

Page 1 of 33 FCC ID: 2AZUH-1803-REMOTE Report No.: LCS220325490AEA

FCC TEST REPORT

FOR

HELIWAY MODEL CO., LIMITED

Remote control

Test Model: 1803

上。 LGS Testing Lab 6 Los Testing Lat Additional Model No.: Please Refer to Page 6

Prepared for Address	:	HELIWAY MODEL CO., LIMITED Shangxiang Industrial Park, ChengHai District, Shantou City, Guangdong China
Prepared by Address	:	Shenzhen LCS Compliance Testing Laboratory Ltd 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China
Tel	1	(+86)755-82591330
Fax Web	:	(+86)755-82591332 www.LCS-cert.com
Mail	:	webmaster@LCS-cert.com
Date of receipt of test sample Number of tested samples Sample number Date of Test	:	April 07, 2022 2 Prototype April 07, 2022 ~ April 28, 2022
Date of Report	:	April 29, 2022

	FCC TES	T REPORT	
	FCC CFR 47 PA	ART 15 C (15.249)	
Report Reference No	: LCS22032549	OAEA	- Leon
Date of Issue	. : April 29, 2022		
Testing Laboratory Name	. : Shenzhen LC	S Compliance Testing	Laboratory Ltd.
Address	101, 201 Bldg	A & 301 Bldg C, Juji Ind , Baoan District, Shenzh	ustrial Park Yabianxueziwei, en, 518000, China
Testing Location/ Procedure	 Full application Partial applica 	n of Harmonised standar tion of Harmonised stand d testing method □	ds ∎
Applicant's Name	. : HELIWAY MC	DEL CO., LIMITED	NST CS Testing Lan
Address	Shangxiang In Guangdong C	dustrial Park, ChengHai hina	District, Shantou City,
Test Specification			
Standard	. : FCC CFR 47 I	PART 15 C(15.249) / AN	SI C63.10: 2013
Test Report Form No	.: LCSEMC-1.0		
TRF Originator	.: Shenzhen LCS	S Compliance Testing La	boratory Ltd.
Master TRF	. : Dated 2011-03	3	
Shenzhen LCS Compliance Test This publication may be reproduce Shenzhen LCS Compliance Testin material. Shenzhen LCS Complia assume liability for damages result placement and context.	ced in whole or i g Laboratory Ltd. ance Testing Lab	n part for non-commerc is acknowledged as copy oratory Ltd. takes no re	right owner and source of the esponsibility for and will not
Test Item Description	.: Remote cont	rol	
Trade Mark	. : HELIWAY		
Test Model	: 1803		
Ratings	.: DC 6V by 4*A		
Result	: Positive		
Compiled by:	Supe	ervised by:	Approved by:
		1.11	
LhLi	Jin	Wang	(tains Fiang
Lh Li/ Administrator	Jin Jin Wang/ T	echnique principal	Gavin Liang/Manager
	Jin Jin Wang/ T	echnique principal	Gavin Liang/Manager

Report No.: LCS220325490AEA

Test Report No. :	LCS220325490AEA	April 29, 2022 Date of issue
Test Model	: 1803	
EUT	: Remote control	
Applicant	: HELIWAY MODEL CO., LIMITE	ED SA LOS TO
Address	Shangxiang Industrial Park, Che Guangdong China	engHai District, Shantou City,
Telephone	: /	
Fax	: /	
Manufacturer	: HELIWAY MODEL CO., LIMITE	ED
Address	Shangxiang Industrial Park, Che Guangdong China	engHai District, Shantou City,
Telephone	STEST	
Fax	: /	
Factory	: HELIWAY MODEL CO., LIMITE	ĒD
Address	. Shangxiang Industrial Park, Che [:] Guangdong China	engHai District, Shantou City,
Telephone	: /	
Fax	:/ white	

Test Result	Positive
-------------	----------

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

3700 70 ίī

Report No.: LCS220325490AEA

Testins	Testino	Testins	I Testin	
Report Version	Issue Date	Revision Content	Revised By	
000	April 29, 2022	Initial Issue		

Revision History

TABLE OF CONTENTS

TABLE OF CONTENTS	
1. GENERAL INFORMATION	
1.1 Description of Device (EUT)	
1.2. Support Equipment List	7
1.3. External I/O	7
1.4. Description of Test Facility	
1.5. Statement of the measurement uncertainty	
1.6. Measurement Uncertainty	
1.7. Description of Test Modes	
2. TEST METHODOLOGY	-
2.1. EUT Configuration	9
2.2. EUT Exercise	
2.3. General Test Procedures	
3. CONNECTION DIAGRAM OF TEST SYSTEM	
3.1. Justification	
3.2. EUT Exercise Software	
3.3. Special Accessories	
3.4. Block Diagram/Schematics 3.5. Equipment Modifications	10
3.6. Test Setup	
4. SUMMARY OF TEST RESULTS	
5. ANTENNA REQUIREMENT	12
6. POWER LINE CONDUCTED EMISSIONS	
7. RADIATED EMISSION MEASUREMENT	14
8. RESULTS FOR BAND EDGE TESTING	
9. 20 DB BANDWIDTH MEASUREMENT	
10. LIST OF MEASURING EQUIPMENT	
11. TEST SETUP PHOTOGRAPHS OF THE EUT	
12. EXTERIOR PHOTOGRAPHS OF THE EUT	
13. INTERIOR PHOTOGRAPHS OF THE EUT	

1.1 Description of Device (EUT)

EUT	: Remote control		
Test Model	: 1803		
Additional Model No.	1809S, 1811S, 1201, 120	1811, 1801S, 1803S, 1805S, 03, 1205, 1207, 1209, 1211, 12	201S, 1203S,
	1601S, 1603S, 1605S, 1 tr11, tr12, tr16, tr18, tr20, fc03, fc04, fc05, fc10, fc1 yc200, yc250, yc280, yc3 ec10, ec11, ec16, ec71, l	211S, 1601, 1603, 1605, 1607 607S, 1609S, 1611S, 6182-2E tr23, tr25, tr28, fc600, fc20, fc 1, fc12, fc13, fc20, fc21, fc22, 300, yc350, yc400, yc450, ec0 DC192A, 8031, 8032, JD-501, JD-507, JD-508, JD-509, JD-	BFB, tr10, c25, fc02, yc100, 7, ec08, JD-502,
Model Declaration	: PCB board, structure an So no additional models	d internal of these model(s) a were tested	re the same,
Power Supply	[:] DC 6V by 4*AA Battery		
Hardware Version	: /		
Software Version	:/		
2.4G			lesting Lau
Frequency Range	: 2458MHz-2480MHz		
Channel Spacing	: 1MHz		
Channel Number	: 23		
Modulation Type	: GFSK		
Antenna Description	: Internal Antenna, 0dBi(m	ax.)	

1.2. Support Equipment List

Manufacturer	Description	Model	Serial Number	Certificate	÷

1.3. External I/O

I/O Port Description	Quantity	Cable	

1.4. Description of Test Facility

NVLAP Accreditation Code is 600167-0.

FCC Designation Number is CN5024.

CAB identifier is CN0071.

CNAS Registration Number is L4595.

Test Firm Registration Number: 254912.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
		9KHz~30MHz	±3.10dB	(1)
(1) 11 11 11 11 11 11 11 11 11 11 11 11 1		30MHz~200MHz	±2.96dB	(1)
Radiation Uncertainty	: [200MHz~1000MHz	±3.10dB	(1)
SA LCS TOST		1GHz~26.5GHz	±3.80dB	് (1)
		26.5GHz~40GHz	±3.90dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	±1.63dB	(1)
Power disturbance	:	30MHz~300MHz	±1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.c Scan code to check authenticity

1.7. Description of Test Modes

Operates in the unlicensed ISM Band at 2.4GHz. With basic data rate feature, the data rates can be up to 1 Mb/s by modulating the RF carrier using GFSK techniques. The EUT works in the X-axis, Y-axis, Z-axis. The following operating modes were applied for the related test items. All test modes were tested, only the result of the worst case was recorded in the report.

Mode of Operations		ncy Range ⁄/Hz)		a Rate bps)	
	2	2458		/	
GFSK	2470 /		/		
	2	2480		/	
For Conducted Emission					
Test Mode	Rist	and the second second	TX Mode	it his we	
For Radiated Emission					
Test Mode	- Use II		TX Mode	154	

Worst-case mode and channel used for 9 KHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be TX.

Channel List:

Channel	Channel		Channel		Channel
No.	Frequency	Channel No.	Frequency	Channel No.	Frequency
INU.	(MHz)		(MHz)		(MHz)
1	2458	9	2466	17	2474
2	2459	10	2467	18	2475
3	2460	11	2468	19	2476
⁶⁹ 4	2461	12 Testin 12	2469	20	2477
5	2462	13	2470	21	2478
6	2463	14	2471	22	2479
7	2464	15	2472	23	2480
8	2465	16	2473		

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10: 2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.249 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz and 1.5 m above ground plane above 1GHz. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013

Scan code to check authenticity

3. CONNECTION DIAGRAM OF TEST SYSTEM

3.1. Justification

The system was configured for testing in a continuous transmit condition. Continuous transmitting was pre-programmed. It'll keep transmitting with modulated signal at the lowest channel by installing the batter. When press the "up" button, it'll move to the next channel. Repeat press "up" button, it'll transmitting at each of the channel used.

3.2. EUT Exercise Software

Press the corresponding button, and change the channel.

3.3. Special Accessories

N/A

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Applied Standard: FCC	Part 15 Subpart C §15.249	
FCC Rules	Description Of Test	Result
§15.203	Antenna Requirement	Compliant
§15.207(a)	Power Line Conducted Emissions	N/A
15.205(a), §15.209(a), §15.249(a), §15.249(c)	Radiated Emissions Measurement	Compliant
§15.249 (d)	Band Edges Measurement	Compliant
§15.215(c)	20 dB Bandwidth	Compliant

Remark:

5. ANTENNA REQUIREMENT

5.1. Standard Applicable

According to § 15.203 and RSS-Gen, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

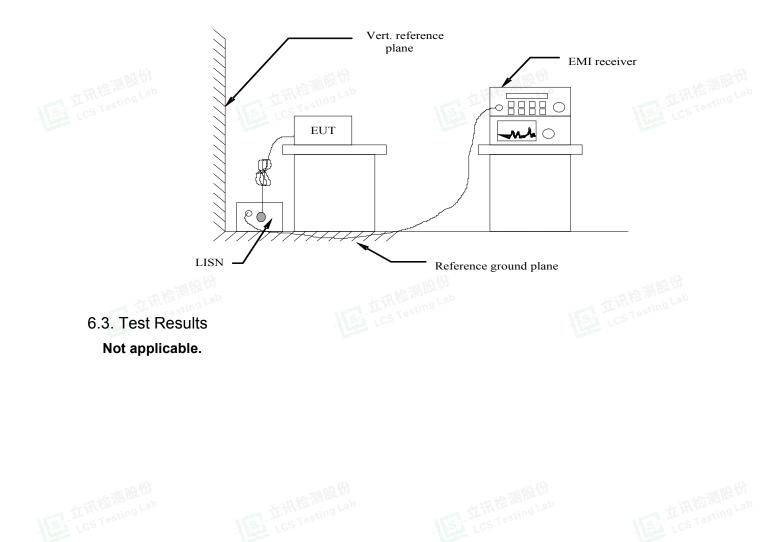
5.2. Antenna Connected Construction

The EUT use Internal Antenna and maximum antenna gain is 0dBi, antenna cannot replacement, meets FCC Part §15.203 antenna requirement. Please see EUT photo for details.

5.3. Results

Compliance

6. POWER LINE CONDUCTED EMISSIONS


6.1. Standard Applicable

According to §15.207 (a) & RSS-Gen § 8.8: For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

Frequency Range	Limits	(dBµV)	
(MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56	56 to 46	
0.50 to 5	56	46	
5 to 30	60	50	

* Decreasing linearly with the logarithm of the frequency

6.2. Block Diagram of Test Setup

Scan code to check authenticity

7. RADIATED EMISSION MEASUREMENT

7.1. Standard Applicable

According to FCC § 15.249: Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) and 15.249 limit in the table below has to be followed.

Fundamental Frequency	Field Strength of fundamental (millivolts/meter)	Field Strength of harmonics (microvolts/meter)
902-928MHz	50	500
2400-2483.5MHz	50	500
5725-5875MHz	50	500
24.0-24.25GHz	250	2500

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)			
0.009~0.490	2400/F(KHz)	300			
0.490~1.705	24000/F(KHz)	30			
1.705~30.0	30	30			
30~88	100	3			
88~216	150	3			
216~960	200	3			
Above 960	500	sting 3			

According to RSS-210 B.10:

The field strength of fundamental and harmonic emissions, measured at 3 m, shall not exceed 50 mV/m and 0.5 mV/m respectively.

The field strength limits shall be measured using an average detector, except for the fundamental emission in the frequency band 902-928 MHz, which is based on measurements using an International Special Committee on Radio Interference (CISPR) quasi-peak detector.

Emissions radiated outside of the specified frequency bands, except for harmonic emissions, shall be attenuated by at least 50 dB below the level of the fundamental emissions or to the general field strength limits listed in RSS-Gen, whichever is less stringent.

7.2. Instruments Setting

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10 th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
- T 65 ¹¹	ST

Receiver Parameter Setting

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

7.3. Test Procedure

1) Sequence of testing 9 kHz to 30 MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 1.0 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: ±(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.

- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

Scan code to check authenticity

3) Sequence of testing 1 GHz to 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position $(\pm 45^{\circ})$ and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

Scan code to check authenticity

4) Sequence of testing above 18 GHz

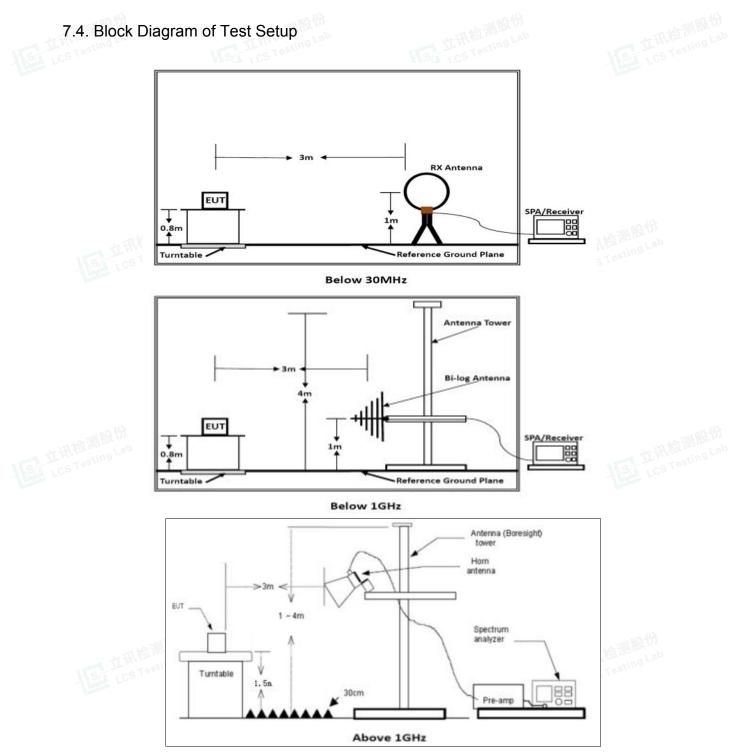
Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The antenna is moved spherical over the EUT in different polarizations of the antenna.


Final measurement:

--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

Above 18 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m.

7.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

7.6. Test Results of Radiated Emissions (9 KHz~30 MHz)

Temperature	23.5 ℃	Humidity	52.2%	Testine
Test Engineer	Jack Cheng			

Fre (Mł	•	Level (dBuV)	Over Limit (dB)	Over Limit (dBuV)	Remark
-		-	-	-	See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor.

7.7. Test Results of Radiated Emissions (30 MHz - 1000 MHz)

Temperature	23.5 ℃	Humidity	52.2%
Test Engineer	Jack Cheng		

Vertica 70		/m	1					NB24	8	1	T	T		10000	8-(H)						
60															FCC Part	15C_	30-100	OMH	z		
50															Margin G	dB				ſ	
40										F											
30										-	-					-					
20	1			2				- X			-	5				6 X	a Warna	ntil the	-Judierfine	in his	peak
10	hophouthit	and production which the	multit	milla	willit	u Marta	whenter	mill	monunder	-	Nel	5 X	word	humber	Lowbert Aller			_		_	
0										-	-	-	-			-				_	
-1(o	-			-					_	-										
-20	n																				
-30																					
T	30.000		6	0.00	-			_	(MHz)	_			3	00.00		_		-		1000	0.000
	No.	Fred (N	quer ИНz				adin 3uV	~ 1	Factor (dB/m)		Le Bu			Liı (dBu	mit ıV/m)		argir dB)	וי	Det	ecto	or
	1	30	.530	6		32	2.91		-18.39		14	.5	2	40	.00	-2	5.48	3	C	P	
triat	2	66	.966	69		39	9.24		-19.29		19	.9	5	40	.00	-2	0.05	5	G)P	163
ST LCS	3	117	7.77	25		36	6.75		-19.75		17	.0	0	43	.50	-2	6.50)	C	۱P	3705
[4	164	1.33	01		31	1.63		-19.62		12	.0	1	43	.50	-3	1.49)	G	۱P	
	5	259	9.23	38		29	9.66		-15.52		14	.1	4	46	.00	-3	1.86	5	G	۱P	
	6	550).94	80		32	2.61		-11.77		20	.8	4	46	.00	-2	5.16	5	G	۱P	

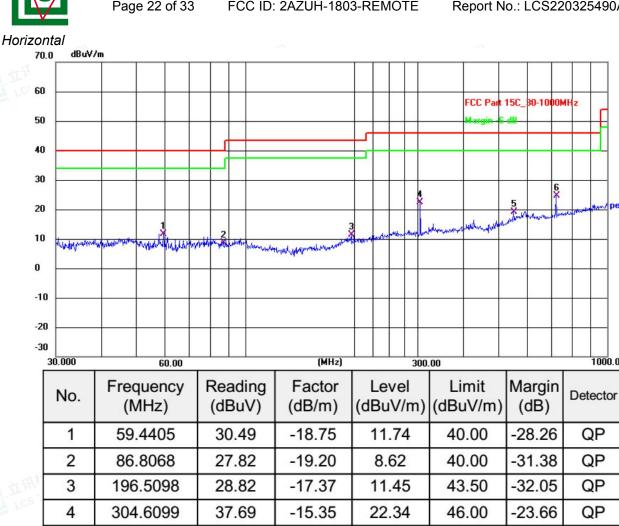
peal

1000.000

QP

QP

QP


QP

QP

QP

-26.80

-21.42

-11.77

-10.58

19.20

24.58

46.00

46.00

Note:

5

6

1). Pre-scan all modes and recorded the worst case results in this report (GFSK).

30.97

35.16

- 2). Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3). Level = Reading + Factor, Margin = Level Limit,

Scan code to check authenticity

550.9480

721.7259

Factor = Antenna Factor + Cable Loss - Preamp Factor ST LCS Testing Lab

7.8. Results for Radiated Emissions (1 – 26 GHz)

Char	nel 1 / 2458	3 MHz								
Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.	
4916.00	58.50	33.06	35.04	3.94	60.46	74.00	-13.54	Peak	Horizontal	
4916.00	40.64	33.06	35.04	3.94	42.60	54.00	-11.40	Average	Horizontal	
4916.00	52.36	33.06	35.04	3.94	54.32	74.00	-19.68	Peak	Vertical	
4916.00	44.48	33.06	35.04	3.94	46.44	54.00	-7.56	Average	Vertical	

Channel 13 / 2470 MHz

Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4940.00	58.84	33.16	35.15	3.96	60.81	74.00	-13.19	Peak	Horizontal
4940.00	42.91	33.16	35.15	3.96	44.88	54.00	-9.12	Average	Horizontal
4940.00	56.63	33.16	35.15	3.96	58.60	74.00	-15.40	Peak	Vertical
4940.00	41.77	33.16	35.15	3.96	43.74	54.00	-10.26	Average	Vertical

Channel 23 / 2480 MHz

Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4960.00	57.76	33.26	35.14	3.98	59.86	74.00	-14.14	Peak	Horizontal
4960.00	42.19	33.26	35.14	3.98	44.29	54.00	-9.71	Average	Horizontal
4960.00	61.04	33.26	35.14	3.98	63.14	74.00	-10.86	Peak	Vertical
4960.00	43.83	33.26	35.14	3.98	45.93	54.00	-8.07	Average	Vertical

Notes:

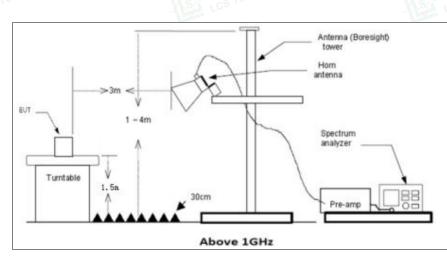
1). Measuring frequencies from 9 KHz - 10th harmonic (ex. 26GHz), No emission found between lowest internal used/generated frequency to 30 MHz.

2). Radiated emissions measured in frequency range from 9 KHz - 10th harmonic (ex. 26GHz) were made with an instrument using Peak detector mode.

3). 18~25 GHz at least have 20dB margin. No recording in the test report.

4). Measured Level = Reading Level + Factor, Margin = Measured Level – Limit,

Factor = Antenna Factor + Cable Loss - Preamp Factor


8. RESULTS FOR BAND EDGE TESTING

8.1. Standard Applicable

According to FCC §15.249 (d): Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

According to RSS-210 B.10 (b): Emissions radiated outside of the specified frequency bands, except for harmonic emissions, shall be attenuated by at least 50 dB below the level of the fundamental emissions or to the general field strength limits listed in RSS-Gen, whichever is less stringent.

8.2. Test Setup Layout

8.3. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of Spectrum Analyzer.

8.4. Test Procedures

3) Sequence of testing 1 GHz to 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

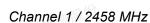
--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

8.5. Measuring Instruments and Setting

					Lener -
Fire	Temperature	23.5 ℃	Humidity	52.1%	位到
VSA LCS	Test Engineer	Jack Cheng			Testi
and the second second		R. Astronomic and State			

PASS


Remark:

- 1. The other emission levels were very low against the limit.
- 2. The average measurement was not performed when the peak measured data under the limit of average detection.
- 3. Detector AV is setting spectrum/receiver. RBW=1MHz/VBW=330Hz/Sweep time=Auto/Detector=Peak;
- 4. Please refer to following test plots;

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

Page 26 of 33

Horizo	ontal 30.0 dBuV/	m I	LCS Testing	Lan	NET LO	Address and Lab		151 LOST
1	20					FC	C PART 15.24	47-PK
1	10							
1	00					fc	C PART 15 24	17-AV
9	0							5X
8	o							<u>n</u>
7	0							
6	o					_		
5	0							
4	0 1		3		5	a la companya di alda mata sa	wardinander	however peak
3	0	and a free the second se	Stefant and a sub-standard and a sub-		and the second sec			
2	o							
1	0.0 2300.000	2317.00 2334.00	2351.00 23	68.00 (MHz)	2402.00	2419.00 2436.	.00 2453.	00 2470.00
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level	Limit (dBuV/m)	Margin	Detector
	1	2310.000	48.69	-12.02	36.67	74.00	-37.33	peak
	2	2342.500	50.02	-11.90	38.12	74.00	-35.88	peak
	3	2365.790	50.69	-11.81	38.88	74.00	-35.12	peak
	4	2390.000	48.87	-11.73	37.14	74.00	-36.86	peak
	5	2400.000	48.79	-11.70	37.09	74.00	-36.91	peak
	6	2457.760	97.13	-11.49	85.64	114.00	-28.36	peak

Page 27 of 33 FCC ID: 2AZUH-1803-REMOTE

Channel 1 / 2458 MHz

Vertica	a/ 30.0 dBu∀/	/m	Allification and	Lap 121	立并	142701 HE 10		- ŤÍ	
1	20					FC	C PART 15.2	47-PK	
1	10								
1	00					-	C PART 15 2	47.44	
9	0						2 TANT 132	-	
8	o							ÞX	
7	0					_		4	
6	o							\square	
5	0								
4	0	2			4 5				
3	anone state	and a share with a side a state of the second	salarahan katalan kata Katalan katalan k	an after the second state of the second s	Konstanikonanahan	address gen drah so have been been been been been been been be	and his president and and a second	haraminin pe	eak
2	o 🔔 🗌								
1	0.0								
	2300.000	2317.00 2334.00	2351.00 23	68.00 (MHz)	2402.00	2419.00 2436	.00 2453.	.00 2470.	00
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Ċ.
	1	2310.000	50.02	-12.02	38.00	74.00	-36.00	peak	1617
	2	2332.470	50.95	-11.93	39.02	74.00	-34.98	peak	Test
	3	2351.170	51.27	-11.87	39.40	74.00	-34.60	peak	1
	4	2390.000	49.67	-11.73	37.94	74.00	-36.06	peak	1
	5	2400.000	49.22	-11.70	37.52	74.00	-36.48	peak	1
	6	2457.760	97.10	-11.49	85.61	114.00	-28.39	peak	

Page 28 of 33 FCC ID: 2

Report No.: LCS220325490AEA

Channel 23/ 2480 MHz

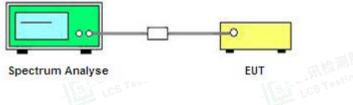
Horizoi 13	ntal 0.0 dBuV/	n															
12	o																
11	0									-	-			-			
10	o										_						
90					1												
80		_			4						_	FCC		47.04			
70		_		A								FLU	PART 15.2	47-PI	(-Н		
60					1												
50					1							FCC	PART 15.2	47-A	/-H		
40						1.	,			3	4			5			
30	methoremetour	when an adjourney	velocitation producted	h		Mus	Hornetscher	meneral	-hardenterraine	Johnson	Hernown Ba	nder and a second second	to-anti-anti-ativa	at the second	nor which the second p	eak	
20 10																	
		2473.00	2476.00	2479	9.00 248	2.00	(MH	lz)	248	8.00	2491.00	2494	.00 24	97.00	2500	.00	
53	No.		uency Hz)	222305	eading BuV)	100 m	acto B/m		1.	vel ıV/m)	Lir (dBu		Margi (dB)		Detector	•	
tar.	1	2480	.140	9	5.46	-1	1.42	2	84	.04	114	.00	-29.9	6	peak		
ST LCS	2	2483	3.500	4	8.72	-1	1.40)	37	.32	74.	00	-36.6	8	peak	1	
	3	2488	3.180	5	0.67	-1	1.39)	39	.28	74.	00	-34.7	2	peak		
	4	2491	.930	5	0.75	-1	1.37	7	39	.38	74.	00	-34.6	2	peak	:	
	5	2497	.240	5	0.53	-1	1.35	5	39	.18	74.	00	-34.8	2	peak		
	6	2500	0.000	4	8.86	-1	1.34	1	37	.52	74.	00	-36.4	8	peak		

Page 29 of 33 FCC IE

Report No.: LCS220325490AEA

Channel 23/ 2480 MHz

Vertica	a/ 10.0dBu∀/	m	Ť n	in the public	rap Di			_	江市	1270 BCD		- Ť	
12	20												
11	0												
10	00 00												
90				1									
80	ı								-		C PART 15.24		
70	ı		/	$ \rangle$							G PANT 13.24		
60	ı			X					-				
50	ı									FU	C PART 15.24	(-AV-H	
40		generally is survey of				-	3	makardlaria	4	5	and and the formation of the local	manger and the	beak
30						AA 104							
20	, 🖵												
10													
	2470.000	2473.00 247	6.00 247	9.00 248	32.00	(MHz	2)	248	8.00 2	2491.00 24	94.00 2497	7.00 2500	0.00
	No.	Frequen (MHz)		eading dBuV)	1000	actor B/m)		0.000	vel ıV/m)	Limit (dBuV/m	Margir 1) (dB)	Detector	r
	1	2480.08	30 9	98.06	-1	1.42		86	.64	114.00	-27.36	peak	
	2	2483.50	00	49.71	-1	1.40	200	38	.31	74.00	-35.69	peak	3 7 6
	3	2486.02	20	51.41	-1	1.39	2020 C	40	.02	74.00	-33.98	peak	
	4	2489.86	50	51.85	-1	1.38		40	.47	74.00	-33.53	peak	
	5	2493.61	10	51.65	-1	1.37	8	40	.28	74.00	-33.72	peak	
	6	2500.00	00	50.76	-1	1.34	ł	39	.42	74.00	-34.58	peak	



9. 20 DB BANDWIDTH MEASUREMENT

9.1. Standard Applicable

§15.215 (c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

9.2. Block Diagram of Test Setup

9.3. Test Procedure

Use the following spectrum analyzer settings:

Span = 5kHz

RBW = 510 Hz

VBW = 1.5 KHz

Sweep = auto

Detector function = peak

Trace = max hold

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

Report No.: LCS220325490AEA

9.4. Test Results

9	.4. Test Results				
	Temperature	23.5℃	Humidity	52.2%	te.
	Test Engineer	Jack Cheng			

Test Result of 20dB Bandwidth Measurement							
Test Frequency	20dB Bandwidth	Limit					
(MHz)	(MHz)	(MHz)					
2458	5.123	Non-Specified					
2470	4.773	Non-Specified					
2480	4.932	Non-Specified					
including cable loss;	tin the wing Lab	IT II					

Remark:

- 1. Test results including cable loss;
- 2. Please refer following test plots;

10. LIST OF MEASURING EQUIPMENT

10	. LIST OF MEASUR		ENT			
Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	MXA Signal Analyzer	Agilent	N9020A	MY49100060	2021-11-16	2022-11-15
2	DC Power Supply	Agilent	E3642A	N/A	2021-11-25	2022-11-24
3	Temperature & Humidity Chamber	GUANGZHOU GOGNWEN	GDS-100	70932	2021-10-07	2022-10-06
4	EMI Test Software	AUDIX	E3	1	N/A	N/A
5	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2021-06-21	2022-06-20
6	Positioning Controller	MF	MF7082	MF78020803	2021-06-21	2022-06-20
7	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2021-07-25	2024-07-24
8	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2021-07-25	2024-07-24
9	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1925	2021-07-01	2024-06-30
10	EMI Test Receiver	R&S	ESR 7	101181	2021-06-21	2022-06-20
11	RS SPECTRUM ANALYZER	R&S	FSP40	100503	2021-11-16	2022-11-15
12	Broadband Preamplifier	1	BP-01M18G	P190501	2021-06-21	2022-06-20
13	EMI Test Receiver	R&S	ESPI	101840	2021-06-21	2022-06-20
14	Artificial Mains	R&S	ENV216	101288	2021-06-21	2022-06-20
15	10dB Attenuator	SCHWARZBECK	MTS-IMP-136	261115-001-0032	2021-06-21	2022-06-20
16	EMI Test Software	Farad	EZ	1	N/A	N/A

Report No.: LCS220325490AEA

11. TEST SETUP PHOTOGRAPHS OF THE EUT

Please refer to separated files for Test Setup Photos of the EUT.

12. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

13. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

-----THE END OF REPORT------