH	Auto FF T 1[1] 2[1]		2.400	-9.21 dBm 225000 GHz 41.27 dBm 000000 GHz M1 M2 M2
	CF 2.40 Spectr Ref Lev Att SGL Cou 9 1Pk Ma 10 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm- -50 dBm-	2 GHz I um rel 17.62 dBm 30 dE 11 100/100 × D1 -29.25	n Offset 7. B SWT 22	.62 dB ● F 7.5 μs ● V 		2402MH	Auto FF T 1[1] 2[1]		2.400	-9.21 dBm 225000 GHz 41.27 dBm 000000 GHz M1 M2 M2
	CF 2.40 Spectr Ref Lev Att SGL Cou IPk Ma 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm-	2 GHz I um vel 17.62 dBm 30 dE 30 dE 17.62 dBm 30 dE 100/100 x D1 -29.25 w/w/w/w/w/w/w/	n Offset 7. B SWT 22	.62 dB ● F 7.5 μs ● V 		2402MH	Auto FF T 1[1] 2[1]		2.400	-9.21 dBm 225000 GHz 41.27 dBm 000000 GHz M1 M2 M2
	CF 2.40 Spectr Ref Lev Att SGL Cou 9 1Pk Ma 10 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm- -50 dBm-	2 GHz I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	n Offset 7. B SWT 22	.62 dB ● F 7.5 μs ● V 		2402MH	Auto FF T 1[1] 2[1]		2.400	-9.21 dBm 225000 GHz 41.27 dBm 000000 GHz M1 M2 M2
	CF 2.40 Spectr Ref Lev Att SGL Cou 9 1Pk Ma 10 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm- -50 dBm- -70 dBm- -70 dBm- -80 dBm-	2 GHz I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	n Offset 7. B SWT 22	.62 dB ● F 7.5 μs ● V 		2402MH	Auto FF T 1[1] 2[1]		2.400	-9.21 dBm 225000 GHz 41.27 dBm 000000 GHz M1 M2 M2
	CF 2.40 Spectr Ref Lev Att SGL Cou P1Pk Ma 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -40 dBm- -50 dBm- -50 dBm- -70 dBm- -70 dBm- -70 dBm- -70 dBm- -70 dBm- -80 dBm- Start 2. Marker	2 GHz I Um vel 17.62 dBm 30 dE 30 dE 17.62 dBm 30 dE 01 -29.25 01 -29.25	n Offset 7. B SWT 22	.62 dB ● F 7.5 µs ● ¥ М4		2402MH	Auto FFT [[1] 2[1]		2.400	-9.21 dBm 225000 GHz 41.27 dBm 00000 GHz M1 M2 M2 2.406 GHz
	CF 2.40 Spectr Ref Lev Att SGL Cou IPk Ma 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -30 dBm- -50 dBm- -70 dBm- -70 dBm- -70 dBm- -70 dBm- -70 dBm- -70 dBm- -80 dBm- -80 dBm- -80 dBm-	2 GHz I I I I I I I I I I I I I I I I I I I	n Offset 7. B SWT 22'	62 dB 7.5 μs N4 ν(4) ν/ν-υμ4ν, 5 GHz	TBLE	2402MH	Auto FFT [[1] 2[1]		2.402 2.400 2.400	-9.21 dBm 225000 GHz 41.27 dBm 00000 GHz M1 M2 M2 2.406 GHz
	CF 2.40 Spectr Ref Lev Att SGL Cou 9 1Pk Ma 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -40 dBm- -50 dBm- -50 dBm- -70 dBm- -70 dBm- -70 dBm- -70 dBm- -70 dBm- -70 dBm- -70 dBm- -70 dBm- -70 dBm-	2 GHz I um rel 17.62 dBm 30 dE 17.62 dBm 30 dE 30 dE 4.52 dBm 30 dE 4.52 dBm 3.52 dBm 3.52 dBm 4.52 d	n Offset 7. B SWT 22 9 dBm 9 dBm 0 unutuun,uuunu 2.4022 2. 2.3	.62 dB		2402MH	Auto FFT [[1] 2[1]		2.402 2.400 2.400	-9.21 dBm 225000 GHz 41.27 dBm 00000 GHz M1 M2 M2 2.406 GHz



8.1.5 Conducted RF Spurious Emission

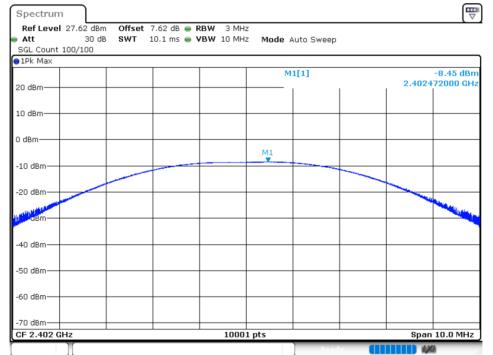
Condition NVNT NVNT NVNT	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-27.44	-20	Pass
NVNT	BLE	2440	Ant 1	-32.96	-20	Pass
NVNT	BLE	2480	Ant 1	-30.73	-20	Pass

Spectrum Ref Level 17. Att SGL Count 15/:	30 dB			RBW 100 kHz VBW 300 kHz	Mode Auto S	Gweep				1
●1Pk Max				1 1					0.04.40]
10 dBm					M1[1]			2.4	-9.34 dBm 401650 GHz	
0 dBm					M2[1]				-37.08 dBm 304264 GHz	
-10 dBm										
-20 dBm										
	-29.635 dE	3								
	-29.0 M200									
-40 dBm		M4	MS	5		Market	المعادرة والمعاد	dat	. b	
-50 dBm	an a		a la constanta da la constanta La constanta da la constanta da			shatter, s				
-60 dBm										
-70 dBm										
-80 dBm										
Start 30.0 MHz Marker	<u> </u>			30001 p	is			Sto	o 25.0 GHz	ł
Type Ref T		X-value 2,4016		Y-value -9.34 dBm	Function		Fund	tion Resul	t	
M2	1	4.80426	4 GHz	-37.08 dBm						
M3	1	4.80426		-37.08 dBm						
M4	1	7.20554	6 GHz	-49.11 dBm						
M4 M5 Spectrum Ref Level 17		-	^{6 GHz}	-49.11 dBm -50.28 dBm	2440MH	lz A	nt1 Ref		0 [₩ ▽]
M5 Spectrum Ref Level 17.	1 78 dBm 30 dB	9.58851 Tx. Spu Offset 7.	6 GHz	-50.28 dBm			nt1 Ref) 4	(T	
M5 Spectrum Ref Level 17.	1 78 dBm 30 dB	9.58851 Tx. Spu Offset 7.	6 GHz	-50.28 dBm	Mode Auto R		nt1 Ref) 49]
M5 Spectrum Ref Level 17. Att SGL Count 100, 1Pk Max	1 78 dBm 30 dB	9.58851 Tx. Spu Offset 7.	6 GHz	-50.28 dBm			nt1 Ref	2.44020	-8.55 dBm	
M5 Spectrum Ref Level 17. Att SGL Count 100,	1 78 dBm 30 dB	9.58851 Tx. Spu Offset 7.	6 GHz	-50.28 dBm	Mode Auto R		nt1 Ref	2.44020		
M5 Spectrum Ref Level 17. Att SGL Count 100, 1Pk Max	1 78 dBm 30 dB	9.58851 Tx. Spu Offset 7.	6 GHz	-50.28 dBm	Mode Auto R		nt1 Ref	2.44020	-8.55 dBm	
M5 Spectrum Ref Level 17. Att SGL Count 100, 1Pk Max 10 dBm 0 dBm	1 78 dBm 30 dB	9.58851 Tx. Spu Offset 7.	6 GHz	-50.28 dBm	Mode Auto R		nt1 Ref	2.4402(-8.55 dBm	
M5 Spectrum Ref Level 17. Att SGL Count 100, 1Pk Max 10 dBm	1 78 dBm 30 dB	9.58851 Tx. Spu Offset 7.	6 GHz	-50.28 dBm	Mode Auto R	FT	nt1 Ref	2.44020	-8.55 dBm	
M5 Spectrum Ref Level 17. Att SGL Count 100, 1Pk Max 10 dBm 0 dBm	1 78 dBm 30 dB	9.58851 Tx. Spu Offset 7.	6 GHz	-50.28 dBm	Mode Auto R	FT	nt1 Ref	2.44020	-8.55 dBm	
M5 Spectrum Ref Level 17. Att SGL Count 100, 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	1 78 dBm 30 dB	9.58851 Tx. Spu Offset 7.	6 GHz	-50.28 dBm	Mode Auto R	FT	nt1 Ref	2.44020	-8.55 dBm	
M5 Spectrum Ref Level 17. Att SGL Count 100, 1Pk Max 10 dBm 0 dBm -10 dBm	1 78 dBm 30 dB	9.58851 Tx. Spu Offset 7.	6 GHz	-50.28 dBm	Mode Auto R	FT	nt1 Ref	2.44020	-8.55 dBm	
M5 Spectrum Ref Level 17. Att SGL Count 100, 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	1 78 dBm 30 dB	9.58851 Tx. Spu Offset 7.	6 GHz	-50.28 dBm	Mode Auto R	FT	nt1 Ref	2.44020	-8.55 dBm	
M5 Spectrum Ref Level 17. Att SGL Count 100, 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm	1 78 dBm 30 dB	9.58851 Tx. Spu Offset 7.	6 GHz	-50.28 dBm	Mode Auto R	FT	nt1 Ref	2.44020	-8.55 dBm	
M5 Spectrum Ref Level 17. Att SGL Count 100, 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -48 dBm	1 78 dBm 30 dB	9.58851 Tx. Spu Offset 7.	6 GHz	-50.28 dBm	Mode Auto R	FT	nt1 Ref	2.44020	-8.55 dBm	
M5 Spectrum Ref Level 17. Att SGL Count 100, 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	1 78 dBm 30 dB	9.58851 Tx. Spu Offset 7.	6 GHz	-50.28 dBm	Mode Auto R	FT	nt1 Ref	2.44020	-8.55 dBm	
M5 Spectrum Ref Level 17. Att SGL Count 100, 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm	1 78 dBm 30 dB	9.58851 Tx. Spu Offset 7.	6 GHz	-50.28 dBm	Mode Auto R	FT	nt1 Ref	2.44020	-8.55 dBm	
M5 Spectrum Ref Level 17. Att SGL Count 100, 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	1 78 dBm 30 dB	9.58851 Tx. Spu Offset 7.	6 GHz	-50.28 dBm	Mode Auto f	FT	nt1 Ref	2.44020	-8.55 dBm	

				M1[1]		-9.58 dE	
.0 dBm				M2[1]		2.439940 G -41.51 dB	
) dBm		+				4.880006 G	
10 dBm							_
20 dBm							
30 dBm — D)1 -28.55:						-
40 dBm	N	M4					-
50 dBm	a construction of the second		M5	والمطالعة والمعالم والمساور	terre Australia and	and the state of the	
60 dBm	and the second s						1
70 dBm							-
				•			
Start 30.0 M Iarker	IHZ		30001 p	ts		Stop 25.0 GH	2
Type Ref	Trc	X-value	Y-value	Function	Fund	ction Result	
M1 M2	1	2.43994 GHz 4.880006 GHz	-9.58 dBm -41.51 dBm				
M3	1	4.880006 GHz	-41.51 dBm				
M4 M5	1	7.318743 GHz 9.672582 GHz	-48.44 dBm -50.03 dBm				
MIS		9.072582 GH2	-50.03 uBm				_
	Л				leady	in the second	
				4			
			IS NVNT BLE	2480MHZ	Ant'i Ref	_	_
	_	TA: Opunou					₩.
Spectrum						l,	∇
Spectrum Ref Level	17.60 dB	•	• RBW 100 kHz			[▽,
Ref Level Att	30 d	m Offset 7.60 dB	 RBW 100 kHz VBW 300 kHz 	Mode Auto FF1	т	[▽ ,
Ref Level	30 d	m Offset 7.60 dB	-	Mode Auto FF1	т		<u>▼</u>]

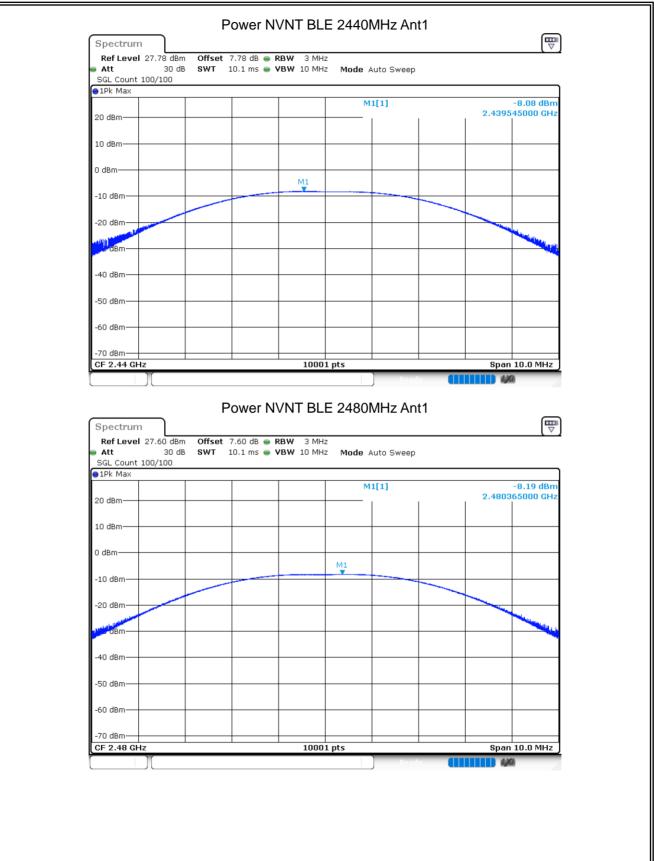
2.4802603410 GHz 10 dBm 0 dBm M1 -10 dBm· -20 dBm--30 dBm -40 dBm· -50 dBm -60 dBm· -70 dBm· -80 dBm-30001 pts Span 1.5 MHz CF 2.48 GHz LXI

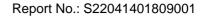
D -61	rum									
Ket I	evel	17.60 dB	m Offset	7.60 dB 🧉	• RBW 100 kHz					
Att		30 (dB SWT	250 ms 🧉	🕨 VBW 300 kHz	Mode A	uto Swee	р		
	ount 1	0/10								
1Pk №	lax									
						M:	l[1]			-9.75 dBm
) dBn			-							80720 GHz
dBm-						M	2[1]			-39.53 dBm
uBm-	M1								4.9	59910 GHz
0 dBi	n —		_							
0 dBi	n—									
		1 -28.79	l D dBm							
) dBi	n-ru	1 -28.79	мь							
0 dBi	n									
o abi	··		м	4	M5					
0 dBi	n –		and the state of the	Notice is supplying it is to	and the man of the liter	أتسطيها ليبسط	and the part of the last	فالتلاصية ويتقصيها والمع	the second of the	فيهاف ومطلبه والتلا
		and the second	and property in the state of the second s	pathios and a	Sung Installing methods with the fillen	and London and Dent	and the second second		Terrar Science of the	a state of the second
0 dBi	n ' "''''		-							
0 dBi	_									
U UDI										
	n									
0 dBi	30.0 M	Hz			30001 p	ts			Stop	25.0 GHz
80 dBi Start : Jarker				- 1	Y-value	Funct	ion	Fund	tion Result	:
tart :	Ref	Trc	X-value	9						
art : rkei		Trc 1		72 GHz	-9.75 dBm					
art : irkei ype			2.480							
tart : arker ype M1 M2 M3		1 1 1	2.480 4.959 4.959	72 GHz 91 GHz 91 GHz	-9.75 dBm -39.53 dBm -39.53 dBm					
tart : arker ype M1 M2		1	2.480 4.959	72 GHz 91 GHz 91 GHz 31 GHz	-9.75 dBm -39.53 dBm					



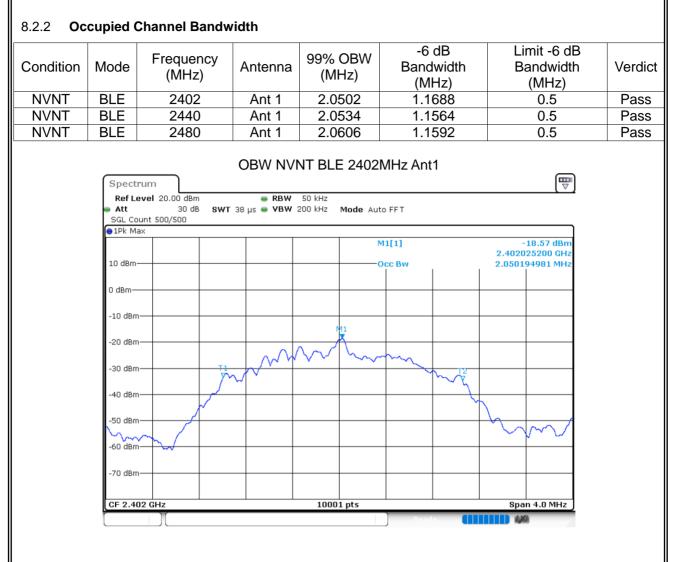
8.2 **2M**:

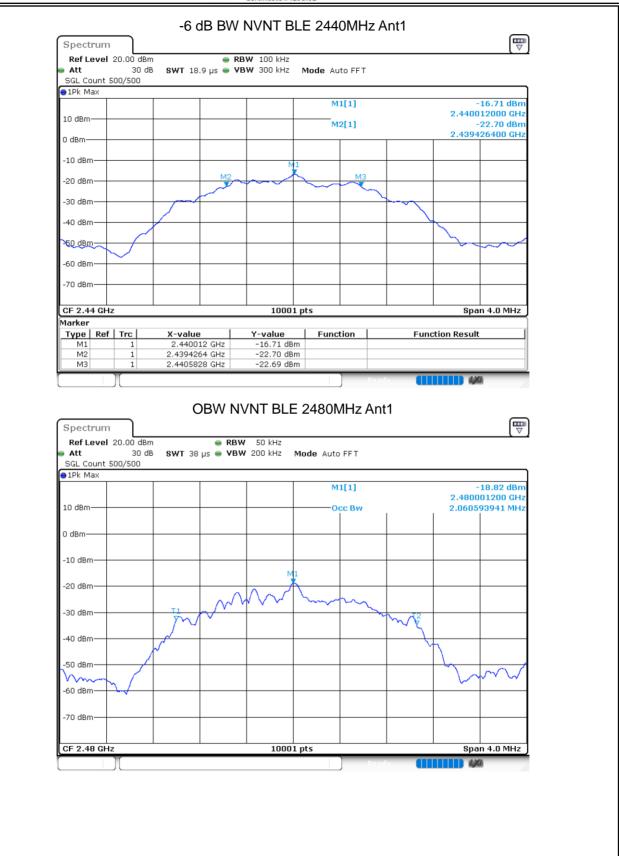
8.2.1 Maximum Conducted Output Power


Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant 1	-8.453	30	Pass
NVNT	BLE	2440	Ant 1	-8.081	30	Pass
NVNT	BLE	2480	Ant 1	-8.191	30	Pass



Power NVNT BLE 2402MHz Ant1





-6 dB BW NVNT BLE 2480MHz Ant1 ₽ Spectrum 🔵 RBW 100 kHz Ref Level 20.00 dBm Att 30 dB SWT 18.9 µs 🖷 VBW 300 kHz Mode Auto FFT SGL Count 500/500 ●1Pk Max M1[1] -16.77 dBm 2.480005600 GHz 10 dBm-M2[1] -22.77 dBm 2.479423600 GHz 0 dBm--10 dBm--20 dBm--30 dBm· -40 dBm· 50 dBm--60 dBm· -70 dBm· CF 2.48 GHz 10001 pts Span 4.0 MHz Marker Type | Ref | Trc X-value Y-value Function Function Result 2.4800056 GHz 2.4794236 GHz -16.77 dBm -22.77 dBm M1 M2 1 1 2.4805828 GHz МЗ -22.76 dBm 1 110

Report No.: S22041401809001

1WV

Span 1.7532 MHz

-30 dBm

so He

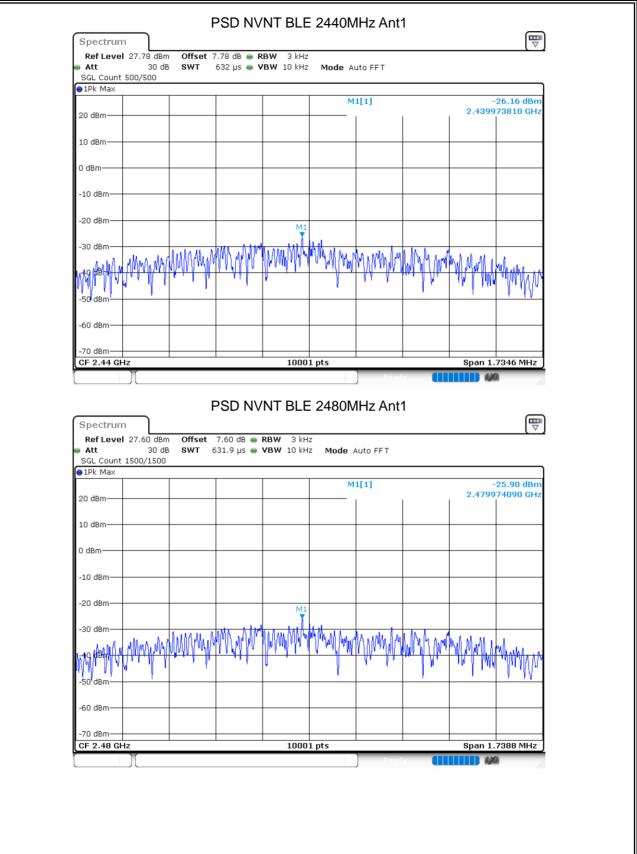
-60 dBm -70 dBm CF 2.402 GHz

alling MANNAMAN AMA and

8.2.3 Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	BLE	2402	Ant 1	-26.787	8	Pass
NVNT	BLE	2440	Ant 1	-26.164	8	Pass
NVNT	BLE	2480	Ant 1	-25.903	8	Pass
	👄 Att	evel 27.62 dBm Offset 7.6 30 dB SWT 631. punt 500/500	2 dB ● RBW 3 1 9 µs ● VBW 10	kHz Mode Auto FFT		
	20 dBm			M1[1]	-26.79 dBm 2.401973700 GHz	
	10 dBm-					
	-10 dBm	n				
	-20 dBm	n		41		

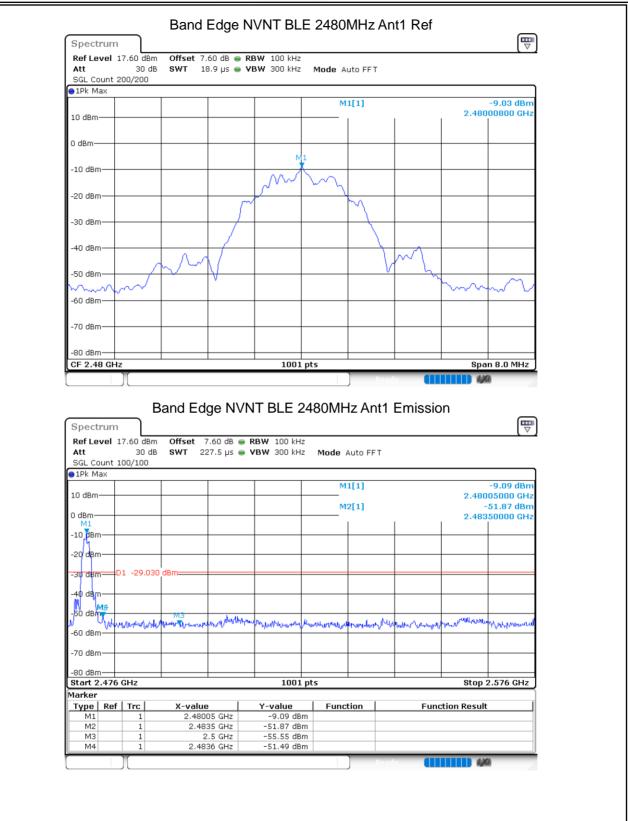
M1


10001 pts

M

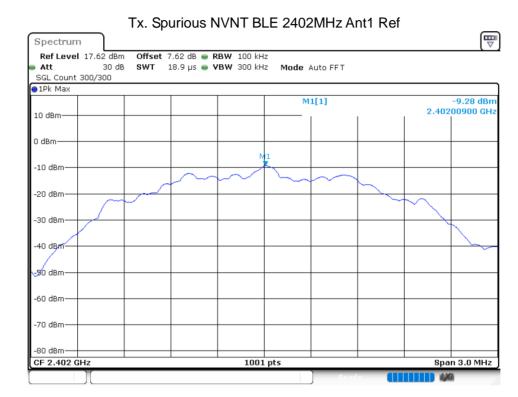
MMMAMA

NTEK 北测[®]



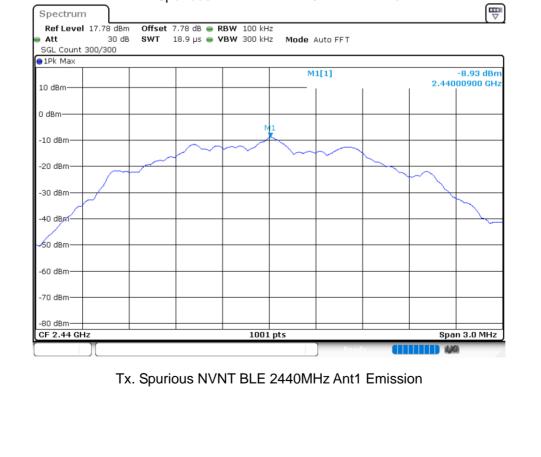
8.2.4 Band Edge

ndition	Mode	Frequency		Antenna	Max Value			
IVNT	BLE	240		Ant 1	-41.5		-20	Pass
IVNT	BLE	248	0	Ant 1	-42.4	16	-20	Pass
						1 I. A	Def	
			Band Ec		BLE 2402M	HZ ANtí	Ref	m
	Spect		Offset 7.62	dB 😑 RBW 100	kHz			
	Att	30 dB			kHz Mode Auto) FFT		
	SGL Co	ount 200/200 ax						
					M1[1	1]	2.4	-9.27 dBm Ю201600 GHz
	10 dBm							
	0 dBm-							
	-10 dBn	<u> </u>			M1			
				M	~~			
	-20 dBn	∩		M	+			
	-30 dBn	η				λ		
				1		γ		
	-40 dBn	י	A	/			$\sqrt{1}$	
	-50 dBn	∩ 	\downarrow \downarrow \downarrow			V	<u> </u>	
							how	m
	-60 dBn							
	-70 dBn	∩						
					1 1		1	
	-80 dea							
	-80 dBn	D2 GHz		1(001 pts			pan 8.0 MHz)
				1(D01 pts	Ready		pan 8.0 MHz
		02 GHz	and Edge			Ready Ant1 Fr		ipan 8.0 MHz
	CF 2.4	Ba	and Edge		E 2402MHz	Ready Ant1 Er		
	CF 2.4 Spect Ref Le	Barum vel 17.62 dBm	Offset 7.62	NVNT BLE	E 2402MHz			ipan 8.0 MHz)
	CF 2.4 Spect Ref Le Att	Barum vel 17.62 dBm	Offset 7.62	NVNT BLE	E 2402MHz			444
	CF 2.4 Spect Ref Le Att	vel 17.62 dBm 30 dB	Offset 7.62	NVNT BLE	E 2402MHz I kHz I kHz Mode Aut	to FFT		
	Spect Ref Le SGL CC	vel 17.62 dBm 30 dB punt 500/500 ax	Offset 7.62	NVNT BLE	E 2402MHz kHz kHz Mode Aut	to FFT 1]	mission	-9.26 dBm 0205000 GHz
	CF 2.4 Spect Ref Le Att SGL CC ● 1Pk M	vel 17.62 dBm 30 dB punt 500/500 ax	Offset 7.62	NVNT BLE	E 2402MHz I kHz I kHz Mode Aut	to FFT 1]	mission	-9.26 dBm +0205000 GHz +42.42 dBm +0000000 GHz
	CF 2.4 Spect Ref Le Att SGL Cc I/Pk M 10 dBm	vel 17.62 dBm 30 dB punt 500/500 ax	Offset 7.62	NVNT BLE	E 2402MHz kHz kHz Mode Aut	to FFT 1]	mission	-9.26 dBm H0205000 GHz -42.42 dBm
	CF 2.4 Spect Ref Le Att SGL Cc ● 1Pk M 10 dBm 0 dBm-	vel 17.62 dBm 30 dB sunt 500/500	Offset 7.62	NVNT BLE	E 2402MHz kHz kHz Mode Aut	to FFT 1]	mission	-9.26 dBm +0205000 GHz +42.42 dBm +0000000 GHz
	CF 2.4 Spect Ref Le Att SGL CC ● 1Pk M 10 dBm - 10 dBm - 20 dBn	Ba rum vel 17.62 dBm 30 dB punt 500/500 ax	Offset 7.62 SWT 227.5	NVNT BLE	E 2402MHz kHz kHz Mode Aut	to FFT 1]	mission	-9.26 dBm +0205000 GHz +42.42 dBm +0000000 GHz
	CF 2.4 Spect Ref Le Att SGL Cc P 1Pk M 10 dBm -10 dBm -10 dBm -20 dBm	D2 GHz Ba rum vel 17.62 dBm 30 dB punt 500/500 ax 	Offset 7.62 SWT 227.5	NVNT BLE	E 2402MHz kHz kHz Mode Aut	to FFT 1]	mission	-9.26 dBm +0205000 GHz +42.42 dBm +0000000 GHz
	CF 2.4 Spect Ref Le Att SGL CG ● 1Pk M 10 dBm- -10 dBm -20 dBm -20 dBm -40 dBm	D2 GHz Ba rum vel 17.62 dBm 30 dB punt 500/500 ax D1 -29.275 d	Offset 7.62 SWT 227.5	2 NVNT BLE 3 dB • RBW 100 5 μs • VBW 300	E 2402MHz	to FFT 1]	mission	-9.26 dBm t0205000 GHz -42.42 dBm t0000000 GHz
	CF 2.4 Spect Ref Le Att SGL CC IPk M 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm	D2 GHz Ba rum vel 17.62 dBm 30 dB nunt 500/500 ax 	Offset 7.62 SWT 227.5	2 NVNT BLE 3 dB • RBW 100 5 μs • VBW 300	E 2402MHz	to FF T 1] 1]	mission	-9.26 dBm H0205000 GHz -42.42 dBm H0000000 GHz M1 M1 M3 M3
	CF 2.4 Spect Ref Le Att SGL CG ● 1Pk M 10 dBm- -10 dBm -20 dBm -20 dBm -40 dBm	D2 GHz Ba rum vel 17.62 dBm 30 dB nunt 500/500 ax 	Offset 7.62 SWT 227.5	2 NVNT BLE 3 dB • RBW 100 5 μs • VBW 300	E 2402MHz	to FF T 1] 1]	2.4 2.4	-9.26 dBm H0205000 GHz -42.42 dBm H0000000 GHz M1 M1 M3 M3
	CF 2.4 Spect Ref Le Att SGL CC IPk M 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm	Ba rum vel 17.62 dBm 30 dB punt 500/500 ax punt 500/500 ax punt 500/500 ax punt 500/500	Offset 7.62 SWT 227.5	2 NVNT BLE 3 dB • RBW 100 5 μs • VBW 300	E 2402MHz	to FF T 1] 1]	2.4 2.4	-9.26 dBm H0205000 GHz -42.42 dBm H0000000 GHz M1 M1 M3 M3
	CF 2.4 Spect Ref Le Att SGL CC IPk M 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -50 dBm -50 dBm -60 dBm	D2 GHz Ba rum vel 17.62 dBm 30 dB bunt 500/500 ax D1 -29.275 d	Offset 7.62 SWT 227.5	NVNT BLE dB • RBW 100 μs • VBW 300	E 2402MHz	to FF T 1] 1]	2.4 2.4 2.4	-9.26 dBm 10205000 GHz -42.42 dBm 10000000 GHZ -42.42 dBm 1000000 GHZ -42.42 dBm 10000000 GHZ -42.42 dBm 10000000 GHZ -42.42 dBm 10000000 GHZ -42.42 dBm 100000000 GHZ -40.40 HZ -40.40
	CF 2.4 Spect Ref Le Att SGL CC IPk M 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -50 dBm -50 dBm -60 dBm	D2 GHz Ba rum vel 17.62 dBm 30 dB nunt 500/500 ax D1 -29.275 d	Offset 7.62 SWT 227.5	NVNT BLE dB • RBW 100 μs • VBW 300	E 2402MHz	to FF T 1] 1]	2.4 2.4 2.4	-9.26 dBm H0205000 GHz -42.42 dBm H0000000 GHz M1 M1 M3 M3
	CF 2.4 Spect Ref Le Att SGL CC P 1Pk M 10 dBm -10 dBm -10 dBm -20 dBm -20 dBm -30	D2 GHz vel 17.62 dBm 30 dB punt 500/500 ax 0 0 0 0 0 0 0 30 dB yount 500/500 ax 0 <td< td=""><td>Offset 7.62 SWT 227.5</td><td>NVNT BLE (dB • RBW 100 (μs • VBW 300 (μs • VBW 3</td><td>E 2402MHz</td><td>to FF T</td><td>2.4 2.4 2.4</td><td>-9.26 dBm H0205000 GHz -42.42 dBm H0000000 GHz M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2</td></td<>	Offset 7.62 SWT 227.5	NVNT BLE (dB • RBW 100 (μs • VBW 300 (μs • VBW 3	E 2402MHz	to FF T	2.4 2.4 2.4	-9.26 dBm H0205000 GHz -42.42 dBm H0000000 GHz M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2
	CF 2.4 Spect Ref Le Att SGL CC IPk M 10 dBm -10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -60 dBm -60 dBm -70 dBm -70 dBm -80 dBm Start 2 Marker Type M1 M2	Ba rum vel 17.62 dBm 30 dB bunt 500/500 ax 	Offset 7.62 SWT 227.5	NVNT BLE BW 100 j μs • VBW 300 U	E 2402MHz	to FF T	2.4 2.4 2.4 2.4 2.4 5tc	-9.26 dBm H0205000 GHz -42.42 dBm H0000000 GHz M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2
	CF 2.4 Spect Ref Le Att SGL CC PIPk M 10 dBm -10 dBm -10 dBm -20 dBm -30 d	D2 GHz Ba rum vel 17.62 dBm 30 dB punt 500/500 ax D1 -29.275 d 0 0 0 0 0 0 0 0 0 0 0 0 0	Offset 7.62 SWT 227.5	NVNT BLE RBW 100 (μs • YBW 300	E 2402MHz	to FF T	2.4 2.4 2.4 2.4 2.4 5tc	-9.26 dBm H0205000 GHz -42.42 dBm H0000000 GHz M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2

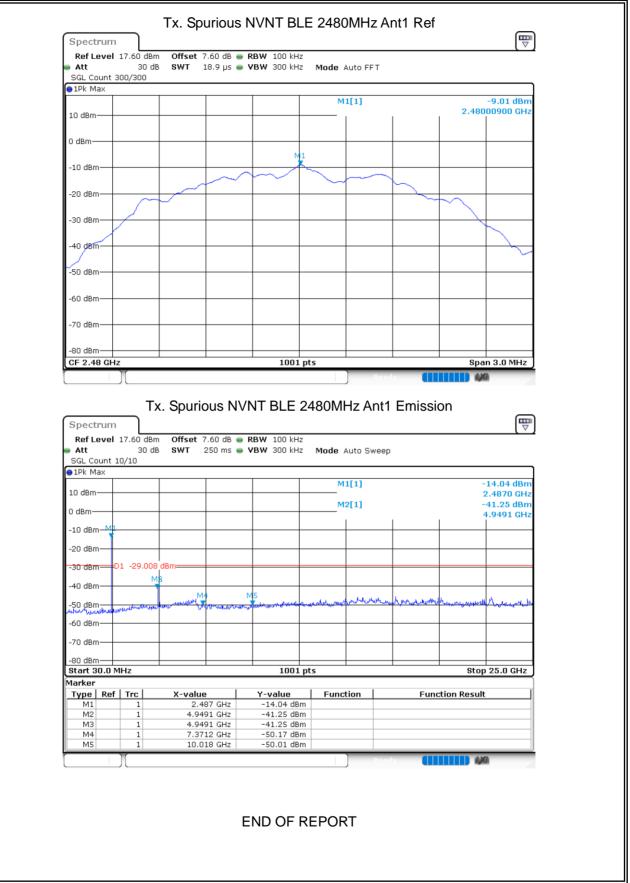


8.2.5 Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-31.39	-20	Pass
NVNT	BLE	2440	Ant 1	-32.49	-20	Pass
NVNT	BLE	2480	Ant 1	-32.24	-20	Pass


Tx. Spurious NVNT BLE 2402MHz Ant1 Emission

Ref Level			2 dB 😑	RBW 100 kHz						
🖶 Att	30	dB SWT 25) ms 😑	VBW 300 kHz	Mode	Auto Sv	veep			
SGL Count	10/10									
😑 1Pk Max										
					IM	11[1]			-	-13.23 dBm
10 dBm		+		+ +						2.4120 GHz
0.40					IV	12[1]				-40.68 dBm
0 dBm										4.7993 GHz
-10 dBm 🕌										
· · · · · · · · · · · · · · · · · · ·										
-20 dBm—		+		+						
	01 00 07									
-30 dBm	D1 -29.27	1								
-40 dBm		M2								
10 abiii		M4	м	15						
-50 dBm		With the stand with the stand	musherm	Contraction of the second	والافو خصوقهم المحاور	a shannar	Whenry	Hanner	Barrow for 1981	4 Awater was get
· · ·	-									
-60 dBm—										
-70 dBm										
-70 ubiii										
-80 dBm		+		+						
Start 30.0	MHz			1001 p	ots				Stop	25.0 GHz
Marker										
Type Ref	f Trc	X-value		Y-value	Fund	tion		Fund	tion Result	t l
M1	1	2.412	GHz	-13.23 dBm						
M2	1	4.7993	GHz	-40.68 dBm						
M3	1	4.7993		-40.68 dBm						
M4	1	7.3962		-49.33 dBm						
M5	1	9.7683	GHz	-50.37 dBm						



SGL Cou		30 dB 0/10	S₩T		● VBW 300 kH		1ode Auto S	op			
⊖1Pk Ma>											
10 dBm—							M1[1]				-9.21 dBn 2.4370 GH;
							M2[1]				-41.42 dBn
0 dBm—	м										4.8742 GH
-10 dBm-	1										
-20 dBm-	+										
-30 dBm-	D:	1 -28.932	dBm								
40 - 40		M	8								
-40 dBm-		Ĩ	N	14	ма						
-50 dBm-		William with	ano was det and	and the with the All	The second state in the second state is a second state of the seco	ود ايد القام	way was been and a second	www.uda	Mundussia	Marter Martin	ie Chushan migh
-60 dBm-	v~~w										
-00 0011											
-70 dBm-	+										
Start 30	.0 M	Hz		1	1001	pts				Sto	p 25.0 GHz
Marker											
	Ref	Trc	X-value		Y-value		Function		Func	tion Resul	t
M1		1		37 GHz	-9.21 dE						
M2		1		42 GHz	-41.42 dE						
M3 M4		1		42 GHz 96 GHz	-41.42 dE -49.24 dE						
		1		20 0112	-49.85 dE						

