

Report No: JYTSZB-R01-2100268

FCC REPORT

Applicant:	Todos Industrial Limited		
Address of Applicant:	Room 308, building A3, Fuhai information port, Fuhai street, Bao'an District, Shenzhen City, Guangdong Province, China, 518000		
Equipment Under Test (E	EUT)		
Product Name:	Tablet PC		
Model No.:	Tab X2, TabX2, TabX3, TabX4, TabX5, TabT1, TabT2, TabT3, TabN1, TabN2, TabN3, TabXX (XX can be any number)		
Trade mark:	aprix, Geex, hiup, Todos		
FCC ID:	2AZQ6-APX2		
Applicable standards:	FCC CFR Title 47 Part 15 Subpart B		
Date of sample receipt:	11 May, 2021		
Date of Test:	12 May, to 25 Jun., 2021		
Date of report issued:	30 Jun., 2021		
Test Result:	PASS *		

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version 2

Version No.	Date	Description
00	30 Jun., 2021	Original

Janet Wei Test Engineer Winner Mang Project Engineer

30 Jun., 2021 Date:

Tested by:

Reviewed by:

30 Jun., 2021

Date:

3 Contents

			Page
1	C	OVER PAGE	1
2	VI	/ERSION	2
3	C	CONTENTS	3
4	-	EST SUMMARY	-
-			
5	G	ENERAL INFORMATION	5
5	.1	CLIENT INFORMATION	
5	.2	GENERAL DESCRIPTION OF E.U.T.	5
5	.3	Test Mode	
5	.4	Measurement Uncertainty	
	.5	DESCRIPTION OF SUPPORT UNITS	
-	.6	RELATED SUBMITTAL(S) / GRANT (S)	
	.7	DESCRIPTION OF CABLE USED	
-	.8 .9	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
-	.9 .10	LABORATORY FACILITY	
-	.10		
-			
6	T	EST RESULTS AND MEASUREMENT DATA	8
6	.1	CONDUCTED EMISSION	
6	.2	RADIATED EMISSION	11
7	Т	EST SETUP PHOTO	
8	E	UT CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Item	Section in CFR 47	Result		
Conducted Emission	Part 15.107	Pass		
Radiated Emission	Part 15.109	Pass		
 <i>Remark:</i> 1. Pass: The EUT complies with the essential requirements in the standard. 2. N/A: The EUT not applicable of the test item. 				
Test Method: ANSI C63.4:2014				

5 General Information

5.1 Client Information

Applicant:	Todos Industrial Limited
Address:	Room 308, building A3, Fuhai information port, Fuhai street, Bao'an District, Shenzhen City, Guangdong Province, China, 518000
Manufacturer/ Factory:	Todos Industrial Limited
Address:	Room 308, building A3, Fuhai information port, Fuhai street, Bao'an District, Shenzhen City, Guangdong Province, China, 518000

5.2 General Description of E.U.T.

Product Name:	Tablet PC		
Model No.:	Γab X2, TabX2, TabX3, TabX4, TabX5, TabT1, TabT2, TabT3, TabN1, TabN2, ΓabN3, TabXX (XX can be any number)		
Power supply:	Rechargeable Li-ion Battery DC3.8V, 6000mAh		
AC adapter:	Model: EE-0602000UZ Input: AC100-220V, 50/60Hz, 0.5A Output: DC 5.0V, 2000mA		
Remark:	Model No.: Tab X2, TabX2, TabX3, TabX4, TabX5, TabT1, TabT2, TabT3, TabN1, TabN2, TabN3, TabXX (XX can be any number) The internal circuit design, layout, components used and internal wiring are all the same, all trademarks correspond to all models, the only difference is the model name.		
Test Sample Condition:	The test samples were provided in good working order with no visible defects.		

5.3 Test Mode

Operating mode	Detail description			
PC mode	Keep the EUT in Downloading mode(Worst case)			
Charging+Recording mode	Keep the EUT in Charging+Recording mode			
Charging+Playing mode	Keep the EUT in Charging+Playing mode			
The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and				

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty		
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)		
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)		
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)		
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)		
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)		

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX7070	2J8XSZ2	DoC
DELL	MONITOR	SE2018HR	3M7QPY2	DoC
DELL	KEYBOARD	KB216d	N/A	DoC
DELL	MOUSE	MS116t1	N/A	DoC
HP	Printer	HP LaserJet P1007	VNFP409729	DoC

5.5 Description of Support Units

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type	Description	Length	From	То
Detached USB Cable	Shielding	1.0m	EUT	PC/Adapter
Detached headset cable	Unshielded	1.2m	EUT	Headset

5.8 Additions to, deviations, or exclusions from the method

No

5.9 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.10 Laboratory Location

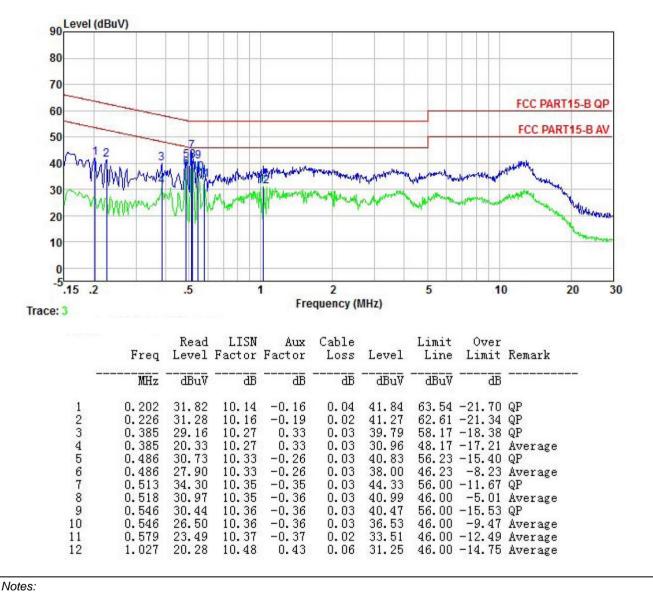
JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: <u>http://www.ccis-cb.com</u>

5.11 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-07-2020	03-06-2021	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022	
Liswa Antonia		DDUA0400D	4005	06-18-2020	06-17-2021	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-18-2021	06-17-2022	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021	
EMI Test Software	AUDIX	E3	١	/ersion: 6.110919	b	
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022	
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022	
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022	
10m SAC	ETS	RFSD-100-F/A	Q2005	03-31-2021	04-01-2024	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	03-31-2021	04-01-2022	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	03-31-2021	04-01-2022	
EMI Test Receiver	R&S	ESR 3	102800	04-06-2021	04-07-2022	
EMI Test Receiver	R&S	ESR 3	102802	04-06-2021	04-07-2022	
Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-07-2022	
Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-07-2022	
Test Software	R&S	EMC32	Version: 10.50.40			

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-03-2021	03-02-2022		
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-03-2021	03-02-2022		
LISN	CHASE	MN2050D	1447	03-03-2021	03-02-2022		
LISN	Rohde & Schwarz			06-18-2020	06-17-2021		
LISIN	Ronde & Schwarz	ESH3-Z5	8438621/010	06-18-2021	06-17-2022		
Cable	HP	10503A	N/A	03-03-2021	03-02-2022		
EMI Test Software	AUDIX	E3	Version: 6.110919b				

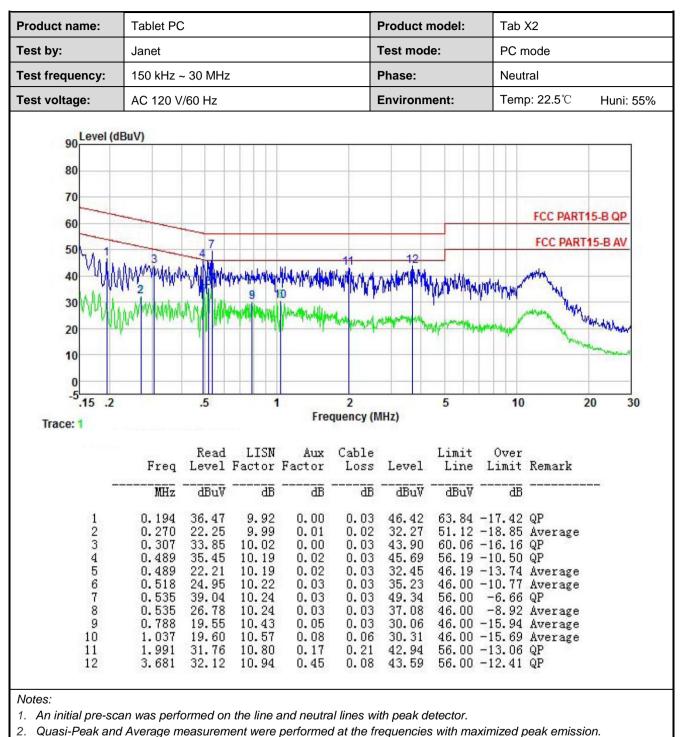
6 Test results and Measurement Data


6.1 Conducted Emission

Test Pequirement:	FCC Part 15 B Section 15.107		
Test Requirement:			
Test Frequency Range:	150kHz to 30MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9kHz, VBW=30kHz		
Limit:	Frequency range (MHz)	Limit	(dBµV)
		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	0.5-30	60	50
	* Decreases with the logarithm	of the frequency.	
Test setup:	Reference Plane		
Testerreles	Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	EMI Receiver	
Test procedure	 The E.U.T and simulators are impedance stabilization netw coupling impedance for the n The peripheral devices are a LISN that provides a 50ohm/ termination. (Please refers to photographs). Both sides of A.C. line are interference. In order to fin positions of equipment and according to ANSI C63.4(late) 	ork(L.I.S.N.). The prov neasuring equipment. Iso connected to the m 50uH coupling impeda the block diagram of t checked for maximum d the maximum emission all of the interface cat	ide a 50ohm/50uH ain power through a nce with 50ohm he test setup and conducted on, the relative oles must be changed
Test Instruments:	Refer to section 5.11 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement data:

Product name:	Tablet PC	Product model:	Tab X2
Test by:	Janet	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%



1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

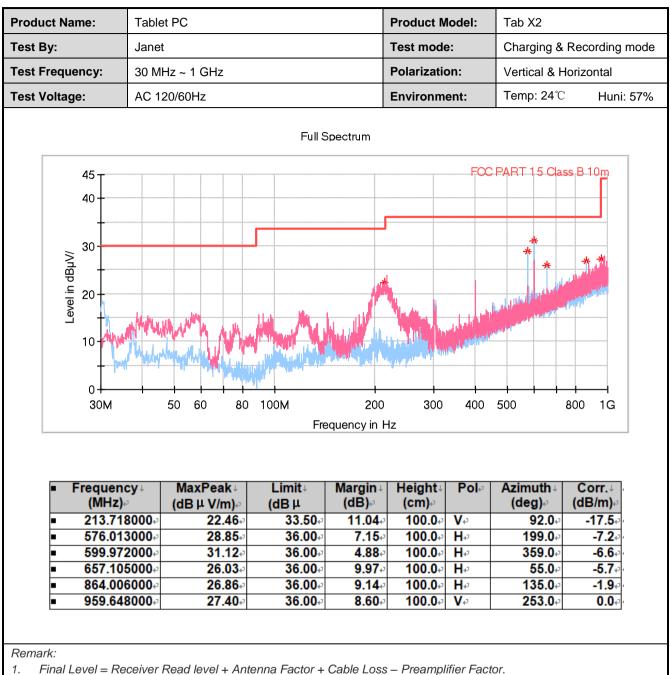
3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.2 Radiated Emission

Test Requirement:	FCC Part 15 B Se	ection 15.10	9			
Test Frequency Range:	30MHz to 6000MI	Hz				
Test site:	Measurement Dis	tance: 3m o	or 10	m (Semi-An	echoic Cha	amber)
Receiver setup:	Frequency	Detector	r	RBW	VBW	Remark
	30MHz-1GHz	Quasi-pea	ak	120kHz	300kHz	Quasi-peak Value
		Peak		1MHz	3MHz	Peak Value
	Above 1GHz	RMS		1MHz	3MHz	Average Value
Limit:	Frequenc	y	Lim	it (dBuV/m @	@10m)	Remark
	30MHz-88N	1Hz		30.0		Quasi-peak Value
	88MHz-216	MHz		33.5		Quasi-peak Value
	216MHz-960	MHz		36.0		Quasi-peak Value
	960MHz-1G	GHz		44.0		Quasi-peak Value
	Frequenc	y	Lim	nit (dBuV/m	@3m)	Remark
	Above 10	1-		54.0		Average Value
	Above 1G	HZ		74.0		Peak Value
Test setup:	Below 1GHz				Antenna Tov Search Antenna RF Test Receiver	wer
				Horn Antenna Horn Antenna ence Plane	Antenna Tower	
Test Procedure:	ground at a 1 1GHz). The t the highest ra 2. The EUT was	0 meter cha able was rot adiation. s set 10 met	ambe tateo ters(er (below 1G d 360 degree below 1GHz	GHz)or 3 me es to deterr	.8 meters above the eter chamber(above nine the position of ers(above 1GHz) n was mounted on

Project No.: JYTSZE2105055

	the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.11 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All of the observed value above 6GHz ware the niose floor , which were no recorded



Measurement Data:

t By: Janet Test mode: PC mode t Frequency: 30 MHz - 1 GHz Polarization: Vertical & Horizontal t Voltage: AC 120/60Hz Environment: Temp: 24°C Huni: Full Spectrum Full Spectrum Foc PART 15 Class B 10 m Foc PART 15 Class 10 m Foc		Та	blet PC			Prod	uct Model:	Tab X2		
t Voltage: AC 120/60Hz Environment: Temp: 24°C Huni: Full Spectrum Full Spectrum Image: Spectrum For PART 15 Oass B 10m Operation of the spectrum Tenp: 24°C Huni: Full Spectrum Operation of the spectrum Operation of the spectrum Operation of the spectrum Operation of the spectrum Full Spectrum Operation of the spectrum Operation of the spectrum Operation of the spectrum Operation of the spectrum Tenp: 24°C Huni: For Operation of the spectrum Operation of the spectrum Operation of the spectrum Tenguency in Hz	t By:	Ja	net			Test	mode:	PC mod	le	
Full Spectrum Full Spectrum Image: Spectrum	t Frequency:	30	MHz ~ 1 GH	z		Pola	rization:	Vertical	Vertical & Horizontal	
Frequency:MaxPeak:Limit:Margin:PoleAzimuth:Corr.:(dBjl/m)-(dB	t Voltage:	AC	2120/60Hz			Envi	ronment:	Temp: 2	24℃ Huni:	
Frequency:MaxPeak:Limit:Margin:PoleAzimuth:Corr.:(dBjl/m)-(dB										
$\frac{1}{19} \frac{1}{19} \frac{1}{19} \frac{1}{1000} \frac{1}$					Full Spect	rum				
$\frac{1}{1240.015000} + \frac{1}{22.25} + \frac{1}{36.000} + \frac{1}{36.00} + \frac{1}{10.00} + \frac{1}{10$	45 -						F	C PART 15 C	lass B 10m	
$\frac{1}{1283000} = \frac{1}{128} \frac{1}{128$										
$\frac{1}{10000000000000000000000000000000000$	40									
$\frac{1}{10000000000000000000000000000000000$						*			*	
Image: second	30				*****			*		
Image: second					*				**	
Image: second	U U								and the second second	
Image: second	i <u>=</u> 20 +		14		l				ALC: NOT THE OWNER.	
Image: second	Lev L									
Image: second				ы .a	1.11	Land H. H. L.	المعاملين في	ALC: NOT THE OWNER OF THE OWNER OWNE		
30M 50 60 80 100M 200 300 400 500 800 1G Frequency in Hz	10-	1-114	L. M. L.			्षाः ू र 🕫 ्षाः	A STREET	1 ⁻¹	**************************************	
30M 50 60 80 100M 200 300 400 500 800 1G Frequency in Hz		1. YY	Man Marth			in the second second				
30M 50 60 80 100M 200 300 400 500 800 1G Frequency in Hz			L PTT	"MANAGER !!	r · ·	राज्य पुण्य				
Frequency in Hz Frequency in Hz Frequency (MHz) MaxPeak + (dB)(V/m) Limit + (dB)(V/m) Margin + (dB)(V/m) Height + (cm) Pol Azimuth + (deg) Corr. + (dB/m) • 165.121000 25.41 33.50 8.09 100.0+ V 52.0+ -15.9+ • 240.005000 32.98 36.00 3.02 100.0+ V 197.0+ -15.7+ • 479.983000 29.25+ 36.00+ 6.75+ 100.0+ H+ 162.0+ -9.7+ • 719.961000+ 34.97+ 36.00+ 1.03+ 100.0+ H+ 337.0+ -4.7+ • 864.006000+ 27.11+ 36.00+ 8.89+ 100.0+ H+ 27.0+ -1.9+	-			+ + + +						
Frequency↓ (MHz)↔ MaxPeak↓ (dB¦ÌV/m)↔ Limit↓ (dB¦ÌV/m)↔ Margin↓ (dB)↔ Height↓ (cm)↔ Pol↔ Azimuth↓ (deg)↔ Corr.↓ (dB/m)↔ • 165.121000↔ 25.41↔ 33.50↔ 8.09↔ 100.0↔ V↔ 52.0↔ -15.9↔ • 240.005000↔ 32.98↔ 36.00↔ 3.02↔ 100.0↔ V↔ 197.0↔ -15.7↔ • 479.983000↔ 29.25↔ 36.00↔ 6.75↔ 100.0↔ H↔ 162.0↔ -9.7↔ • 719.961000↔ 34.97↔ 36.00↔ 1.03↔ 100.0↔ H↔ 337.0↔ -4.7↔ • 864.006000↔ 27.11↔ 36.00 ↔ 8.89↔ 100.0↔ H↔ 27.0↔ -19.9↔				80 100N	1	200	300 400	J 500	800 IG	
(MHz)∞ (dB¦V/m)∞ (dB)v (cm)∞ (deg)∞ (dB/m)∞ ■ 165.121000∞ 25.41∞ 33.50∞ 8.09∞ 100.0∞ V∞ 52.0∞ -15.9∞ ■ 240.005000∞ 32.98∞ 36.00∞ 3.02∞ 100.0∞ V∞ 197.0∞ -15.7∞ ■ 479.983000∞ 29.25∞ 36.00∞ 6.75∞ 100.0∞ H∞ 162.0∞ -9.7∞ ■ 719.961000∞ 34.97∞ 36.00∞ 1.03∞ 100.0∞ H∞ 337.0∞ -4.7∞ ■ 864.006000∞ 27.11∞ 36.00∞ 8.89∞ 100.0∞ H∞ 27.0∞ -1.9∞	3010		50 60							
(MHz)∞ (dB¦V/m)∞ (dB)v (cm)∞ (deg)∞ (dB/m)∞ ■ 165.121000∞ 25.41∞ 33.50∞ 8.09∞ 100.0∞ V∞ 52.0∞ -15.9∞ ■ 240.005000∞ 32.98∞ 36.00∞ 3.02∞ 100.0∞ V∞ 197.0∞ -15.7∞ ■ 479.983000∞ 29.25∞ 36.00∞ 6.75∞ 100.0∞ H∞ 162.0∞ -9.7∞ ■ 719.961000∞ 34.97∞ 36.00∞ 1.03∞ 100.0∞ H∞ 337.0∞ -4.7∞ ■ 864.006000∞ 27.11∞ 36.00∞ 8.89∞ 100.0∞ H∞ 27.0∞ -1.9∞	301		50 60		Frequen					
(MHz) (dB¦ÌV/m) (dB¦ÌV/m) (dB) (cm) (deg) (dB/m) ■ 165.121000 25.41 33.50 8.09 100.0 V 52.0 -15.9 ■ 240.005000 32.98 36.00 3.02 100.0 V 197.0 -15.7 ■ 479.983000 29.25 36.00 6.75 100.0 H 162.0 -9.7 ■ 719.961000 34.97 36.00 1.03 100.0 H 337.0 -4.7 ■ 864.006000 27.11 36.00 8.89 100.0 H 27.0 -1.9			50 60		Frequen					
(MHz)∞ (dB¦V/m)∞ (dB)V/m)∞ (dB)∞ (cm)∞ (deg)∞ (dB/m)∞ ■ 165.121000∞ 25.41∞ 33.50∞ 8.09∞ 100.0∞ V∞ 52.0∞ -15.9∞ ■ 240.005000∞ 32.98∞ 36.00∞ 3.02∞ 100.0∞ V∞ 197.0∞ -15.7∞ ■ 479.983000∞ 29.25∞ 36.00∞ 6.75∞ 100.0∞ H∞ 162.0∞ -9.7∞ ■ 719.961000∞ 34.97∞ 36.00∞ 1.03∞ 100.0∞ H∞ 337.0∞ -4.7∞ ■ 864.006000∞ 27.11∞ 36.00∞ 8.89∞ 100.0∞ H∞ 27.0∞ -11.9∞	301		50 60		Frequen					
(MHz)∞ (dB¦V/m)∞ (dB)v (cm)∞ (deg)∞ (dB/m)∞ ■ 165.121000∞ 25.41∞ 33.50∞ 8.09∞ 100.0∞ V∞ 52.0∞ -15.9∞ ■ 240.005000∞ 32.98∞ 36.00∞ 3.02∞ 100.0∞ V∞ 197.0∞ -15.7∞ ■ 479.983000∞ 29.25∞ 36.00∞ 6.75∞ 100.0∞ H∞ 162.0∞ -9.7∞ ■ 719.961000∞ 34.97∞ 36.00∞ 1.03∞ 100.0∞ H∞ 337.0∞ -4.7∞ ■ 864.006000∞ 27.11∞ 36.00∞ 8.89∞ 100.0∞ H∞ 27.0∞ -1.9∞	301		50 60		Frequen					
■ 165.121000+ 25.41+ 33.50+ 8.09+ 100.0+ V+ 52.0+ -15.9+ ■ 240.005000+ 32.98+ 36.00+ 3.02+ 100.0+ V+ 197.0+ -15.7+ ■ 479.983000+ 29.25+ 36.00+ 6.75+ 100.0+ H+ 162.0+ -9.7+ ■ 719.961000+ 34.97+ 36.00+ 1.03+ 100.0+ H+ 337.0+ -4.7+ ■ 864.006000+ 27.11+ 36.00+ 8.89+ 100.0+ H+ 27.0+ -1.9+						icy in Hz				
■ 479.983000¢ 29.25¢ 36.00¢ 6.75¢ 100.0¢ H¢ 162.0¢ -9.7¢ ■ 719.961000¢ 34.97¢ 36.00¢ 1.03¢ 100.0¢ H¢ 337.0¢ -4.7¢ ■ 864.006000¢ 27.11¢ 36.00¢ 8.89¢ 100.0¢ H¢ 27.0¢ -1.9¢	 Frequer 	cy↓	MaxPeak↓	Limit↓	Margin↓	lcyin Hz Height↓		Azimuth↓	Corr. ↓	
▼ 719.961000€ 34.97€ 36.00€ 1.03€ 100.0€ H€ 337.0€ -4.7€ ▼ 864.006000€ 27.11€ 36.00€ 8.89€ 100.0€ H€ 27.0€ -1.9€	■ Frequer (MHz)	¢) ¢j	MaxPeak↓ (dB¦ÌV/m)+³	Limit∔ (dB¦ÌV/m)∛	Margin↓ (dB)⊷	Height↓ (cm)⊷	Pole	Azimuth↓ (deg)⇔	Corr.↓ (dB/m)+³	
■ 864.006000¢ 27.11¢ 36.00¢ 8.89¢ 100.0¢ H¢ 27.0¢ -1.9¢	 Frequer (MHz) 165.1 240.0 	وy↓ ب ^ی 21000ج	MaxPeak↓ (dB¦ÌV/m)-∂ 25.41↔ 32.98↔	Limit∔ (dB¦ÌV/m)-∂ 33.50⊕ 36.00⊕	Margin↓ (dB)∞ 8.09∞ 3.02∞	Height↓ (cm)↩ 100.0↩ 100.0↩	Pol ₄ 2 V ₄ 2	Azimuth↓ (deg)↩ 52.0↩ 197.0↩	Corr.↓ (dB/m)↩ -15.9↩ -15.7↩	
	 Frequer (MHz) 165.1 240.0 479.9 	 ↩ 21000↩ 33000↩	MaxPeak↓ (dB¦ÌV/m)↔ 25.41↔ 32.98↔ 29.25↔	Limit↓ (dB¦ÌV/m)↩ 33.50↩ 36.00↩ 36.00↩	Margin↓ (dB)∞ 8.09∞ 3.02∞ 6.75∞	Height↓ (cm)↩ 100.0↩ 100.0↩ 100.0↩	Pol ₆ 2 V ₆ 2 V ₆ 2 H ₆ 2	Azimuth↓ (deg)+ 52.0+ 197.0+ 162.0+	Corr.↓ (dB/m)↩ -15.9↩ -15.7↩ -9.7↩	
- 500.0500004 21.054 56.004 8.554 100.04 HP 10.04 -1.24	 Frequer (MHz) 165.1 240.0 479.9 719.9 	cy↓ ↔ 21000÷ 05000÷ 33000÷ \$1000÷	MaxPeak↓ (dB¦ÌV/m)↔ 25.41↔ 32.98↔ 29.25↔ 34.97↔	Limit↓ (dB¦ÌV/m)↔ 33.50↔ 36.00↔ 36.00↔ 36.00↔	Margin↓ (dB)⊕ 8.09₽ 3.02₽ 6.75₽ 1.03₽	Height↓ (cm)↔ 100.0↔ 100.0↔ 100.0↔ 100.0↔	Pol.0 V.0 V.0 H.0 H.0	Azimuth↓ (deg)↔ 52.0↔ 197.0↔ 162.0↔ 337.0↔	Corr.↓ (dB/m)↔ -15.9↔ -15.7↔ -9.7↔ -4.7↔	
	 Frequer (MHz) 165.1 240.0 479.9 719.9 864.0 	 ~2 21000+ 25000+ 33000+ \$1000+ 06000+	MaxPeak↓ (dB¦ÌV/m)↔ 25.41↔ 32.98↔ 29.25↔ 34.97↔ 27.11↔	Limit↓ (dB¦ÌV/m)↔ 33.50↔ 36.00↔ 36.00↔ 36.00↔ 36.00↔	Margin↓ (dB)↔ 8.09↔ 3.02↔ 6.75↔ 1.03↔ 8.89↔	Height↓ (cm)↔ 100.0↔ 100.0↔ 100.0↔ 100.0↔ 100.0↔	Pol@ V@ V@ H@ H@ H@	Azimuth↓ (deg)↩ 52.0↩ 197.0↩ 162.0↩ 337.0↩ 27.0↩	Corr.↓ (dB/m)↩ -15.9↩ -15.7↩ -9.7↩ -4.7↩ -1.9↩	
	 Frequer (MHz) 165.1 240.0 479.9 719.9 864.0 	 ~2 21000+ 25000+ 33000+ \$1000+ 06000+	MaxPeak↓ (dB¦ÌV/m)↔ 25.41↔ 32.98↔ 29.25↔ 34.97↔ 27.11↔	Limit↓ (dB¦ÌV/m)↔ 33.50↔ 36.00↔ 36.00↔ 36.00↔ 36.00↔	Margin↓ (dB)↔ 8.09↔ 3.02↔ 6.75↔ 1.03↔ 8.89↔	Height↓ (cm)↔ 100.0↔ 100.0↔ 100.0↔ 100.0↔ 100.0↔	Pol@ V@ V@ H@ H@ H@	Azimuth↓ (deg)↩ 52.0↩ 197.0↩ 162.0↩ 337.0↩ 27.0↩	Corr.↓ (dB/m)↩ -15.9↩ -15.7↩ -9.7↩ -4.7↩ -1.9↩	
	 Frequer (MHz) 165.1 240.0 479.9 719.9 864.0 	 ~2 21000+ 25000+ 33000+ \$1000+ 06000+	MaxPeak↓ (dB¦ÌV/m)↔ 25.41↔ 32.98↔ 29.25↔ 34.97↔ 27.11↔	Limit↓ (dB¦ÌV/m)↔ 33.50↔ 36.00↔ 36.00↔ 36.00↔ 36.00↔	Margin↓ (dB)↔ 8.09↔ 3.02↔ 6.75↔ 1.03↔ 8.89↔	Height↓ (cm)↔ 100.0↔ 100.0↔ 100.0↔ 100.0↔ 100.0↔	Pol@ V@ V@ H@ H@ H@	Azimuth↓ (deg)↩ 52.0↩ 197.0↩ 162.0↩ 337.0↩ 27.0↩	Corr.↓ (dB/m)↩ -15.9↩ -15.7↩ -9.7↩ -4.7↩ -1.9↩	
nork:	 Frequen (MHz) 165.1 240.0 479.9 719.9 864.0 900.0 	 ~2 21000+ 25000+ 33000+ \$1000+ 06000+	MaxPeak↓ (dB¦ÌV/m)↔ 25.41↔ 32.98↔ 29.25↔ 34.97↔ 27.11↔	Limit↓ (dB¦ÌV/m)↔ 33.50↔ 36.00↔ 36.00↔ 36.00↔ 36.00↔	Margin↓ (dB)↔ 8.09↔ 3.02↔ 6.75↔ 1.03↔ 8.89↔	Height↓ (cm)↔ 100.0↔ 100.0↔ 100.0↔ 100.0↔ 100.0↔	Pol@ V@ V@ H@ H@ H@	Azimuth↓ (deg)↩ 52.0↩ 197.0↩ 162.0↩ 337.0↩ 27.0↩	Corr.↓ (dB/m)↩ -15.9↩ -15.7↩ -9.7↩ -4.7↩ -1.9↩	
nark: Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.	 Frequer (MHz) 1651 240.0 479.9 719.9 864.0 900.0 	- - - - - - - - - - - - - -	MaxPeak↓ (dB¦ÌV/m)↔ 25.41↔ 32.98↔ 29.25↔ 34.97↔ 27.11↔ 27.05↔	Limit↓ (dB¦ÌV/m)≠ 36.00≠ 36.00≠ 36.00≠ 36.00≠ 36.00≠	Margin↓ (dB)↔ 8.09↔ 3.02↔ 6.75↔ 1.03↔ 8.89↔ 8.95↔	Height↓ (cm)↔ 100.0↔ 100.0↔ 100.0↔ 100.0↔	Pole Ve Ve He He He He	Azimuth↓ (deg)↩ 52.0↩ 197.0↩ 162.0↩ 337.0↩ 27.0↩ 10.0↩	Corr.↓ (dB/m)↩ -15.9↩ -15.7↩ -9.7↩ -4.7↩ -1.9↩	

3. The Aux Factor is a notch filter switch box loss, this item is not used.

Final Level = Receiver Read level + Anterina Factor + Cable Loss - Preampliner Factor.
 The emission levels of other frequencies are very lower than the limit and not show in test report.

3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz:

	Name	e:	Tablet PC			Produc	t Model:	Tab X2	2	
st By:			Janet			Test m	ode:	PC mo	de	
st Freq	quen	cy:	1 GHz ~ 6 GHz			Polariz	ation:	Vertica	I	
st Volt	age:		AC 120/60Hz			Enviro	nment:	Temp:	24℃ Huni	: 57
	80				FCC PART 1	5 B			FCC PART 15 B-PK Limit	
	70									
	60									
								F	FCC PART 15 B-AV Limit	
[m/N	50					3		المديم مردور ال		
Leve[dBµV/m]	40				2 Alabitation and a state of the state of th	And the state of the	engelekiletettetettetettet	and developed filled and	and a submitter of the second states when	
Leve	30	on permanent per applicities	an in fair an		and the plant of the set	And descention of the second second second				
	20-	modeline from the parties	ichthainimeachtriannachrideorrianionnteoir	shirty Miled and Advision and Adv						
	10									
	0 1G			2G						
				20		3G	4	G	5G 6G	3
				20	Frequency[4	IG	5G 6G	3
	_	 PK Limit PK Detector 	→ AV Limit → Vi AV Detector	ertical PK — Vertical			4	IG	5G 6G	3
	•						4	IG	5G 6G	3
	•		♦ AV Detector				A Margin⊮]
Ν	• ۱0.	PK Detector	 AV Detector Reading. 	artical PK — Vertica	IAV	Hz]		G Trace	5G 6G Polarity)
N	IO.∘ 1₽	PK Detector	 AV Detector Reading [dBµV/m]- 	ertical PK — Vertica	Factor⊮	Hz]	Margin∉			3
		Freq.*		ertical PK — Vertica Level⊮ [dBµV/m]⊮	Factor.₀ [dB].₀	^{Hz]} Limit⊮ [dBμV/m]⊮	Margin⊮ [dB]₀	Trace⊭	Polarity∉	5
	1 ₽	PK Detector Freq.∗ [MHz] 2418.12		Level [dBµV/m]= 32.70+3	Factor⊮ [dB]ø -18.76ø	Limit [dBµV/m]。 54.00。	Margin. [dB]₀ 21.30₀ 33.99₀ 31.63₀	Trace⊮ AV∉	Polarity <i>₀</i> Vertical₀	5
	1₽ 2₽	 PK Detector Freq [MHz]. 2418.11 2421.8 	 AV Detector Reading [dBµV/m] 51.46.0 58.76.0 58.33.0 	ertical PK — Vertica [dBµV/m]₂ 32.70₽ 40.01₽	Factor. [dB]₀ -18.76.₀ -18.75.₀	Limit [dBµV/m]。 54.00。 74.00。	Margin.⊮ [dB].∞ 21.30.∞ 33.99.∞	Trace. AV₀ PK₀	Polarity∉ Vertical∉ Vertical₽)
	1.0 2.0 3.0 4.0 5.0	PK Detector [MHz] 2418.11 2421.8 3099.3 3876.2 5536.2	 AV Detector Reading [dBµV/m] 51.46 58.76 49.95 56.98 	Level [dBµV/m] 32.70+ 40.01+ 42.37+	Factor⊮ [dB]₽ -18.76₽ -18.75₽ -15.96₽	Limit [dBµV/m] 54.00 74.00 54.00 54.00 74.00	Margin [dB] 21.30 33.99 31.63 17.65 23.10	Trace AV₊ PK₊ PK₊	Polarity₀ Vertical₀ Vertical₀ Vertical₀	
	1.0 2.0 3.0 4.0	PK Detector [MHz] 2418.12 2421.8 3099.3 3876.2	 AV Detector Reading [dBµV/m] 51.46 58.76 49.95 56.98 	ertical PK → Vertica Level→ [dBµV/m]→ 32.70+ 40.01+→ 42.37+→ 36.35+→	Factor [dB] -18.76 -18.75 -15.96 -13.60	Limit [dBµV/m] 54.00 74.00 54.00 54.00	Margin [dB] 21.30 33.99 31.63 17.65	Trace AV PK PK AV	Polarity Vertical Vertical Vertical Vertical	
	1.0 2.0 3.0 4.0 5.0	PK Detector [MHz] 2418.11 2421.8 3099.3 3876.2 5536.2	 AV Detector Reading [dBµV/m] 51.46 58.76 49.95 56.98 	Level Vertical [dBµV/m]= 32.70= 32.70= 40.01= 42.37= 36.35= 50.90= 50.90=	Factor [dB] -18.76 -18.75 -15.96 -13.60 -13.60 -6.08	Limit [dBµV/m] 54.00 74.00 54.00 54.00 74.00	Margin [dB] 21.30 33.99 31.63 17.65 23.10	Trace AV PK PK AV PK PK	Polarity Vertical Vertical Vertical Vertical Vertical	
	1.0 2.0 3.0 4.0 5.0	PK Detector [MHz] 2418.11 2421.8 3099.3 3876.2 5536.2	 AV Detector Reading [dBµV/m] 51.46 58.76 49.95 56.98 	Level Vertical [dBµV/m]= 32.70= 32.70= 40.01= 42.37= 36.35= 50.90= 50.90=	Factor [dB] -18.76 -18.75 -15.96 -13.60 -13.60 -6.08	Limit [dBµV/m] 54.00 74.00 54.00 54.00 74.00	Margin [dB] 21.30 33.99 31.63 17.65 23.10	Trace AV PK PK AV PK PK	Polarity Vertical Vertical Vertical Vertical Vertical	

roduct	Nam	e:	Fablet PC			Produc	t Model:	Tab X2	2		
est By:	:		Janet			Test m	Test mode:		PC mode		
est Fre	quen	cy:	1 GHz ~ 6 GHz Horizontal				Horizontal				
est Vol	tage:		AC 120/60Hz			Enviro	Environment:		24 ℃	Huni: 57%	
	80				FCC PART 1	15 B			FCC PART 15	B-PK Limit	
	70										
	60										
									FCC PART 15	B-AV Limit	
Level[dBµV/m]	50			2	4		and an an atomic	And all and the second s		u di kana di ka	
el[dB]	40-				angeria anger anger anger anger	ala adama kalanan katika		an hannal selection of the design of the	and the second states and	vidal), Physicke	
Lev	30	a the product the production	han an a	Mine production and a sine advalance of the statements	-	denseried video beierieden Wilson	May contract be interested				
	20-	nandrice (Minderson of the families	helioanen har to a factor and the second	elefter and the second s							
	10										
	10-										
	0⊥ 1G			2G	ii	3G	4	G	5G	6G	
					Frequency[Hz]					
				orizontal PK — Hor	izontal AV						
		 PK Limit PK Detector 	→ AV Limit → H								
		PK Detector	 AV Detector 	Level	Factor	Limit	Margin			4	
	NO.0		AV Detector Reading.	Level∝ [dBµV/m]⊲	Factor⊮ [dB]∉	Limit⊭ [dBµV/m]⊭	Margin⊮ [dB]∉	Trace.₀	Pola	rity⇔	
	NO.@	PK Detector Freq.∗ [MHz]	AV Detector Reading [dBµV/m]				-	Trace. AV.	Pola		
-		Freq.*		[dBµV/m]₀	[dB]₀	[dBµV/m]₀	[dB]₀			ontale .	
	NO.∘ 1ℯ	 PK Detector Freq. [MHz] 1746.8 	 AV Detector Reading [dBµV/m] 7 54.53, 0 61.52, 	[dBµV/m]∝ 32.91₊	[dB]₀ -21.62₊	[dBµV/m]∉ 54.00∉	[dB]∂ 21.09₽	AV	Horizo	ontal.₂ ontal.₂	
	NO.∘ 1₊ 2₊	 PK Detector Freq [MHz] 1746.8 1747.50 	 AV Detector Reading → [dBµV/m]→ 54.53.→ 61.52.→ 51.95.→ 	[dBµV/m]₀ 32.91₀ 39.90₀	[dB]₀ -21.62₀ -21.62₀	[dBµV/m]↩ 54.00↩ 74.00↩	[dB].₀ 21.09.₀ 34.10.₀	AV. PK.	Horizo Horizo	ontale ontale ontale	
	NO 1- 2- 3-	 PK Detector Freq. [MHz] 1746.8 1747.50 2408.12 	 AV Detector Reading [dBµV/m] 7 54.53 61.52 2 51.95 5 8.54 	[dBµV/m] 32.91. 39.90. 33.17.	[dB]₀ -21.62₊ -21.62₊ -18.78₊	[dBµV/m]- 54.00. 74.00. 54.00.	[dB]₀ 21.09₀ 34.10₀ 20.83₀	AV. PK. AV.	Horizo Horizo Horizo	ontale ontale ontale ontale	

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.