

Report No.: 18220WC300814-M1 FCC ID: 2AZUR-NETR7 Page 1 of 110

FCC SAR Test Report

Client Name	: ShenZhen Telconn Technology Co.,Ltd.
Client Address	Room 1202,12th floor, Tinno Building Xili Road, Nanshan district,Shenzhen,China

Product Name

Tablet PC

Report Date : Jul. 13, 2023

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M1

FCC ID: 2AZUR-NETR7

Page 2 of 110

Contents

1. Statement of Compliance	Anboten	PUD	elt.	botek	Anbor	
2. General Information	obote	Anbr		Lotek		
2.1. Client Information		o ^{tok} N	10010	An	anboten	
2.2. Description of EquipmentUnder Test						
2.3. Device Category and SAR Limits	poten p	nbo	abotek	Anbo		
2.4. Applied Standard	abote	Anu		14. 16	1901 P.	
2.5. Environment of Test Site	hotek	Anbote	Ano	ek	nabotek	
2.6. Test Configuration	All	anbo	en pro		hotek	
3. Specific Absorption Rate (SAR)	AUDO					Anbotete 9
3.1. Introduction	Anbo		dte ^k	Anbore	Pue.	
3.2. SAR Definition	otok M	hote.	Ann	nbot	ak Anbo.	9
4. SAR Measurement System	Aatok	anbotek	Anbu	×	potek Anl	
4.1. E-Field Probe						
4.2. Data Acquisition Electronics (DAE)	Anbor		alt An	oter	Ano	
4.3. Robot	Anbo			nbote	Ann	
4.4. Measurement Server	r sobo	ion An		notek	Anbor	
4.5. Phantom		botek	Anbon	Parale	K Anbote	
4.6. Device Holder	0. by	otek	Anboten	Anu		
4.7. Data Storage and Evaluation	nbote	Ann	nbote	Anb	р	
5. Test Equipment List						
6. Tissue Simulating Liquids	abotek	Anbor		notek	Anboten	19
System Verification Procedures		ant ant	1917 - 18 1917 - 18	March	nbore	
8. EUT Testing Position		Not	nboten	Anbe	botel	24
8.1. Head Position	bee. bee		hoten	Aupr		
8.2. Body Position	potek	Anbo	p	pnb	ster Ano	25
8.3. Hotspot Mode Exposure conditions		Anbore	Por		poten P	
9. Measurement Procedures	All	Lobote	- Aup.		botek	
9.1. Spatial Peak SAR Evaluation					Asi. notek	27
9.2. Power Reference Measurement	Anbo		-vote ^k	Anbots	Ann	
9.3. Area Scan Procedures	i ^{ok} M ^b	pres P		anboten	Anbu	28
9.4. Zoom Scan Procedures		npoten	Anb		tok Anbo	29
9.5. Volume Scan Procedures						
9.6. Power Drift Monitoring	Anbo			16. M		
10. Conducted Power	Anbore			poten	Anor	
11. Antenna Location	Anthone	Ano		hotek	Anbor	37
12. SAR Test Results Summary		stek M	100.		photes	
12.1. Head SAR Results						
12.2. Body-worn and Hotspot SAR Resul	lts		Rubolen	Anbe		42
13. SAR Measurement Variability	photor	Amo		ek An	po' pi	45
Shenzhen Anbotek Compliance Laborator		Anbo	Pr.	Code [.]	B-RF-05-b	
	Deal Ord	0.000	Pio Pio	H	otline	741000

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Hotline 400–003–0500 www.anbotek.com.cn

	Page 3 of 110
14. Simultaneous Transmission Analysis Simultaneous TX SAR Considerations	
15. Measurement Uncertainty	51
Appendix A. EUT Photos and Test Setup Photos	53
Appendix B. Plots of SAR System Check	
Appendix C. Plots of SAR Test Data	
Appendix D. DASY System Calibration Certificate	
Appendix E. Extended Calibration SAR Dipole	

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Code:AB-RF-05-b Hotline 400-003-0500

www.anbotek.com.cn

Report No.: 18220WC300814-M1

FCC ID: 2AZUR-NETR7

Page 4 of 110

TEST REPORT

Applicant	nbore	ShenZhen Telconn Technology Co.,Ltd.
Manufacturer	Aupon	ShenZhen Telconn Technology Co.,Ltd.
Product Name	pat	Tablet PC
Model No.	. : I	NET R7, NET
Trade Mark	ter	KRONO
Rating(s)	boten	DC 3.7V From Battery and DC 5.0V From external circuit

Test Standard(s) : IEC 62209-2:2010; IEEE 1528:2013; FCC 47 CFR Part 2 (2.1093:2013); ANSI/IEEE C95.1:2005; Reference FCC KDB 447498; KDB 248227; KDB 616217; KDB 941225; KDB 865664

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the IEEE 1528-2013, FCC 47 CFR Part 2 (2.1093), ANSI/IEEE C95.1:2005requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt Date of Test

Prepared By

May. 01, 2023 May. 01, 2023~ May. 09, 2023

Lano Flla

(Ella Liang)

Approved & Authorized Signer

(Kingkong Jin)

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Page 5 of 110

Version

Version No.	Date	Description			
R00	May. 09, 2023	Original			
R01	Jul. 13, 2023	Change the Applicant and Manufacturer			
totek anbotek	Anbotek Anbor	k anbotek Anbotek Anbotek Anbotek			
unbon potek Anbotek	Anboren Ano	otek Anbotek Anbotek Anbotek Anbotek			
Anbotek Anbot	Anboyek	Anbotek Anbotek Anbotek Anbotek Anbotek Anbo			
Anbotek An	wotek Anbotek	Anbotek Anbotek Anbotek Anbotek			

Note: The test report 18220WC300814-M1 supersedes the test report 18220WC300814 which is withdrawn.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Page 6 of 110

1. Statement of Compliance

<Highest SAR Summary>

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 The maximum results of Specific Absorption Rate (SAR) found during testing are as follows.

<Highest SAR Summary>

	Highest Repor	ted 1g-SAR(W/Kg)	SAR Test Limit		
Frequency Band	Head	Body-worn and Hotspot(0mm)	(W/Kg)		
GSM 850	0.227	0.570	Anboit An sotek		
GSM1900	0.245	0.647	Anboten Ano		
WCDMA Band II	0.303	1.06	tek Anbotek Anbo		
WCDMA Band V	0.275	1.04	potek P1.6		
WLAN2.4G	0.284	0.262	to otek Anbotek		
Simultaneous Reported SAR (W/Kg)	0.587	1.322	Anbolek Anbolek Anbolek Anbolek		
Test Result	velt abotek	PASS	lek anboten Anbo		

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M1

2. General Information

2.1. Client Information

Applicant	:	ShenZhen Telconn Technology Co.,Ltd.	abotek	phip
Address	:	Room 1202,12th floor, Tinno Building Xili Road, Nanshan district,Shenzhen,China	Anbotek	¥-
Manufacturer	:	ShenZhen Telconn Technology Co.,Ltd.		
Address	:	Room 1202,12th floor, Tinno Building Xili Road, Nanshan district,Shenzhen,China	over pro	Inbotel

FCC ID: 2AZUR-NETR7

2.2. Description of EquipmentUnder Test (EUT)

2.2. Description of	See.	
Product Name	:	Tablet PC
Model No.	:	NET R7, NET Andres Andres Andres Andres Andres Andres
Trade Mark	:	KRONO
Test Power Supply	:	DC 3.7V From Battery and DC 5.0V From external circuit
Test Sample No.	:	CTA230413001-1# (Engineer sample) CTA230413001-2# (Normal sample)
Tx Frequency	•	BT BDR+EDR/BT BLE: 2402-2480MHz 2.4G WIFI: 2412-2462MHz GSM 850: TX: 824.2~848.8 MHz PCS 1900: TX: 1850.2~1909.8 MHz UMTS Band 2: TX: 1852.4~1907.6 MHz UMTS Band 5: TX: 826.4 ~ 846.6 MHz:
Type of Modulation	•	GSM:GMSK WCDMA:QPSK BT: GFSK, π/4-DQPSK, 8DPSK 2.4G WIFI:BPSK,QPSK,16QAM,64QAM
Category of device	•	Portable device
		nation was declared by manufacturer. Please refer to the specifications or detailed description.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Code:AB-RF-05-b Hotline 400-003-0500 www.anbotek.com.cn

Page 7 of 110

FCC ID: 2AZUR-NETR

Page 8 of 110

2.3. Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

2.4. Applied Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093:2013)
- ANSI/IEEE C95.1:2005
- IEEE Std 1528:2013
- KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- KDB 865664 D02 RF Exposure Reporting v01r02
- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 248227 D01 802 11 Wi-Fi SAR v02r02
- KDB 941225 D01 3G SAR Procedures v03r01
- KDB 941225 D06 Hotspot SARv02r01
- KDB 648474 D04 Handset SAR v01r03

2.5. Environment of Test Site

Items	Required	Actual
Temperature (°C)	18-25	22~23
Humidity (%RH)	30-70	55~65

2.6. Test Configuration

The device was controlled by using a base station emulator. Communication between the device and the emulator was established by air link. The distance between the EUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during all tests. For WLAN SAR testing, WLAN engineering testing software installed on the EUT can provide continuous transmitting RF signal.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Product Safety

Anbotek

Report No.: 18220WC300814-M1

FCC ID: 2AZUR-NETR

Page 9 of 110

3. Specific Absorption Rate (SAR)

3.1.Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled limits are limits exposure higher than the for general population/uncontrolled.

3.2. SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific head capacity, δT is the temperature rise and δ tisthe exposure duration, or related to the electrical field in the tissue by

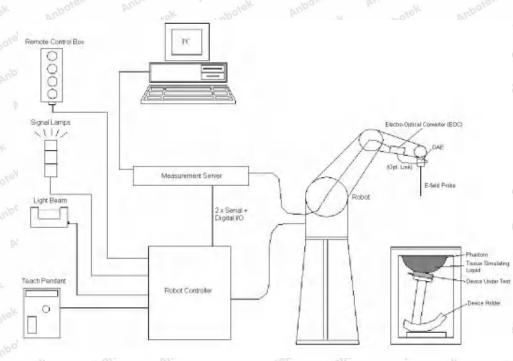
$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com



FCC ID: 2AZUR-NETR7

Page 10 of 110

4. SAR Measurement System

DASY System Configurations

The DASYsystem for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- > A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- > A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- > The SAM twin phantom
- A device holder
- Tissue simulating liquid
- > Dipole for evaluating the proper functioning of the system

components are described in details in the following sub-sections.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Page 11 of 110

4.1.E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

E-Field Probe Specification <EX3DV4 Probe>

201	ADY JOY ANY	NOV
Construction	Symmetrical design with triangular	nbo'
5	core	and and and
	Built-in shielding against static charges	
	PEEK enclosure material (resistant to	Ant a
	organic solvents, e.g., DGBE)	
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB	ster
Directivity	± 0.3 dB in HSL (rotation around probe	4 ⁸ 000
	axis)	
	± 0.5 dB in tissue material (rotation	P.G.
	normal to probe axis)	olo,
Dynamic Range	10 μ W/g to 100 W/kg; Linearity: ± 0.2	
	dB (noise: typically< 1 μW/g)	Photo of EX3DV4
Dimensions	Overall length: 330 mm (Tip: 20 mm)	otek anbotek Anbo
	Tip diameter: 2.5 mm (Body: 12 mm)	ibu vek stotek Anbon
	Typical distance from probe tip to	Anboin An notek Anboten
	dipole centers: 1 mm	Anboten Antre tek Anbo

> E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

4.2. Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel;(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Photo of DAE

4.3.Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controllersystem, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäublirobot series have many features that are important for our application:

- > High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

Photo of DASY5

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

4.4. Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Photo of Server for DASY5

4.5. Phantom

Shell Thickness2 ± 0.2 mm;
Center ear point: 6 ± 0.2 mmFilling VolumeApprox. 25 litersDimensionsLength: 1000 mm; Width: 500 mm;
Height: adjustable feetMeasurement
AreasLeft Hand, Right Hand, Flat
Phantom

Photo of SAM Phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b Hotline 400-003-0500 www.anbotek.com.cn

<SAM Twin Phantom>

Report No.: 18220WC300814-M1 F

FCC ID: 2AZUR-NETR

Page 14 of 110

<ELI4 Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)
Filling Volume	Approx. 30 liters
Dimensions	Major ellipse axis: 600 mm
	Minor axis:400 mm
	Anborek
	Photo of ELI4 Phantom

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

4.6. Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP).Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Page 15 of 110

Device Holder

4.7. Data Storage and Evaluation

Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [W/kg]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Anbotek				
Product Safety				
Report No.: 18220WC300814-I	M1 FCC IE): 2AZUR-NETR	7 Anbotek	Page 16 of 110
Probe parameters:	- Sensitivity	Norm _i ,	a _{i0} , a _{i1} , a _{i2}	
	- Conversion factor	ConvFi		
Anbolen Anbo	- Diode compression p	oint dcp _i		
Device parameters	- Frequency	Anu Ex		
	- Crest factor	M ^{boo} cf		
Media parameters:	- Conductivity	σ		
	- Density	jotek P Anbotek		

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

The formula for each channel can be given as:

$$\mathbf{V_i} = \mathbf{U_i} + \mathbf{U_i^2} \cdot \frac{\mathbf{cf}}{\mathbf{dcp_i}}$$

with V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

E-field Probes: $E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$

H-field Probes: $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$

with V_i = compensated signal of channel i,(i= x, y, z)

Norm_i= sensor sensitivity of channel i, (i= x, y, z), $\mu V/(V/m)^2$ for E-field Probes

ConvF= sensitivity enhancement in solution

aij= sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

- $E_i\text{=}$ electric field strength of channel iin V/m
- H_i= magnetic field strength of channel iin A/m

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Page 17 of 110

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in W/kg

Etot= total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M

FCC ID: 2AZUR-NETR7

Page 18 of 110

5. Test Equipment List

Manufacture	None of Equipment	Turne (Mandal	Corrich Number	Calibra	ation
r	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date
SPEAG	835MHz System Validation Kit	D835V2	4d154	Jun. 16,2021	Jun. 15,2024
SPEAG	1900MHz System Validation Kit	D1900V2	5d175	Jun. 15,2022	Jun. 14,2025
SPEAG	2450MHz System Validation Kit	D2450V2	910	Jun. 15,2021	Jun. 14,2024
Rohde & Schwarz	UNIVERSAL RADIO COMMUNICATION TESTER	CMW500	1201.0002K50-1 04209-JC	Oct.26, 2022	Oct.25, 2023
SPEAG	Data Acquisition Electronics	DAE4	387	Sept.06,2022	Sept.05,2023
SPEAG	Dosimetric E-Field Probe	EX3DV4	7396	May 06,2022	May 05,2023
Agilent	ENA Series Network Analyzer	E5071C	MY46317418	Oct.26, 2022	Oct.25, 2023
SPEAG	DAK	DAK-3.5	1226	NCR	NCR
SPEAG	SAM Twin Phantom	QD000P40CD	1802	NCR	NCR
SPEAG	ELI Phantom	QDOVA004A A	2058	NCR	NCR
AR	Amplifier	ZHL-42W	QA1118004	NCR	NCR
Agilent	Power Meter	N1914A	MY50001102	Oct.26, 2022	Oct.25, 2023
Agilent	Power Sensor	N8481H	MY51240001	Oct.26, 2022	Oct.25, 2023
R&S	Spectrum Analyzer	N9020A	MY51170037	Oct.26, 2022	Oct.25, 2023
Agilent	Signal Generation	N5182A	MY48180656	Oct.26, 2022	Oct.25, 2023
Worken	Directional Coupler	0110A05601O -10	COM5BNW1A2	Oct.26, 2022	Oct.25, 2023

Note:

- 1. The calibration certificate of DASY can be referred to appendix C of this report.
- The dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
- The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check.
 - The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent.
- i. In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Page 19 of 110

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown as followed:

Photo of Liquid Height for Head SAR

Photo of Liquid Height for Body SAR

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M1FCC ID: 2AZUR-NETR7The following table gives the recipes for tissue simulating liquid.

Page 20 of 110

Frequency (MHz)	Wat er (%)	Sugar (%)	Cellulose (%)	Salt (%)	Prevento I (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)
				For Hea	ad			
750	40.9	57.1	0.2	1.5	0.3	0 10010	0.89	41.9
835	40.3	57.9	0.2	1.4	0.2	ding 0	0.90	41.5
1750	55.2	0,eX	A Opoter	0.3	0	44.5	1.37	40.1 M
1800,1900,2000	55.2	0	< 0 Anbote	0.3	0	44.5	1.40	40.0
2450	55.0	0	otek 0 anb	oten O P	0	45.0	1.80	39.2
2600	54.8	0	Loto D	0.1	Ano O wak	45.1	1.96	39.0
5200	65.5	0	17.2	ant Oren	17.3	0	4.66	36.0
5800	65.4	0	17.3	0 ooter	17.3	0	5.27	35.3
				For Boo	dy			
750	50.8	48.2	0	0.9	0.1 N	0	0.96	55.5
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
1750	70.2	1 ⁰ 0	nbore Q	0.4	0	29.4	1.49	53.4
1800,1900,2000	70.2	bote 0	Anbola	0.4	0,0010	29.4	1.52	53.3
2450	68.6	0.00	PLO OLO	0	ex 0 pubol	31.4	1.95	52.7
2600	65.5	Opotel	Onbote	0	otek 0 pri	31.5	2.16	52.5
5200	78.6	0	⁴ 10.7 10.7	0	10.7	0	5.27	49.0
5800	78.5	0	10.8	0	10.7	D.O oten	6.00	48.2

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M1

FCC ID: 2AZUR-NETR7

Page 21 of 110

Target	Tissue		Measure	d Tissue	1			
٤r	σ	٤r	Dev. (%)	σ	Dev. (%)	Liquid Temp.	Test Data	
41.5 pm	0.90	41.58	0.19	0.91	1.11	22.7	05/01/2023	
40.0	1.40	40.19	0.47	1.44	2.86	22.8	05/02/2023	
39.2	1.80	39.08	-0.31	1.85	2.78	22.7	05/03/2023	
	ε _r 41.5 40.0	41.5 0.90 40.0 1.40	εr σ εr 41.5 0.90 41.58 40.0 1.40 40.19	ε _r σ ε _r Dev. (%) 41.5 0.90 41.58 0.19 40.0 1.40 40.19 0.47	ε _r σ ε _r Dev. (%) σ 41.5 0.90 41.58 0.19 0.91 40.0 1.40 40.19 0.47 1.44	ε _r σ ε _r Dev. (%) σ Dev. (%) 41.5 0.90 41.58 0.19 0.91 1.11 40.0 1.40 40.19 0.47 1.44 2.86	εr σ εr Dev. (%) σ Dev. (%) Liquid Temp. 41.5 0.90 41.58 0.19 0.91 1.11 22.7 40.0 1.40 40.19 0.47 1.44 2.86 22.8	

The following table shows the measuring results for simulating liquid.

Shenzhen Anbotek Compliance Laboratory Limited

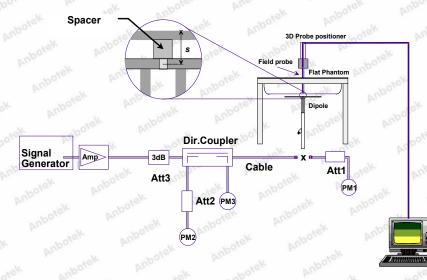
Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b Hotline 400-003-0500

www.anbotek.com.cn

FCC ID: 2AZUR-NETR7

Page 22 of 110

7. System Verification Procedures


Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

Purpose of System Performance check

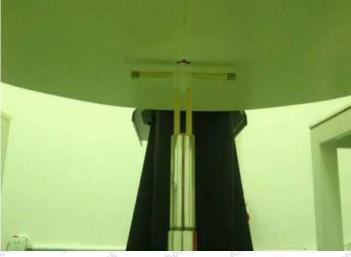
The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

System Setup for System Evaluation

Shenzhen Anbotek Compliance Laboratory Limited


Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Page 23 of 110

Photo of Dipole Setup

Validation Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. The table below shows the target SAR and measured SAR after normalized to 1W input power. It indicates that the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequenc y (MHz)	Power fed onto reference dipole (mW)	Targeted SAR (W/kg)	Measured SAR (W/kg)	Normalized SAR (W/kg)	Deviatio n (%)
05/01/2023	835	250	9.24	2.31	9.24	0.00
05/02/2023	1900	250	40.4	10.16	40.64	0.59
05/03/2023	2450	250	52.4	12.92	51.68	-1.37

Target and Measurement SAR after Normalized

Shenzhen Anbotek Compliance Laboratory Limited

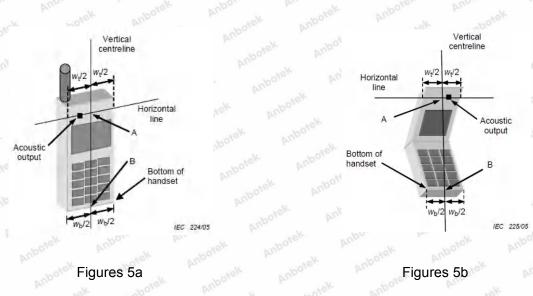
Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M1

FCC ID: 2AZUR-NETR7

Page 24 of 110

8. EUT Testing Position


8.1. Head Position

The wireless device define two imaginary lines on the handset, the vertical centreline and the horizontal line, for the handset in vertical orientation as shown in Figures 5a and 5b.

The vertical centreline passes through two points on the front side of the handset: the midpoint of the width W_t of the handset at the level of the acoustic output (point A in Figures 5a and 5b), and the midpoint of the width W_b of the bottom of the handset (point B).

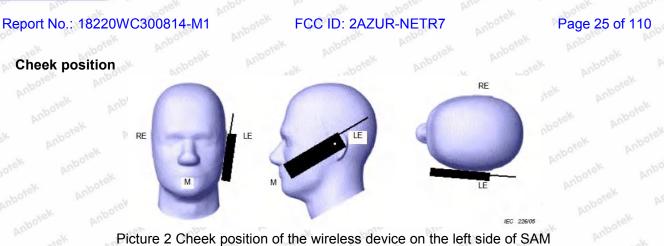
The horizontal line is perpendicular to the vertical centreline and passes through the centre of the acoustic output (see Figures 5a and 5b). The two lines intersect at point A.

Note that for many handsets, point A coincides with the centre of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centreline is not necessarily parallel to the front face of the handset (see Figure 5b), especially for clam-shell handsets, handsets with flip cover pieces, and other irregularly shaped handsets.

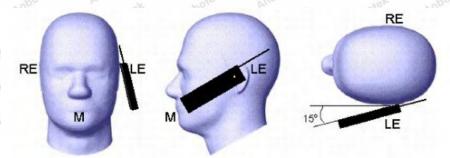
Wt proof	Width of the handset at the level of the acoustic	
Wb	Width of the bottom of the handset	

- Midpoint of the widthwt of the handset at the level of the acoustic output
 - Midpoint of the width wb of the bottom of the handset

Shenzhen Anbotek Compliance Laboratory Limited


А

В


Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Tilt position

Picture 3 Tilt position of the wireless device on the left side of SAM

8.2. Body Position

Devices that support transmission while used with body-worn accessories must be tested for body-worn accessory SAR compliance, typically according to the smallest test separation distance required for the group of body-worn accessories with similar operating and exposure characteristics. Devices that are designed to operate on the body of users using lanyards and straps or without requiring additional body-worn accessories must be tested for SAR compliance using a conservative minimum test separation distance \leq 5mm to support compliance.

Picture 4 Test positions for body-worn devices

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Page 26 of 110

8.3. Hotspot Mode Exposure conditions

The hotspot mode and body-worn accessory SAR test configurations may overlap for handsets. When the same wireless mode transmission configurations for voice and data are required for SAR measurements, the more conservative configuration with a smaller separation distance should be tested for the overlapping SAR configurations. This typically applies to the back and front surfaces of a handset when SAR is required for both hotspot mode and body-worn accessory exposure conditions. Depending on the form factor and dimensions of a device, the test separation distance used for hotspot mode SAR measurement is either

10 mm or that used in the body-worn accessory configuration, whichever is less for devices with dimension > 9 cm x 5 cm. For smaller devices with dimensions \leq 9 cm x 5 cm because of a greater potential for next to body use a test separation of \leq 5 mm must be used.

Picture 5 Test positions for Hotspot Mode

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M1

FCC ID: 2AZUR-NETR

Page 27 of 110

9. Measurement Procedures

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the middle channel.
- (b) Keep EUT to radiate maximum output power or 100% duty factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as setup photos demonstrates.
- (e) Set scan area, grid size and other setting on the DASY software.
- (f) Measure SAR transmitting at the middle channel for all applicable exposure positions.
- (g) Identify the exposure position and device configuration resulting the highest SAR
- (h) Measure SAR at the lowest and highest channels attheworst exposure position and device configuration if applicable.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

9.1. Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

9.2. Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

9.3. Area Scan Procedures

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

		0.57
	\leq 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of measurement plane orientation the measurement resolution in x or y dimension of the test of measurement point on the test	on, is smaller than the above, must be \leq the corresponding device with at least one

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

9.4. Zoom Scan Procedures

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			\leq 3 GHz	> 3 GHz
when we	PUD	tek	vupo, b.	hoter Ann
Maximum zoom scan s	patial resc	plution: Δx_{Zoom} , Δy_{Zoom}	≤ 2 GHz: ≤ 8 mm 2 - 3 GHz: ≤ 5 mm [*]	$3 - 4 \text{ GHz} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz} \le 4 \text{ mm}^*$
	uniform	grid: ∆z _{Zoom} (n)	\leq 5 mm	3 - 4 GHz: ≤ 4 mm 4 - 5 GHz: ≤ 3 mm 5 - 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	3 – 4 GHz: ≤3 mm 4 – 5 GHz: ≤2.5 mm 5 – 6 GHz: ≤2 mm
	grid Δz _{Zoom} (n>1): between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$	
Minimum zoom scan volume	x, y, z		\geq 30 mm	$3-4 \text{ GHz} \ge 28 \text{ mm}$ $4-5 \text{ GHz} \ge 25 \text{ mm}$ $5-6 \text{ GHz} \ge 22 \text{ mm}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium: see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Page 30 of 110

9.5. Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregateSAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9.6. Power Drift Monitoring

Anbotel

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M2

10. Conducted Power

<GSM Conducted power>

Band GSM850	Burs	st Average	e Power (d	Bm)	Fran	ne-Averag	e Power (dBm)
TX Channel	Tune-up	128	190	251	128	190	251	Tune-up
Frequency (MHz)	power	824.2	836.6	848.8	824.2	836.6	848.6	power
GSM (GMSK, 1 Tx slot)	33.00	32.40	32.69	32.47	23.37	23.66	23.44	24.00
GPRS (GMSK, 1 Tx slot)	33.00	32.45	32.63	32.49	23.42	23.60	23.46	24.00
GPRS (GMSK, 2 Tx slots)	31.00	30.85	30.84	30.78	24.83	24.82	24.76	25.00
GPRS (GMSK, 3 Tx slots)	29.50	28.94	29.23	28.89	24.68	24.97	24.63	25.00
GPRS (GMSK, 4 Tx slots)	28.50	28.18	28.23	28.10	25.17	25.22	25.09	25.50
Band PCS1900	Burs	st Average	e Power (d	Bm)	Frame-Average Power (dBm)			
TX Channel	Tune-up	512	661	810	512	661	810	Tune-up
Frequency (MHz)	power	1850.2	1880.0	1909.8	1850.2	1880.0	1909.8	power
GSM (GMSK, 1 Tx slot)	31.00	30.29	30.70	30.25	21.26	21.67	21.22	22.00
GPRS (GMSK, 1 Tx slot)	31.00	30.23	30.63	30.31	21.20	21.60	21.28	22.00
GPRS (GMSK, 2 Tx slots)	28.00	27.73	27.66	27.59	21.71	21.64	21.57	22.00
GPRS (GMSK, 3 Tx slots)	27.00	26.77	26.81	26.65	22.51	22.55	22.39	23.00
	26.50	26.04	26.21	Dr.	23.03	23.20	23.04	23.50

CC ID: 2AZUR

Remark: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots. The calculated method are shown as below:

Frame-averaged power = Maximum burst averaged power (1 Tx Slot) – 9.03 dB

Frame-averaged power = Maximum burst averaged power (2 Tx Slots) – 6.02 dB

Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB

Frame-averaged power = Maximum burst averaged power (4 Tx Slots) – 3.01 dB

Note:

1. Per KDB 447498 D01, the maximum output power channel is used for SAR testing and for further SAR test reduction

 For Hotspot mode SAR testing, GPRS should be evaluated, therefore the EUT was set in GPRS 2 Tx slots for GSM850and PCS1900 due to its highest frame-average power.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b Hotline 400-003-0500 www.anbotek.com.cn

Page 31 of 110

d.

Report No.: 18220WC300814-M1

FCC ID: 2AZUR-NETR

<WCDMA Conducted Power>

The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. A summary of these settings are illustrated below:

HSDPA Setup Configuration:

- a. The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting:
 - i. Set Gain Factors (β_c and β_d) and parameters were set according to each
 - ii. Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121
 - iii. Set RMC 12.2Kbps + HSDPA mode.
 - iv. Set Cell Power = -86 dBm
 - v. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - vi. Select HSDPA Uplink Parameters
 - vii. Set Delta ACK, Delta NACK and Delta CQI = 8
 - viii. Set Ack-Nack Repetition Factor to 3
 - ix. Set CQI Feedback Cycle (k) to 4 ms
 - x. Set CQI Repetition Factor to 2
 - xi. Power Ctrl Mode = All Up bits
 - The transmitted maximum output power was recorded.

Sub-test	βc	βa	βa (SF)	₿₀/₿а	βHS (Note1 Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	ØŬ	0.0
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	ta	0.0
3	15/15	8/15	64	15/8	30/15	1,5	0.5
4	15/15	4/15	64	15/4	30/15	15	05
				st in clause 5.13.	1A and HSDP	PA EVM with ph	
	discontinuity	in clause 5.1		st in clause 5.13 and \NACK = 30/	1A and HSDP	PA EVM with ph	ase
Note 3:	discontinuity with $\beta_{b} = 2$ CM = 1 for β DPCCH the I	In clause 5.1 4/15 * β_c . a/ β_d =12/15, β	3 1AA, ΔACK $b_{hs}/\beta_c=24/15$ t on the rela	st in clause 5.13. and \nack = 30/ . For all other con tive CM difference	TA and HSDF 15 with β_{a} = : mbinations of E	PA EVM with ph 30/15 * $\beta_{\rm c}$, and DPDCH, DPCCH	ase d \col = 24/15 H and HS-

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Setup Configuration

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

P

Report No.: 18220WC300814-M

FCC ID: 2AZUR-NETR

Page 33 of 110

HSUPA Setup Configuration:

- a. The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting * :
 - Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
 - ii. Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121
 - iii. Set Cell Power = -86 dBm
 - iv. Set Channel Type = 12.2k + HSPA
 - v. Set UE Target Power
 - vi. Power Ctrl Mode= Alternating bits
 - vii. Set and observe the E-TFCI
 - viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- d. The transmitted maximum output power was recorded.

Sub- test	βο	βd	βd (SF)	βc/βa	βнs (Note1)	βec	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81
Note 1					with β_{hs}								
Note 2							her combinatio CM difference		DPDCH, D	DPCCH,	HS- DPC	CH, E-D	PDCH
	and E For su	-DPCCH ibtest 1 ti	the MF he β _c /β	R is bas a ratio of	ed on the 11/15 for	the TFC		e. easure	ement peri	od (TF1,	TF0) is	achieved	
Note 2 Note 3 Note 4	and E For su setting	-DPCCH obtest 1 the the sign obtest 5 the	the MF he β_c/β_i alled g he β_c/β_i	R is bas ratio of ain facto ratio of	ed on the 11/15 for rs for the 15/15 for	the TFC reference the TFC	CM difference during the me	e. easure TF1) to easure	ement peri p $\beta_c = 10/1$ ement peri	od (TF1, 5 and β od (TF1,	TF0) is = 15/15 TF0) is	achieved achieved	by
Note 3	and E For su setting For su setting In cas	-DPCCH ibtest 1 ti g the sign ibtest 5 ti g the sign	the MF he β_c/β_c alled g he β_c/β_c alled g ng by L	R is bas a ratio of ain facto a ratio of ain facto JE using	ed on the 11/15 for rs for the 15/15 for rs for the	the TFC reference the TFC reference reference	CM difference during the magnetic ce TFC (TF1, 1 during the magnetic	e. easure (F1) to easure (F1) to	ement peri $β_c = 10/1$ ement peri $β_c = 14/1$	od (TF1, 5 and β od (TF1, 5 and β	TF0) is = 15/15 TF0) is = 15/15	achieved achieved	by

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Setup Configuration

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Page 34 of 110

	ea Power>		North	hore	Ann	Ser	N000	
WCDMA		Band II	l (dBm)			Band \	/ (dBm)	
TX Channel	Tune-up	9262	9400	9538	Tune-up	4132	4183	4233
Frequency (MHz)	power	1852.4	1880.0	1907.6	power	826.4	836.6	846.6
RMC 12.2Kbps	24.00	23.61	23.45	22.88	24.00	23.55	23.13	23.10
HSDPA Subtest-1	23.00	22.44	22.56	21.94	23.00	22.27	22.41	22.04
HSDPA Subtest-2	22.00	20.93	21.27	20.54	22.00	20.90	21.38	21.49
HSDPA Subtest-3	22.00	21.18	20.69	20.71	22.50	22.05	21.05	21.52
HSDPA Subtest-4	21.50	20.04	20.72	19.82	21.50	19.69	20.36	20.47
HSUPA Subtest-1	22.50	22.20	21.96	21.72	22.50	21.71	22.18	22.32
HSUPA Subtest-2	21.50	20.61	21.24	20.67	22.50	20.99	21.80	21.48
HSUPA Subtest-3	22.50	20.31	21.70	20.77	22.50	22.09	21.60	22.11
HSUPA Subtest-4	21.00	19.59	19.61	20.47	21.00	20.34	20.93	20.35
HSUPA Subtest-5	21.00	19.63	20.38	19.95	22.00	20.86	21.48	21.34
No. 10	17 D.5		- 2460			1	22.1	

<WCDMA Conducted Power>

General Note

Per KDB 941225 D01 v02, RMC 12.2kbps setting is used to evaluate SAR. If AMR 12.2kbps power is
 < 0.25dB higher than RMC 12.2kbps, SAR tests with AMR 12.2kbps can be excluded.

- 2. By design, AMR and HSDPA/HSUPA RF power will not be larger than RMC 12.2kbps, detailed information is included in Tune-up Procure exhibit.
- It is expected by the manufacturer that MPR for some HSDPA/HSUPA subtests may differ from the specification of 3GPP, according to the chipset implementation in this model. The implementation and expected deviation are detailed in tune-up procedure exhibit.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M1 <WLAN 2.4GHz Conducted Power>

FCC ID: 2AZUR-NETR7

Page 35 of 110

Mode	Channel	Frequency (MHz)	Conducted Peak Output Power(dBm)	Conducted Average Output Power(dBm)	Tune-up power(dBm)
	1.*	2412	14.78	12.61	13.50
802.11b	6	2437	14.73	12.57	13.50
	11	2462	13.62	11.61	13.50
	1	2412	16.73	13.11	13.30
802.11g	6	2437	16.88	13.19	13.30
-	11	2462	16.06	12.56	13.30
	1	2412	16.04	12.23	13.00
802.11n(HT20)	6	2437	16.22	12.35	13.00
, , ,	11	2462	15.23	11.59	13.00

Note:

1. Per KDB 447498 D01, the 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation* $distances \leq 50$ mm are determined by:

 $[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] \cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where

f(GHz) is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation

The result is rounded to one decimal place for comparison

2. Base on the result of note1, RF exposure evaluation of 2.4G WIFI mode is required.

- 3. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion.
- 4. Per KDB 248227 D01, In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. SAR is not required for the following 2.4 GHz OFDM conditions:
 - 1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.

2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M

FCC ID: 2AZUR-NETR7

Page 36 of 110

Mode	Channel	Frequency (MHz)	Conducted Peak Power (dBm)	Conducted Average Power (dBm)	Tune-up power(dBm)
BT BDR (GFSK)	00	2402	4.29	3.66	4.50
	39	2441	4.47	3.81	4.50
	78	2480	4.58	3.90	4.50
BT EDR (Π/4DQPSK)	00	2402	4.85	3.80	4.50
	39	2441	5.01	3.91	4.50
	78	2480	5.14	4.02	4.50
BT EDR (8DPSK)	00	2402	5.05	3.85	4.50
	39	2441	5.27	4.01	4.50
	78	2480	5.37	4.09	4.50
BT BLE_1M (GFSK)	00 00	2402	-0.67	-0.51	0.00
	19	2440	-0.17	-0.13	0.00
	39	2480	-0.05	-0.04	0.00

<Bluetooth Conducted Power>

Note:

Per KDB 447498 D01v05r02, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}]$

 \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR

f(GHz) is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation

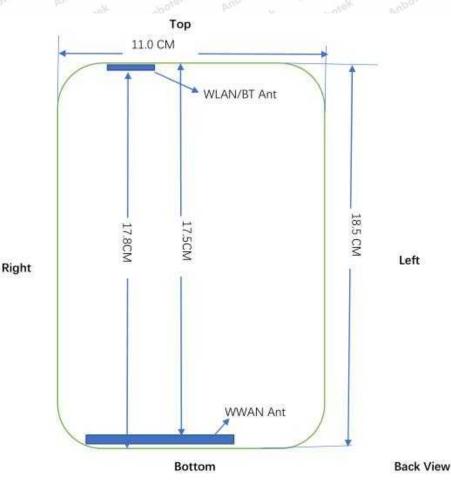
The result is rounded to one decimal place for comparison

Bluetooth Max Power (dBm)	Separation Distance (mm)	Frequency (GHz)	exclusion thresholds
4.50	port Antono Stek Anboren	2.48	0.12

Per KDB 447498 D01, when the minimum test separation distance is <10 mm, a distance of 10 mm is applied to determine SAR test exclusion. The test exclusion threshold is 0.56 which is<= 3, SAR testing is not required.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com



Report No.: 18220WC300814-M1

FCC ID: 2AZUR-NETR7

Page 37 of 110

11. Antenna Location

Distance of The Antenna to the EUT surface and edge											
Antennas	Front	Back	Top Side	Bottom Side	Left Side	Right Side					
BT&WLAN	<25mm	<25mm	<25mm	>25mm	>25mm	<25mm					
WWAN	<25mm	<25mm	>25mm	<25mm	<25mm	<25mm					
191	1000	pro la	NOTO PIL	195	0000	here when					

Positions for SAR tests; Body and Hotspot mode										
Antennas	Front	Back	Top Side	Bottom Side	Left Side	Right Side				
BT&WLAN	Yes	Yes	Yes	No	No	Yes				
WWAN	Yes	Yes	No	Yes	Yes	Yes				

General Note: According with FCC KDB 447498 D01, appendix A, <SAR test exclusion thresholds for 100MHz~6GHz and≤50mm>table, this device SAR test configurations considerations are shown in the table above.

Per KDB 447498 D01, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.

Shenzhen Anbotek Compliance Laboratory Limited Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M1

Page 38 of 110

12. SAR Test Results Summary

General Note:

1.Per KDB 447498 D01v05r01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

Scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Reported SAR(W/kg)= Measured SAR(W/kg)* Scaling Factor

2.Per KDB 447498 D01v05r01, for each exposure position, if the highest output channel reported SAR≤0.8W/kg, other channels SAR testing are not necessary

3.Per KDB865664 D01, for each frequency band, repeated SAR measurement is required only when the measured SAR is \geq 0.8W/Kg; if the deviation among the repeated measurement is \leq 20%,and the measured SAR <1.45W/Kg, only one repeated measurement is required.

4.When the user enables the personal Wireless router functions for the handsets, actual operationsinclu de simultaneous transmission of both the Wi-Fi transmitting frequency and thus cannot beevaluated for SAR under actual use conditions. The "Portable Hotspot" feature on the handset was

NOT activated, to ensure the SAR measurements were evaluated for a single transmissionfrequency RF signal.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M1

12.1. Head SAR Results

<GSM>

			T == h		.	Averag	Tune-Ur	oScalin	Power	Measured	Reported
Plot No.	Band	Mode	Test Position	Ch.	Freq. (MHz)	e Power (dBm)	Limit (dBm)	g Factor	Drift	SAR ₁₉ (W/kg)	SAR ₁₉ (W/kg)
#1	GSM850	GPRS	Right Cheek	190	836.6	28.23	28.5	1.064	0.13	0.213	0.227
	GSM850	GPRS	Right Tilt	190	836.6	28.23	28.5	1.064	-0.06	0.163	0.173
34- 1	GSM850	GPRS	Left Cheek	190	836.6	28.23	28.5	1.064	0.11	0.201	0.214
Matek	GSM850	GPRS	Left Tilt	190	836.6	28.23	28.5	1.064	-0.06	0.160	0.170
#2	PCS1900	GPRS	Left Cheek	661	1880	26.21	26.5	1.069	0.16	0.229	0.245
Aupo	PCS1900	GPRS	Left Tilt	661	1880	26.21	26.5	1.069	-0.12	0.171	0.183
Anb	PCS1900	GPRS	Right Cheek	661	1880	26.21	26.5	1.069	-0.08	0.211	0.226
10	PCS1900	GPRS	Right Tilt	661	1880	26.21	26.5	1.069	-0.15	0.16	0.171

FCC ID: 2AZUR-NETR7

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b Hotline 400-003-0500 www.anbotek.com.cn

Page 39 of 110

Report No.: 18220WC300814-M1

FCC ID: 2AZUR-NETR7

Page 40 of 110

<WCDMA>

Plot No.	Band	Mode	Test Position	Ch.	Freq. (MHz)	Averag e Power (dBm)	Tune-U p Limit (dBm)	Scalin g Factor	Drift	Measured SAR1g (W/kg)	Reported SAR ₁₉ (W/kg)
#3	WCDMA Band II	RMC 12.2K	Left Cheek	9400	1880	23.45	24	1.135	0.09	0.267	0.303
	WCDMA Band II	RMC 12.2K	Left Tilt	9400	1880	23.45	24	1.135	0.08	0.215	0.244
potek	WCDMA Band II	RMC 12.2K	Right Cheek	9400	1880	23.45	24	1.135	0.13	0.255	0.289
Anbote	WCDMA Band II	RMC 12.2K	Right Tilt	9400	1880	23.45	24	1.135	0.07	0.195	0.221
#4	WCDMA Band V	RMC 12.2K	Right Cheek	4183	836.6	23.13	24	1.222	0.	0.225	0.275
otek	WCDMA Band V	RMC 12.2K	Right Tilt	4183	836.6	23.13	24	1.222	-0.05	0.185	0.226
knbotel	WCDMA Band V	RMC 12.2K	Left Cheek	4183	836.6	23.13	24	1.222	-0.15	0.213	0.260
Anb	WCDMA Band V	RMC 12.2K	Left Tilt	4183	836.6	23.13	24	1.222	0.11	0.172	0.210

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M1

FCC ID: 2AZUR-NETR7

Page 41 of 110

<WIFI>

Plot No.	Band	Mode	Test Position	Ch.	Freq. (MHz)	Averag e Power (dBm)	Tune-U P Limit (dBm)	Scalin g Factor	Drift	Measured SAR1g (W/kg)	Reported SAR ₁₉ (W/kg)
#5	WIFI2.4GHz	802.11b	Left Cheek	1	2412	12.61	13.5	1.227	-0.03	0.229	0.281
197	WIFI2.4GHz	802.11b	Left Tilt	nb1tel	2412	12.61	13.5	1.227	-0.13	0.194	0.238
by,	WIFI2.4GHz	802.11b	Right Cheek	1,00	2412	12.61	13.5	1.227	-0.09	0.208	0.255
	WIFI2.4GHz	802.11b	Right Tilt	1	2412	12.61	13.5	1.227	-0.08	0.181	0.222
300	and bu										

Note:

1. According to the above table, the initial test position for head is "Left Cheek", and its reported SAR is \leq 0.4W/kg. Thus further SAR measurement is not required for the other (remaining) test positions. Because the reported SAR of the highest measured maximum output power channel for the exposure configuration is \leq 0.8W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.

2. When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied. SAR is not required for the following 2.4 GHz OFDM conditions.

a) When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration.

b) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg ,the 802.11g/n is not required.

			WLAN- S	caled Reported SAR			
		Fred	quency		maximum	Reported	Scaled
Mode	Test Position	СН	MHz	Actual duty factor	duty factor	SAR (1g)(W/kg)	reported SAR (1g)(W/kg)
John Mar	Left-Cheek	1	2412	98.96%	100%	0.281	0.284
802.11b	Left-Tilt	pore 1	2412	98.96%	100%	0.238	0.241
1Mbps	Right-Cheek	Anboten	2412	98.96%	100%	0.255	0.258
Anboten	Right-Tilt	Antorek	2412	98.96%	100%	0.222	0.224

Note:

1. According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. A maximum transmission duty factor of 98.96% is achievable for WLAN in this project.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M1

FCC ID: 2AZUR-NETR7

Page 42 of 110

12.2. Body-worn and Hotspot SAR Results

	<gsm></gsm>										abotek	
Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Averag e Power (dBm)	Tune-U p Limit (dBm)	Scalin g Factor	r Drift	Measure d SAR ₁₉ (W/kg)	Reported SAR ₁₉ (W/kg)
<u>}</u> -	GSM850	GPRS	Front	< 0	190	836.6	28.23	28.5	1.064	0.12	0.354	0.377
#6	GSM850	GPRS	Back	0	190	836.6	28.23	28.5	1.064	0.09	0.536	0.570
10.	GSM850	GPRS	Left Side	0	190	836.6	28.23	28.5	1.064	-0.10	0.236	0.251
Anborn	GSM850	GPRS	Right Side	0	190	836.6	28.23	28.5	1.064	-0.02	0.171	0.182
Ing	GSM850	GPRS	Top Side	0	190	836.6	28.23	28.5	1.064	- North	- tool	ek - bup
	GSM850	GPRS	Bottom Side	0,00	190	836.6	28.23	28.5	1.064	0.17	0.306	0.326
6	PCS1900	GPRS	Front	0	661	1880	26.21	26.5	1.069	0.07	0.395	0.422
#7	PCS1900	GPRS	Back	0	661	1880	26.21	26.5	1.069	-0.07	0.605	0.647
ofer.	PCS1900	GPRS	Left Side	0	661	1880	26.21	26.5	1.069	-0.12	0.263	0.281
nbote	PCS1900	GPRS	Right Side	0	661	1880	26.21	26.5	1.069	0.05	0.201	0.215
	PCS1900	GPRS	Top Side	0	661	1880	26.21	26.5	1.069		Para Moto	st - anbo
Per.	PCS1900	GPRS	Bottom Side	0,0	661	1880	26.21	26.5	1.069	-0.09	0.345	0.369

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M1 FCC ID: 2AZUR-NETR7

Page 43 of 110

<WCDMA>

							Averag	Tune-U	Scalin	Powe	Measure	Reported
Piot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	e Power (dBm)	p Limit (dBm)	g Factor) Drift	d SAR _{1g} (W/kg)	SAR ₁₉ (W/kg)
Anbot	WCDMA Band II	RMC 12.2K	Front	0	9400	1880	23.45	24	1.135	-0.15	0.642	0.729
	WCDMA Band II	RMC 12.2K	Back	0	9262	1852.4	23.61	24	1.094	0.06	0.916	1.00
#8	WCDMA Band II	RMC 12.2K	Back	0 [%]	9400	1880	23.45	24	1.135	0.17	0.936	1.06
Anbote	WCDMA Band II	RMC 12.2K	Back	P 0	9538	1907.6	22.88	24	1.294	0.03	0.813	1.05
Pur	WCDMA Band II	RMC 12.2K	Left Side	0	9400	1880	23.45	24	1.135	-0.13	0.444	0.504
h atok	WCDMA Band II	RMC 12.2K	Right Side	0	9400	1880	23.45	24	1.135	-0.13	0.504	0.572
nbotel	WCDMA Band II	RMC 12.2K	Top Side	0	9400	1880	23.45	24	1.135	Nex-	Anbotek	Pupote
Anbi	WCDMA Band II	RMC 12.2K	Bottom Side	0	9400	1880	23.45	24	1.135	0.08	0.484	0.549
te ^k	WCDMA Band V	RMC 12.2K	Front	0	4182	836.4	23.13	24	1.222	-0.13	0.608	0.743
botek	WCDMA Band V	RMC 12.2K	Back	pri O ^{rek}	4132	826.4	23.55	24	1.109	-0.06	0.836	0.927
#9	WCDMA Band V	RMC 12.2K	Back	0	4182	836.4	23.13	24	1.222	0.04	0.854	1.04
2	WCDMA Band V	RMC 12.2K	Back	0	4233	846.6	23.1	24	1.23	-0.07	0.839	1.03
botek	WCDMA Band V	RMC 12.2K	Left Side	unb0.ek	4182	836.4	23.13	24	1.222	-0.14	0.405	0.495
Anbo	WCDMA Band V	RMC 12.2K	Right Side	0	4182	836.4	23.13	24	1.222	0.02	0.377	0.461
Þ.,	WCDMA Band V	RMC 12.2K	Top Side	0	4182	836.4	23.13	24	1.222	Anboter	ek Anbr	potek_
otek ootek	WCDMA Band V	RMC 12.2K	Bottom Side	0	4182	836.4	23.13	24	1.222	-0.13	0.487	0.595

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M

FCC ID: 2AZUR-NETR7

Page 44 of 110

<WIFI 2.4GHz>

						Freq.	Averag	Tune-U	Scalin	Powe	Measure	Reporte
Plot No	Band	Mode	Test Position	Gap (mm)	un.	(MHz	e Power	p Limit	g	r Drift	d SAR ₁₉	d SAR ₁₉
)	(dBm)	(dBm)	Factor	(dB)	(W/kg)	(W/kg)
0.	WIFI2.4GHz	802.11b	Front	0	1	2412	12.61	13.5	1.227	0.05	0.130	0.160
#10	WIFI2.4GHz	802.11b	Back	0	1	2412	12.61	13.5	1.227	-0.19	0.211	0.259
ant	WIFI2.4GHz	802.11b	Left Side	0	1	2412	12.61	13.5	1.227	Tak	- abote	K - P2
	WIFI2.4GHz	802.11b	Right Side	0	1	2412	12.61	13.5	1.227	-0.17	0.046	0.056
4. · · · ·	WIFI2.4GHz	802.11b	Top Side	0	do 1en	2412	12.61	13.5	1.227	0.14	0.109	0.134
	WIFI2.4GHz	802.11b	Bottom Side	0	1.0	2412	12.61	13.5	1.227		0 ⁴⁰¹	Kup-

Note:

According to the above table, the initial test position for body is "Back", and its reported SAR is ≤ 0.4 W/kg. Thus further SAR measurement is not required for the other (remaining) test positions. Because the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied. SAR is not required for the following 2.4 GHz OFDM conditions.

When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration.

When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg. the 802.11g/n is not required

			WI AN- S	Scaled Reported SAR			
		Fre	quency			Reported	Scaled
Mode	Test Position	СН	MHz	Actual duty factor	maximum	SAR	reported SAR
		Сп	IVINZ		duty factor	(1g)(W/kg)	(1g)(W/kg)
	Front	nbottk	2412	98.96%	100%	0.16	0.162
802.11b	Back	Jotek	2412	98.96%	100%	0.259	0.262
1Mbps	Right	1 mote	2412	98.96%	100%	0.056	0.057
	Тор	1	2412	98.96%	100%	0.134	0.135

Note:

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. A maximum transmission duty factor of 98.96% is achievable for WLAN in this project.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Product Safety

Anbotek

Report No.: 18220WC300814-M1

FCC ID: 2AZUR-NETR7

Page 45 of 110

13. SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. The following procedures are applied to determine if repeated measurements are required.

- Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 3) Perform a third repeated measurement only if the original, first or second repeated measurement is
- \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Free CH	quency MHz	Test Position	Spacing (mm)	Original SAR (W/kg)	First Repeated SAR (W/kg)	The Ratio	Second Repeated SAR (W/kg)
9400	1880.00	Rear	0	0.936	0.918	1.02	otek / Anbo

SAR Measurement Variability for Body W1900 (1g)

Free	quency	Anbo At	-bokek	Original		0010	Second
СН	MHz	Test Position	Spacing (mm)	SAR (W/kg)	First Repeated SAR (W/kg)	The Ratio	Repeated SAR (W/kg)
4182	836.40	Rear	0	0.854	0.839	1.02	stek Anbote

SAR Measurement Variability for Body W850 (1g)

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M1

FCC ID: 2AZUR-NETR7

Page 46 of 110

14. Simultaneous Transmission Analysis

Simultaneous TX SAR Considerations

- No. Applicable Simultaneous Transmission
- 1. GSM+WIFI 2.4G
- 2. WCDMA+WIFI 2.4G
- 3. GSM+BT
- 4. WCDMA+ BT

Note:

- 1. WIFI 2.4GHz, and Bluetooth share the same antenna, and cannot transmit simultaneously.
- 2. EUT will choose either GSM/WCDMA according to the network signal condition; therefore, GSM/WCDMA cannot transmit simultaneously.

Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05r02, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is \leq 1.6 W/kg. When standalone SAR is not required to be measured, per FCC KDB 447498 D01v05r02 4.3.2.2), the following equation must be used to estimate the standalone 1g SAR and 10g extremity SAR for simultaneous transmission assessment involving that transmitter.

Location		Max. tune-up	T (D' ()	Estimated SAR
	Mode	Power (dBm)	Test Distance (mm)	(W/kg)
Head	BT	4.5 Mar	al hoto Anbote	0.118
Body	BT	4.5	Diek anbo	0.118

Estimated SAR =

 $\sqrt{f(GHz)}$. Max. power of channel, mW 7.5(18.75) Max. power of channel, mW

Note:

- When the minimum test separation distance is < 5 mm, a distance of 5 mm according is applied to determine estimated SAR.
- (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[√f(GHz)/x] W/kg for test separation distances ≤ 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
- Next to the mouth exposure requires 1-g SAR, and the wrist-worn condition requires 10-g extremity SAR.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

00814-M1 FCC ID: 2AZUR-NETR7

Page 47 of 110

Report No.: 18220WC300814-M1 Evaluation of Simultaneous SAR Simultaneous-Head <GSM+2.4GWiFi>

Test Position	WiFi SAR _{1-g} (W/Kg)	GSM 850 _{1-g} (W/Kg)	PCS 1900 _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Simut. Meas. Required
Left Cheek	0.284	0.214	0.245	0.529	1.6	N/A
Left Tilt	0.241	0.17	0.183	0.424	1.6	N/A
Right Cheek	0.258	0.227	0.226	0.484	borek 1.6 part	N/A
Right Tilt	0.224	0.173	0.171	0.395	1.6	N/A

<WCDMA+2.4GWiFi >

Test Position	WiFi SAR ₁ . g (W/K g)	WCDMA Band 2 ^{1-g} (W/Kg)	WCDMA Band 5 ^{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Simut. Meas. Require d
Left Cheek	0.284	0.303	0.26	0.587	1.6	N/A
Left Tilt	0.241	0.244	0.21	0.485	ote ^{tt} 1.6	N/A
Right Cheek	0.258	0.289	0.275	0.547	1.6	N/A
Right Tilt	0.224	0.221	0.226	0.445	1.6	N/A
pro-	Hele	Anboten	Ano	abotek	Auporo	re Pour

<GSM+BT>

Test Position	BT SAR _{1-g} (W/Kg)	GSM 850 _{1-g} (W/Kg)	PCS 1900 _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Simut. Meas. Required
Left Cheek	0.118	0.214	0.245	0.363	1.6	N/A
Left Tilt	0.118	0.17	0.183	0.301	1.6	N/A
Right Cheek	0.118	0.227	0.226	0.344	1.6	N/A
Right Tilt	0.118	0.173	0.171	0.289	1.6 pobol	N/A

<WCDMA+BT >

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel: (86) 0755–26066440 Fax: (86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M1

FCC ID: 2AZUR-NETR7

Page 48 of 110

Test Position	BT SAR ₁ . ^g (W/K g)	WCDMA Band 2 ^{1-g} (W/Kg)	WCDMA Band 5 ^{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Simut. Meas. Require d
Left Cheek	0.118	0.303	0.26	0.421	1.6	N/A
Left Tilt	0.118	0.244	0.21	0.362	e ^{je} 1.6 _{pan} to	N/A
Right Cheek	0.118	0.289	0.275	0.407	1.6	N/A
Right Tilt	0.118	0.221	0.226	0.339	Anto 1.6	N/A
Pres		1970-	NUD.	-ext	abarr	Pres

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M1

FCC ID: 2AZUR-NETR7

Page 49 of 110

Simultaneous- Body <GSM+2.4GWiFi>

Test Position	WiFi SAR _{1-g} (W/Kg)	GSM 850 _{1-g} (W/Kg)	PCS 1900 _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Simut. Meas. Required
Front	0.162	0.377	0.422	0.584	1.6	N/A
Back	0.262	0.570	0.647	0.909	1.6	N/A
Left Side	Anboro	0.251	0.281	0.281	1.6	N/A N/A
Right Side	0.057	0.182	0.215	0.272	1.6	N/A
Top side	0.135	ptek - pr	10 ⁰ ,	0.135	1.6	N/A
Bottom Side	botek -	0.326	0.369	0.369	1.6	N/A

<WCDMA+2.4GWiFi >

Test Position	WiFi SAR ₁₋ g (W/K g)	WCDMA Band 2 ^{1-g} (W/Kg)	WCDMA Band 5 ^{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Simut. Meas. Require d
Front	0.162	0.729	0.743	0.891	1.6	N/A
Back	0.262	1.06	1.04	1.322	1.6	N/A
Left Side	Nev -	0.504	0.495	0.504	1.6	N/A
Right Side	0.057	0.572	0.461	0.629	1.6	N/A
Top side	0.135	pin- notek	Anboto	0.135	1.6	N/A 🕺
Bottom Side	AUPOLO	0.549	0.595	0.549	1.6	N/A

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M1

FCC ID: 2AZUR-NETR7

Page 50 of 110

Test Position	BT SAR _{1-g} (W/Kg)	GSM 850 _{1-g} (W/Kg)	PCS 1900 _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Simut. Meas. Required
Front	0.118	0.377	0.422	0.540	1.6	N/A
Back	0.118	0.570	0.647	0.765	1.6	N/A
Left Side	0.118	0.251	0.281	0.399	1.6	N/A
Right Side	0.118	0.182	0.215	0.333	1.6	N/Associ
Top side	0.118	- Pup.	-Mor	abotek P	1.6	N/A
Bottom Side	0.118	0.326	0.369	0.487	1.6	N/A

<GSM+BT>

<WCDMA+BT >

Test Position	BT SAR ₁ . g (W/K g)	WCDMA Band 2 ^{1-g} (W/Kg)	WCDMA Band 5 ^{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Simut. Meas. Require d
Front	0.118	0.729	0.743	0.847	1.6	N/A
Back	0.118	1.06	1.04	1.178	1.6	N/A
Left Side	0.118	0.504	0.495	0.622	1.6	N/A
Right Side	0.118	0.572	0.461	0.69	1.6	N/A
Top side	0.118	abotek	Anbolo	0.118	1.6	N/A
Bottom Side	0.118	0.549	0.595	0.667	1.6	N/A

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M1

FCC ID: 2AZUR-NETR7

Page 51 of 110

15. Measurement Uncertainty

NO	Source	Uncert. ai (%)	Prob. Dist.	Div. k	ci (1g)	ci (10g)	Stand.U ncert. ui (1g)	Stand.U ncert. ui (10g)	Vet
. A	Ant hotek Anbotek	Anbo	Jok N	botek	P.	both	Ans	lek pro	potek
o'9	Repeat	0.4	N	1	× 1	Anbilier	0. 4	0.4	9
unbote.	Anu notek Anbr	otek p	Instru	ment	otek.	Anbo	Ner An	Lotek	
2	Probe calibration	nbotek 7	Anbor N nek	2	unbotak	1.1	3.5	3.5	(
- 3 Hek	Axial isotropy	4.7	R Anbo	√ <u>3</u>	0.7	0.7	1.9	1.9 ¹⁰⁰¹	jk jotek (
nbotek 4	Hemispherical isotropy	9.4	R	√3	0.7	0.7	3.9	3.9	Anbor
5 An	Boundary effect	1.0	R	√3	nboten 1 Anbotr	μ. 1 	0.6	0.6	¢ 1
6	Linearity	4.7	R	√3	1	Jek	2.7	2.7	otek
ibotek 7	Detection limits	1.0	R	√3 o	^{340^K} 1	Pabot	0.6	0.6	nbon Anbe
8	Readout electronics	0.3	Notek	1 🖗	nboten 1	K 1 An	0.3	0.3	P
9	Response time	0.8	R	√3	Anboit	o ^{tek} 1	0.5	0.5	tek a
10	Integration time	2.6	o ^{tek} R	√3	ax 1	nboto Labote	1.5	1.5	ibotek
Anbotr 11	Ambient noise	3.0	Anboten	√3	potek 1	1 ^{Anth}	1.7	1.7	pi.
12	Ambient reflections	3.0	R	√3	Anboro	Helk 1	1.7	1.7	lek .
13	Probe positioner mech. restrictions	Notes Notes	otek R P	√3	_{ex} 1	Anbotek	0.2	0.2	botek
Anbote	Probe positioning with	otek I	Anbotek	Ann	potek	Aup	obotek A	Anbotek	PU
14	respect to phantom shell	2.9	Rhotek	√3	Anboiten Anboi	1 P	1.7 Anbury	1.7 ^{stell}	۲
15	Max.SAR evaluation	1.0	Met R M	√3	1	boten unbotek	0.6.100	0.6	potek

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Hotline 400-003-0500 www.anbotek.com.cn

Report No.: 18220WC300814-M1

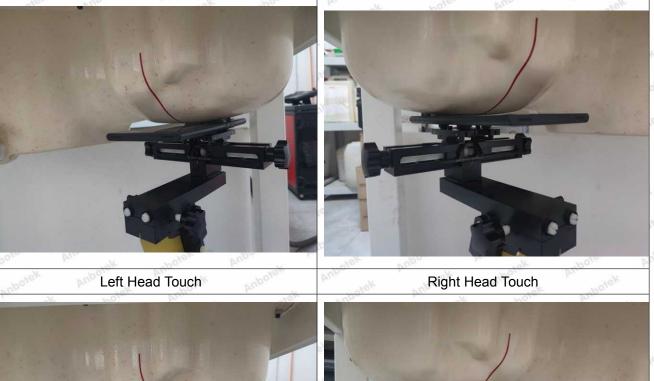
FCC ID: 2AZUR-NETR7

Page 52 of 110

Node	at Anboto And	otek	Test samp	le rel	ated	anb	otek p	nboto	Annabotek
16	Device positioning	3.8	Anboter N oter	1	Antorek	1 P	3.8	3.8	99
17	Device holder	5.1	N Anbr	tek 1 hotek	Anbo 1 Ar	ibold ^K	5.1	5.1	potet 5
18	Drift of output power	5.0	nbotek R	√3	sk stol	Anboter 1	2.9	2.9	Mnbotek ∞,ek
anb	otek Anborn An	abotek	Phantom a	and se	et-up	6	nbotek	Anbore	Antobote
19	Phantom uncertainty	4.0	Ranbo	√3	Hupper	ek stel	2.3	2.3	ok ∞ Ant
20	Liquid conductivity (target)	5.0	R	√3	0.64	0.43	1.8	1.2	unbotek
21	Liquid conductivity (meas)	2.5	Anbotek Notek	Anb 1	0.64	0.43	1.6	1.2	Anbone © bote
اھ 22	Liquid Permittivity (target)	5.0	R	√3	0.6	0.49	1.7	1.5	otek « p
23	Liquid Permittivity (meas)	2.5	potek N	Anbotel	0.6	0.49	1.5	1.2	8
Anbo	Combined standard	potek Anbotek Anbotek	RSS	U	$_{C} = \sqrt{\sum_{i=1}^{n}}$	$C_i^2 U_i^2$	11.4%	11.3%	236
unc	Expanded ertainty(P=95%)	anbol ak An	potek U	l = k L	/ ,k=2	2 Anborek	22.8%	22.6%	nbotek -botek

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com



Report No.: 18220WC300814-M1

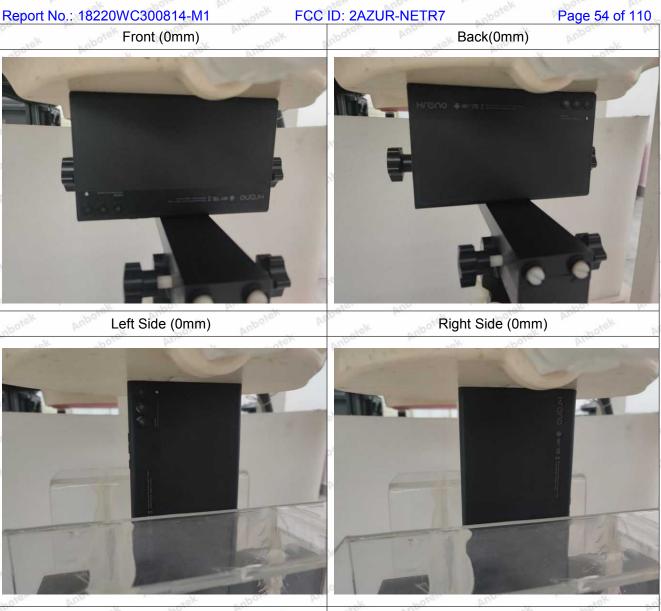
FCC ID: 2AZUR-NETR7

Page 53 of 110

Appendix A. EUT Photos and Test Setup Photos

Left Head Tilt (15°)

Right Head Tilt (15°)


Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Anbo

Top Side (0mm)

Bottom Side (0mm)

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M1

FCC ID: 2AZUR-NETR

Page 55 of 110

Appendix B. Plots of SAR System Check

835MHz Head System Check

Date:05/01/2023

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d154

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 835 MHz; σ = 0.91 S/m; ϵ_r = 41.58; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7396; ConvF(9.71, 9.71, 9.71); Calibrated: 05,06.2022;
Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn387; Calibrated: Sep.06,2022;
Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (61x91x1):Measurement grid: dx=15.00 mm, dy=15.00 mm Maximum value of SAR (interpolated) = 2.86 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 50.27 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 3.15 W/kg SAR(1 g) = 2.31 W/kg; SAR(10 g) = 1.53 W/kg

Maximum value of SAR (measured) = 2.56 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

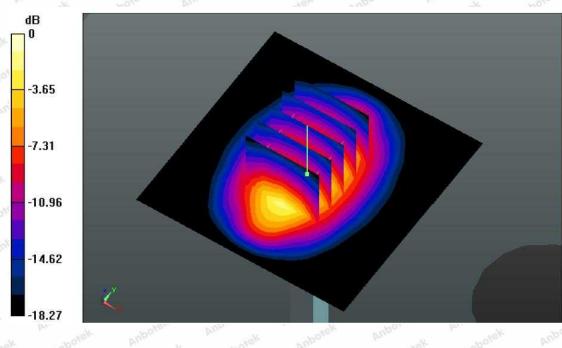
Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Hotline 400-003-0500 www.anbotek.com.cn

Report No.: 18220WC300814-M1 1900MHz Head System Check

FCC ID: 2AZUR-NETR7

Page 56 of 110 Date:05/02/2023

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d175


Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1900 MHz; σ = 1.44 S/m; ϵ r = 40.19; ρ = 1000 kg/m3 Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7396; ConvF(8.13, 8.13, 8.13); Calibrated: 05,06.2022; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn387; Calibrated: Sep.06,2022; Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Area Scan (61x91x1):Measurement grid: dx=15.00 mm, dy=15.00 mm Maximum value of SAR (interpolated) = 16.86 W/kg Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 87.656 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 19.85 W/kg SAR(1 g) = 10.16 W/kg; SAR(10 g) = 5.33 W/kg

Maximum value of SAR (measured) = 15.31 W/kg

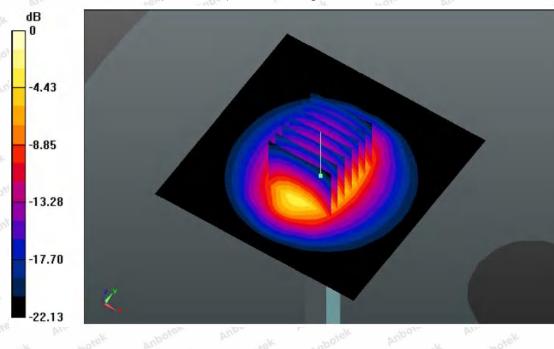
Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M1 2450MHz Head System Check

FCC ID: 2AZUR-NETR7

Page 57 of 110 Date:05/03/2023


DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 910

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2450 MHz; σ = 1.85 S/m; ϵ r = 39.08; ρ = 1000 kg/m3 Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7396; ConvF(7.57, 7.57, 7.57); Calibrated: 05,06.2022; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn387; Calibrated: Sep.06.2022; Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Area Scan (61x91x1):Measurement grid: dx=10.00 mm, dy=10.00 mm Maximum value of SAR (interpolated) = 19.63 W/kg Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 84.54 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 26.11 W/kg SAR(1 g) = 12.92 W/kg; SAR(10 g) = 5.91 W/kg Maximum value of SAR (measured) = 19.45 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Product Safety

Anbotek

Report No.: 18220WC300814-M²

FCC ID: 2AZUR-NETR7

Page 58 of 110

Appendix C. Plots of SAR Test Data

#1

Date: 05/01/2023

GSM850_ Right Cheek Touch

Communication System: Customer System; Frequency:836.6 MHz;Duty Cycle:1:2.08 Medium parameters used (interpolated): f=836.6 MHz; σ =0.91S/m; ϵ r=41.48; ρ =1000 kg/m3 Phantom section: Right Section

DASY5 Configuration:

•Probe: EX3DV4 - SN7396; ConvF(9.71, 9.71, 9.71); Calibrated: May 06, 2022;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

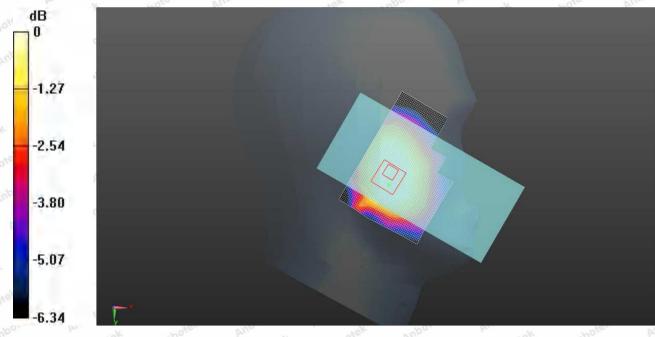
•Electronics: DAE4 Sn387; Calibrated: Sep.06,2022

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (71x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.260 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.151 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.236 W/kg

SAR(1 g) = 0.213 W/kg; SAR(10 g) = 0.180 W/kg

Maximum value of SAR (measured) = 0.217 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M1

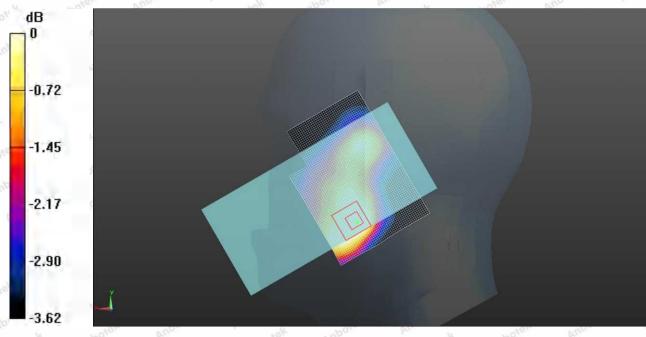
FCC ID: 2AZUR-NETR7

Page 59 of 110

#2

Date: 05/02/2023 GSM1900

Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:2.08


Medium parameters used (interpolated): f = 1880 MHz; $\sigma = 1.405$ mho/m; $\epsilon r = 39.62$; $\rho = 1000$ kg/m3 Phantom section: Left Section

DASY5 Configuration:

•Probe: EX3DV4 - SN7396; ConvF(8.13, 8.13, 8.13); Calibrated: May 06.2022;
•Sensor-Surface: 4mm (Mechanical Surface Detection)
•Electronics: DAE4 Sn387; Calibrated: Sep.06,2022
•Phantom: SAM 1; Type: SAM;
•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (71x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.279 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.937 V/m; Power Drift = 0.16 dB Peak SAR (extrapolated) = 0.254 W/kg SAR(1 g) = 0.229 W/kg; SAR(10 g) = 0.193 W/kg Maximum value of SAR (measured) = 0.233 W/kg

0 dB = 0.221 W/kg = -6.56 dBW/kg

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M²

FCC ID: 2AZUR-NETR

Page 60 of 110

#3

Date: 05/02/2023 WCDMA 1900

Communication System: W1900; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1880 MHz; $\sigma = 1.405$ mho/m; $\epsilon r = 39.62$; $\rho = 1000$ kg/m3 Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7396; ConvF(8.13, 8.13, 8.13); Calibrated: May,06.2022;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: Sep.06,2022
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (71x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.328 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.520 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.292 W/kg SAR(1 g) = 0.267 W/kg; SAR(10 g) = 0.224 W/kg Maximum value of SAR (measured) = 0.270 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M1FCC ID: 2AZUR-NETR7Page 61 of 110

Shenzhen Anbotek Compliance Laboratory Limited

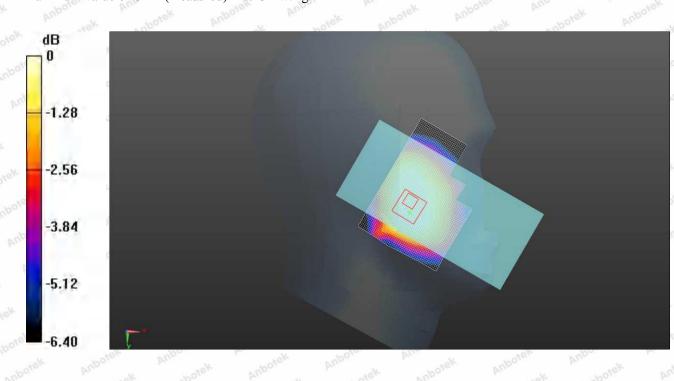
Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b Hotline 400-003-0500

www.anbotek.com.cn

 Report No.: 18220WC300814-M1
 FCC ID: 2AZUR-NETR7
 Page 62 of 110

 #4
 Date: 05/01/2023
 WCDMA 850
 Fequency: 836.6 MHz; Duty Cycle: 1:1

 Medium parameters used (interpolated): f=836.6 MHz; σ =0.91S/m; ϵ r=41.48; ρ =1000 kg/m3
 Fequency: 836.6 MHz; σ =0.91S/m; ϵ r=41.48; ρ =1000 kg/m3


Phantom section: Right Section

DASY5 Configuration:

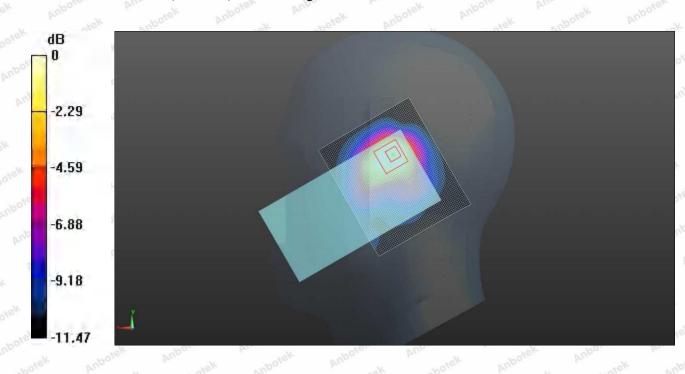
- Probe: EX3DV4 SN7396; ConvF(9.71, 9.71, 9.71); Calibrated: May,06.2022;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: Sep.06,2022
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (71x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.290 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.572 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 0.254 W/kg SAR(1 g) = 0.225 W/kg; SAR(10 g) = 0.188 W/kg Maximum value of SAR (measured) = 0.232 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com


Report No.: 18220WC300814-M1FCC ID: 2AZUR-NETR7Page 63 of 110#5Date: 05/03/2023WIFI 2.4G_802.11b_ Left Cheek TouchCommunication System: 802.11; Frequency: 2412 MHz;Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.85$ S/m; $\varepsilon_r = 38.18$; $\rho = 1000$ kg/m³Phantom section: Left Section:

DASY5 Configuration:

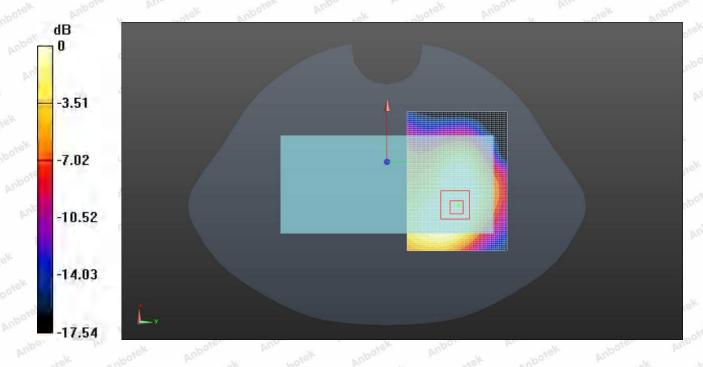
Probe: EX3DV4 - SN7396; ConvF(7.57, 7.57, 7.57); Calibrated: May 06.2022;
Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn387; Calibrated: Sep.06,2022
Phantom: SAM 1; Type: SAM;
Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (71x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.335 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.175 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.367 W/kg SAR(1 g) = 0.229 W/kg; SAR(10 g) = 0.139 W/kg Maximum value of SAR (measured) = 0.249 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com


Report No.: 18220WC300814-M1FCC ID: 2AZUR-NETR7Page 64 of 110#6Date: 05/01/2023GSM850_GPRS_4TX_Body Back_Ch190Communication System: UID 0, GPRS(4 Tx slots) (0); Frequency: 836.6 MHz;Duty Cycle: 1:2.08Medium parameters used (interpolated): f=836.6 MHz; σ=0.91S/m; εr=41.48; ρ=1000 kg/m3Phantom section: Flat SectionDASY5 Configuration:

Probe: EX3DV4 - SN7396; ConvF(9.71, 9.71, 9.71); Calibrated: May 06, 2022;
Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn387; Calibrated: Sep.06,2022
Phantom: SAM 1; Type: SAM;
Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

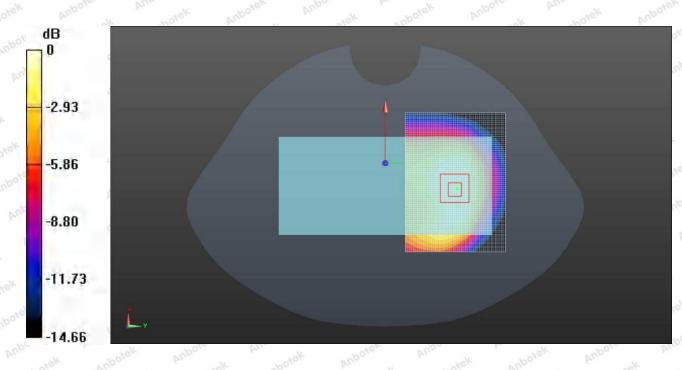
Area Scan (71x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.796 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.13 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.883 W/kg SAR(1 g) = 0.536 W/kg; SAR(10 g) = 0.313 W/kg Maximum value of SAR (measured) = 0.582 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com


Report No.: 18220WC300814-M1FCC ID: 2AZUR-NETR7Page 65 of 110#7Date: 05/02/2023**GSM1900_GPRS_4TX_Body Back_Ch661**Communication System: UID 0, GPRS(4 Tx slots) (0); Frequency: 1880MHz;Duty Cycle: 1:2.08Medium parameters used (interpolated): f = 1880 MHz; $\sigma = 1.405$ mho/m; $\epsilon r = 39.62$; $\rho = 1000$ kg/m3Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7396; ConvF(8.13, 8.13, 8.13); Calibrated: May 06.2022;
Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn387; Calibrated: Sep.06,2022
Phantom: SAM 1; Type: SAM;
Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

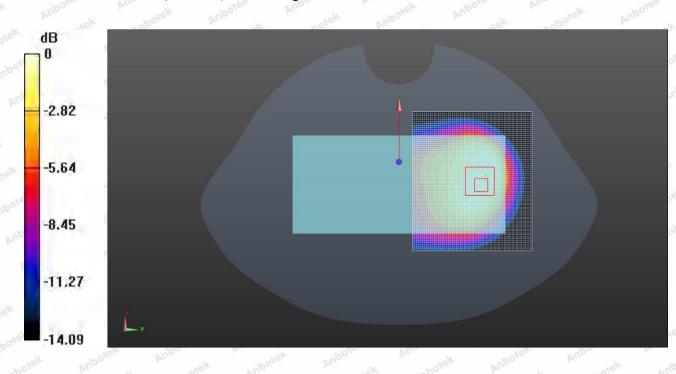
Area Scan (71x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.851 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.49 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 0.941 W/kg SAR(1 g) = 0.605 W/kg; SAR(10 g) = 0.367 W/kg Maximum value of SAR (measured) = 0.658 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M1FCC ID: 2AZUR-NETR7Page 66 of 110#8Date: 05/02/2023WCDMA 1900_RMC 12.2K_Body BackCommunication System: W1900; Frequency: 1880 MHz; Duty Cycle: 1:1Medium parameters used (interpolated): f = 1880 MHz; $\sigma = 1.405$ mho/m; $\epsilon r = 39.62$; $\rho = 1000$ kg/m3Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7396; ConvF(8.13, 8.13, 8.13); Calibrated: May 06.2022;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: Sep.06,2022
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (71x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.48 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 24.31 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 1.64 W/kg SAR(1 g) = 0.936 W/kg; SAR(10 g) = 0.499 W/kg

Maximum value of SAR (measured) = 1.05 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M1FCC ID: 2AZUR-NETR7Page 67 of 110#9Date: 05/01/2023WCDMA 850_RMC 12.2K_Body BackCommunication System: UID 0, Generic WCDMA (0); Frequency: 836.6 MHz; Duty Cycle: 1:1Medium parameters used (interpolated): f=836.6 MHz; σ =0.91S/m; ϵ r=41.48; ρ =1000 kg/m3

Phantom section: Flat Section

DASY5 Configuration:

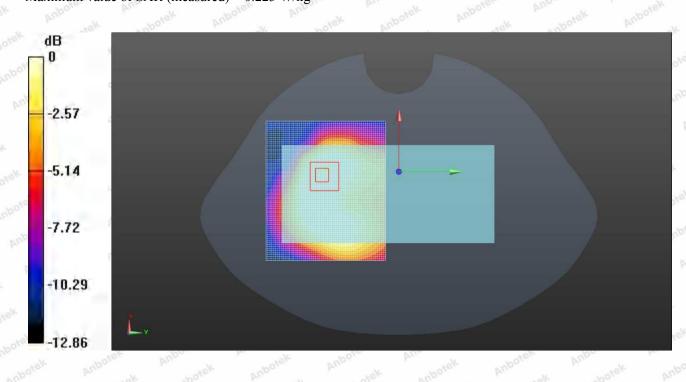
- Probe: EX3DV4 SN7396; ConvF(9.71, 9.71, 9.71); Calibrated: May 06.2022;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: Sep.06,2022
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (71x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.16 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.38 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 1.32 W/kg SAR(1 g) = 0.854 W/kg; SAR(10 g) = 0.537 W/kg Maximum value of SAR (measured) = 0.825 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com



Report No.: 18220WC300814-M1FCC ID: 2AZUR-NETR7Page 68 of 110#10Date: 05/03/2023WIFI 2.4G_802.11b_Body Back _Ch1Communication System: UID 0, wifi (fcc) (0); Frequency: 2412 MHz;Duty Cycle: 1:1Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.85$ S/m; $\varepsilon_r = 38.18$; $\rho = 1000$ kg/m³Phantom section: Flat SectionDASY5 Configuration:

Probe: EX3DV4 - SN7396; ConvF(7.57, 7.57, 7.57); Calibrated: May 06.2022;
Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn387; Calibrated: Sep.06,2022
Phantom: SAM 1; Type: SAM;
Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (71x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.374 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.444 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 0.452 W/kg SAR(1 g) = 0.211 W/kg; SAR(10 g) = 0.110 W/kg Maximum value of SAR (measured) = 0.223 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M1

FCC ID: 2AZUR-NETR7

Page 69 of 110

Appendix D. DASY System Calibration Certificate

	8 In Collaborati	and the second second	中国认可
TT	T S P		い AS 肉 属 互 认
	CALIBRATIO	N LABORATORY	CALIBRATIO
		ct. Beijing, 100191, China	CNAS L057
Tel: +86-10-623046 E-mail: cttl@chinatt		-10-62304633-2209 ww.chinattl.cn	
Client Anb	otek (Auden)	Certificate No: Z21-	98671
CALIBRATION C	RTIFICATE		
Dbject	EX3DV4	- SN:7396	
Calibration Procedure(s)	FF 740 0		
	FF-Z12-0	00-08 on Procedures for Dosimetric E-field Probes	
	Calibratic	on Freedures for Desilience-neid Plobes	
Calibration date:	May 06, 2	2022	
		anality to actional standards which and	To the physical units of
		aceability to national standards, which reali ne uncertainties with confidence probability a	
pages and are part of the ce		ie uncertainties with confidence probability a	re given on the following
bages and are part of the oc	annoate.		
All calibrations have been	conducted in th	e closed laboratory facility: environment t	temperature(22±3)°C and
numidity<70%.			
numidity<70%.			
	(M&TE critical for		
Calibration Equipment used			Scheduled Calibration
Calibration Equipment used		calibration)	Scheduled Calibration Jun-21
Calibration Equipment used Primary Standards	ID# (calibration) Cal Date(Calibrated by, Certificate No.)	
Calibration Equipment used Primary Standards Power Meter NRP2	ID # 0	calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-21 (CTTL, No.J21X07447)	Jun-21
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	ID # 0 101919 101547	calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447)	Jun-21 Jun-21
Power sensor NRP-Z91 Power sensor NRP-Z91	ID # 0 101919 101547 101548	calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447)	Jun-21 Jun-21 Jun-21
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator	ID # 0 101919 101547 101548 18N50W-10dB 18N50W-20dB	calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 13-Mar-22(CTTL,No.J22X01547)	Jun-21 Jun-21 Jun-21 Mar-22
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator	ID # 0 101919 101547 101548 18N50W-10dB 18N50W-20dB	calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 13-Mar-22(CTTL,No.J22X01547) 13-Mar-22(CTTL, No.J22X01548)	Jun-21 Jun-21 Jun-21 Mar-22 Mar-22 Sep-21
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4	ID # 0 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7433 SN 549	Calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 13-Mar-22(CTTL, No.J22X01547) 13-Mar-22(CTTL, No.J22X01548) 26-Sep-21(SPEAG, No.EX3-7433_Sep21) 13-Dec-21(SPEAG, No.DAE4-549_Dec21)	Jun-21 Jun-21 Jun-21 Mar-22 Mar-22 Sep-21 Dec -21
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards	ID # 0 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7433 SN 549 ID #	Calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 13-Mar-22(CTTL, No.J22X01547) 13-Mar-22(CTTL, No.J22X01548) 26-Sep-21(SPEAG, No.EX3-7433_Sep21) 13-Dec-21(SPEAG, No.DAE4-549_Dec21) Cal Date(Calibrated by, Certificate No.)	Jun-21 Jun-21 Jun-21 Mar-22 Mar-22 Sep-21 Dec -21 Scheduled Calibration
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A	ID # 0 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7433 SN 549 ID # 6201052605	Calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 13-Mar-22(CTTL, No.J22X01547) 13-Mar-22(CTTL, No.J22X01548) 26-Sep-21(SPEAG, No.EX3-7433_Sep21) 13-Dec-21(SPEAG, No.DAE4-549_Dec21) Cal Date(Calibrated by, Certificate No.) 27-Jun-21 (CTTL, No.J21X04776)	Jun-21 Jun-21 Jun-21 Mar-22 Mar-22 Sep-21 Dec -21 Scheduled Calibration Jun-21
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards	ID # 0 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7433 SN 549 ID # 6201052605 MY46110673	Calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 13-Mar-22(CTTL, No.J22X01547) 13-Mar-22(CTTL, No.J22X01548) 26-Sep-21(SPEAG, No.EX3-7433_Sep21) 13-Dec-21(SPEAG, No.DAE4-549_Dec21) Cal Date(Calibrated by, Certificate No.) 27-Jun-21 (CTTL, No.J21X04776) 13-Jan-22 (CTTL, No.J22X00285)	Jun-21 Jun-21 Jun-21 Mar-22 Mar-22 Sep-21 Dec -21 Scheduled Calibration Jun-21 Jan -22
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	ID # 0 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7433 SN 549 ID # 6201052605 MY46110673 Name	calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 13-Mar-22(CTTL, No.J22X01547) 13-Mar-22(CTTL, No.J22X01548) 26-Sep-21(SPEAG, No.EX3-7433_Sep21) 13-Dec-21(SPEAG, No.DAE4-549_Dec21) Cal Date(Calibrated by, Certificate No.) 27-Jun-21 (CTTL, No.J22X00285) Function	Jun-21 Jun-21 Jun-21 Mar-22 Mar-22 Sep-21 Dec -21 Scheduled Calibration Jun-21
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A	ID # 0 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7433 SN 549 ID # 6201052605 MY46110673	Calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 13-Mar-22(CTTL, No.J22X01547) 13-Mar-22(CTTL, No.J22X01548) 26-Sep-21(SPEAG, No.EX3-7433_Sep21) 13-Dec-21(SPEAG, No.DAE4-549_Dec21) Cal Date(Calibrated by, Certificate No.) 27-Jun-21 (CTTL, No.J21X04776) 13-Jan-22 (CTTL, No.J22X00285)	Jun-21 Jun-21 Jun-21 Mar-22 Mar-22 Sep-21 Dec -21 Scheduled Calibration Jun-21 Jan -22
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C Calibrated by:	ID # 0 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7433 SN 549 ID # 6201052605 MY46110673 Name Yu Zongying	calibration) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 13-Mar-22(CTTL, No.J22X01547) 13-Mar-22(CTTL, No.J22X01548) 26-Sep-21(SPEAG, No.EX3-7433_Sep21) 13-Dec-21(SPEAG, No.DAE4-549_Dec21) Cal Date(Calibrated by, Certificate No.) 27-Jun-21 (CTTL, No.J22X00285) Function SAR Test Engineer	Jun-21 Jun-21 Jun-21 Mar-22 Mar-22 Sep-21 Dec -21 Scheduled Calibration Jun-21 Jan -22
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	ID # 0 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7433 SN 549 ID # 6201052605 MY46110673 Name	calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 13-Mar-22(CTTL, No.J22X01547) 13-Mar-22(CTTL, No.J22X01548) 26-Sep-21(SPEAG, No.EX3-7433_Sep21) 13-Dec-21(SPEAG, No.DAE4-549_Dec21) Cal Date(Calibrated by, Certificate No.) 27-Jun-21 (CTTL, No.J22X00285) Function	Jun-21 Jun-21 Jun-21 Mar-22 Mar-22 Sep-21 Dec -21 Scheduled Calibration Jun-21 Jan -22
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C Calibrated by: Reviewed by:	ID # 0 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7433 SN 549 ID # 6201052605 MY46110673 Name Yu Zongying Lin Hao	calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 13-Mar-22(CTTL, No.J22X01547) 13-Mar-22(CTTL, No.J22X01548) 26-Sep-21 (SPEAG, No.EX3-7433_Sep21) 13-Dec-21 (SPEAG, No.DAE4-549_Dec21) Cal Date(Calibrated by, Certificate No.) 27-Jun-21 (CTTL, No.J22X00285) Function SAR Test Engineer SAR Test Engineer	Jun-21 Jun-21 Jun-21 Mar-22 Mar-22 Sep-21 Dec -21 Scheduled Calibration Jun-21 Jan -22
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C Calibrated by: Reviewed by:	ID # 0 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7433 SN 549 ID # 6201052605 MY46110673 Name Yu Zongying	calibration) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 13-Mar-22(CTTL, No.J22X01547) 13-Mar-22(CTTL, No.J22X01548) 26-Sep-21(SPEAG, No.EX3-7433_Sep21) 13-Dec-21(SPEAG, No.DAE4-549_Dec21) Cal Date(Calibrated by, Certificate No.) 27-Jun-21 (CTTL, No.J22X00285) Function SAR Test Engineer	Jun-21 Jun-21 Jun-21 Mar-22 Mar-22 Sep-21 Dec -21 Scheduled Calibration Jun-21 Jan -22
Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C Calibrated by:	ID # 0 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7433 SN 549 ID # 6201052605 MY46110673 Name Yu Zongying Lin Hao	calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 20-Jun-21 (CTTL, No.J21X07447) 13-Mar-22(CTTL, No.J22X01547) 13-Mar-22(CTTL, No.J22X01548) 26-Sep-21 (SPEAG, No.EX3-7433_Sep21) 13-Dec-21 (SPEAG, No.DAE4-549_Dec21) Cal Date(Calibrated by, Certificate No.) 27-Jun-21 (CTTL, No.J22X00285) Function SAR Test Engineer SAR Test Engineer	Jun-21 Jun-21 Jun-21 Mar-22 Mar-22 Sep-21 Dec -21 Scheduled Calibration Jun-21 Jan -22 Signature

Certificate No: Z21-98671

Page 1 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Page 70 of 110

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

Glossary:

Report No.: 18220WC300814-M1

Anbotek

Product Safety

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization 0	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

θ=0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

- Methods Applied and Interpretation of Parameters:
- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat
 phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z21-98671

Page 2 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC300814-M1

FCC ID: 2AZUR-NETR7

Page 71 of 110

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2209 Http://www.chinattl.cn

Probe EX3DV4

SN: 7396

Calibrated: May 06, 2022

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z21-98671

Page 3 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755-26066440 Fax:(86) 0755-26014772 Email:service@anbotek.com

Page 72 of 110

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

Basic Calibration Parameters

nbot

Product Safety

Report No.: 18220WC300814-M1

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.54	0.53	0.50	±10.0%
DCP(mV) ^B	97.8	104.5	102.5	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	199.9	±2.4%
		Y	0.0	0.0	1.0		203.3	
		Z	0.0	0.0	1.0		195.0	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).
^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: Z21-98671

Page 4 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Anbotek Product Safety

Report No.: 18220WC300814-M1

FCC ID: 2AZUR-NETR7

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.82	9.82	9.82	0.30	0.85	±12.1%
835	41.5	0.90	9.71	9.71	9.71	0.15	1.36	±12.1%
900	41.5	0.97	9.87	9.87	9.87	0.16	1.37	±12.1%
1750	40.1	1.37	8.61	8.61	8.61	0.25	1.04	±12.1%
1900	40.0	1.40	8.13	8.13	8.13	0.24	1.01	±12.1%
2100	39.8	1.49	8.14	8.14	8.14	0.24	1.04	±12.1%
2300	39.5	1.67	7.85	7.85	7.85	0.40	0.75	±12.1%
2450	39.2	1.80	7.57	7.57	7.57	0.50	0.75	±12.1%
2600	39.0	1.96	7.38	7.38	7.38	0.64	0.68	±12.1%
5250	35.9	4.71	5.33	5.33	5.33	0.45	1.30	±13.3%
5600	35.5	5.07	4.89	4.89	4.89	0.45	1.35	±13.3%
5750	35.4	5.22	4.92	4.92	4.92	0.45	1.45	±13.3%

^c Frequency validity above 300 MHz of \pm 100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to \pm 50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

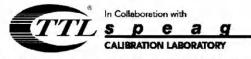
^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z21-98671

Page 5 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com



Anbotek Product Safety

Report No.: 18220WC300814-M1

FCC ID: 2AZUR-NETR7

Page 74 of 110

 Add: No.51 Xucyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: ettl@chinattl.com
 <u>Http://www.chinattl.cn</u>

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	10.09	10.09	10.09	0.30	0.90	±12.1%
835	55.2	0.97	9.88	9.88	9.88	0.19	1.32	±12.1%
900	55.0	1.05	9.82	9.82	9.82	0.23	1.15	±12.1%
1750	53.4	1.49	8.24	8.24	8.24	0.24	1.06	±12.1%
1900	53.3	1.52	7.97	7.97	7.97	0.19	1.24	±12.1%
2100	53.2	1.62	8.18	8.18	8.18	0.19	1.39	±12.1%
2300	52.9	1.81	7.88	7.88	7.88	0.55	0.80	±12.1%
2450	52.7	1.95	7.53	7.53	7.53	0.46	0.89	±12.1%
2600	52.5	2.16	7.38	7.38	7.38	0.52	0.80	±12.1%
5250	48.9	5.36	4.93	4.93	4.93	0.45	1.80	±13.3%
5600	48.5	5.77	4.19	4.19	4.19	0.48	1.90	±13.3%
5750	48.3	5.94	4.52	4.52	4.52	0.48	1.95	±13.3%

^C Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z21-98671

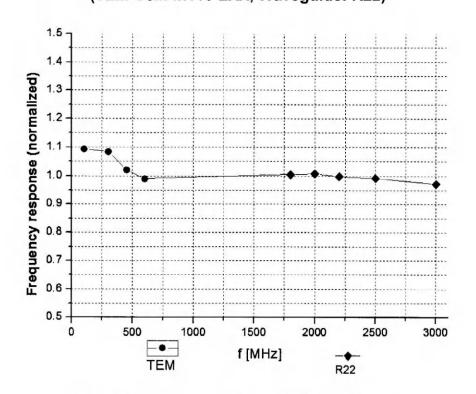
Page 6 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Page 75 of 110



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No: Z21-98671

Page 7 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

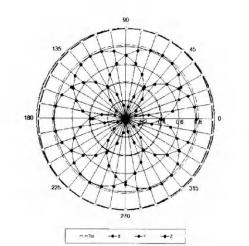
Anbotek Product Safety

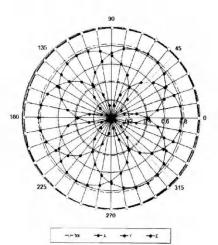
Report No.: 18220WC300814-M1

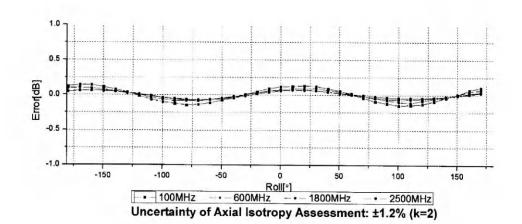
FCC ID: 2AZUR-NETR7

Page 76 of 110

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China


 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209


 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>


Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

Certificate No: Z21-98671

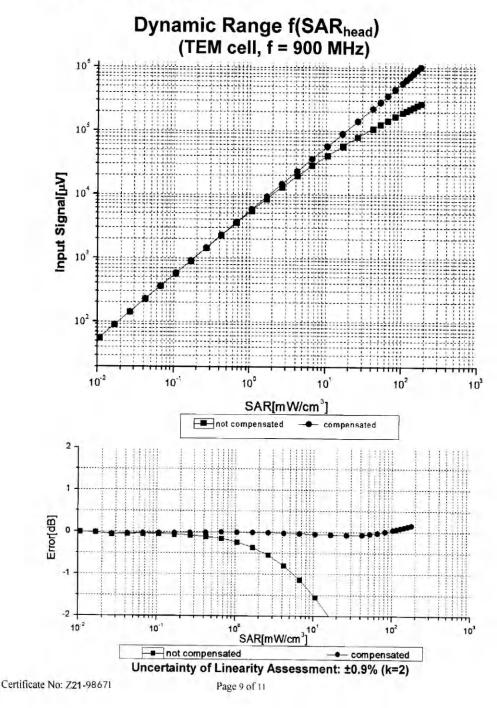
Page 8 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Page 77 of 110


Anbotek Product Safety

Report No.: 18220WC300814-M1

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Anbotek Product Safety

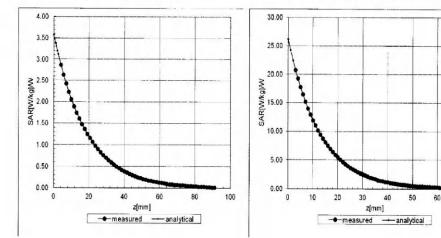
Report No.: 18220WC300814-M1

FCC ID: 2AZUR-NETR7

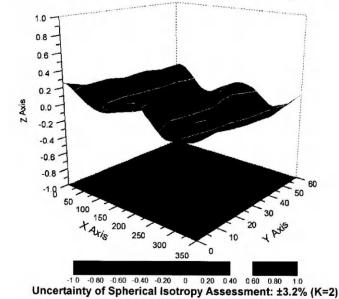
Page 78 of 110

70

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China


 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>


Conversion Factor Assessment

f=900 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Certificate No: Z21-98671

Page 10 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Anbotek Product Safety

Report No.: 18220WC300814-M1

FCC ID: 2AZUR-NETR7

 Add: No.51 Xucyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7396

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	156.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No: Z21-98671

Page 11 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Page 80 of 110

Schmid & Partner Engineering AG

speag

Zeughausstrasso 43, 8004 Zurich, Switzerland, Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

IMPORTANT NOTICE

USAGE OF THE DAE 4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Fallures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

TN_BR040315AD DAE4.doc

11.12.2009

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Anbotek Product Safety

Report No.: 18220WC300814-M1

FCC ID: 2AZUR-NETR7

Page 81 of 110

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- HANDREED SCREED S
- Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Anbotek (Auden)

Certificate No: DAE4-387_Sep10

Accreditation No.: SCS 0108

CALIBRATION CERTIFICATE

Calibration procedure(s)

QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE)

Calibration date:

Object

September 06, 2022

DAE4 - SD 000 D04 BM - SN: 387

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	15-Aug-21 (No:22092)	Aug-22
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	05-Jan-22 (in house check)	In house check: Jan-23
Calibrator Box V2.1	SE UMS 006 AA 1002	05-Jan-22 (in house check)	In house check: Jan-23

	Name	Function	Signature
Calibrated by:	Dominique Steffen	Laboratory Technician	100
Approved by:	Sven Kühn	Deputy Manager	1. V. Bleund
This collibration contificate	e shall not be reproduced except in full v	denotion interview of the laboratory	Issued: September 06, 2022

Certificate No: DAE4-387_Sep10

Page 1 of 5

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Page 82 of 110

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

- Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Glossary

DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-387_Sep10

Page 2 of 5

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel:(86) 0755-26066440 Fax:(86) 0755-26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Page 83 of 110

DC Voltage Measurement

A/D - Converter Resolution nominal

 High Range:
 1LSB =
 6.1μV ,
 full range =
 -100...+300 mV

 Low Range:
 1LSB =
 61nV ,
 full range =
 -100...+3mV

 DASY measurement parameters:
 Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.489 ± 0.02% (k=2)	404.852 ± 0.02% (k=2)	404.862 ± 0.02% (k=2)
Low Range	3.97827 ± 1.50% (k=2)	3.95875 ± 1.50% (k=2)	

Connector Angle

53.0 ° ± 1 °

Certificate No: DAE4-387_Sep10

Page 3 of 5

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Page 84 of 110

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200032.85	-3.31	-0.00
Channel X + Input	20007.64	1.88	0.01
Channel X - Input	-20003.48	1.18	-0.01
Channel Y + Input	200034.23	-1.43	-0.00
Channel Y + Input	20006.60	0.91	0.00
Channel Y - Input	-20004.04	0.72	-0.00
Channel Z + Input	200035.38	-0.83	-0.00
Channel Z + Input	20003.69	-2.11	-0.01
Channel Z - Input	-20006.38	-1.59	0.01

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2001.63	0.08	0.00
Channel X + Input	202.29	0.70	0.35
Channel X - Input	-197.90	0.60	-0.30
Channel Y + Input	2001.33	-0.07	-0.00
Channel Y + Input	200.86	-0.60	-0.30
Channel Y - Input	-199.87	-1.23	0.62
Channel Z + Input	2001.61	0.27	0.01
Channel Z + Input	200.60	-0.70	-0.35
Channel Z - Input	-199.51	-0.85	0.43

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	13.50	11.56
	- 200	-8.64	-11.18
Channel Y	200	-0.81	-1.28
	- 200	1.05	0.09
Channel Z	200	7.17	6.91
	- 200	-9.46	-9.01

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	-1.70	0.33
Channel Y	200	10.70	-	-0.38
Channel Z	200	7.11	7.89	-

Certificate No: DAE4-387_Sep10

Page 4 of 5

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Page 85 of 110

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15969	17466
Channel Y	15661	16162
Channel Z	15990	16190

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10 M $\!\Omega$

	Average (µV)	min. Offset (µV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.73	-2.58	3.29	0.62
Channel Y	0.41	-0.49	1.23	0.40
Channel Z	-0.80	-1.88	0.30	0.42

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-387_Sep10

Page 5 of 5

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Page 86 of 110

CALIBRATION CERTIFICATE

Object

D835V2 - SN: 4d154

Calibration Procedure(s)

FD-Z11-2-003-01 Calibration Procedures for dipole validation kits

Calibration date:

Jun 16, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	1-Jul-20 (CTTL, No.J17X04256)	Jun-21
Power sensor NRP-Z91	101547	1-Jul-20 (CTTL, No.J17X04256)	Jun-21
Reference Probe EX3DV4	SN 7307	19-Feb-21(SPEAG,No.EX3-7307_Feb18)	Feb-22
DAE4	SN 771	02-Feb-21(CTTL-SPEAG,No.Z18-97011)	Feb-22
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL, No.J18X00893)	Jan-22
Network Analyzer E5071C	MY46110673	26-Jan-21 (CTTL, No.J18X00894)	Jan-22
	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	きた」
Reviewed by:	Qi Dianyuan	SAR Project Leader	2000
Approved by:	Lu Bingsong	Deputy Director of the laboratory	In lests
		Issued: Jun 1	7. 2021
This calibration certificate sh	all not be reprod	uced except in full without written approval of	the laboratory.

Certificate No: Z18-97089

Page 1 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Page 87 of 110

Addi No.51 Kuoyuan Road, Batalane District, Beljing, 100191, China Tea: 186-10-02304033-2079 Pax +86-10-02304033-2504 F-mail: enbigchinanti.com Hitp://www.chinattl.en

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx.y.z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013.
- b) IEC 62209-1. "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL. The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured, SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters. The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z18-97089

Page 2 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Page 88 of 110

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China 101: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.co

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1258
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm.	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.0 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test.	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.30 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.24 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ² (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.50 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.02 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) *C	55.4 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		-

SAR result with Body TSL

SAR averaged over 1 cm ² (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.43 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	9.57 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.61 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.36 mW /g ± 20.4 % (k=2)

Certificate No: Z18-97089

Page 3 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Page 89 of 110

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.2Ω- 3.11jΩ	
Return Loss	- 29.8dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6Ω- 2.33jΩ	
Return Loss	- 27.4dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.508 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

	00540
Manufactured by	SPEAG

Certificate No: Z18-97089

Page 4 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Page 90 of 110

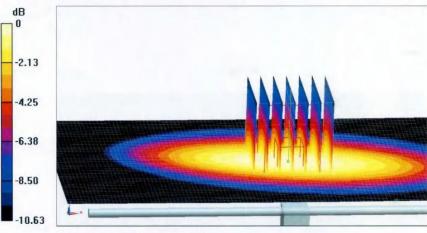
 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

Date: 06.16.2021


DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d154 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.891$ S/m; $\epsilon_r = 40.97$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(10.01, 10.01, 10.01); Calibrated: 2/19/2021;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2021-02-02
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.14V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.41 W/kg SAR(1 g) = 2.3 W/kg; SAR(10 g) = 1.5 W/kg Maximum value of SAR (measured) = 2.91 W/kg

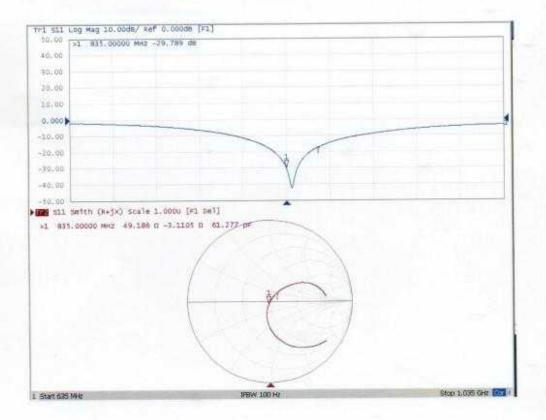
0 dB = 2.91 W/kg = 4.64 dBW/kg

Certificate No: Z18-97089

Page 5 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com


FCC ID: 2AZUR-NETR7

Page 91 of 110

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinatil.com Http://www.chinattl.en

Impedance Measurement Plot for Head TSL

Certificate No: Z18-97089

Page 6 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Anbotek Product Safety

Report No.: 18220WC300814-M1

FCC ID: 2AZUR-NETR7

Page 92 of 110

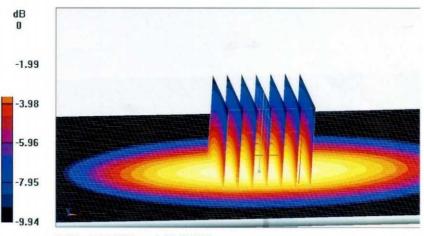
 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 Http://www.chinattl.cn

DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dinole 835 MHz: Type: D835V2: Serial: D835V2 - SN: 44

Date: 06.16.2021


DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d154 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.991$ S/m; $\varepsilon_r = 55.41$; $\rho = 1000$ kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(9.83,9.83, 9.83); Calibrated: 2/19/2021;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2021-02-02
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.01 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.53 W/kgSAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.61 W/kgMaximum value of SAR (measured) = 3.04 W/kg

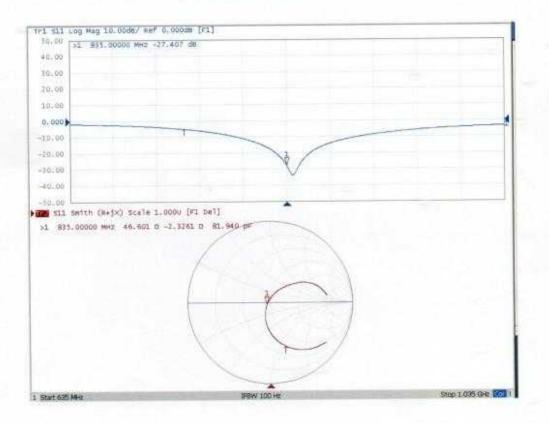
0 dB = 3.04 W/kg = 4.83 dBW/kg

Certificate No: Z18-97089

Page 7 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com


FCC ID: 2AZUR-NETR7

Page 93 of 110

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Certificate No: Z18-97089

Page 8 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

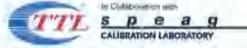
FCC ID: 2AZUR-NETR7

Page 94 of 110

Certificate No: Z22-97090

Page 1 of 8

Shenzhen Anbotek Compliance Laboratory Limited


Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Page 95 of 110

doft No.51 Xuryuan Road Haidam District Delling, 101191, China Tel -10-623 14673-2079 Las. 186-10-62304633-2504 Lonnill ettildeld #Ulpt/Ven-trabbanith.am all a dire

Glossnry:

TSL	
ConvF	
N/A	

tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Galibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak. Spalial Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices' Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)". February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Anlenna Parometers with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Food Point Impedance and Return Loss. These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay. One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters. The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: 722-97090

Face 7 IN 8

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel:(86) 0755-26066440 Fax:(86) 0755-26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Page 96 of 110

Add, No.51 Xneytum Road, Disidian District, Beijing, 100191, China Tel. + 86-10-62304633-2079 Fac: + 86-10-62304633-2504 E-smil: eth/chinant.com Hup://www.chinatt.cn

Measurement Conditions

 DASY system configuration, as far as not given on page 1.

 DASY Version
 DASY52

 Extrapolation
 Advanced Extrapolation

 Phantom
 Triple Flat Phantom 5.1C

 Distance Dipola Center - TSL
 10 mm

 Zoom Scan Resolution
 dx, dy, dz = 5 mm

 Frequency
 1900 MHz ± 1 MHz

Head TSL parameters

S.

The following parameters and calculations were applied.

	Temperatur	e P	ermittin	ity	Conductivity
Nominal Head TSL parameters	22.0 *C		40.0		1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0,2) *	c ·	40.3±6	156	1.38 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C				
R result with Head TSL					
SAR averaged over 1 cm3 (1 g) of Head TSL		Condition			
SAR measured	250 m	W input pa	16/40		g / Wim 66.6
SAR for nominal Head TSL parameters	nom	alized to 1	Ŵ	40.4	mW/g±20.8 % (k=2)
SAR averaged over 10 cm ² (10 g) of Head T	SL C	noidibin			
SAR measured	250 m	W Input pr	war		5.28 mW/g
SAR for nominal Head TSL parameters	1000	ultzed to 1	W	21.3	mW/g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.3 ± 6 %	1.54 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C.	+++	****

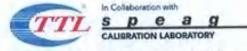
SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.1 m/W/g
SAR for nominal Body TSL parameters	normalized to 1W	40.1 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.39 mW/g
SAR for nominal Body TSL parameters	Wt of beglarmon	21.5 mW/g ± 20.4 % (k=2)

Certificate No: Z22-97090

Page 3 of #

Shenzhen Anbotek Compliance Laboratory Limited


Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Page 97 of 110

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Pax: +86-10-62304633-2504 E-mail: ett@chinatfi.com Http://www.chinatfi.en

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.2Ω+ 5.44jΩ	
Return Loss	- 24.3dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.9Ω+ 5.75jΩ	
Return Loss	- 24.6dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.304 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

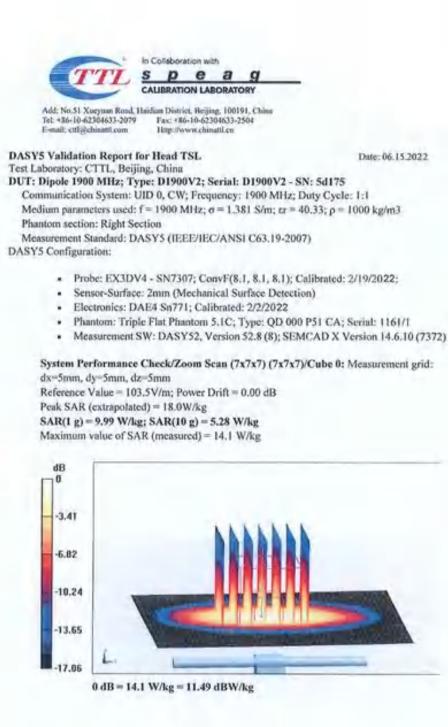
Additional EUT Data

PEAG
_

Certificate No: Z22-97090

Page 4 of 8

Shenzhen Anbotek Compliance Laboratory Limited


Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

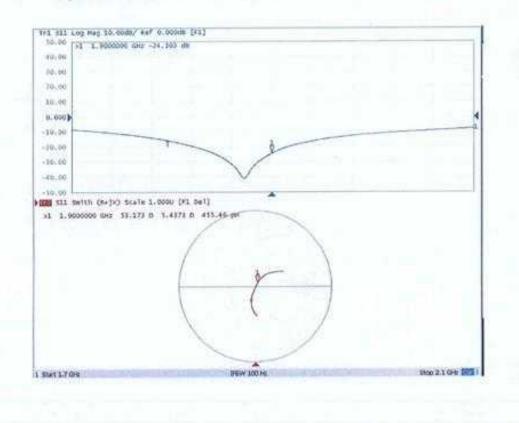
Page 98 of 110

Certificate No: Z22-97090

Page 5 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com


FCC ID: 2AZUR-NETR7

Page 99 of 110

Add: No. 31 Xueyuan Road, Uaidian Diotrict, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettlogehinattl.com Http://www.chinattl.com

Impedance Measurement Plot for Head TSL

Certificate No: Z22-97090

Page 6 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Add: No.51 Xueyum Road, Haidian Dinnict, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Littp://www.chinattl.cn E-mail: cnl@chinattl.com

Date: 06.15.2019

DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d175 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; o = 1.537 S/m; e_i = 53.34; p = 1000 kg/m³ Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(7.67, 7.67, 7.67); Calibrated: 2/19/2019; ٠
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2/2/2019
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

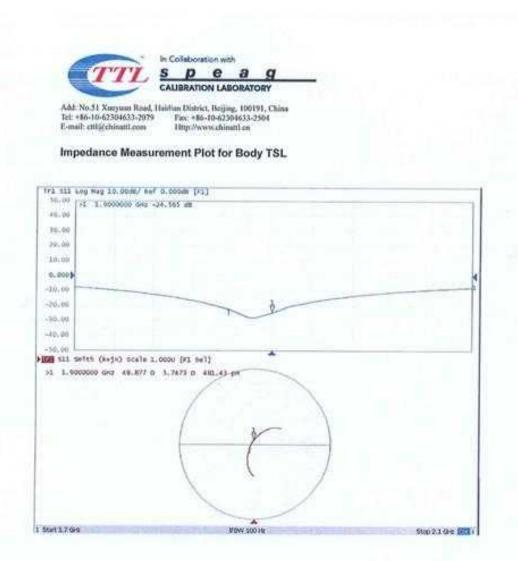
System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.11 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.8 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.39 W/kg

Maximum value of SAR (measured) = 14.3 W/kg

Certificate No: 7.22-97090

Page 1 of 8

Shenzhen Anbotek Compliance Laboratory Limited


Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755-26066440 Fax:(86) 0755-26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

Page 101 of

Certificate No: 7.22-97090

Page 8 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Object

D2450V2 - SN: 910

Jun 15, 2021

Calibration Procedure(s)

pages and are part of the certificate.

FD-Z21-2-003-01 Calibration Procedures for dipole validation kits

Calibration date:

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)[°]C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-20 (CTTL, No.J20X04256)	Jun-21
Power sensor NRP-Z91	101547	01-Jul-20 (CTTL, No.J20X04256)	Jun-21
Reference Probe EX3DV4	SN 7307	19-Feb-21(SPEAG,No.EX3-7307_Feb21)	Feb-22
DAE4	SN 771	02-Feb-21(CTTL-SPEAG,No.Z21-97011)	Feb-22
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL, No.J18X00893)	Jan-22
Network Analyzer E5071C	MY46110673	26-Jan-21 (CTTL, No.J18X00894)	Jan-22
	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	221 -
Reviewed by:	Qi Dianyuan	SAR Project Leader	wor
Approved by:	Lu Bingsong	Deputy Director of the laboratory	In usita
		Issued: Jun 1	7, 2021
This calibration certificate sh	all not be reproc	luced except in full without written approval of	f the laboratory

Certificate No: Z21-97091

Page 1 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

In Colleboration with

CALIBRATION LABORATORY

Add: No.51 Xueyuan Ruad, Haidiau Distrier, Beijung, 100191, Chira Tel. +86-10-62304633-2079 Vex: -86-10-62304633-2504 E-mail: cftb@chisanl.com Hup://www.chinattl.cn

Glossary: TSL ConvF

N/A

Anbotek

Product Safety

110

tissue simulating liquid sensitivity in TSL / NORMx.y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate, All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured. SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z18-97091

Page 2 of a

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

In Collaboration with

Add: No.51 Nueyuan Rond, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ctl@chinattl.com Http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY52	52.8.8.1258
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.30 mha/m
Measured Head TSL parameters	(22,0 ± 0,2) °C	39.0 ± 6 %	1.77 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	250 mW input power	13.0 mW / g	
SAR for nominal Head TSL parameters	normalized to 1W	52.4 mW /g ± 20.8 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition		
SAR measured	250 mW input power	6.06 mW / g	
SAR for nominal Head TSL parameters	normalized to 1W	24.3 mW /g ± 20.4 % (k=2)	

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) "C	52.9±6%	1.97 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

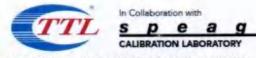
SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.8 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	· · · · · · · · · · · · · · · · · · ·
SAR measured	250 mW input power	6.18 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	24.7 mW /g ± 20.4 % (k=2)

Certificate No: Z18-97091

Page 3 of 8

Shenzhen Anbotek Compliance Laboratory Limited


Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AZUR-NETR7

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 Http://www.chinattl.cn

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.6Ω+ 2.77]Ω	
Return Loss	- 25.8dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.7Ω+ 4.28jΩ
Return Loss	- 27.3dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.263 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured,

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: Z18-97091

Page 4 of 8

Shenzhen Anbotek Compliance Laboratory Limited

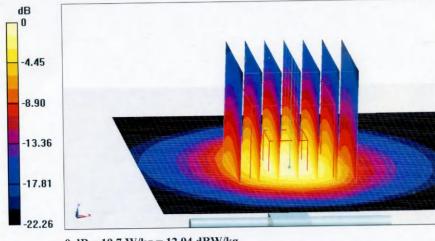
Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

Date: 06.15.2021


DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 910 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.767 \text{ S/m}$; $\epsilon r = 39.01$; $\rho = 1000 \text{ kg/m3}$ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(7.36, 7.36, 7.36); Calibrated: 2/19/2021; .
- Sensor-Surface: 2mm (Mechanical Surface Detection) .
- Electronics: DAE4 Sn771; Calibrated: 2021-02-02
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

FCC ID: 2AZUR-NETR7

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 106.5 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 26.7 W/kg SAR(1 g) = 13 W/kg; SAR(10 g) = 6.06 W/kg Maximum value of SAR (measured) = 19.7 W/kg

0 dB = 19.7 W/kg = 12.94 dBW/kg

Certificate No: Z21-97091

Page 5 of 8

Shenzhen Anbotek Compliance Laboratory Limited

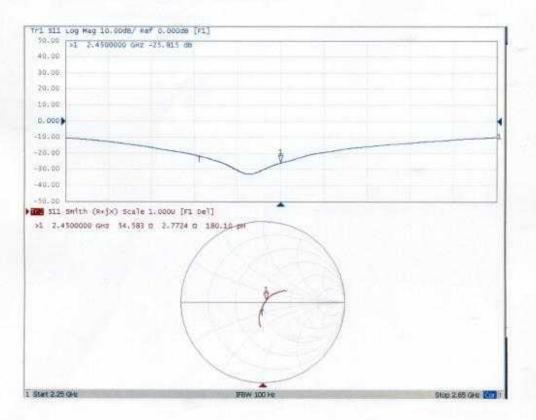
Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel:(86) 0755-26066440 Fax:(86) 0755-26014772 Email:service@anbotek.com

Code:AB-RF-05-b Hotline 400-003-0500 www.anbotek.com.cn

Page 106 of

FCC ID: 2AZUR-NETR7

Page 107 of



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Certificate No: Z18-97091

Page 6 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

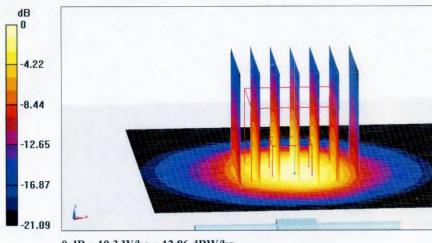
 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 Http://www.chinattl.cn

DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China

Date: 06.15.2021


DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 910 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.972$ S/m; $\varepsilon_r = 52.92$; $\rho = 1000$ kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(7.22, 7.22, 7.22); Calibrated: 2/19/2021;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2021-02-02
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

FCC ID: 2AZUR-NETR7

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.89 V/m; Power Drift = 0.03 dBPeak SAR (extrapolated) = 25.6 W/kgSAR(1 g) = 13 W/kg; SAR(10 g) = 6.18 W/kgMaximum value of SAR (measured) = 19.3 W/kg

0 dB = 19.3 W/kg = 12.86 dBW/kg

Certificate No: Z21-97091

Page 7 of 8

Shenzhen Anbotek Compliance Laboratory Limited

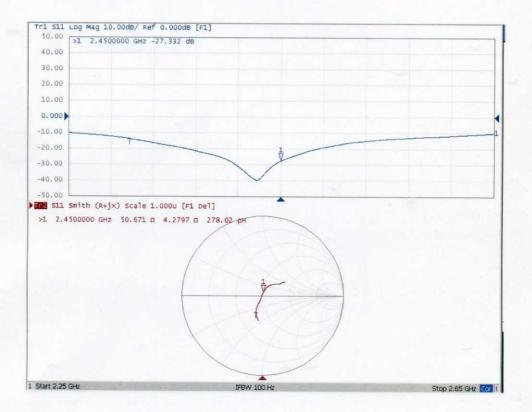
Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Code:AB-RF-05-b Hotline 400-003-0500 www.anbotek.com.cn

Page 108 of

FCC ID: 2AZUR-NETR7

Page 109 of



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Certificate No: Z21-97091

Page 8 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

110

Report No.: 18220WC300814-M²

FCC ID: 2AZUR-NETR

Page 110 of

Appendix E. Extended Calibration SAR Dipole

Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dBm, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. Justification of Extended Calibration SAR Dipole D835V2– serial no.4d154

			Head			
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2021-06-16	-29.8	Anbor/	49.2	Anbore/	-3.11	nbotek
2022-06-20	-28.9	-3.02%	48.4	-0.80	-3.00	0.11

Justification of Extended Calibration SAR Dipole D2450V2-serial no.910

			Head			
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2021-06-15	-25.8	antheren	54.6	hek	2.77	het
2022-06-20	-25.1	-2.71%	53.5	-1.10	2.91	0.14

The Return-Loss is <-20dB, and within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the value result should support extended.

*****END OF REPORT****

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

