

TEST REPORT

Report No.....: KS2203S1008E02

Applicant...... TCL OVERSEAS MARKETING LIMITED

KONG SCIENCE PARK SHATIN NT

KONG SCIENCE PARK SHATIN NT

Product Name.....: AIR PURIFIER

Trade Mark.....: TCL

Model/Type reference.....: breeva Pro 400

Listed Model(s)...... breeva Pro 400 Premium , A400225W, A400225B, A400P225G,

A400P225W

Standard.....: FCC 15.247

Date of Receipt.....: March 23, 2022

Date of Test Date...... March 23, 2022 ~ April 15, 2022

Date of issue...... May 17, 2022

Test result...... Pass

Compiled by:

(Printed name + Signature) Allen Li

Aucentr

Supervised by:

(Printed name + Signature) Sky Dong

Dong Sky Asy

Approved by:

(Printed name + Signature) Neil Wan

ran Neil Wan

Testing Laboratory Name.....: KSIGN(Guangdong) Testing Co., Ltd.

Address ... West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu

Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen,

Guangdong, China

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by KSIGN. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to KSIGN within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

TRF No. FCC Part 15.247_R1

Add:West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

TABLE OF CONTENTS

F	ag	e
---	----	---

Report No.: KS2203S1008E02

1. TEST SUMMARY	~~	
1.1. Test Standards		N.
1.2. Report Version		
1.3. Test Description		, Wi
1.4. Test Facility		
1.5. Measurement Uncertainty	.XX. 2	
1.6. Environmental Conditions	\$2% \$2	<u> </u>
2. GENERAL INFORMATION	2	<u> </u>
2.1. GENERAL DESCRIPTION OF EUT		
2.2. OPERATION STATE		
2.3. MEASUREMENT INSTRUMENTS LIST		
2.4. TEST SOFTWARE		
2.5. ANCILLARY EQUIPMENT LIST		
2.6. DESCRIPTION OF SUPPORT UNITS		1
3. TEST ITEM AND RESULTS		1
3.1. Antenna Requirement		
3.2. CONDUCTED EMISSION		
3.3. Spurious Emission (Radiated)		
3.4. BAND EDGE EMISSIONS(RADIATED)		
3.5. Peak Output Power		
3.6. POWER SPECTRAL DENSITY		
3.7. 6dB Bandwidth and 99% Bandwidth		
3.8. DUTY CYCLE		
3.9. CONDUCTED BAND EDGE		
3.10. Spurious RF Conducted Emission	All the second s	
4. EUT TEST PHOTOS		
4. EU1 1E31 PHU1US	1.00	4
		0.000

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

KDB 558074 D01: The measurement guidance provided herein is applicable only to Digital Transmission System (DTS) devices operating in the 902-928 MHz. 2400-2483.5 MHz and/or 5725-5850 MHz bands under §15.247 of the FCC rules (Title 47 of the Code of Federal Regulations)

Report No.: KS2203S1008E02

ANSI C63.10-2020: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report Version

Revised No.	Date of issue	Description	
01	May 17, 2022	Original	
/////	252	////	
A ^{SS} /	2.30		

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

1.3. Test Description

FCC Part 15 Subpart C(15.247)					
	Standard Section				
Test Item	FCC	Result	Test Engineer		
Antenna Requirement	15.203	Pass	Cyril Cai		
Conducted Emission	15.207	Pass	Cyril Cai		
Radiated Emission	15.205&15.209	Pass	Cyril Cai		
Radiated Band Edge	15.205&15.247(d)	Pass	Cyril Cai		
Peak Output Power	15.247(b)	Pass	Cyril Cai		
Power Spectral Density	15.247(e)	Pass	Cyril Cai		
6dB Bandwidth	15.247(a)(2)	Pass	Cyril Cai		
Duty Cycle	558074 D01 15.247 Meas Guidance v05r02 Chapter 6	Pass	Cyril Cai		
Conducted Band edge	15.247(d)	Pass	Cyril Cai		
Spurious RF Conducted Emission	15.247(d)	Pass	Cyril Cai		

Note:

The measurement uncertainty is not included in the test result.

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

1.4. Test Facility

Address of the report laboratory

KSIGN(Guangdong) Testing Co., Ltd.

West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L13261

KSIGN(Guangdong) Testing Co., Ltd. has been assessed and proved to be in Compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 5457.01

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: CN0096

The 3m alternate test site of KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: CN0096

FCC-Registration No.: CN1272

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

TRF No. FCC Part 15.247_R1

Add:West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the KSIGN(Guangdong) Testing Co., Ltd. system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional

deviation. The manufacturer has the sole responsibility of continued compliance of the device. Below is the

Report No.: KS2203S1008E02

Test Items	Measurement Uncertainty	Notes	
Transmitter power conducted	0.42 dB	(1)	
Transmitter power Radiated	2.14 dB	(1)	
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)	
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)	
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)	
Radiated Emissions 30~1000MHz	4.70 dB	(1)	
Radiated Emissions 1~18GHz	5.00 dB	(1)	
Radiated Emissions 18~40GHz	5.54 dB	(1)	
Occupied Bandwidth	2.80 dB	(1)	

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

best measurement capability for KSIGN(Guangdong) Testing Co., Ltd.

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

TRF No. FCC Part 15.247_R1

Add:West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

2. GENERAL INFORMATION

2.1. General Description Of EUT

Test Sample Number 1:	1-1-1(Normal Sample),1-1-2(Engineering Sample)
Product Name:	AIR PURIFIER
Trade Mark:	TCL
Model/Type reference:	breeva Pro 400
Listed Model(s):	breeva Pro 400 Premium , A400225W, A400225B, A400P225G, A400P225W
Model Difference:	The series models are the same as the main test models except for different colors. The Breeva Pro 400 Premium has more UV lights and VOC sensors than the Breeva Pro 400.
Power supply:	INPUT: AC 120V~60Hz, 34W
Hardware Version:	V1.3
Software Version:	V1.0
Bluetooth	
Modulation:	GFSK
Operation frequency:	2402MHz~2480MHz
Max Output Power:	0.8dBm V
Channel number:	40
Channel separation:	2MHz
Antenna type:	PCB Antenna
Antenna gain:	3dBi

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

2.2. Operation State

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. BLE, 40 channels are provided to the EUT. Channels 00/19/39 were selected for testing.

Report No.: KS2203S1008E02

Operation Frequency List:

Channel	Frequency (MHz)
00	2402
01	2404
	NV V
19	2440
20	2442
21	2444
38	2478
39	2480

Note: The display in grey were the channel selected for testing.

Test Channel

Channel	Channel	Frequency (MHz)
Low	00	2402
Middle	19	2440
High	39	2480

Test mode

NO.	TEST MODE DESCRIPTION		
1	Low channel TX (2402MHz)		
2	Middle channel TX (2440MHz)		
3	High channel TX (2480MHz)		

Note

- 1. Only the result of the worst case was recorded in the report, if no other cases.
- 2. The test software is the RTLBTAPP Version: 5.2.2.98 which can set the EUT into the individual test modes.

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

2.3. Measurement Instruments List

Tonscend JS0806-2 Test system						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until	
1	Spectrum Analyzer	R&S	FSV40-N	101798	03/04/2023	
2	Vector Signal Generator	Agilent	N5182A	MY50142520	03/04/2023	
3	Analog Signal Generator	HP /	83752A	3344A00337	03/04/2023	
4	Power Sensor	Agilent	E9304A	MY50390009	03/04/2023	
5	Power Sensor	Agilent	E9300A	MY41498315	03/04/2023	
6	Wideband Radio Communication Tester	R&S	CMW500	157282	03/04/2023	
7	Climate Chamber	Angul	AGNH80L	1903042120	03/04/2023	
8	Dual Output DC Power Supply	Agilent	E3646A	MY40009992	03/04/2023	
9	RF Control Unit	Tonscend	JS0806-2	1	03/04/2023	

Report No.: KS2203S1008E02

	Radiated Emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until	
1	EMI Test Receiver	R&S	ESR	102525	03/04/2023	
2	High Pass Filter	Chengdu E-Microwave	OHF-3-18-S	0E01901038	03/04/2023	
3	High Pass Filter	Chengdu E-Microwave	OHF-6.5-18-S	0E01901039	03/04/2023	
4	Spectrum Analyzer	HP	8593E	3831U02087	03/04/2023	
5	Ultra-Broadband logarithmic period Antenna	Schwarzbeck	VULB 9163	01230	12/04/2023	
6	Loop Antenna	Beijin ZHINAN	ZN30900C	18050	03/04/2023	
7	Spectrum Analyzer	R&S	FSV40-N	101798	03/04/2023	
8	Horn Antenna	Schwarzbeck	BBHA 9120 D	2023	03/29/2023	
-9	Pre-Amplifier	Schwarzbeck	BBV 9745	9745#129	03/04/2023	
10	Pre-Amplifier	EMCI	EMC051835SE	980662	03/04/2023	

		Conducted	Emission		
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until
1	LISN	R&S	ENV432	1326.6105.02	03/04/2023
2	EMI Test Receiver	R&S	ESR	102524	03/04/2023
3	Manual RF Switch	JS TOYO	1	MSW-01/002	03/04/2023

Note:

1)The Cal. Interval was one year.

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

²⁾The cable loss has calculated in test result which connection between each test instruments.

2.4. Test Software

Software name	Model	Version
Conducted emission Measurement Software	EZ-EMC	EMC-Con 3A1.1
Radiated emission Measurement Software	EZ-EMC	FA-03A.2.RE
Bluetooth and WIFI Test System	JS1120-3	2.5.77.0418

Report No.: KS2203S1008E02

2.5. Ancillary Equipment list

Equipment	Model	S/N	Manufacturer	Certificate type
V 1	1	1		1

2.6. Description Of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Brand	Model/Type No.	Series No.	Note
1	Adapter	1 🚫	GA-QC810	1	
2	USB Cable		1		

Note:

- 1. The support equipment was authorized by Declaration of Confirmation.
- 2. For detachable type I/O cable should be specified the length in cm in FLength a column.

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

3. TEST ITEM AND RESULTS

3.1. Antenna Requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The EUT antenna is PCB antenna (3dBi), the directional gain of the antenna less than 6dBi. It comply with the standard requirement. In case of replacement of broken antenna the same antenna type must be used.

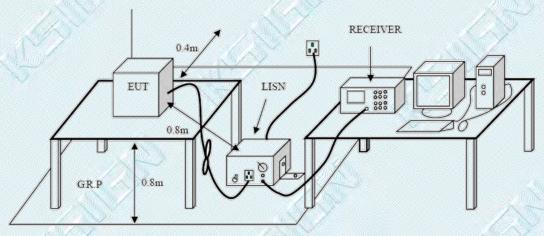
Antenna structure please refer to the EUT internal photographs antenna photo.

TRF No. FCC Part 15.247_R1

Add:West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

3.2. Conducted Emission

Limit


Conducted Emission Test Limit

E	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- 1. *Decreasing linearly with logarithm of the frequency.
- 2. The lower limit shall apply at the transition frequencies.
- 3. The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Test Configuration

Test Procedure

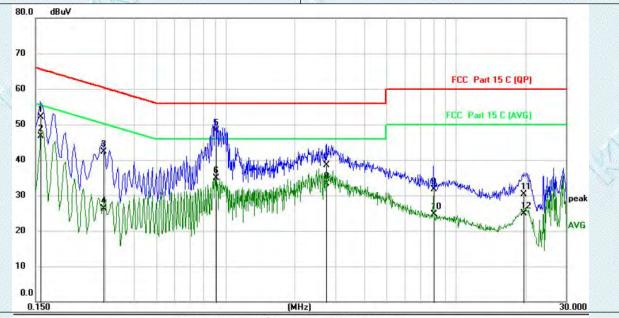
- 1. The EUT was setup according to ANSI C63.10:2020 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment.

 The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

Test Mode:

Please refer to the clause 2.2.

TRF No. FCC Part 15.247_R1


Add:West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Test Results

Test Voltage:	AC 120V/60Hz	
Terminal:	Line	
Test Mode:	BLE	

Report No.: KS2203S1008E02

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1580	41.17	10.86	52.03	65.57	-13.54	QP
2	0.1580	35.77	10.86	46.63	55.57	-8.94	AVG
3	0.2940	31.24	10.97	42.21	60.41	-18.20	QP
4	0.2940	15.27	10.97	26.24	50.41	-24.17	AVG
5 *	0.9060	37.29	11.06	48.35	56.00	-7.65	QP
6	0.9060	23.81	11.06	34.87	46.00	-11.13	AVG
7	2.7460	27.43	11.13	38.56	56.00	-17.44	QP
8	2.7460	22.21	11.13	33.34	46.00	-12.66	AVG
9	8.0100	20.49	11.12	31.61	60.00	-28.39	QP
10	8.0100	13.59	11.12	24.71	50.00	-25.29	AVG
11	19.6660	18.84	11.52	30.36	60.00	-29.64	QP
12	19.6660	13.41	11.52	24.93	50.00	-25.07	AVG

Remarks:

1.Measurement = Reading Level+ Correct Factor

2.Over = Measurement -Limit

TRF No. FCC Part 15.247_R1

Add:West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

TOSE VI	oltage:		Mg Time	AC	2 120V/60Hz				
Termin	nal:		73	Ne	eutral	4			
Test M	lode:	4		BL	Е 💜				009
	70 dBuV 70 60 50 40	M/ ///////////////////////////////////		MININT WHEN THE WAY	floodraall gazirish daga rakein ay kaybaybay Barban basikasa ay karban barbay dhainn iy	FCC	Part 15 C (QP		£
	20 10 0.0 0.150 No. Mk.	Freq.	Reading Level	(MHz) Correct Factor	Measure- ment	Limit	Over	30.000	
	% 		13 (2) (3) 3 (4)	2.7	1.155.7.0	1.00	77.546	500 NO. 10 F	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	
	1	MHz 0.1620	42.51	dB 10.48	dBuV 52.99	dBuV 65.36	dB -12.37	Detector QP	
	1 2 *	1042	- New Park		200	ALC: NO		- And Contract	
, s		0.1620	42.51	10.48	52.99	65.36	-12.37	QP	
	2 *	0.1620 0.1620	42.51 36.62	10.48 10.48	52.99 47.10	65.36 55.36	-12.37 -8.26	QP AVG	
S. C.	2 *	0.1620 0.1620 0.2940	42.51 36.62 31.12	10.48 10.48 10.52	52.99 47.10 41.64	65.36 55.36 60.41	-12.37 -8.26 -18.77	QP AVG QP	
	2 * 3 4	0.1620 0.1620 0.2940 0.2940	42.51 36.62 31.12 15.63	10.48 10.48 10.52 10.52	52.99 47.10 41.64 26.15	65.36 55.36 60.41 50.41	-12.37 -8.26 -18.77 -24.26	QP AVG QP AVG	
	2 * 3 4 5	0.1620 0.1620 0.2940 0.2940 0.9020	42.51 36.62 31.12 15.63 36.59	10.48 10.48 10.52 10.52 10.78	52.99 47.10 41.64 26.15 47.37	65.36 55.36 60.41 50.41 56.00	-12.37 -8.26 -18.77 -24.26 -8.63	QP AVG QP AVG QP	
	2 * 3 4 5 6	0.1620 0.1620 0.2940 0.2940 0.9020 0.9020	42.51 36.62 31.12 15.63 36.59 23.32	10.48 10.48 10.52 10.52 10.78 10.78	52.99 47.10 41.64 26.15 47.37 34.10	65.36 55.36 60.41 50.41 56.00 46.00	-12.37 -8.26 -18.77 -24.26 -8.63 -11.90	QP AVG QP AVG QP AVG	
	2 * 3 4 5 6 7	0.1620 0.1620 0.2940 0.2940 0.9020 0.9020 2.4539	42.51 36.62 31.12 15.63 36.59 23.32 21.13	10.48 10.48 10.52 10.52 10.78 10.78 10.94	52.99 47.10 41.64 26.15 47.37 34.10 32.07	65.36 55.36 60.41 50.41 56.00 46.00 56.00	-12.37 -8.26 -18.77 -24.26 -8.63 -11.90 -23.93	QP AVG QP AVG QP AVG	
	2 * 3 4 5 6 7 8	0.1620 0.1620 0.2940 0.2940 0.9020 0.9020 2.4539 2.4539	42.51 36.62 31.12 15.63 36.59 23.32 21.13 14.25	10.48 10.48 10.52 10.52 10.78 10.78 10.94	52.99 47.10 41.64 26.15 47.37 34.10 32.07 25.19	65.36 55.36 60.41 50.41 56.00 46.00 46.00	-12.37 -8.26 -18.77 -24.26 -8.63 -11.90 -23.93 -20.81	QP AVG QP AVG QP AVG AVG	
	2 * 3 4 5 6 7 8 9	0.1620 0.1620 0.2940 0.2940 0.9020 0.9020 2.4539 2.4539 8.0060	42.51 36.62 31.12 15.63 36.59 23.32 21.13 14.25 22.89	10.48 10.48 10.52 10.52 10.78 10.78 10.94 10.94 11.07	52.99 47.10 41.64 26.15 47.37 34.10 32.07 25.19 33.96	65.36 55.36 60.41 50.41 56.00 46.00 46.00 60.00	-12.37 -8.26 -18.77 -24.26 -8.63 -11.90 -23.93 -20.81 -26.04	QP AVG QP AVG QP AVG QP AVG	

1.Measurement = Reading Level+ Correct Factor

2.Over = Measurement -Limit

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

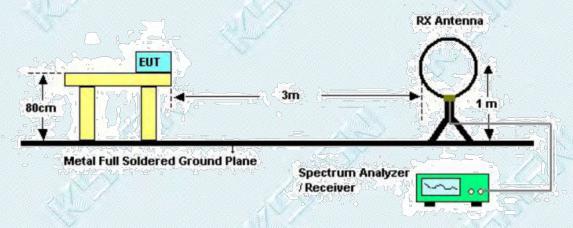
3.3. Spurious Emission (Radiated)

Limit

Radiated Emission Limits (9 kHz~1000 MHz)

Report No.: KS2203S1008E02

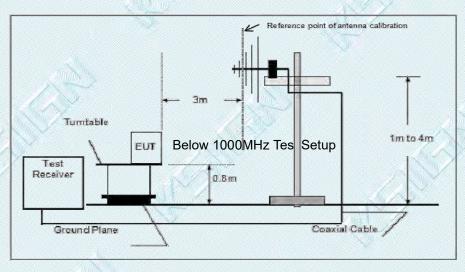
Frequency (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

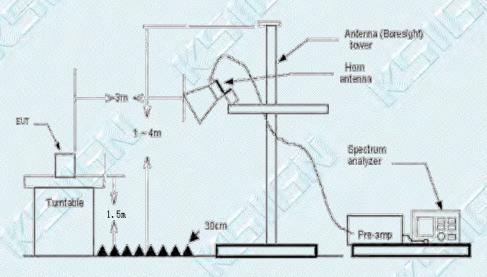

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Meters(at 3m)			
(MHz)	Peak	Average		
Above 1000	74	54		

Note:

- 1. The tighter limit applies at the band edges.
- 2. Emission Level (dBuV/m)=20log Emission Level (uV/m).


Test Configuration


Below 30MHz Test Setup

Add:West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Below 1000MHz Test Setup

Above 1GHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2020
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

TRF No. FCC Part 15.247_R1

Add:West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Report No.: KS2203S1008E02

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=10Hz Peak detector for Peak value.

Test Mode

Please refer to the clause 2.2.

Test Result

9 KHz - 30 MHz

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
	/207-	/ / /	-	Pass
SX	302			Pass

Note:

- 1. For 9kHz-30MHz, the amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Distance extrapolation factor =40 log (specific distance/test distance)(dB);
- 3. Limit line = specific limits (dBuV) + distance extrapolation factor.

Note:

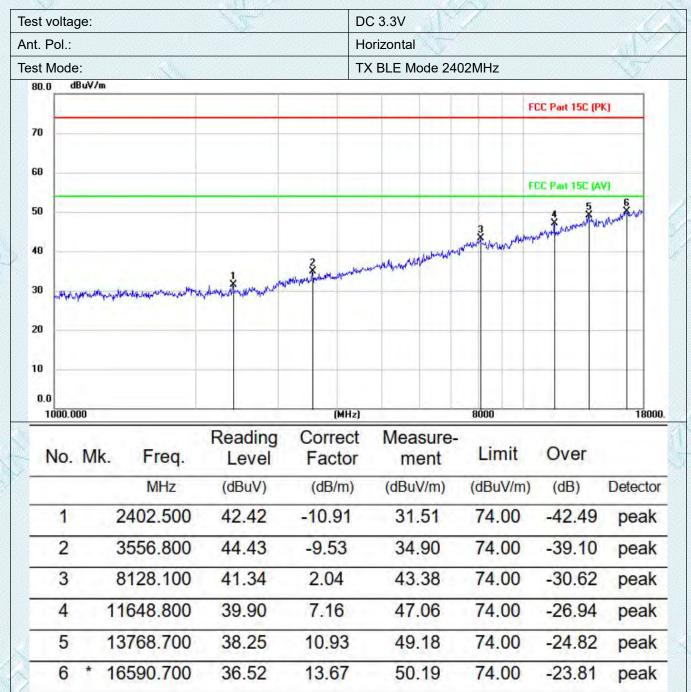
- Measurement = Reading level + Correct Factor
 Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor
- 2) The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3) The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4) The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

TRF No. FCC Part 15.247_R1

Add:West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

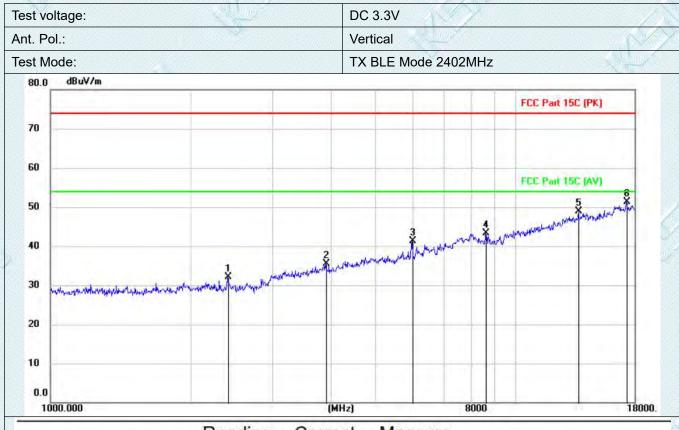
30MHz - 1GHz

TRF No. FCC Part 15.247_R1


Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Test voltage:			DC	3.3V			
Ant. Pol.:		150	Ver	tical	/		
Test Mode:			TX	BLE Mode 2402	2MHz		
80.0 dBuV/	/m						
70							
60					FCC Part 15C	(30MHz-1GHz)	
50						Margin 6	
40		_4					
30			Inthus in 5				
20 Wall-Trade Labor	And make how		July July	harring way may make the	Andrew Mandall Millians	of the manders of the	shownsh
1047	60	100		haralmonial manifold	500	drew on words and the	1000
10 0.0	60	100 Reading Level	(MHz) Correct Factor	Measure- ment	500	Over	1000
10 0.0 30.000	60	Reading	(MHz) Correct	Measure-		Over (dB)	
20 10 0.0 30.000	//////////////////////////////////////	Reading Level	Correct Factor	Measure- ment	Limit	1,000,000	
10 0.0 30.000 No. N	/k. Freq.	Reading Level (dBuV)	Correct Factor (dB/m)	Measure- ment (dBuV/m)	Limit (dBuV/m)	(dB)	Detecto
10 0.0 30.000 No. N	Mk. Freq. MHz 39.9942	Reading Level (dBuV) 42.37	(dB/m)	Measure- ment (dBuV/m) 25.26	Limit (dBuV/m) 40.00	(dB) -14.74	Detecto
No.	Mk. Freq. MHz 39.9942 71.9833 75.8443	Reading Level (dBuV) 42.37 44.15	Correct Factor (dB/m) -17.11 -19.91	Measure- ment (dBuV/m) 25.26 24.24	Limit (dBuV/m) 40.00 40.00	(dB) -14.74 -15.76	Detecto QP QP
10 0.0 30.000 No. N	Mk. Freq. MHz 39.9942 71.9833 75.8443	Reading Level (dBuV) 42.37 44.15 45.50	(dB/m) -17.11 -19.91 -20.41	Measure- ment (dBuV/m) 25.26 24.24 25.09	Limit (dBuV/m) 40.00 40.00 40.00	(dB) -14.74 -15.76 -14.91	QP QP

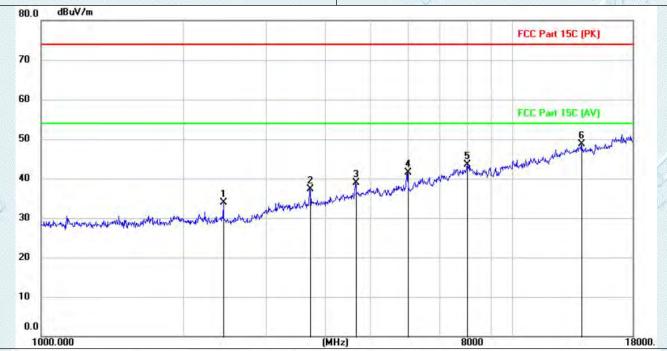
Above 1GHz



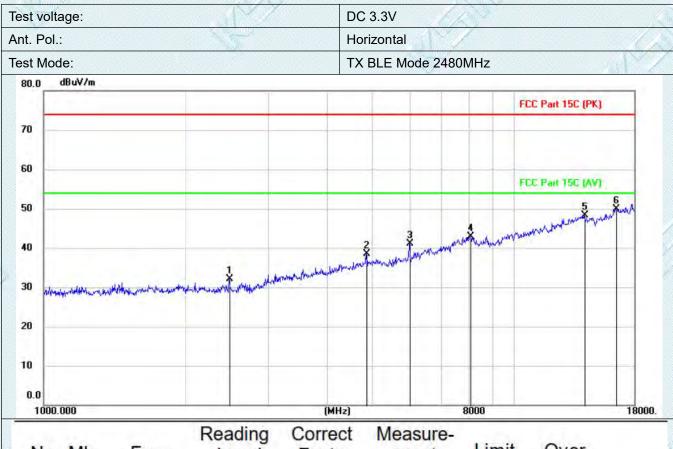
TRF No. FCC Part 15.247_R1

Emission Level= Read Level+ Correct Factor

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1		2402.500	43.03	-10.91	32.12	74.00	-41.88	peak
2		3901.900	44.16	-8.68	35.48	74.00	-38.52	peak
3		5994.600	45.02	-3.81	41.21	74.00	-32.79	peak
4		8622.800	41.34	1.91	43.25	74.00	-30.75	peak
5	1	13659.900	38.03	10.81	48.84	74.00	-25.16	peak
6	* 1	7330.200	38.05	13.28	51.33	74.00	-22.67	peak

est volta	ige:	and the second	D	DC 3.3V					
nt. Pol.:		NT'	Н	Horizontal					
est Mode	e:		T.	X BLE Mode 244	10MHz		\mathbb{R}^{N}		
80.0	dBuV/m								
					FC	CC Part 15C (PK)		
70									
60					FC	C Part 15C (AV			
50									
40				warmen and a second	constituent of more	W. Charles by March 20 al			
30	warend water parend hard profess for the substant problem	de salva de la companya de la compan	make hay before the	and make the same that					
20	V MANAGE TO A TANK								
10									
0.0	000		6411-3		9000		10000		
1000.	000	Reading	Correct	Measure-	8000		18000		
No.	Mk. Freq.	Level	Factor	ment	Limit	Over			
	MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detecto		
1	2439.900	44.62	-10.90	33.72	74.00	-40.28	peak		
2	3816.900	43.59	-8.89	34.70	74.00	-39.30	peak		
3	5984.400	43.65	-3.84	39.81	74.00	-34.19	peak		
0				10.00	74.00	-30.97	peak		
4	8048.200	40.97	2.06	43.03	74.00	-30.97	peak		
7	8048.200 13042.800	40.97 37.86	2.06 9.99	43.03	74.00	-26.15	peak		



DC 3.3V
Vertical
TX BLE Mode 2440MHz
POLYSCHOOL DISPERSON DESCRIPTION

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1		2439.900	44.75	-10.90	33.85	74.00	-40.15	peak
2		3725.100	46.41	-9.12	37.29	74.00	-36.71	peak
3		4649.900	45.22	-6.34	38.88	74.00	-35.12	peak
4		5986.100	45.43	-3.84	41.59	74.00	-32.41	peak
5		8031.200	41.43	2.06	43.49	74.00	-30.51	peak
6	*	14030.500	37.60	11.19	48.79	74.00	-25.21	peak

								117777
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1		2480.700	42.90	-10.89	32.01	74.00	-41.99	peak
2		4853.900	44.27	-5.79	38.48	74.00	-35.52	peak
3		5998.000	44.94	-3.81	41.13	74.00	-32.87	peak
4		8063.500	40.91	2.06	42.97	74.00	-31.03	peak
5		14084.900	37.21	11.12	48.33	74.00	-25.67	peak
6	*	16498.900	36.19	13.81	50.00	74.00	-24.00	peak

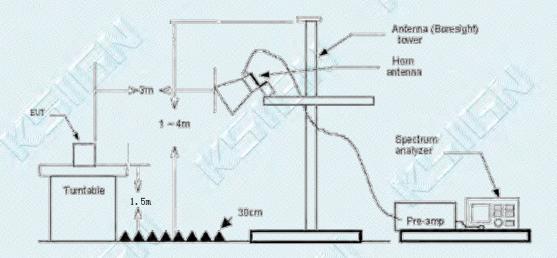
Test volt	age:		lad .		DC 3.3V					
Ant. Pol	.:		12	V	Vertical					
Test Mo	de:			Т	X BLE Mode 248	0MHz				
80.0	dBuV/m									
						F	CC Part 15C (PK	1		
70										
60							PO N 150 (ALL	_		
							CC Part 15C (AV	5		
40				ş	Jumm	man de manus de la companya de la co	manage and the	March R.M.		
30 mg	A commission of the second	warran hiddfilan ingilikuwan	Harris Market	Marchael Harabalant	any many many many many many many many m					
20										
10										
0.0 1000.	000			(MHz)		8000		18000		
7.6	. Mk.	Freq.	Reading Level	Correct	Measure- ment		Over			
_		MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detecto		
1	1	2479.000	42.23	-10.89	31.34	74.00	-42.66	peak		
2		3721.700	46.69	-9.12	37.57	74.00	-36.43	peak		
3		5994.600	45.46	-3.81	41.65	74.00	-32.35	peak		
4		8060.100	40.70	2.06	42.76	74.00	-31.24	peak		
5	13	3908.100	37.10	11.12	48.22	74.00	-25.78	peak		
6	* 17	7087.100	38.09	13.09	51.18	74.00	-22.82	peak		
	n Lovol-	Read Level+	Correct Factor		10			-,%		

Note:

1.18GHz-26.5GHz is the background of the site, there is no radiated spurious.

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China


3.4. Band Edge Emissions(Radiated)

Limit

Restricted Frequency Band	(dBuV/m)(at 3m)				
(MHz)	Peak	Average			
2310 ~2390	74	54			
2483.5 ~2500	74	54			

Note: All restriction bands have been tested, only the worst case is reported.

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2020 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2020 on radiated measurement.
- 5. The receiver set as follow:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=10Hz with Peak detector for Average value.

Test Mode

Please refer to the clause 2.2.

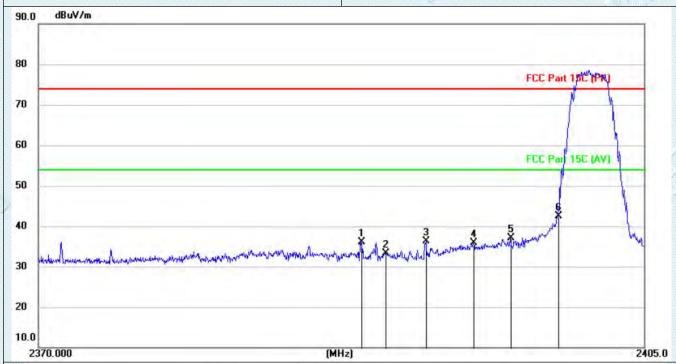
Test Results

Note:

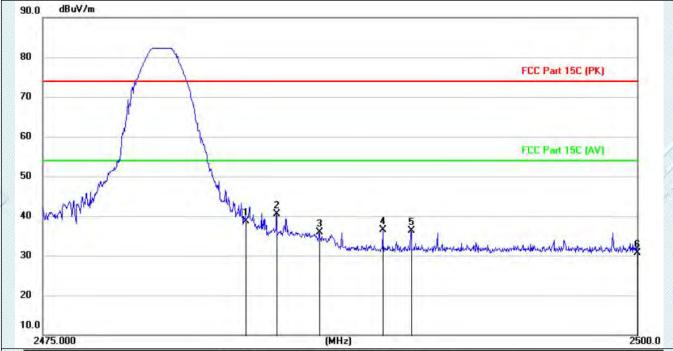
- Measurement = Reading level + Correct Factor
- 2. Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor

TRF No. FCC Part 15.247_R1

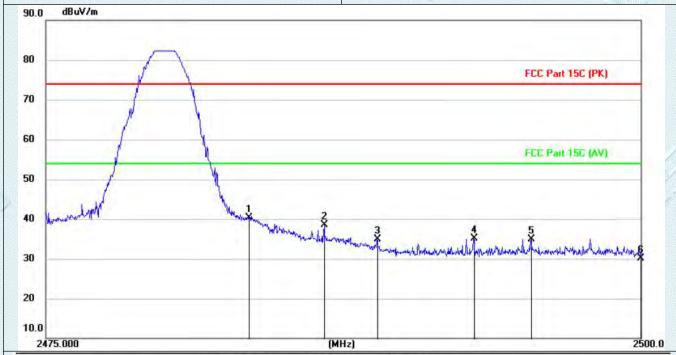
Add:West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China


Test Voltage	DC 3.3V
Ant. Pol.:	Horizontal
Test Mode:	TX BLE Mode 2402MHz
90.0 dBuV/m	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1		2390.000	41.76	-10.92	30.84	74.00	-43.16	peak
2		2392.452	47.10	-10.92	36.18	74.00	-37.82	peak
3		2395.008	46.59	-10.91	35.68	74.00	-38.32	peak
4		2397.048	48.94	-10.92	38.02	74.00	-35.98	peak
5		2398.357	51.04	-10.92	40.12	74.00	-33.88	peak
6	*	2400.000	59.97	-10.92	49.05	74.00	-24.95	peak


Test Voltage	DC 3.3V
Ant. Pol.	Vertical
Test Mode:	TX BLE Mode 2402MHz

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
	2388.617	47.09	-10.93	36.16	74.00	-37.84	peak
	2390.000	44.18	-10.92	33.26	74.00	-40.74	peak
	2392.376	47.20	-10.92	36.28	74.00	-37.72	peak
	2395.113	46.90	-10.91	35.99	74.00	-38.01	peak
	2397.240	48.00	-10.92	37.08	74.00	-36.92	peak
*	2400.000	53.34	-10.92	42.42	74.00	-31.58	peak
		MHz 2388.617 2390.000 2392.376 2395.113 2397.240	Mk. Freq. Level MHz (dBuV) 2388.617 47.09 2390.000 44.18 2392.376 47.20 2395.113 46.90 2397.240 48.00	Mk. Freq. Level Factor MHz (dBuV) (dB/m) 2388.617 47.09 -10.93 2390.000 44.18 -10.92 2392.376 47.20 -10.92 2395.113 46.90 -10.91 2397.240 48.00 -10.92	Mk. Freq. Level Factor ment MHz (dBuV) (dB/m) (dBuV/m) 2388.617 47.09 -10.93 36.16 2390.000 44.18 -10.92 33.26 2392.376 47.20 -10.92 36.28 2395.113 46.90 -10.91 35.99 2397.240 48.00 -10.92 37.08	Mk. Freq. Level Factor ment Limit MHz (dBuV) (dB/m) (dBuV/m) (dBuV/m) 2388.617 47.09 -10.93 36.16 74.00 2390.000 44.18 -10.92 33.26 74.00 2392.376 47.20 -10.92 36.28 74.00 2395.113 46.90 -10.91 35.99 74.00 2397.240 48.00 -10.92 37.08 74.00	Mk. Freq. Level Factor ment Limit Over MHz (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 2388.617 47.09 -10.93 36.16 74.00 -37.84 2390.000 44.18 -10.92 33.26 74.00 -40.74 2392.376 47.20 -10.92 36.28 74.00 -37.72 2395.113 46.90 -10.91 35.99 74.00 -38.01 2397.240 48.00 -10.92 37.08 74.00 -36.92


Test Voltage	DC 3.3V
Ant. Pol.	Horizontal
Test Mode:	TX BLE Mode 2480 MHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1		2483.500	49.67	-10.88	38.79	74.00	-35.21	peak
2	*	2484.802	51.31	-10.88	40.43	74.00	-33.57	peak
3		2486.597	46.76	-10.88	35.88	74.00	-38.12	peak
4		2489.287	47.48	-10.89	36.59	74.00	-37.41	peak
5		2490.470	47.26	-10.89	36.37	74.00	-37.63	peak
6		2500.000	41.60	-10.88	30.72	74.00	-43.28	peak

Test Voltage	DC 3.3V
Ant. Pol.	Vertical
Test Mode:	TX BLE Mode 2480 MHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1	*	2483.500	51.10	-10.88	40.22	74.00	-33.78	peak
2		2486.675	49.42	-10.88	38.54	74.00	-35.46	peak
3		2488.898	45.82	-10.89	34.93	74.00	-39.07	peak
4		2492.970	45.92	-10.89	35.03	74.00	-38.97	peak
5		2495.390	45.75	-10.87	34.88	74.00	-39.12	peak
6		2500.000	41.01	-10.88	30.13	74.00	-43.87	peak

Emission Level= Read Level+ Correct Factor

3.5. Peak Output Power

Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	1 Watt or 30 dBm	2400~2483.5

Test Configuration

Test Procedure

- 1. Connect EUT RF Output port to the Spectrum Analyzer through an RF attenuator.
- 2. Spectrum Setting:

Peak Detector: RBW ≥ DTS Bandwidth, VBW ≥ 3*RBW.

Sweep time=Auto.

Detector= Peak.

Trace mode= Maxhold.

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode

Please refer to the clause 2.2.

Test Result

Test Channel	Frequency (MHz)	Maximum Conducted Output Power(PK) (dBm)	Limit (dBm)	Result
CH00	2402	0.12	30	Pass
CH19	2440	0.80	30	Pass
CH39	2480	0.62	30	Pass

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing,

Bao'an District, Shenzhen, Guangdong, China

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

3.6. Power Spectral Density

Limit

200	FCC Part 15 Subpart C(15.247)	S
Test Item	Limit	Frequency Range(MHz)
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5

Test Configuration

Test Procedure

- 1. Connect EUT RF Output port to the Spectrum Analyzer through an RF attenuator.
- 2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.b-6.ii of KDB 558074 D01 DTS Meas Guidance v05r02.
- 3. Spectrum Setting:

Set analyzer center frequency to DTS channel center frequency.

Set the span to 1.5 times the DTS bandwidth.

Set the RBW ≥ 3 kHz

Set the VBW ≥ 3 x RBW

Detector: peak

Sweep time: auto couple

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Mode

Please refer to the clause 2.2.

Test Result

Note:

Power Density(dBm/3kHz)=Power Density(dBm/10kHz)-10*Log(10/3)


TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing,

Bao'an District, Shenzhen, Guangdong, China

Frequency	Power Density (dBm/10kHz)	Power Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
2402 MHz	-10.22	-15.45	8	Pass
2440 MHz	-8.44	-13.67	8	Pass
2480 MHz	-9.74	-14.97	8	Pass

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Add:West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

3.7. 6dB Bandwidth and 99% Bandwidth

Limit

Test Item	Limit	Frequency Range(MHz)
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5

Test Configuration

Test Procedure

- 1. Connect EUT RF Output port to the Spectrum Analyzer through an RF attenuator.
- 2. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB
- 3. The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.
- 4. Spectrum Setting:

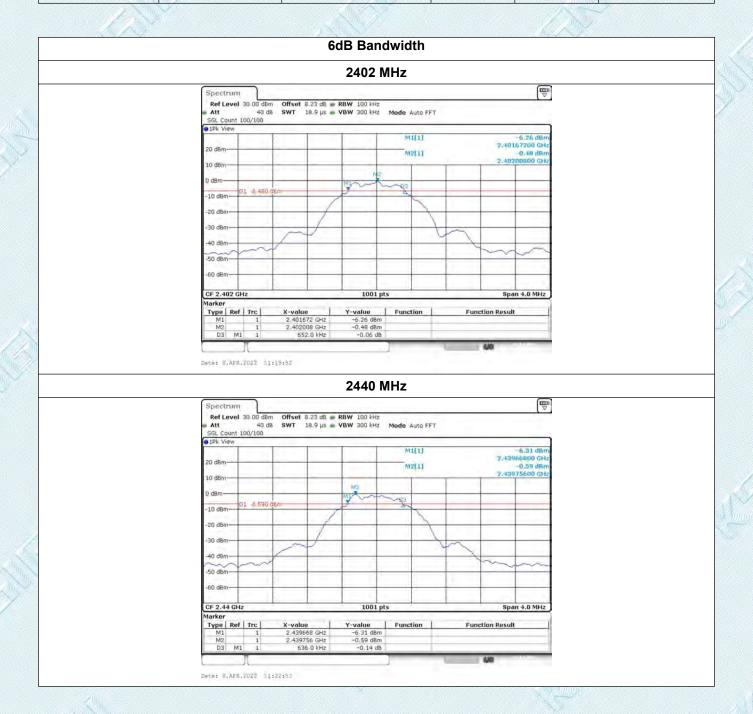
6dB bandwidth:

- (1) Set RBW = 100 kHz.
- (2) Set the video bandwidth (VBW) ≥ 3 RBW.
- (3) Detector = Peak.
- (4) Trace mode = Max hold.
- (5) Sweep = Auto couple.
- (6) Allow the trace to stabilize.
- (7) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
- (8) The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100KHz RBW and 300 KHz VBW record the 99% bandwidth.

Test Mode

Please refer to the clause 2.2.

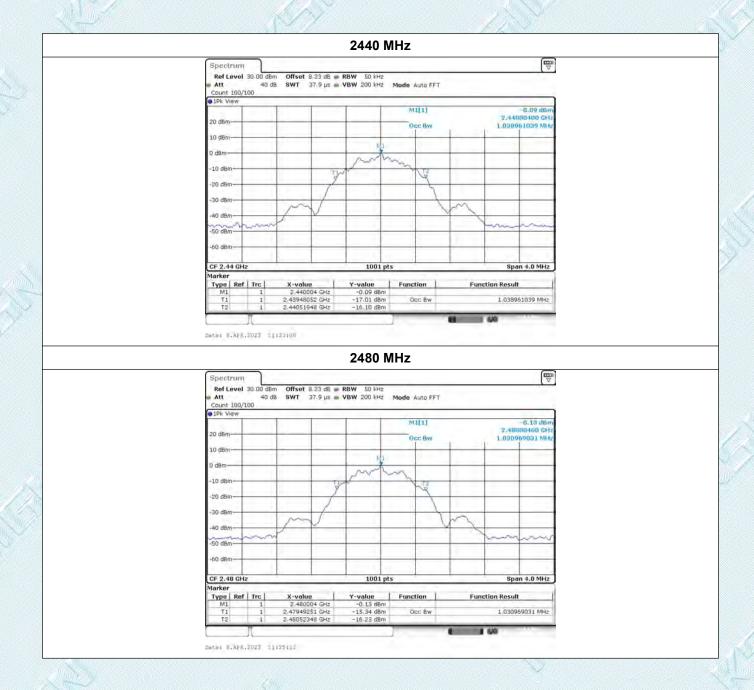
TRF No. FCC Part 15.247_R1

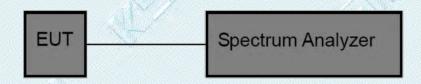

Add:West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Test Results

Channel	Frequency (MHz)	6dB bandwidth (kHz)	99% Bandwidth (MHz)	Limit (kHz)	Result
Low	2402	652	1.043	500	Pass
Middle	2440	636	1.039	500	Pass
High	2480	648	1.031	500	Pass

Report No.: KS2203S1008E02


Add:West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China


3.8. Duty Cycle

Limit

Test Item	Limit	Frequency Range(MHz)
Duty Cycle	No limit requirement	2400~2483.5

Report No.: KS2203S1008E02

Test Configuration

Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested according to the zero-span measurement method, 6.0(b) in KDB 558074 D01 DTS Meas Guidance v05r02.

The largest availble value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Zero Span

RBW = 8MHz (the largest available value)

VBW = 8MHz (≥ RBW)

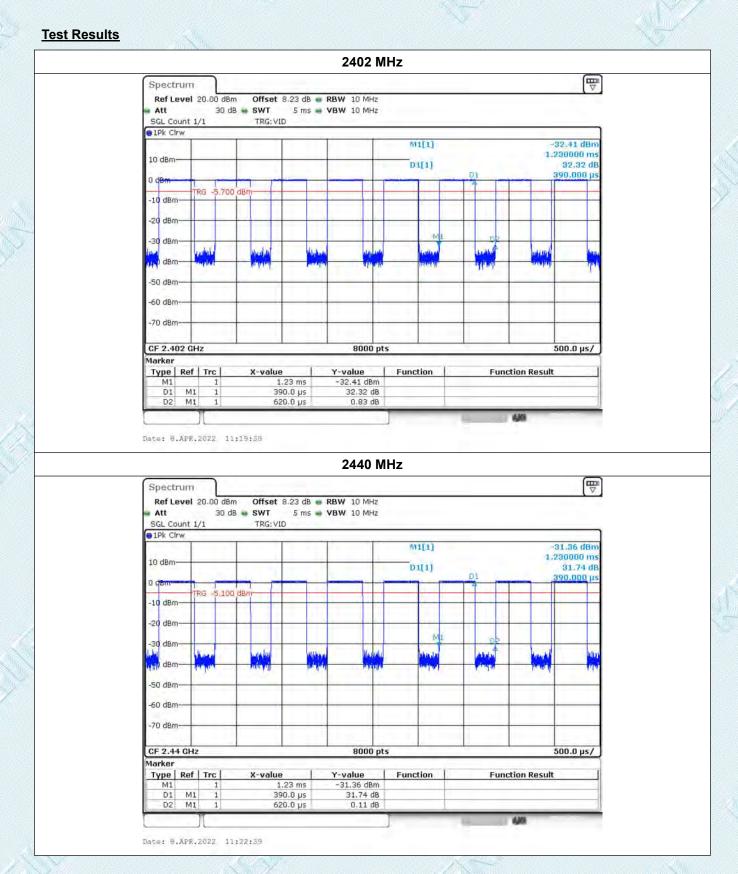
Number of points in Sweep >100

Detector function = peak

Trace = Clear write

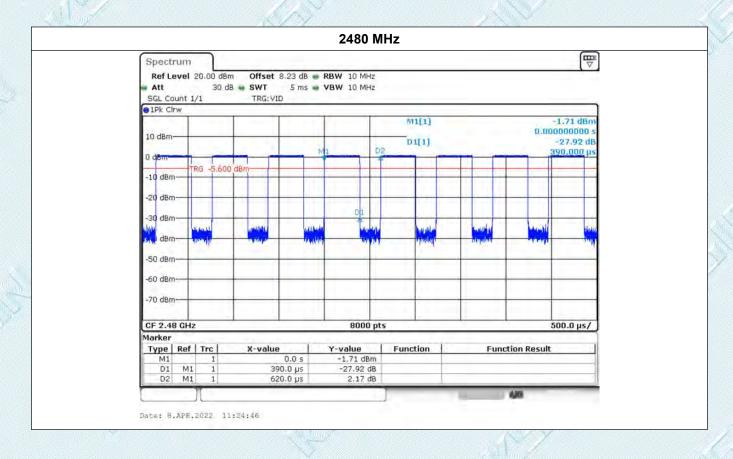
Measure Total and Ton

Calculate Duty Cycle = Ton / Total


TRF No. FCC Part 15.247_R1

Add:West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Test Mode

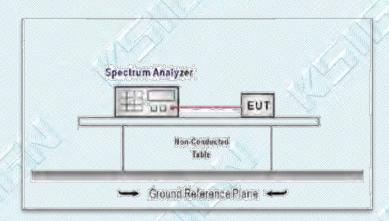

Please refer to the clause 2.2.

TRF No. FCC Part 15.247_R1

Add:West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Add:West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

3.9. Conducted Band Edge


Limit

FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Report No.: KS2203S1008E02

Test Configuration

Test Procedure

- 1. Connect EUT RF Output port to the Spectrum Analyzer through an RF attenuator.
- 2. Spectrum Setting:

RBW=100KHz

VBW=300KHz.

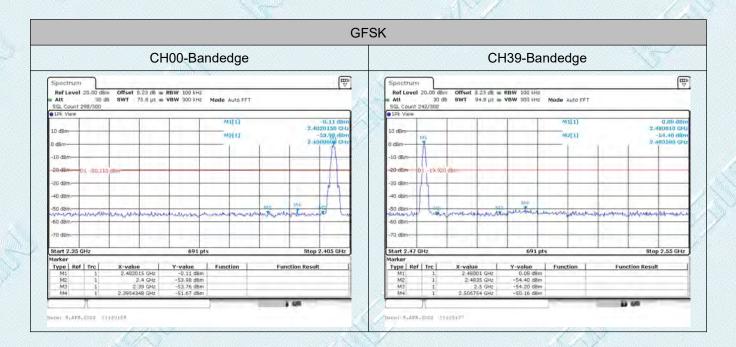
Detector function: Peak.

Trace: Max hold.

Sweep = Auto couple.

Allow the trace to stabilize.

Test Mode


Please refer to the clause 2.2.

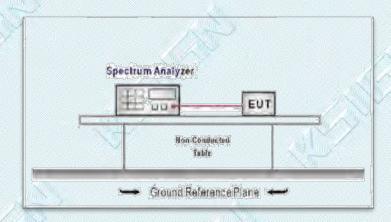
TRF No. FCC Part 15.247_R1

Add:West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Test Results

K516N

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

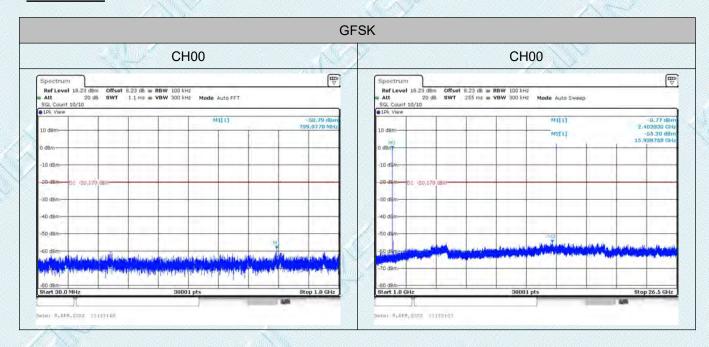


3.10. Spurious RF Conducted Emission

Limit

Below -20dB of the highest emission level in operating band.

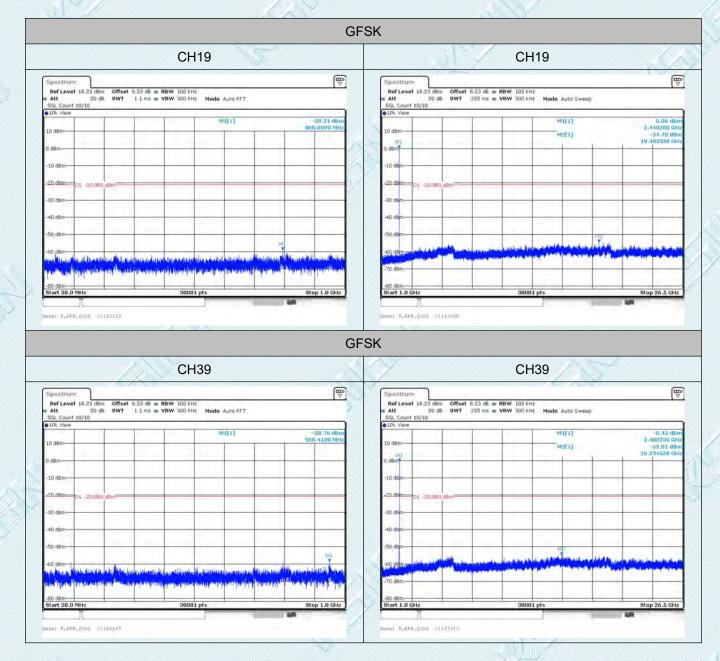
Test Configuration


Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300kHz to measure the peak field strength, and measure frequency range from 9kHz to 26.5GHz.

Test Mode

Please refer to the clause 2.2.

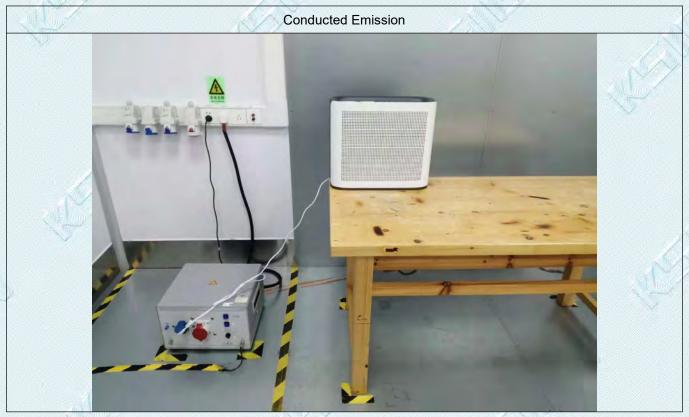

Test Results

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

4.EUT TEST PHOTOS


Radiated Measurement (Above 1GHz)

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

5.PHOTOGRAPHS OF EUT CONSTRUCTIONAL

Please refer to the report Report No.: KS2203S1008E01

--THE END--

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing,

Bao'an District, Shenzhen, Guangdong, China