

Shenzhen CTL Testing Technology Co., Ltd. Tel: +86-755-89486194 E-mail: ctl@ctl-lab.com

	Tel: +86-73	55-89486194 E-mail: ctl@ctl-lab.com
T	EST REPOR	т
	FCC PART 15.236	
Report Reference No:	CTL2201041011-WF	
Compiled by: (position+printed name+signature)	Happy Guo (File administrators)	Happy Guo
Tested by: (position+printed name+signature)	Cary Gao (Test Engineer)	Gary Gao
Approved by: (position+printed name+signature)	Ivan Xie (Manager)	VCM / C
Product Name:	UHF Wireless Microphone	
Model/Type reference:	CVM-WM200	
List Model(s)	See page 3 for details	
Trade Mark:	COMICA	
FCC ID	2AZSQ-CVM-WM200	
Applicant's name:	Shenzhen Commlite Technolo	gy Co.,LTD.
Address of applicant	5th Floor, Building B, NO. 167 P Long'gang District, Shenzhen, G	ingxin North Road, Pinghu Street, Suangdong Province, China
Test Firm:	Shenzhen CTL Testing Techno	ology Co., Ltd.
Address of Test Firm:	Floor 1-A, Baisha Technology Pa Nanshan District, Shenzhen, Ch	ark, No.3011, Shahexi Road,
Test specification : Standard :	FCC Part 15.236:Operation of v 54-72 MHz, 76-88 MHz, 174-210 614-698 MHz	-
TRF Originator: : Master TRF:	-	ogy Co., Ltd.
Date of receipt of test item :	Jan. 07, 2022	
Date of Test Date :	Jan. 07, 2022–Feb. 08, 2022	
Data of Issue:	Feb. 09, 2022	
Result:	Pass	
Shenzhen CTL Testing Technolog	y Co., Ltd. All rights reserved.	
This publication may be reproduce		nmercial purposes as long as the

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

V1.0

TEST REPORT

Test Report No. :	CTL2201041011-WF	Feb. 09, 2022 Date of issue	
Equipment under Test :	UHF Wireless Micropho		
Sample No.	CTL220104101-1-S001		
Model /Type :	CVM-WM200		
: Listed Models	CVM-WM200(A), CVM- CVM-WM200(D), CVM- CVM-WM200II (C), CVM CVM-WM200 PRO(C), CVM-WM200 RX, CVM CVM-WM200II RX, CVM CVM-WM200 PRO-RX	M-WM200 PRO(A), CVM-WM200 TX, -WM200II TX,	
Applicant :	Shenzhen Commlite T	echnology Co.,LTD.	
Address :	5th Floor, Building B, NG Pinghu Street, Long'gar Guangdong Province, C	•	
Manufacturer :	Shenzhen Commlite T	echnology Co.,LTD.	
Address :	5th Floor, Building B, NG Pinghu Street, Long'gar Guangdong Province, C		

Test result Pass *

* In the configuration tested, the EUT complied with the standards specified page 5.

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the issuing testing laboratory.

_	
** Modified History	**

Description	Issued Data	Report No.	Remark
Initial Test Report Release	2022-02-09	CTL2201041011-WF	Tracy Qi
-			
			A 1
		1	-
			1.1.1
	•	•	

Table of Contents

1. SU	MMARY	
1.1.	TEST STANDARDS	
1.2.	TEST DESCRIPTION	
1.3.	Test Facility	
1.4.	STATEMENT OF THE MEASUREMENT UNCERTAINTY	
2. GE	NERAL INFORMATION	
2.1.	Environmental conditions	
2.2.	GENERAL DESCRIPTIONOF EUT	
2.3.	DESCRIPTION OF TEST MODES AND TEST FREQUENCY	
2.4.	EQUIPMENTS USED DURING THE TEST	
2.5.	Related Submittal(s) / Grant(s)	
2.6.	Modifications	
3. TES	ST CONDITIONS AND RESULTS	
3.1.	Conducted Emissions Test	
3.2. N	Лахімим Output Power	
3.3.	Occupied Bandwidth Measurement	
3.4.	Necessary Bandwidth	
3.5.	TRANSMITTER SPURIOUS EMISSIONS	
3.6.	FREQUENCY STABILITY	
4. TES	ST SETUP PHOTOS OF THE EUT	

1. SUMMARY

1.1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.236: Operation of wireless microphones in the bands 54-72 MHz, 76-88 MHz, 174-216 MHz, 470-608 MHz and 614-698 MHz

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

According to KDB 206256 D01 Wireless Microphone Certification v02.

1.2. Test Description

TestSpecificationclause				
FCC Part 15.207	AC Power Conducted Emission	PASS		
FCC Part 15.236(d)	RF Power Output	PASS		
FCC Part 15.236(f)(2)	Occupied Bandwidth	PASS		
FCC Part 15.236(g) ETSI EN 300 422-1 v1.4.2	Necessary Bandwidth Spurious emissions	PASS		
FCC Part 15.236(f)(3)	Frequency Stability	PASS		

1.3. Test Facility

1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd. Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSIC63.10 requirements.

1.3.2 Laboratoryaccreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L7497

Shenzhen CTL Testing Technology Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 4343.01

Shenzhen CTL Testing Technology Co., Ltd, EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: 9618B

CABidentifier: CN0041

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered byInnovation, Science and Economic Development Canada to test to Canadian radio equipment requirements with Registration No.: 9618B on Jan.22, 2019.

Page 6 of 65

1.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd.quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Measurement Uncertainty	Notes	
Transmitter power conducted	±0.57 dB	(1)	
Transmitter power Radiated	±2.20 dB	(1)	
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)	
Occupied Bandwidth	±0.01ppm	(1)	
Radiated Emission9KHz~30MHz	±3.40dB	(1)	
Radiated Emission30~1000MHz	±4.10dB	(1)	
Radiated Emission Above 1GHz	±4.32dB	(1)	
Conducted Disturbance0.15~30MHz	±3.20dB	(1)	

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

V1.0

2. GENERAL INFORMATION

2.1. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2. General Description of EUT

Product Name:	UHF Wireless Microphone
Model/Type reference:	CVM-WM200
Power supply:	DC 3V by 2*AA batteries
Hardware Version:	1.4
Software Version:	1.0.4
Wireless microphone	
Modulation:	FM
Operation frequency:	Group A: 534.125-557.875MHz Group B: 566.125-589.875MHz
Channel number:	96
Channel separation:	250KHz
Antenna type:	Internal Antenna
Antenna gain:	2.53dBi
Natada Canasana datalla julaja	as refer to the uppr's manual of the FUIT

Note1: For more details, please refer to the user's manual of the EUT.

Note2: Antenna gain provided by the applicant.

Note3: The product cannot be configured to operate outside the current frequency band plan through software configuration, Third parties are not allowed to change any software parameter configuration of the product.

Page 8 of 65

2.3. Description of Test Modes and Test Frequency

The system is configured to test under continuous transmission conditions and transmission frequency through the switch button control. And the number of channels provided to EUT is 96, select channel 00/49/95 for testing.

Operation Frequency List :

Group-A		Group-B		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	
00	534.125	00	566.125	
01	534.375	01	566.375	
02	534.625	02	566.625	
48	545.875	48	577.875	
49	546.125	49	578.125	
50	546.375	50	578.375	
		-		
93	557.375	93	589.375	
94	557.625	94	589.625	
95	557.875	95	589.875	

Note: The line display in grey is the channel selected to perform test.

2.4. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.		Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ESH2-Z5		860014/010	2021/05/13	2022/05/12
Bilog Antenna	Sunol Sciences Corp.	JB1		A061713	2021/04/06	2022/04/05
EMI Test Receiver	R&S	ESC	:1	1166.5950.03	2021/05/16	2022/05/15
Spectrum Analyzer	Agilent	E4407	7B	MY41440676	2021/05/13	2022/05/12
Spectrum Analyzer	Agilent	N902	DA	US46220290	2021/05/13	2022/05/12
Spectrum Analyzer	Keysight	N902	DA	MY53420874	2021/05/13	2022/05/12
Controller	EM Electronics	EM 10	000	060859	2021/05/18	2022/05/17
Horn Antenna	Sunol Sciences Corp.	DRH-118		A062013	2021/05/18	2022/05/17
Active Loop Antenna	Da Ze	ZN30900A		/	2021/05/18	2022/05/17
Amplifier	Agilent	8449	В	3008A02306	2021/05/13	2022/05/12
Amplifier	Agilent	8447	D	2944A10176	2021/05/13	2022/05/12
Temperature/Humi dity Meter	Gangxing	CTH-608		02	2021/05/13	2022/05/12
Power Sensor	Agilent	U2021	XA	MY55130004	2021/05/13	2022/05/12
Power Sensor	Agilent	U2021	XA	MY55130006	2021/05/13	2022/05/12
Spectrum Analyzer	RS	FSF)	1164.4391.38	2021/05/13	2022/05/12
Audio signal generator	GOOD WILL INSTRUMENT	8121C		NS 021110854	2021/04/28	2022/04/27
Audio Analyzer	R&S	UPV		1146.2003K02 -101721-UW	2021/04/28	2022/04/27
Test Software						
Name	e of Software	Version				
Т	ST-PASS	1.0.5				
ES-K1	(Below 1GHz)	V1.71				
e3(Above 1GHz) 6.111221a			11221a			
The calibration interval was one year						

The calibration interval was one year

2.5. Related Submittal(s) / Grant(s)

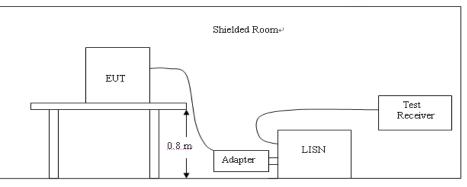
This submittal(s) (test report) is intended to comply with Section 15.236 of the FCC Part 15, Subpart C Rules.

2.6. Modifications

No modifications were implemented to meet testing criteria.

3. TEST CONDITIONS AND RESULTS

3.1. Conducted Emissions Test

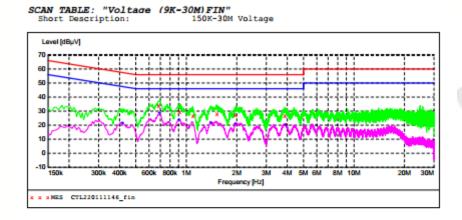

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

	Limit (d	BuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

TEST CONFIGURATION



TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST RESULTS

Remark: All modes were test at Low Middle and High channel; only the worst result of High Channel was reported as below:

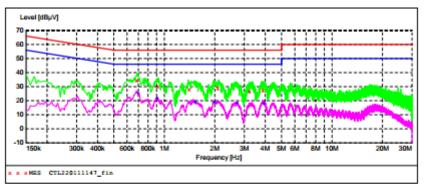
MEASUREMENT RESULT: "CTL220111146_fin"

1/

11/2022 11:	45AM							
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE	
0.685500	33.50	11.2	56	22.5	QP	L1	GND	
0.915000	29.40	11.2	56	26.6	QP	L1	GND	
1.099500	26.70	11.2	56	29.3	QP	L1	GND	
1.527000	28.00	11.2	56	28.0	QP	L1	GND	
1.959000	27.60	11.2	56	28.4	QP	L1	GND	
3.880500	26.90	11.3	56	29.1	QP	L1	GND	

MEASUREMENT RESULT: "CTL220111146_fin2"

45AM						
Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
21.90	11.2	48	25.6	AV	L1	GND
28.50	11.2	46	17.5	AV	L1	GND
23.80	11.2	46	22.2	AV	L1	GND
22.00	11.2	46	24.0	AV	L1	GND
21.00	11.2	46	25.0	AV	L1	GND
20.30	11.3	46	25.7	AV	L1	GND
	Level dBµV 21.90 28.50 23.80 22.00 21.00	Level Transd dBµV dB 21.90 11.2 28.50 11.2 23.80 11.2 22.00 11.2 21.00 11.2	Level Transd Limit dBµV dB dBµV 21.90 11.2 48 28.50 11.2 46 23.80 11.2 46 22.00 11.2 46 21.00 11.2 46	Level Transd Limit Margin dBµV dB dBµV dB 21.90 11.2 48 25.6 28.50 11.2 46 17.5 23.80 11.2 46 22.2 22.00 11.2 46 24.0 21.00 11.2 46 25.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$



Page 12 of 65

SCAN TABLE: "Voltage (9K-30M) FIN" Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "CTL220111147_fin"

1/11/2022 11:	47AM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.685500	34.70	11.2	56	21.3	QP	N	GND
0.915000	30.00	11.2	56	26.0	QP	N	GND
1.410000	28.30	11.2	56	27.7	QP	N	GND
2.094000	28.60	11.3	56	27.4	QP	N	GND
3.237000	26.30	11.3	56	29.7	QP	N	GND
3.885000	27.60	11.3	56	28.4	QP	N	GND

MEASUREMENT RESULT: "CTL220111147_fin2"

1/11/2022 11:	47AM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.699000	25.60	11.2	46	20.4	AV	N	GND
0.901500	21.40	11.2	46	24.6	AV	N	GND
1.522500	19.10	11.2	46	26.9	AV	N	GND
1.990500	18.60	11.2	46	27.4	AV	N	GND
2.697000	17.80	11.3	46	28.2	AV	N	GND
3.916500	18.40	11.3	46	27.6	AV	N	GND

3.2. Maximum Output Power

<u>Limit</u>

The maximum radiated power shall not exceed the following values:


(1) In the bands allocated and assigned for broadcast television and in the 600 MHz service band: 50 mW EIRP

(2) In the 600 MHz guard band and the 600 MHz duplex gap: 20 mW EIRP.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.

Test Configuration



Test Results

Modulation	Channel	Output power (dBm)	Ant. Gain (dBi)	EIRP (dBm)	Limit (dBm)	Result
	CH00	4.075	2.53	6.605	17	Pass
FM (Group-A)	CH49	4.266	2.53	6.796	17	Pass
(Cloup-A)	CH95	4.680	2.53	7.210	17	Pass
	CH00	4.628	2.53	7.158	17	Pass
FM (Group-B)	CH49	4.543	2.53	7.073	17	Pass
(Group-D)	CH95	4.111	2.53	6.641	17	Pass

Note: 1.The test results including the cable lose. 2.The RF cable is 50 ohm.

Test plot as follows:

	Agilent Spectrum Analyzer - Swept SA LXI RF 50 Ω AC	SENSE:INT	ALIGN OFF	03:44:31 PM Jan 21, 2022		
	Center Freq 557.875000 N	NHZ PNO: Fast ♀ Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency	
	10 dB/div Ref 10.00 dBm	IFGam.LOW BARCEN. OF US	Mkr1	557.857 MHz 4.680 dBm	Auto Tune	
	0.00				Center Freq 557.875000 MHz	
	-10.0				Start Freq 556.375000 MHz	
	-30.0				Stop Freq 559.375000 MHz	
	-50.0				CF Step 300.000 kHz <u>Auto</u> Man	
	-70.0				Freq Offset 0 Hz	
	-80.0 Center 557.875 MHz #Res BW 1.0 MHz	#VBW 3.0 MHz	Swaap 10	Span 3.000 MHz 00 ms (1001 pts)		
1	MSG	#¥6₩ 3.0 Win2	SWGEP TO	oo ins (1001 pts)		
87 B	and the second s	CF	-195	A B A	() () () () () () () () () ()	

Frequency

Auto Tune

Center Freq 566.125000 MHz

Start Freq 564.625000 MHz

Stop Freq 567.625000 MHz

> CF Step 300.000 kHz

Freq Offset 0 Hz

Frequency

Auto Tune

Center Freq 578.125000 MHz

Start Freq 576.625000 MHz

Stop Freq 579.625000 MHz

> CF Step 300.000 kHz


Freq Offset 0 Hz

Man

Auto

Span 3.000 MHz Sweep 1.000 ms (1001 pts) Man

<u>Auto</u>

#VBW 3.0 MHz

CH49

Center 578.125 MHz #Res BW 1.0 MHz

Center Freq 589.875000 M	PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr TRACE 1234 Avg Hold:>100/100 Type Mywwy Det P NNN	N N
10 dB/div Ref 10.00 dBm		Mkr1 589.863 MH 4.111 dB	z Auto Tune m
0.00			Center Freq 589.875000 MHz
-10.0			Start Freq 588.375000 MHz
-30.0			Stop Freq 591.375000 MHz
-50.0			CF Step 300.000 kHz Auto Man
-70.0			Freq Offset 0 Hz
Center 589.875 MHz #Res BW 1.0 MHz	#VBW 3.0 MHz	Span 3.000 Mł Sweep 1.000 ms (1001 pł	lz s)

3.3. Occupied Bandwidth Measurement

<u>Limit</u>

One or more adjacent 25 kHz segments within the assignable frequencies may be combined to form a channel whose maximum bandwidth shall not exceed 200 kHz. The operating bandwidth shall not exceed 200 kHz.

Test Configuration

Test Procedure

The test shall be modulated by a 2500 Hz tone at an input level 16 dB greater than that necessary to produce 50 percent modulation.

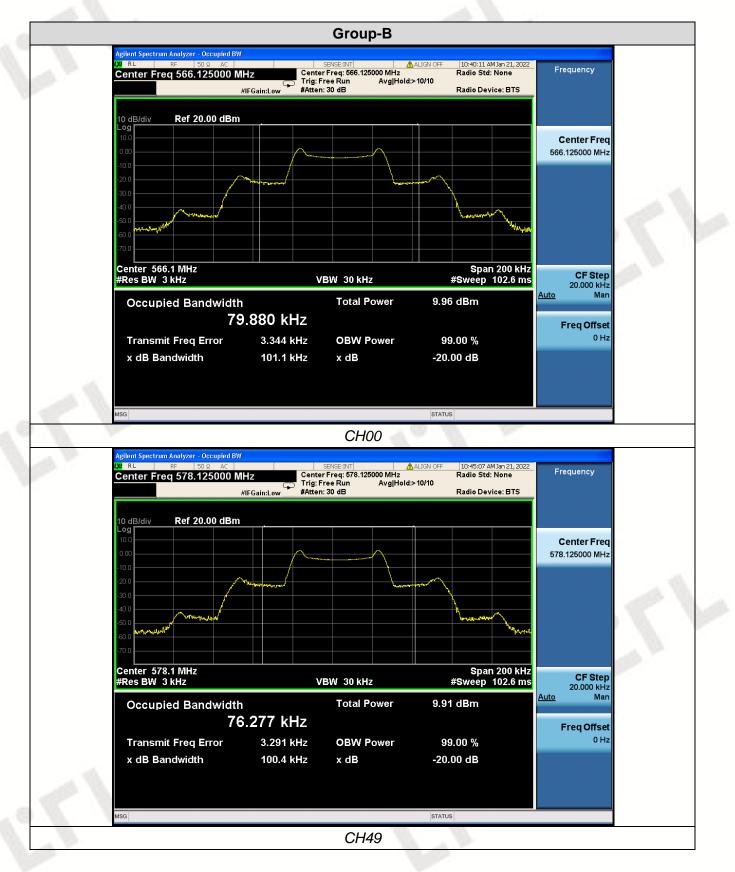
Test Results

Modulation	Channel	99% OBW (KHz)	Limit (KHz)	Result
	CH00	74.818	200	
FM (Group-A)	CH49	78.499	200	Pass
	CH95	78.869	200	
	CH00	79.880	200	
FM (Group-B)	CH49	76.277	200	Pass
(0.000 D)	CH95	77.693	200	

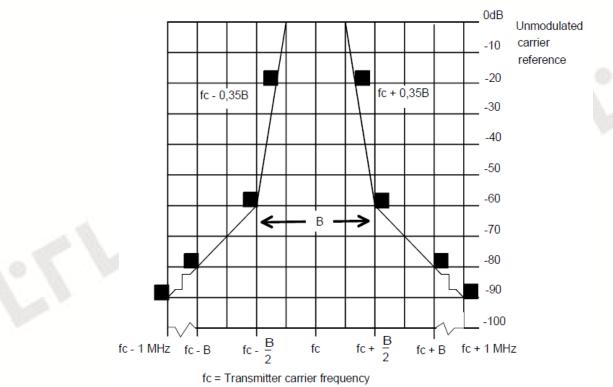
Group-A ctrum Analyze HFGain:Low SENSE:INT ▲ ALIGN OFF Center Freq: 534.125000 MHz Trig: Free Run Avg|Hold:>10/10 #Atten: 30 dB RL 05:31:26 PM Jan 21, 2022 Radio Std: None Frequency Center Freq 534.125000 MHz Radio Device: BTS Ref 20.00 dBm 10 dB/div og **Center Freq** 534.125000 MHz Center 534.1 MHz #Res BW 3 kHz Span 200 kHz #Sweep 102.6 ms CF Step 20.000 kHz #VBW 30 kHz Man <u>Auto</u> Total Power **Occupied Bandwidth** 9.51 dBm 74.818 kHz **Freq Offset** 0 Hz 611 Hz Transmit Freq Error **OBW Power** 99.00 % x dB Bandwidth 101.4 kHz x dB -20.00 dB STATUS CH00 ilent Spectrum Analyzer - Occupied BW SENSE:INT] ▲ALIGN OFF Center Freq: 546.125000 MHz Trig: Free Run Avg|Hold:>10/10 #Atten: 30 dB RL 03:42:21 PM Jan 21, 2022 Radio Std: None Frequency Center Freq 546.125000 MHz Radio Device: BTS #IFGain:Low l0 dB/div Ref 20.00 dBm **Center Freq** 546.125000 MHz Center 546.1 MHz #Res BW 3 kHz Span 200 kHz #Sweep 102.6 ms CF Step 20.000 kHz VBW 30 kHz Man <u>Auto</u> Total Power 9.80 dBm **Occupied Bandwidth** 78.499 kHz Freq Offset **Transmit Freq Error** 49 Hz **OBW Power** 99.00 % 0 Hz x dB Bandwidth 102.2 kHz x dB -20.00 dB STATUS

Test plot as follows:

CH49


1 N 2	Agilent Spectrum Analyzer - Occupied BW M RL RF 50 Ω AC Center Freq 557.875000 MH2	Z Center	SENSE:INT Freq: 557.875000 MHz ree Run Avg Ho 30 dB	Radio St Id:>10/10	PM Jan 21, 2022 :d: None avice: BTS	Frequency		
	10 dB/div Ref 20.00 dBm	Gain:Low #Atten				Center Freq 557.875000 MHz		
	400 500 600 700 Center 557.9 MHz #Res BW 3 kHz Occupied Bandwidth	#\	/BW 30 kHz Total Power	Spa #Sweep 10.2 dBm	an 200 kHz 102.6 ms	CF Step 20.000 kHz <u>Auto</u> Man	5	
		869 kHz _{633 Hz}	OBW Power	99.00 %		Freq Offset 0 Hz		
	x dB Bandwidth	102.7 kHz	x dB	-20.00 dB				
	MSG			STATUS				
			CH95		Seal of	N.		
1 × 1			1	0				

#IF	Trig: Free Run Avg	IHz Radio Std: None	Frequency	
Log 10.0 0.00			Center Freq 589.875000 MHz	
-20.0 -2	VBW 30 kHz	Span 200 kł #Sweep 102.6 n	12 15 20.000 kHz	51
	693 kHz		Auto Man Freq Offset	
x dB Bandwidth	3.127 KHZ OBW Powe 100.8 kHz x dB	-20.00 dB		
MSG	CH95	STATUS		
	M RE 50.2 AC Center Freq 589.875000 MHz #Iff 10 dB/div Ref 20.00 dBm Log	M RE 50.2 AC SENSE:INT Center Freq 589.875000 MHz Center Freq 589.875000 MHz Center Freq 589.875000 MHz #IFGain:Low #IFGain:Low Center Freq 589.875000 MHz 10 dB/div Ref 20.00 dBm Log Image: Center Sense: NT Center Freq 589.875000 MHz 10 dB/div Ref 20.00 dBm Log Image: Center Sense: NT Center Sense: NT 200 Image: Center Sense: NT Center Sense: NT Center Sense: NT Center 589.9 MHz VBW 30 kHz VBW 30 kHz Øccupied Bandwidth Total Powe 77.693 kHz VBW Powe X dB Bandwidth 100.8 kHz X dB	Offer RE SO & AC SENEEINT ALGNOFF ID-41:23 AM 3in 21, 20 Center Freq: 589,875000 MHz Center Freq: 589,875000 MHz Avg Hold>10/10 Radio Std: None WIFGain:Low WiffGain:Low Trig: Freq Stall Avg Hold>>10/10 Radio Device: BTS 10 dB/div Ref 20.00 dBm	W RL PF S02 AC Exception Autor off ID:41:23 AV3m 21, 2022 Radio Std: None Center Freq 589.875000 MHz Center Freq 589.87500 MHz Radio Device: B1S Radio Device: B1S 0 dB/dlv Ref 20.00 dBm Center Freq 589.87500 MHz Radio Device: B1S Radio Device: B1S 0 dB/dlv Ref 20.00 dBm Center Freq 589.87500 MHz Center Freq 589.875000 MHz Center Freq 589.875000 MHz 100 Bit Gain:Low WEW 30 BM Span 200 kHz Center Freq 589.875000 MHz 0 dB/dlv Ref 20.00 dBm Center Freq 589.97000 MHz Span 200 kHz Center Freq 589.875000 MHz 200 Span 200 kHz Span 200 kHz Span 200 kHz CF Step 20.000 kHz 4Res BW 3 kHz VBW 30 kHz Span 200 kHz Man 77.693 kHz Total Power 9.48 dBm Freq Offset 0 Hz V BB Bandwidth 100.8 kHz X dB -20.00 dB Freq Offset 0 Hz



3.4. Necessary Bandwidth

LIMIT

According to ETSI EN 300 422-1 V2.1.2 (2017-01) section 8.3.2.2, the trum mask for all analogue systems in the band. The -90 dBc point shall be ± 1 MHz from fc easured with an average detector. To comply, a measured value shall fall below the mask limit as shown in figure 3.

TEST PROCEDURE

The arrangement of test equipment as shown in figure B.1 shall be used. Note that the noise meter conforms to (quasieak) without weighting filter (flat).

With the Low Frequency (LF) audio signal generator set to 500 Hz, the audio input level to the DUT shall be adjusted to 8 dB below the limiting threshold (-8 dB (lim)) as declared by the manufacturer. The corresponding audio output level from the demodulator shall be measured and recorded. The input impedance of the noise meter shall be sufficiently high to avoid more than 0,1 dB change in input level when the meter is switched between input and output.

The audio input level shall be increased by 20 dB, i.e. to +12 dB (lim), and the corresponding change in output level shall be measured.

It shall be checked that the audio output level has increased by \leq 10 dB.

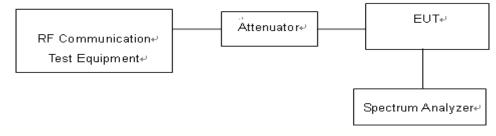
If this condition is not met, the initial audio input level shall be increased from -8 dB (lim) in 1 dB steps until the above condition is fulfilled, and the input level recorded in the test report. This level replaces the value derived from the manufacturer's declaration and is defined as -8 dB (lim).

Measure the input level at the transmitter required to give +12 dB (lim).

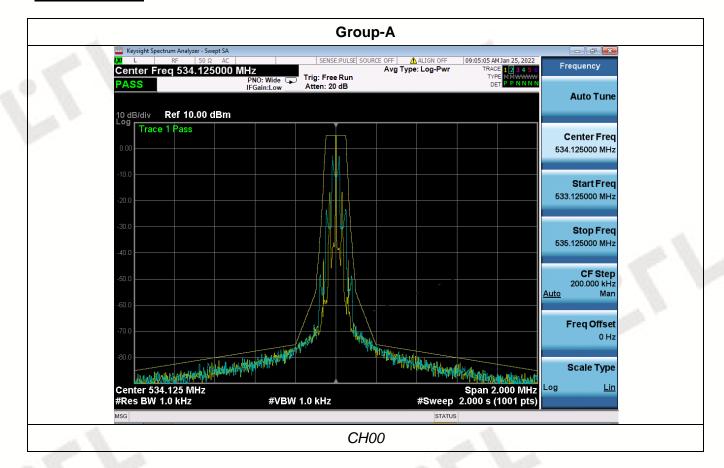
The LF generator shall be replaced with the weighted noise source to Recommendation ITU-R BS.559-2 [i.3], band-limited to 15 kHz as described in IEC 60244-13 [2], and the level shall be adjusted such that the measured input to the transmitter corresponds to +12 dB (lim).

If the transmitter incorporates any ancillary coding or signalling channels (e.g. pilot-tones), these shall be enabled prior to any spectral measurements.

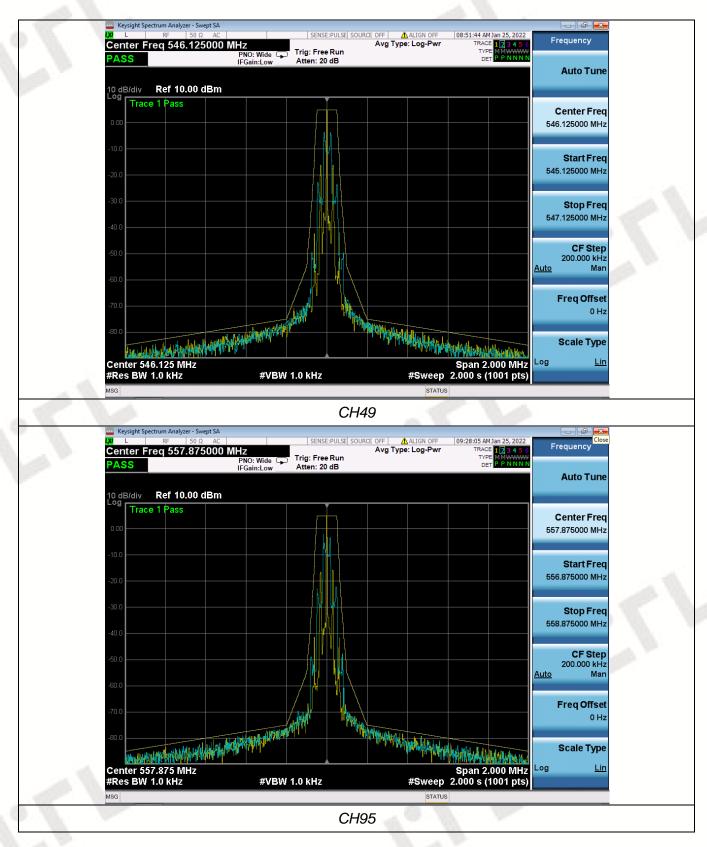
If the transmitter incorporates more than one audio input, e.g. stereo systems, the second and subsequent channels shall be simultaneously driven from the same noise source, attenuated to a level of -6 dB (lim).

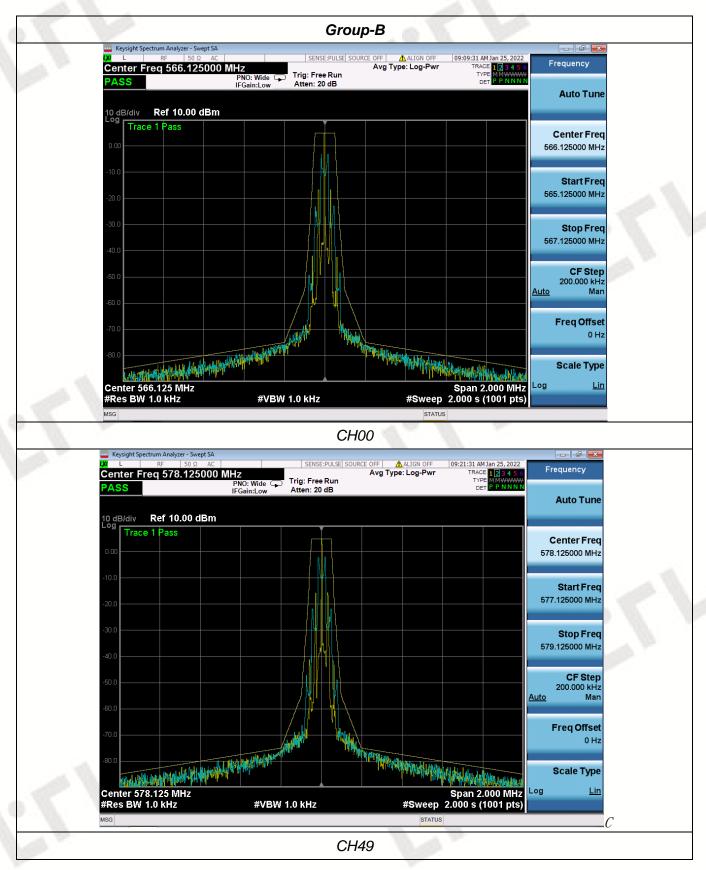

The transmitter RF output spectrum shall be measured, using a spectrum analyser with the following settings:

- centre frequency:
- dispersion (Span):
- Resolution BandWidth (RBW):
- Video BandWidth (VBW):


fc: Transmitter (Tx) nominal frequency; fc - 1 MHz to fc + 1 MHz; 1 kHz; 1 kHz; Peak hold.

- detector:


TEST CONFIGURATION



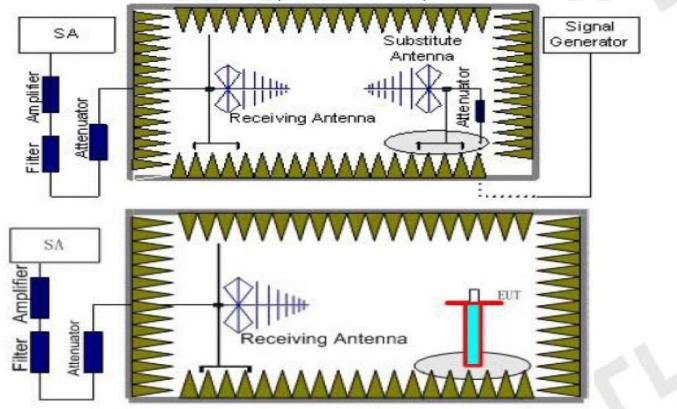
V1.0

97	weysight Spectrum Analyzer - Swept SA				
	L RF 50Ω AC Center Freq 589.875000 MHz	Avg Typ	ALIGN OFF 09:25:09 AM Jan 25, 2022 e: Log-Pwr TRACE 123456 TYPE MM	Frequency	
	PASS PNO: Wide (IFGain:Low	Trig: Free Run Atten: 20 dB	DET P P N N N N	Auto Tune	
	10 dB/div Ref 10.00 dBm			Auto Tune	
	Log Trace 1 Pass			Center Freq	
	0.00			589.875000 MHz	
	-10.0				
				Start Freq 588.875000 MHz	
	-20.0			568.875000 WHZ	
	-30.0			Stop Freq	
	-40.0			590.875000 MHz	
	-40.0			05.064	
	-50.0			CF Step 200.000 kHz	
	-60.0			<u>Auto</u> Man	
	-70.0			Freq Offset	
				0 Hz	
				Scale Type	
	Center 589.875 MHz #Res BW 1.0 kHz #VB	W 1.0 kHz	Span 2.000 MHz #Sweep 2.000 s (1001 pts)	<u></u>	
a and	MSG		STATUS		
		CH95			

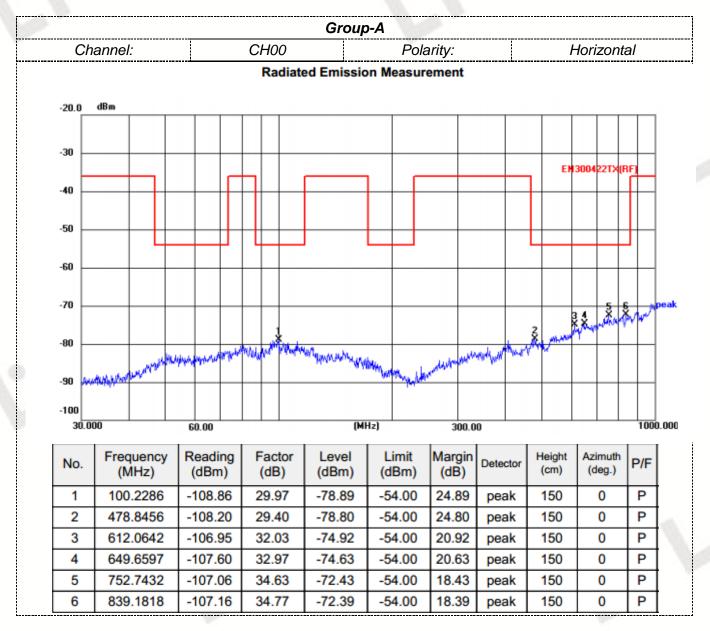
3.5. Transmitter spurious emissions

<u>Limit</u>

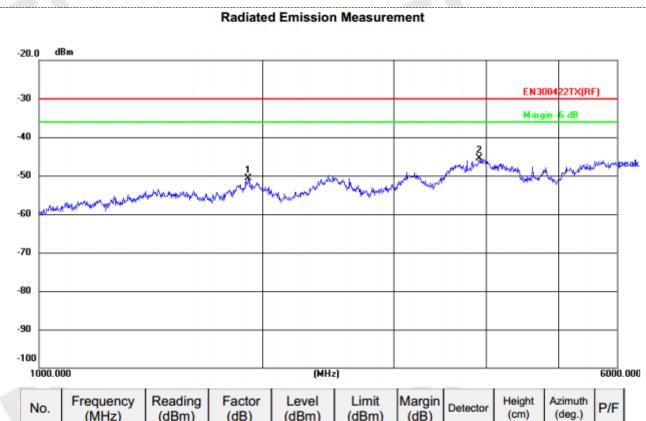
Spurious emissions are emissions outside the frequency range(s) of the equipment. The power of the spurious emissions shall not exceed the limits of table as below:


State	Frequency							
	47 MHz to 74 MHz 87,5 MHz to 137 MHz 174 MHz to 230 MHz 470 MHz to 862 MHz	Other Frequencies below 1 000 MHz	Frequencies above 1 000 MHz					
Operation	4 nW	250 nW	1 µW					
Standby	2 nW	2 nW	20 nW					

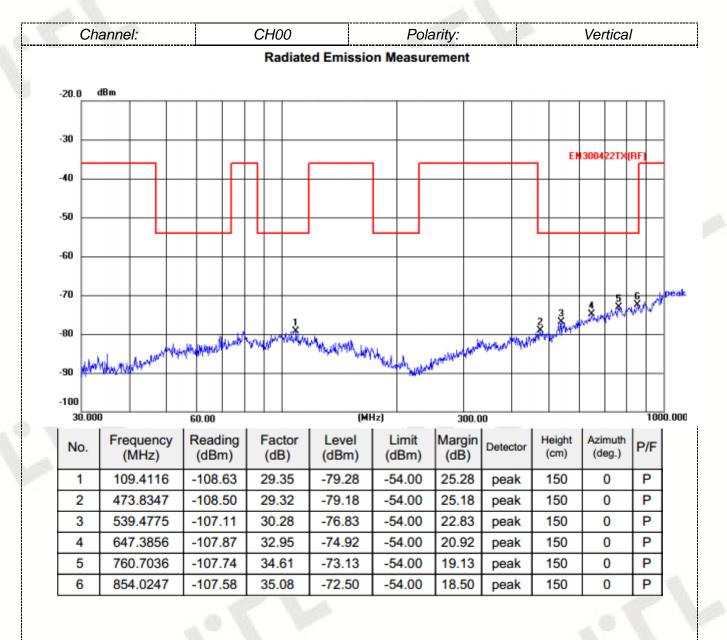
Test Procedure

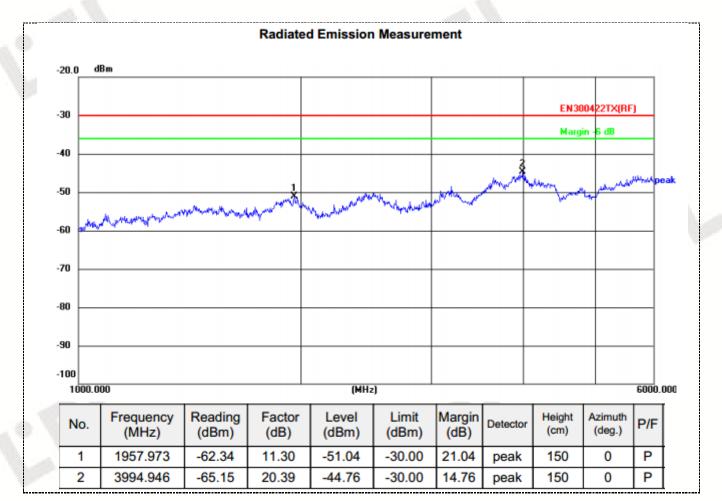

- 1. EUT shall be placed on a 0.8m high table for frequency below 1GHz
- 2. EUT shall be placed on a 1.5m high table for frequency above 1GHz, The test distance between the receiving antenna and the EUT is 1m up to 4m, Set EUT in continuous transmitting with maximum output power at test frequency.
- 3. The table was rotated from 0 to 360 degree to search the highest radiated emission.
- 4. Repeat step 3 to 4 for each polarization and test channel to find the worst emission level.
- 5. The results obtained are compared to the limits in order to prove compliance with the requirement.
- 6. Please refer to ETSI EN 300 422-1 V1.4.2 (2011-08) clause 6.1 for the test conditions.
- 7. Please refer to ETSI EN 300 422-1 V1.4.2 (2011-08) clause 8.4.2 for the measurement method.

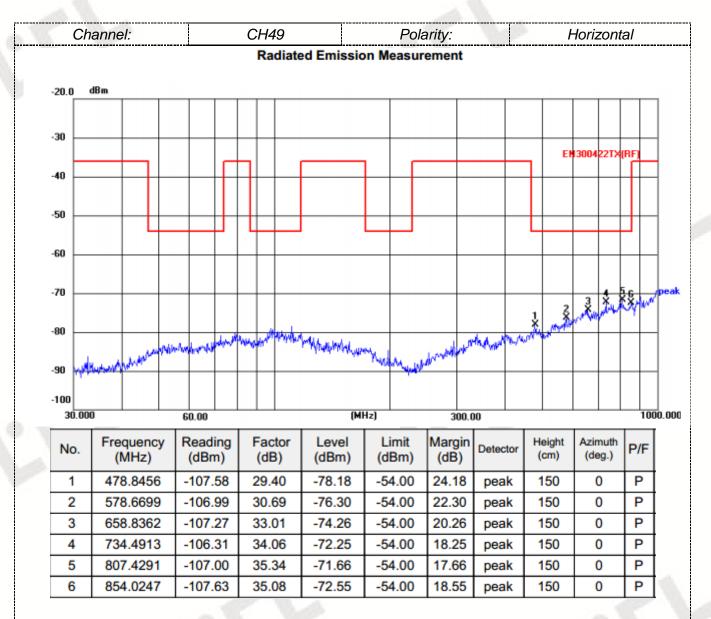
Test Configuration

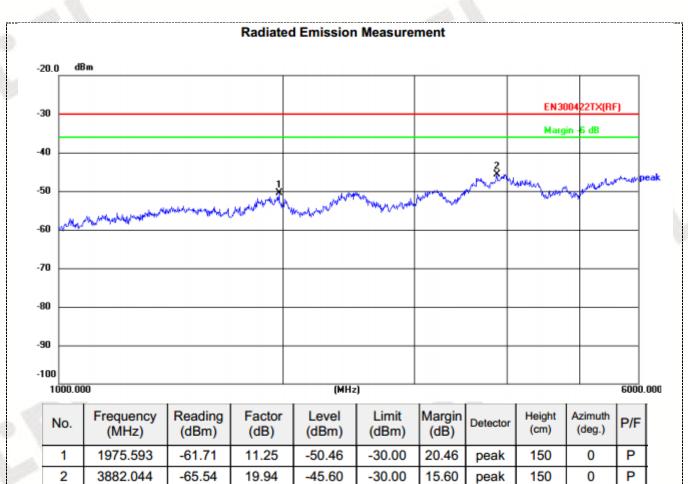

Effective Radiated Power measurement (30 MHz to 12.75 GHz)

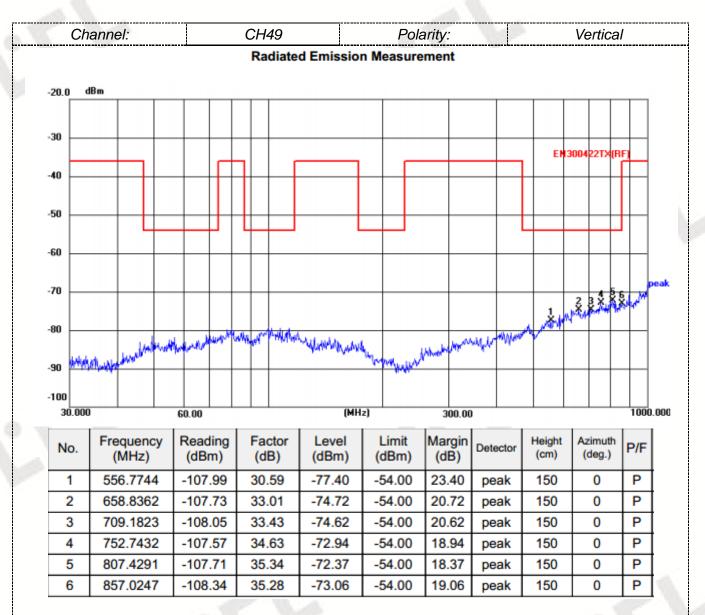
Test Results

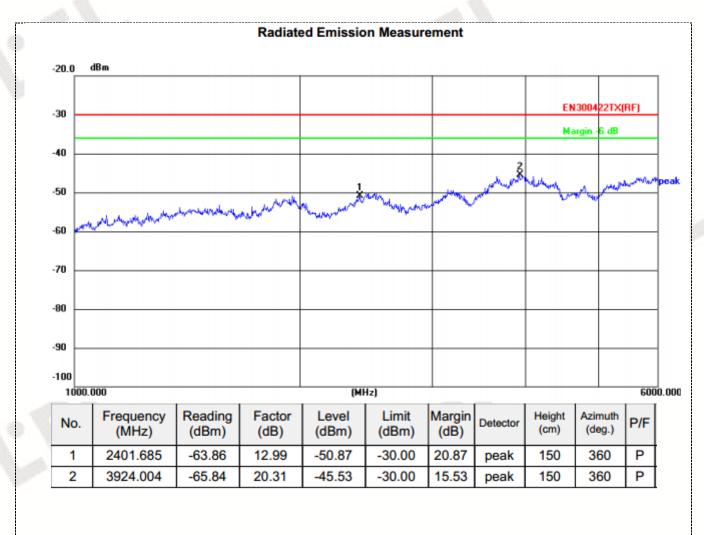


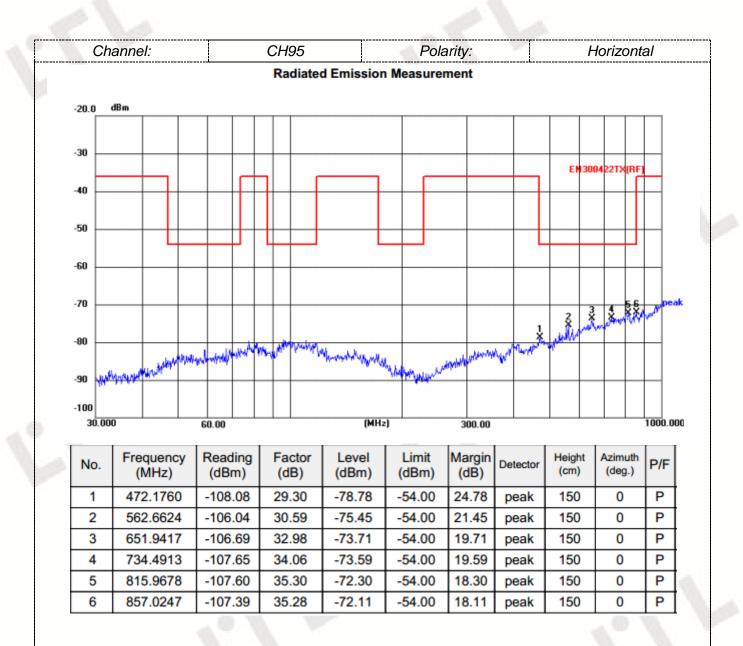


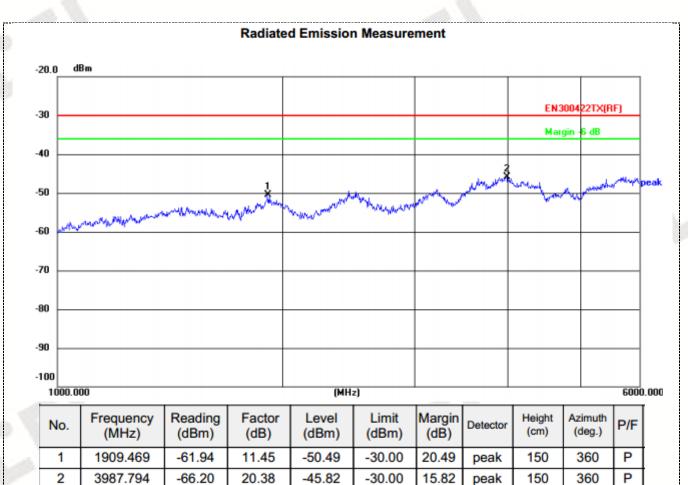


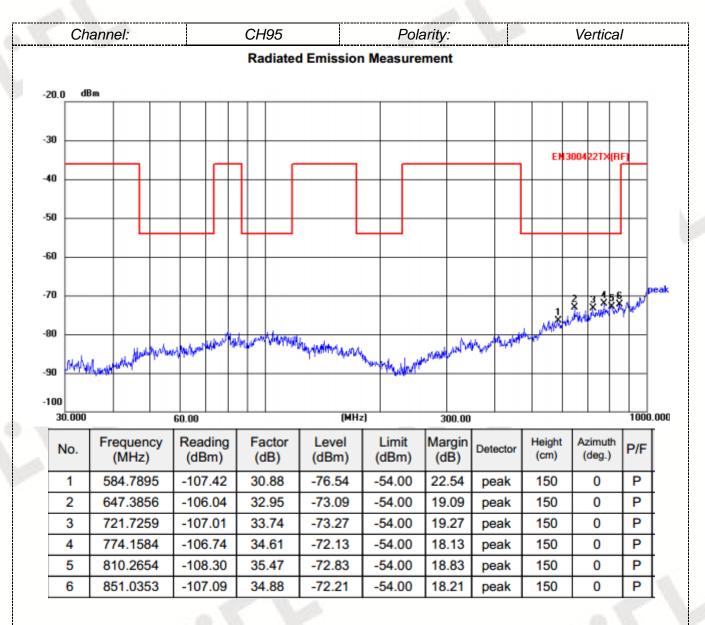

1	No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F
	1	1912.893	-62.16	11.44	-50.72	-30.00	20.72	peak	150	360	Р
	2	3916.979	-65.73	20.31	-45.42	-30.00	15.42	peak	150	360	Р

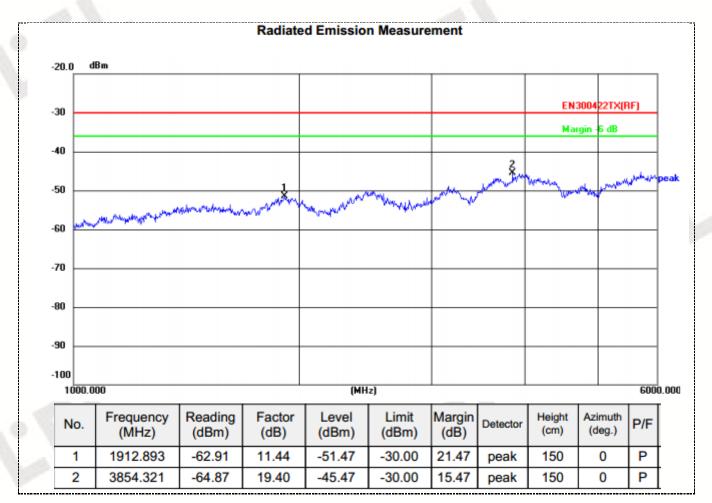

V1.0

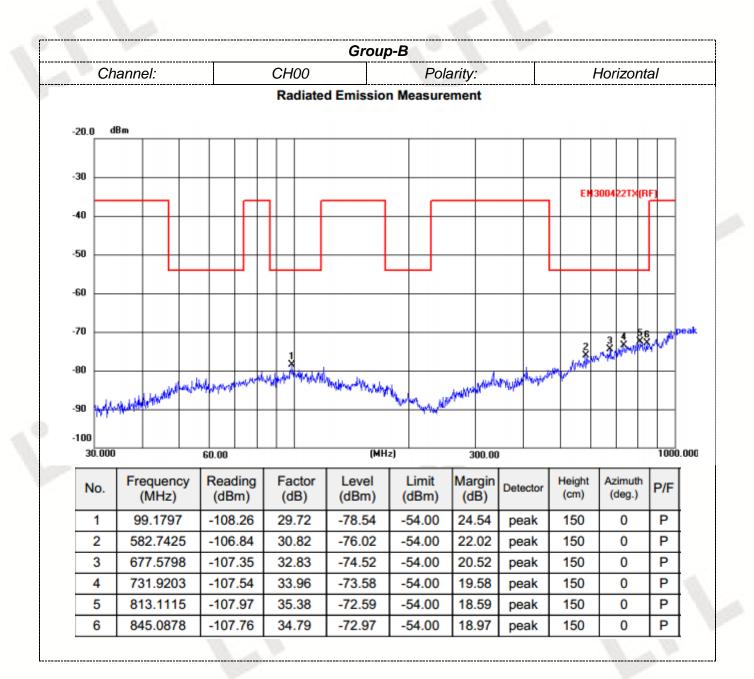


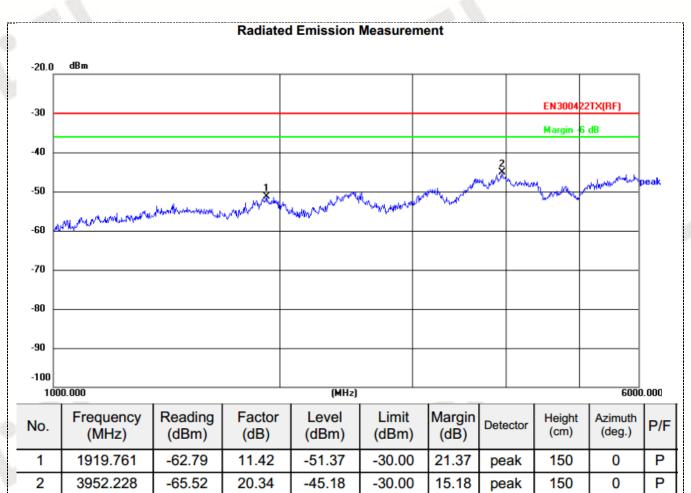


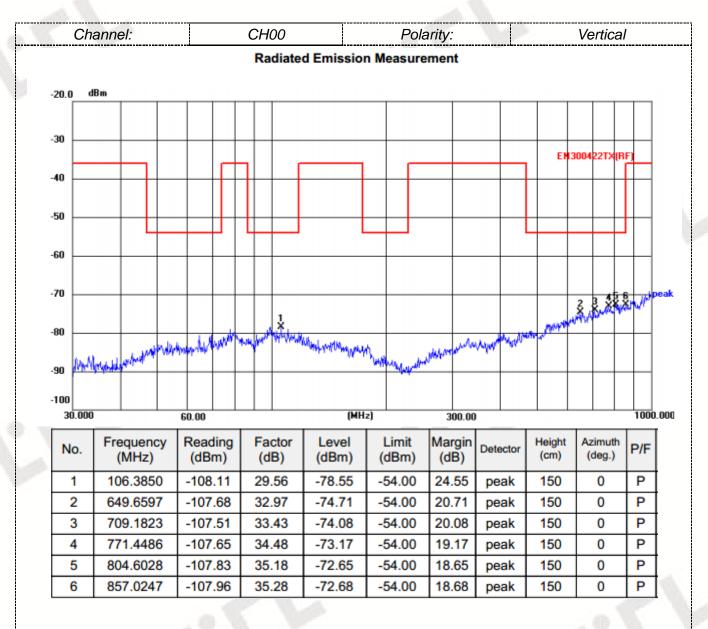


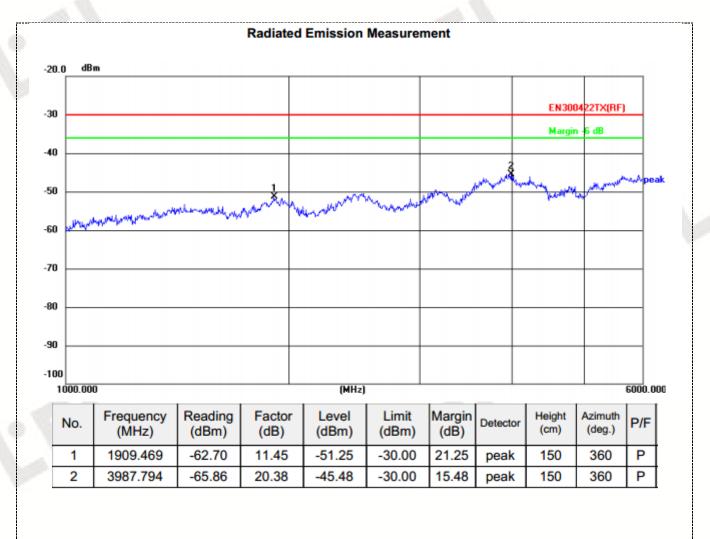


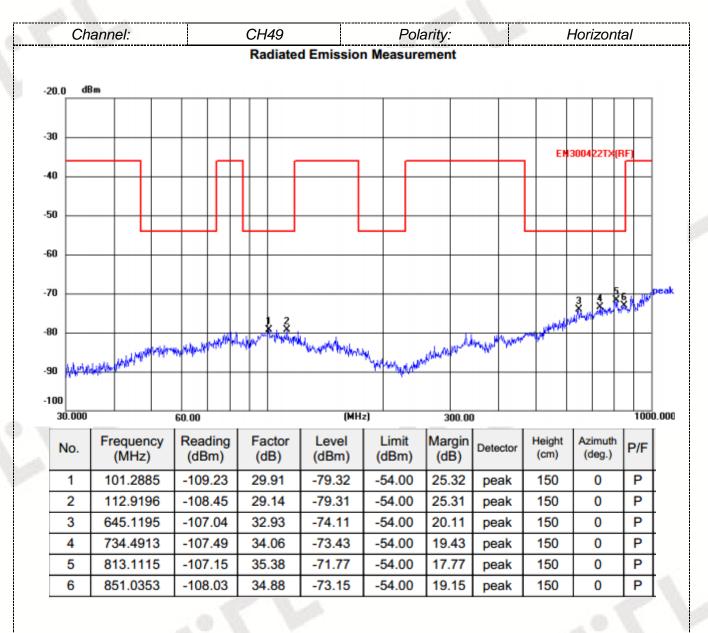


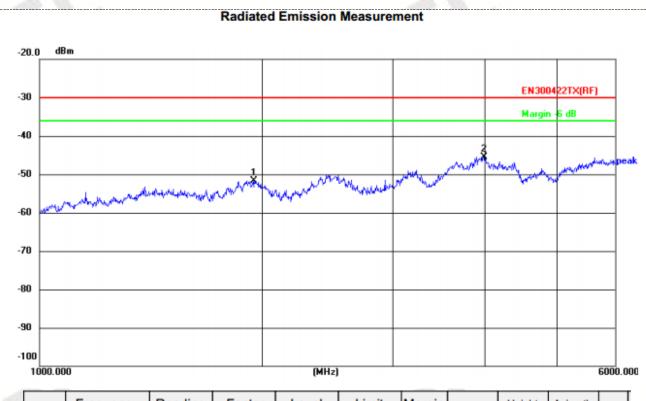


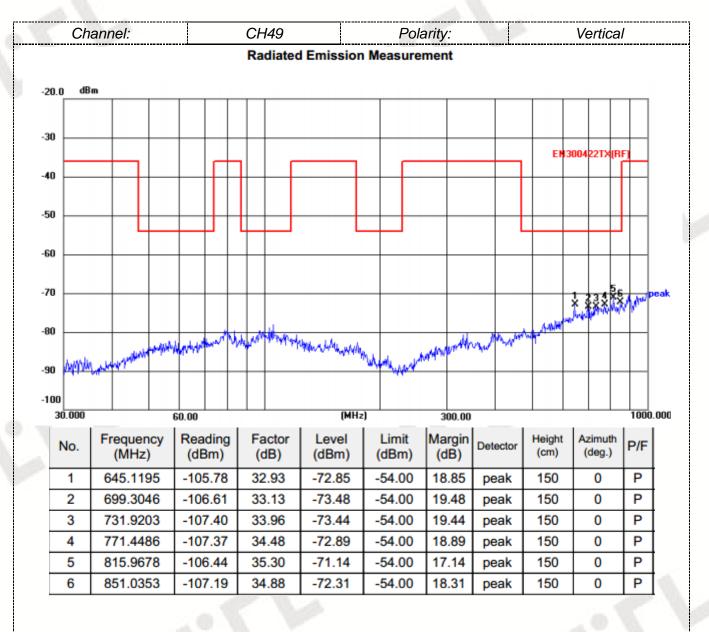


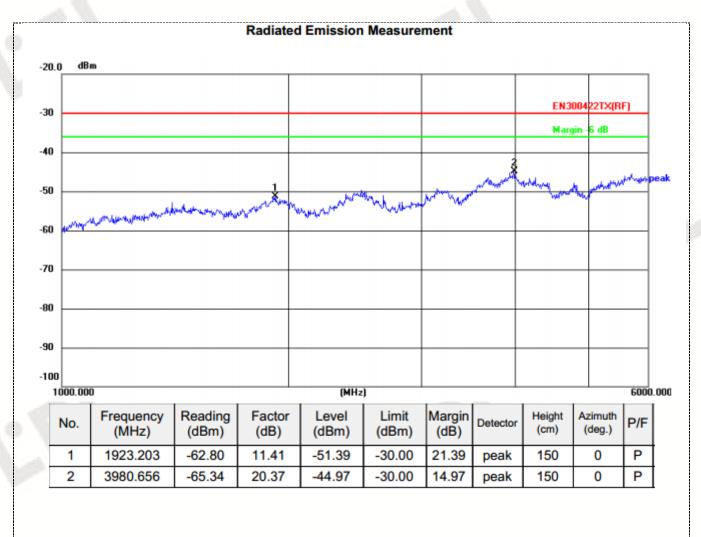


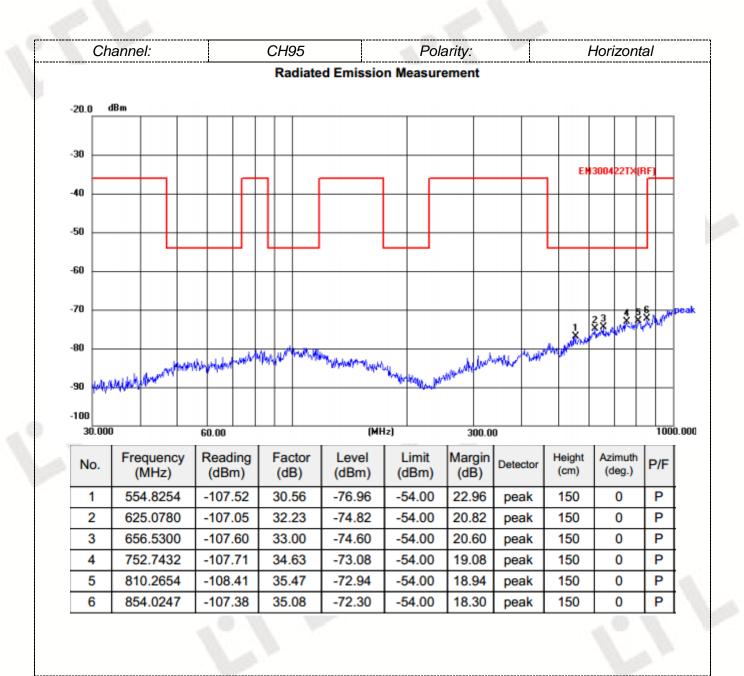


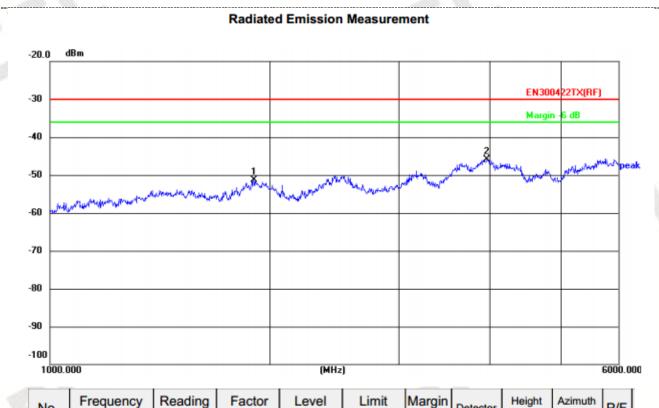


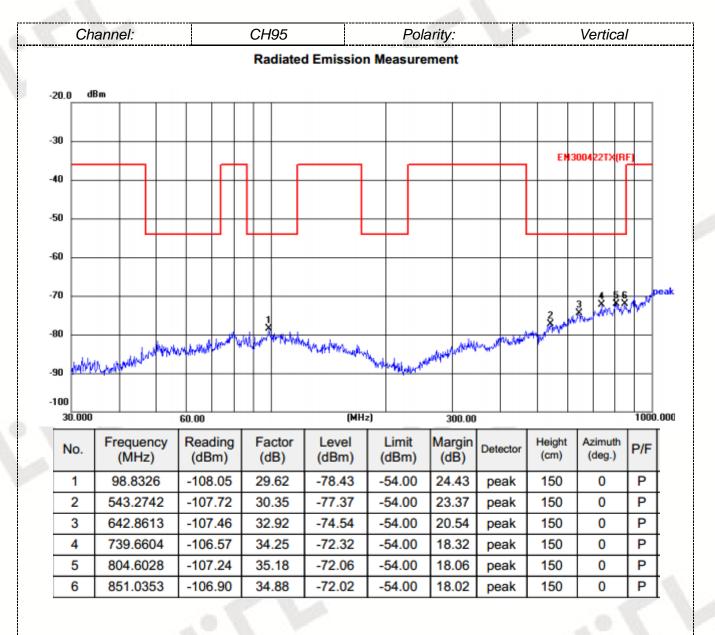


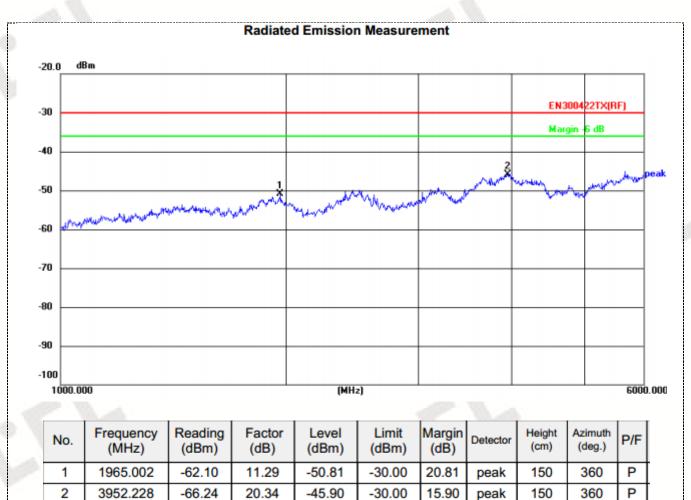







	No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F
I	1	1950.969	-62.93	11.33	-51.60	-30.00	21.60	peak	150	360	Р
	2	3987.794	-65.82	20.38	-45.44	-30.00	15.44	peak	150	360	Ρ





V1.0

	No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F
1	1	1899.233	-62.83	11.47	-51.36	-30.00	21.36	peak	150	0	Ρ
1	2	3966.416	-66.16	20.35	-45.81	-30.00	15.81	peak	150	0	Ρ

3.6. Frequency Stability

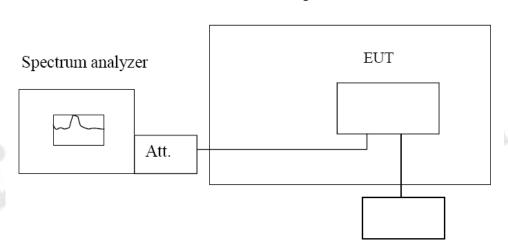
<u>Limit</u>

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.005\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. Battery operated equipment shall be tested using a new battery.

Test Procedure

a) Frequency stability versus environmental temperature

- 1. Setup asTest Configuration for frequencies measured at ambient temperature if it is within 15°Cto 25°C. Otherwise, an environmental chamber set for a temperature of 20°Cshall be used.
- 2. Turn on EUT and set SA center frequency to the right frequency needs to be measured. Then set SA RBW to 3 kHz, VBW to 10kHz and frequency span to 500 kHz. Record this frequency to be a reference.
- 3. Set the temperature of chamber to 50°C. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.
- 4. Repeat step 2 with a 10°Cdecreased per stage until the lowest temperature -20°Cis measured, record all measurement frequencies.


b) Frequency stability versus input voltage

- Setup asTest Configuration for frequencies measured at ambient temperature if it is within 15°Cto 25°C. Otherwise, an environmental chamber set for a temperature of 20°Cshall be used. Install new batteries in the EUT.
- 2. Set SA center frequency to the right frequency needs to be measured. Then set SA RBW to 3kHz, VBW to 10kHz and frequency span to 500 kHz. Record this frequency to be a reference.

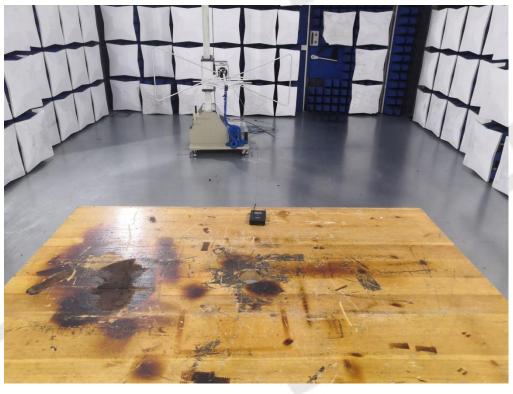
Temperature Chamber

3. For non hand carried, battery operated device, supply the EUT primary voltage with 85 and 115 percent of the nominal value and record the frequency.

Test Configuration

Variable Power Supply

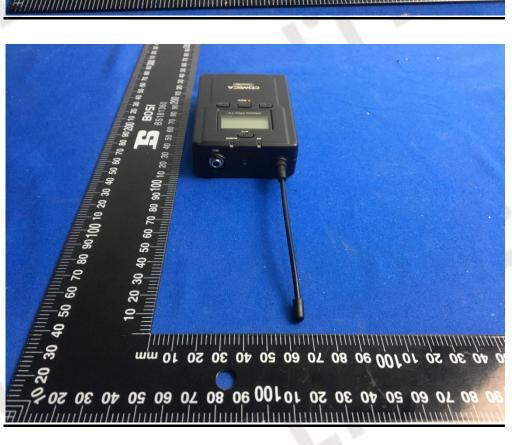
Group-A									
Reference Frequency: 534.125MHz									
Voltage (V)	Temperature (℃)	Frequency error (MHz)	Frequency Tolerance (%)	Limit (%)	Result				
	-20	0.01815	0.00349%						
	-10	0.01842	0.00354%						
	0	0.01725	0.00332%						
3.0	10	0.01792	0.00345%	103					
3.0	20	0.01820	0.00350%	±0.005	PASS				
	30	0.01762	0.00339%	±0.005	PASS				
	40	0.01743	0.00335%						
	50	0.01827	0.00351%						
3.3	25	0.01910	0.00367%]					
2.7	25	0.01914	0.00368%						


Group-B Reference Frequency: 566.125MHz Frequency Frequency Temperature Voltage (V) error Tolerance Result Limit (%) (°C) (MHz) (%) -20 0.01808 0.00347% -10 0.01838 0.00352% 0 0.01716 0.00328% 10 0.01786 0.00343% 3.0 20 0.01814 0.00347% PASS ±0.005 30 0.01752 0.00326% 40 0.01734 0.00334% 50 0.01821 0.00350% 3.3 25 0.01915 0.00364% 2.7 25 0.01917 0.00361%

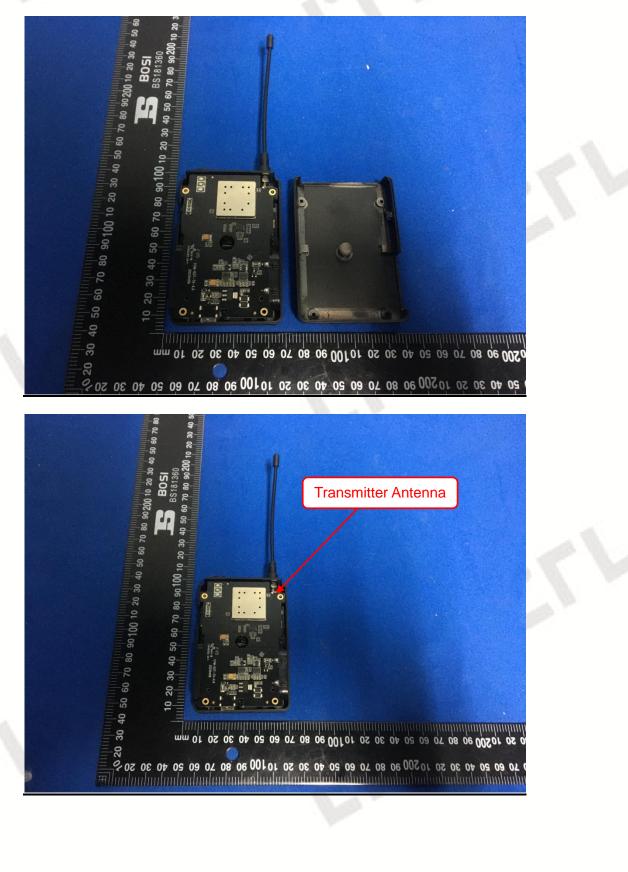
Note: The report tests all channel data, but this report only records the worst channel data.

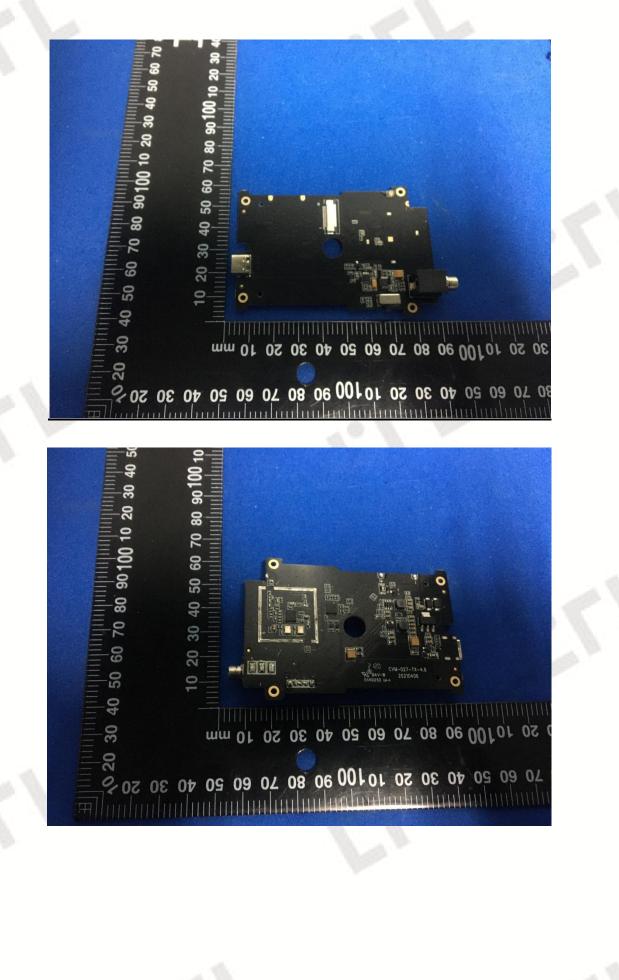
Test Results

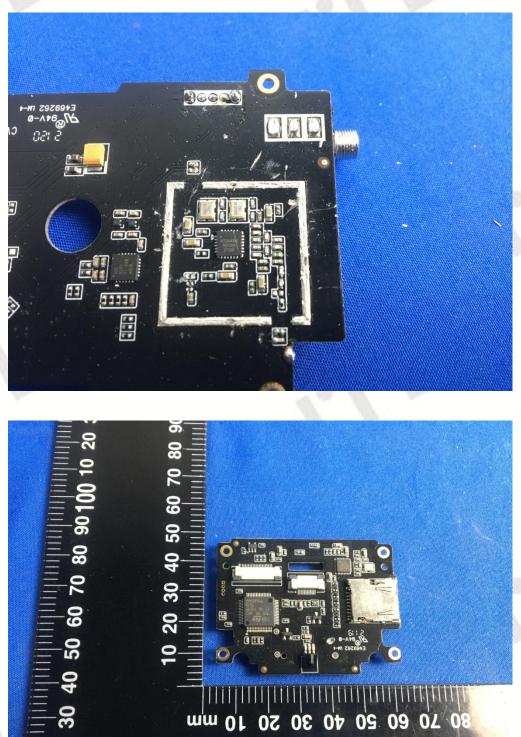
4. Test Setup Photos of the EUT



5. External and Internal Photos of the EUT







Internal Photos of EUT

80 10 60 50 40 30 20

30 30 50 10100 30 80 40 90 70 90 50 %

