

Report No: JYTSZB-R12-2100791

FCC REPORT (Bluetooth)

Applicant:	Todos Industrial Limited			
Address of Applicant:	Room 308, building A3, Fuhai information port, Fuhai street, Bao'an District, Shenzhen City, Guangdong Province, China, 518000			
Equipment Under Test (E	EUT)			
Product Name:	Tablet PC			
Model No.:	Tab X1, TabX1, TabX3, TabX4, TabX5, TabT1, TabT2, TabT3, TabN1, TabN2, TabN3, TabXX (XX can be any number)			
Trade mark:	aprix, Geex, hiup, Todos			
FCC ID:	2AZQ6-APX1			
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247			
Date of sample receipt:	11 May, 2021			
Date of Test:	11 May, to 22 Jun., 2021			
Date of report issued:	23 Jun., 2021			
Test Result:	PASS *			

^{*} In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	23 Jun., 2021	Original

YT Yang Test Engineer

Tested by:

Date: 23 Jun., 2021

Winner Mang

Reviewed by:

Project Engineer

23 Jun., 2021 Date:

Project No.: JYTSZE2105052

3 Contents

	Page
1 COVER PAGE	1
2 VERSION	2
3 CONTENTS	3
4 TEST SUMMARY	_
5 GENERAL INFORMATION	5
5.1 CLIENT INFORMATION	
5.2 GENERAL DESCRIPTION OF E.U.T.	-
5.3 TEST ENVIRONMENT AND MODE	
5.4 DESCRIPTION OF SUPPORT UNITS	
5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
5.7 LABORATORY FACILITY.	
5.8 LABORATORY LOCATION	
5.9 TEST INSTRUMENTS LIST	7
6 TEST RESULTS AND MEASUREMENT DATA	8
6.1 ANTENNA REQUIREMENT	8
6.2 CONDUCTED EMISSIONS	-
6.3 CONDUCTED OUTPUT POWER	
6.4 20DB OCCUPY BANDWIDTH 6.5 CARRIER FREQUENCIES SEPARATION	-
6.5 CARRIER FREQUENCIES SEPARATION	
6.7 DWELL TIME	
6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE.	
6.9 Band Edge	
6.9.1 Conducted Emission Method	
6.9.2 Radiated Emission Method	
6.10 SPURIOUS EMISSION 6.10.1 Conducted Emission Method	
6.10.2 Radiated Emission Method	
7 TEST SETUP PHOTO	
8 EUT CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna Requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Conducted Peak Output Power	15.247 (b)(1)	Appendix A – BT	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Appendix A – BT	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Appendix A – BT	
Hopping Channel Number	15.247 (a)(1)	Appendix A – BT	Pass
Dwell Time	15.247 (a)(1)	Appendix A – BT	Pass
Conducted Band Edge	45 005 8 45 000	Appendix A – BT	Pass
Radiated Band Edge	15.205 & 15.209	See Section 6.9.2	Pass
Conducted Spurious Emission		Appendix A – BT	Pass
Radiated Spurious Emission	15.247(d)	See Section 6.10.2	Pass
Remark:			

Pass: The EUT complies with the essential requirements in the standard. 1.

2. N/A: Not Applicable.

The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by З. the customer).

Toot Mathadi	ANSI C63.10-2013
Test Method:	KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	Todos Industrial Limited
Address:	Room 308, building A3, Fuhai information port, Fuhai street, Bao'an District, Shenzhen City, Guangdong Province, China, 518000
Manufacturer/ Factory:	Todos Industrial Limited
Address:	Room 308, building A3, Fuhai information port, Fuhai street, Bao'an District, Shenzhen City, Guangdong Province, China, 518000

5.2 General Description of E.U.T.

Product Name:	Tablet PC			
Model No.:	Tab X1, TabX1, TabX3, TabX4, TabX5, TabT1, TabT2, TabT3, TabN1, TabN2, TabN3, TabXX (XX can be any number)			
Operation Frequency:	2402MHz~2480MHz			
Transfer rate:	1/2/3 Mbits/s			
Number of channel:	79			
Modulation type:	GFSK, π/4-DQPSK, 8DPSK			
Modulation technology:	FHSS			
Antenna Type:	Internal Antenna			
Antenna gain:	1.83 dBi			
Power supply:	Rechargeable Li-ion Battery DC3.7V, 3000mAh			
AC adapter:	Model: EE-0502000UZ Input: AC100-240V, 50/60Hz, 0.5A Output: DC 5.0V, 2000mA			
Remark:	Model No.: Tab X1, TabX1, TabX3, TabX4, TabX5, TabT1, TabT2, TabT3, TabN1, TabN2, TabN3, TabXX (XX can be any number) The internal circuit design, layout, components used and internal wiring are all the same, all trademarks correspond to all models, the only difference is the model name.			
Test Sample Condition:	The test samples were provided in good working order with no visible defects.			

Operation	Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz	
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz	
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz	
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz	
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz	
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz	
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz	
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz	
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz	
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz	
19	2421MHz	39	2441MHz	59	2461MHz			
Remark: Cha	Remark: Channel 0, 39 &78 selected for GFSK, π/4-DQPSK and 8DPSK.							

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test Modes:				
Non-hopping mode:	Keep the EUT in continuous transmitting mode with worst case data rate.			
Hopping mode:	Keep the EUT in hopping mode.			
Remark	GFSK (1 Mbps) is the worst case mode.			
Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane				

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: <u>http://www.ccis-cb.com</u>

5.9 Test Instruments list

Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-18-2020	06-17-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-18-2020	06-17-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021
EMI Test Software	AUDIX	E3	\ \	/ersion: 6.110919b)
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Spectrum Analyzer	Agilent	N9020A	MY50510123	11-18-2020	11-17-2021
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-03-2021	03-02-2022
Signal Generator	R&S	SMR20	1008100050	03-03-2021	03-02-2022
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022
DC Power Supply	XinNuoEr	WYK-10020K	1409050110020	09-25-2020	09-24-2021
Temperature Humidity Chamber	HengPu	HPGDS-500	20140828008	11-01-2020	10-31-2021
Simulated Station	Rohde & Schwarz	CMW500	140493	07-22-2020	07-21-2021
10m SAC	ETS	RFSD-100-F/A	Q2005	03-31-2021	04-01-2024
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	03-31-2021	04-01-2022
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	03-31-2021	04-01-2022
EMI Test Receiver	R&S	ESR 3	102800	04-06-2021	04-07-2022
EMI Test Receiver	R&S	ESR 3	102802	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-07-2022
Test Software	R&S	EMC32		Version: 10.50.40	

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-03-2021	03-02-2022
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-03-2021	03-02-2022
LISN	CHASE	MN2050D	1447	03-03-2021	03-02-2022
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	06-17-2021
Cable	HP	10503A	N/A	03-03-2021	03-02-2022
EMI Test Software	AUDIX	E3	Version: 6.110919b		

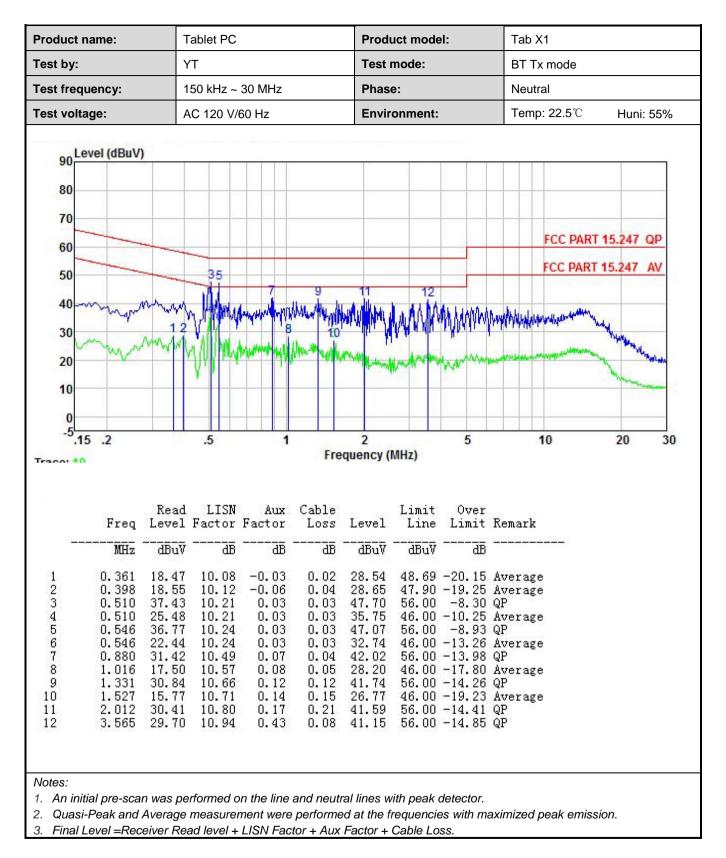
Conducted method:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A
PDU	MWRF-test	XY-G10	N/A	N/A	N/A
Test Software	MWRF-tes	MTS 8310	Ň	Version: 2.0.0.0	
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021

6 Test results and measurement data

6.1 Antenna Requirement

Standard requirement:	FCC Part 15 C Section 15.203 & 247(b)
responsible party shall be us antenna that uses a unique so that a broken antenna ca electrical connector is prohil 15.247(b) (4) requirement: (4) The conducted output po antennas with directional ga section, if transmitting anten power from the intentional ra	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit n be replaced by the user, but the use of a standard antenna jack or bited. wer limit specified in paragraph (b) of this section is based on the use of ins that do not exceed 6 dBi. Except as shown in paragraph (c) of this inas of directional gain greater than 6 dBi are used, the conducted output adiator shall be reduced below the stated values in paragraphs (b)(1), tion, as appropriate, by the amount in dB that the directional gain of the
E.U.T Antenna:	
The Bluetooth antenna is an the antenna is 1.83 dBi.	Internal antenna which permanently attached, and the best case gain of

6.2 Conducted Emissions

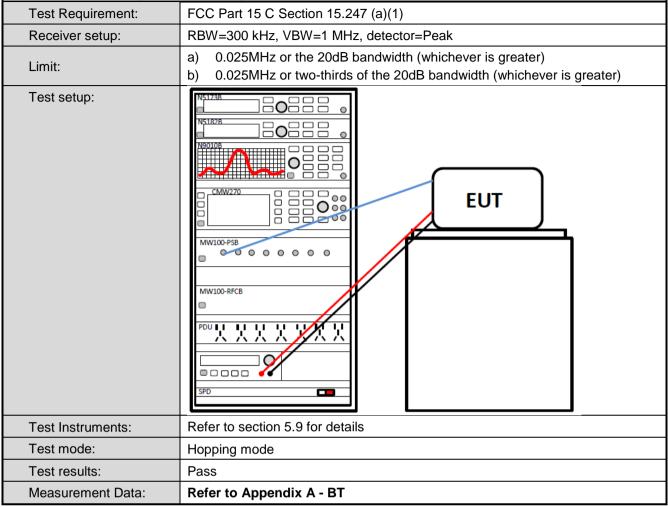

Test Requirement:	FCC Part 15 C Section 15.	207	
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9 kHz, VBW=30 kHz	z, Sweep time=auto	
Limit:	Frequency range (MHz)	Limit (d	dBuV)
		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
Test setup:	* Decreases with the logari Reference Pl		
	AUX Equipment E.U.T Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Networ Test table height=0.8m		
Test procedure:	 50ohm/50uH coupling in The peripheral devices a LISN that provides a 500 termination. (Please reference) Both sides of A.C. line interference. In order to positions of equipment 	tion network (L.I.S.N.). Th npedance for the measuri	his provides a ng equipment. main power through a dance with 500hm the test setup and m conducted sion, the relative ables must be changed
Test Instruments:	Refer to section 5.9 for det	ails	
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

Product na	me:	Т	ablet PC			Produ	uct mode	el:	Ta	b X1			
Fest by:		Y	T			Test	node:		BT	Tx mo	de		
est freque	ency:	1	50 kHz ~	30 MHz		Phase	e:		Lin	е			
rest voltag	e:	A	C 120 V/	60 Hz		Envir	onment:		Те	mp: 22	.5℃	Huni:	55%
90 Level 80 70 60 50 40 30 20 10 0 5	I (dBuV)		-46 -244		harright	11 11 10 10 10 2				FCC F	ART 15.	247 QP 247 AV	*
Co: 17					Freq	uency (M	Hz)						
	Freq		LISN Factor		Cable Loss	Level	Limit Line	Over Limit	Remai	k			
	MHz	dBu∛	<u>ab</u>	₫₿	B	dBu∛	dBu∛	<u>ab</u>			8		
1 2 4 5 6 7 8 9 10 11 12 12	0.389 0.471 0.474 0.505 0.505 0.538 1.037 1.602 2.066 2.077 14.288	$\begin{array}{c} 17.\ 78\\ 19.\ 55\\ 27.\ 92\\ 35.\ 00\\ 27.\ 71\\ 33.\ 63\\ 27.\ 80\\ 27.\ 51\\ 19.\ 11\\ 17.\ 50\\ 27.\ 23\\ 25.\ 41 \end{array}$	10.28 10.33 10.33 10.34 10.36 10.36 10.48 10.52 10.54 10.54 11.01	0.34 -0.15 -0.35 -0.35 -0.36 -0.36 -0.42 -0.07 -0.31 -0.31 3.41	$\begin{array}{c} 0.\ 04\\ 0.\ 03\\ 0.\ 03\\ 0.\ 03\\ 0.\ 03\\ 0.\ 03\\ 0.\ 03\\ 0.\ 06\\ 0.\ 16\\ 0.\ 20\\ 0.\ 13\end{array}$	28.44 29.76 38.10 45.02 37.73 43.66 37.83 38.47 29.72 27.93 37.66 39.96	$\begin{array}{c} 46.49\\ 56.45\\ 56.00\\ 46.00\\ 56.00\\ 46.00\\ 56.00\\ 46.00\\ 46.00\\ 46.00\\ 56.00\\ \end{array}$	-19.64 -16.73 -18.35 -10.98 -8.27 -12.34 -8.17 -17.53 -16.28 -18.07 -18.34 -20.04	Avera QP Avera QP Avera QP Avera Avera QP	ige ige ige ige			
lotes: . An initia. . Quasi-P . Final Le	eak and	Average	measurer	nent were	performe	ed at the f	requencie	es with m	aximize	d peak	emissio	on.	

0.5 Conducted Out	
Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=2MHz, VBW=6MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)
Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.3 Conducted Output Power



6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	DH1: RBW=15 kHz, VBW=47 kHz, detector=Peak 2DH1&3DH: RBW=20 kHz, VBW=62 kHz, detector=Peak
Limit:	Within authorization band
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.5 Carrier Frequencies Separation

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Center Frequency=2441MHz, Frequency Range: 2400MHz~2483.5MHz, Detector=Peak
Limit:	15 channels
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak
Limit:	0.4 Second
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.8 Pseudorandom Frequency Hopping Sequence

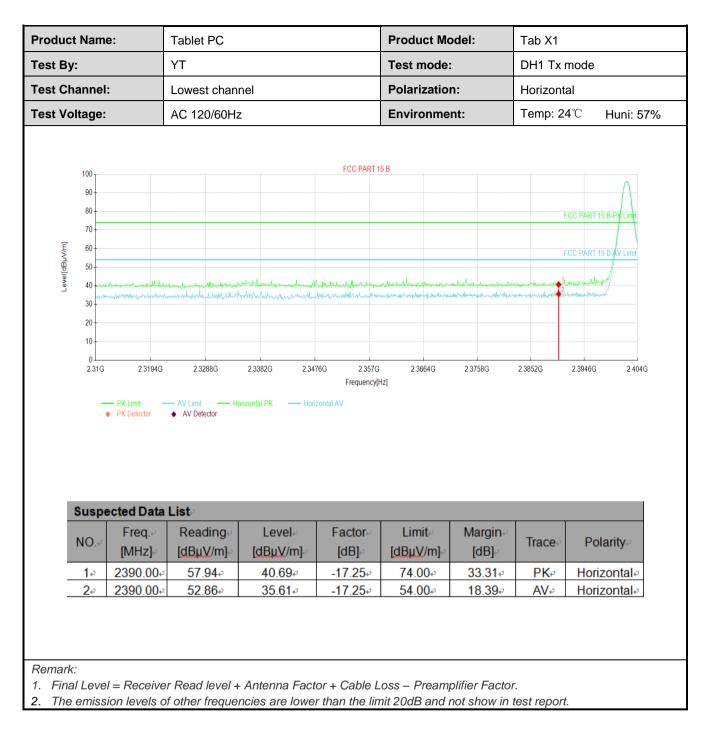
Test Requirement:	FCC Part 15 C Section 15.247 (a)(1) requirement:
	shall have hopping channel carrier frequencies separated by a minimum of dth of the hopping channel, whichever is greater.
channel carrier frequencies t hopping channel, whichever than 125 mW. The system s rate from a Pseudorandom c on the average by each trans	pping systems operating in the 2400-2483.5 MHz band may have hopping that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the is greater, provided the systems operate with an output power no greater hall hop to channel frequencies that are selected at the system hopping ordered list of hopping frequencies. Each frequency must be used equally smitter. The system receivers shall have input bandwidths that match the of their corresponding transmitters and shall shift frequencies in asmitted signals.
EUT Pseudorandom Frequ	ency Hopping Sequence
outputs are added in a modu	sequence: 2 ⁹ -1 = 511 bits
Linear Feedback Sl	hift Register for Generation of the PRBS sequence
	m Frequency Hopping Sequence as follow:
0 2 4 6	62 64 78 1 73 75 77
The system receivers have i	y on the average by each transmitter. nput bandwidths that match the hopping channel bandwidths of their and shift frequencies in synchronization with the transmitted signals.

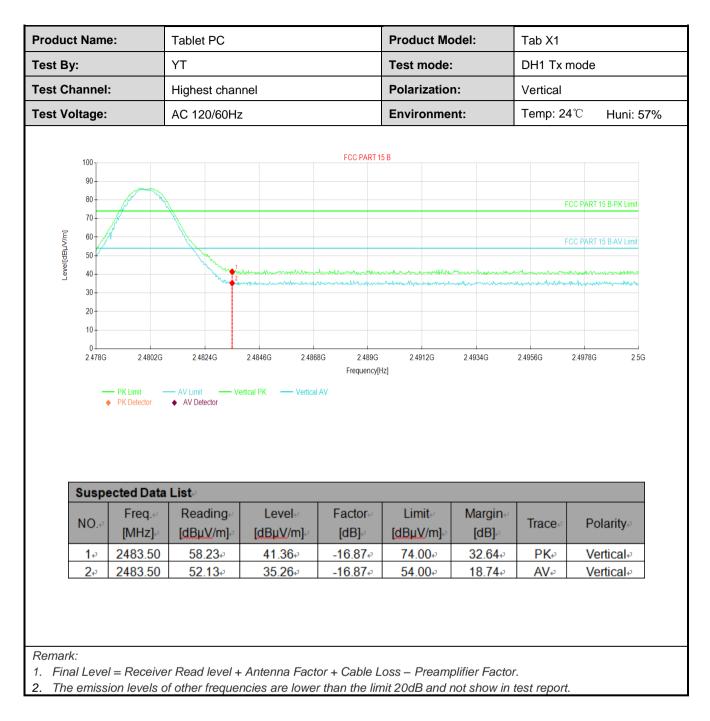
6.9 Band Edge

6.9.1 Conducted Emission Method

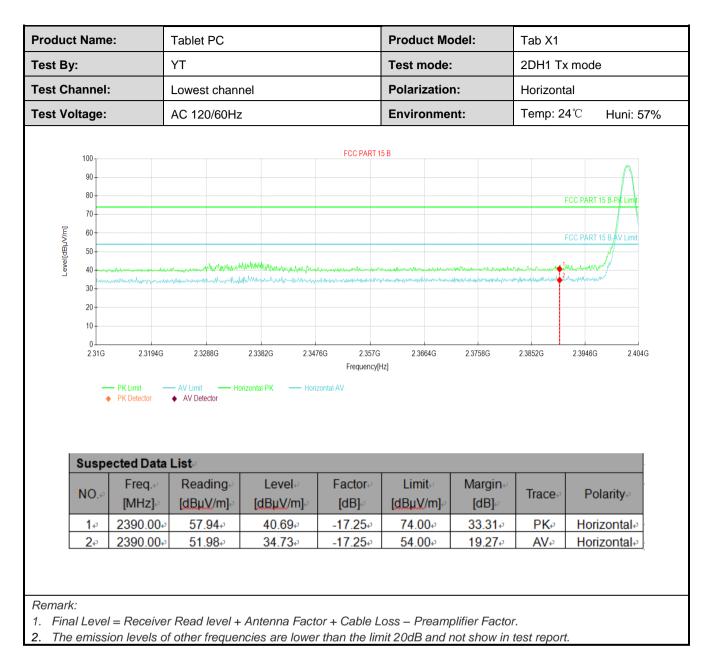
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode and hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.9.2 Radiated Emission Method


Test Requirement:	FCC Part 15 C	Section 15.2	209 a	and 15.205			
Test Frequency Range:	2310 MHz to 23	90 MHz and	1 248	33.5 MHz to 2	500 M	lHz	
Test Distance:	3m						
Receiver setup:	Frequency	Detector	ſ	RBW	V	BW	Remark
		Peak		1MHz	3MHz		Peak Value
	Above 1GHz	RMS		1MHz	31	MHz	Average Value
Limit:	Frequenc	су	Lim	it (dBuV/m @3	3m)		Remark
	Above 1G			54.00		A۱	verage Value
		112		74.00		I	Peak Value
Test setup:	Horn Antenna Tower Horn Antenna Tower Horn Antenna Tower Ground Reference Plane Test Receiver						
Test Procedure:	 determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measurement 4. For each sus and then the the rota table maximum reat 5. The test-rece Bandwidth w 6. If the emission limit specified EUT would b margin would 	A meter camb e position of s set 3 meter ch was mour height is var termine the r d vertical po t. spected emis antenna was a was turned ading. eiver system ith Maximum on level of the d, then testin pe reported. C	ber. the rrs average of the rried max blariz ssion s tur from was n Ho e EL ng cc Othe d on	The table was highest radiation way from the in a on the top of from one meter imum value of cations of the a h, the EUT was ned to heights n 0 degrees to s set to Peak E old Mode. JT in peak mo- ould be stoppe	ion. nterfe a vari er to fo the fi antenr s arran from 0 360 o Detect de wa dand ssions g peal	ed 360 rence-re able-he our met eld stre ha are s nged to 1 meter degrees Function as 10dB I the pea s that dii k, quasi	degrees to eceiving ight antenna ers above the ngth. Both et to make the its worst case to 4 meters and to find the on and Specified lower than the ak values of the d not have 10dB -peak or
Test Instruments:	Refer to section			· ·			
Test mode:	Non-hopping m	ode					
Test results:	Passed						


GFSK Mode:

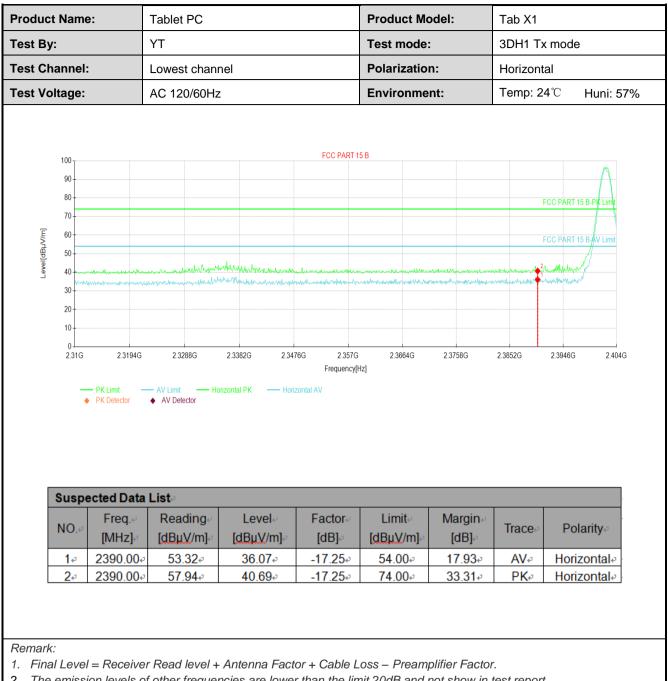
	me:	Tablet PC			Product M	odel:	Tab X1		
est By:		YT Test mode: DH1 Tx mode Lowest channel Polarization: Vertical					node		
est Chann	el:								
est Voltag	e:	AC 120/60Hz	2		Environme	ent:	Temp: 24°C Huni: 57%		
ר 100 - ר				FCC PART 1	5 B				
- 100 - 90 -									
80 -							F	CC PART 15 B-PK Limit	
70-									
E 60-							F	CC PART 15 B-AV Limit	
[비사기업] 50 - 이 - 50 - 이 - 40 -							يو اي ا		
	and and a second and a second and a second	neren marken and and and and and and and and and an	App Mind der man man and and and a second der and and an and an and and and and and a	and a second	where where the second	Manna and marker marker	man man walk	W Why have been a start when a start when a start with the start with the start with the start when the start with the start when the start w	
30-									
20- 10-									
0									
2.31	1G 2.3194G	2.3288G 	2.3382G 2.34	Frequency[2.3758G	2.3852G	2.3946G 2.404G	
	← PK Limit ←	AV Limit Ve AV Detector		Frequency[2.3758G	2.3852G	2.3946G 2.404G	
	PK Limit PK Detector	AV Limit Va AV Detector Va	erfical PK — Vertica	Frequency[H2]		2.3852G	2.3946G 2.404G	
	PK Limit PK Detector	AV Limit Ve AV Detector	ertical PK — Vertica	Frequency[2.3758G Margin⊮ [dB]⊮	2.3852G	2.3946G 2.404G	
Sus	→ PKLimit → PKDetector → PKDetector → PKDetector → PKDetector → PKDetector	AV Limit Ve AV Detector	erfical PK — Vertica	Frequency[IAV Factore	Hz] Limit	Margin≓			
Sus NO.		AV Limit Va AV Detector Va	ertical PK — Vertica Level₊ [dBµV/m]₊⊃	Frequency[IAV Factore ² [dB] ²	H₂] Limit⊬ [dBμV/m]∘	Margin⊮ [dB]⊮	Trace	Polarity⊮	


T lighest channel C 120/60Hz	FCC P/	Test mode Polarizatio Environme RT 15 B 88G 24912G	n:		al
C 120/60Hz	2.4868G 2.4	RT 15 B		Temp: 24	4°C Huni: 57 CC PART 15 B-PK Limit
	2.4868G 2.4	NRT 15 B	ent:	F	CC PART 15 B-PK Limit
24824G 24846G	2.4868G 2.4				
24824G 24846G	2.4868G 2.4				
24824G 24846G					
24824G 24846G					
2.4824G 2.4846G				F	CC PART 15 B-AV Limit
2.4824G 2.4846G				F	CC PART 15 B-AV Limit
2.4824G 2.4846G					the and the second s
24824G 24846G				hall and a start and the second s	ales and the second and a fail of the second and a second a
2.4824G 2.4846G		200 240420			
24824G 24846G		200 240120			
2.4824G 2.4846G		900 240120			
2.4824G 2.4846G		900 2 40120			
		090 2.49120	2.4934G	2.4956G	2.4978G 2.5G
AV Limit — Horizontal PK AV Detector	Horizontal AV				
			Margin	Trace	Polarity
[dBµV/m]∂ [dBµ	<u>V</u> /m]∉ [dB]∉	[dBµV/m]∂	[dB]∉	maces	1 olully
65.66 ₽ 48.	.7916.87	'∉ 74.00€	25.21₽	PK₽	Horizontal₽
59.27 <i>e</i> 42.	.40.0 -16.87	le 54.00e	11.60₽	AV	Horizontal₽
F	Reading⊬ Le IBµV/m]⊬ [dBµ 65.66⊮ 48	Reading Level Factor IBµV/m] [dBµV/m] [dB] 65.66↓ 48.79↓ -16.87	Reading Level Factor Limit IBµV/m] [dBµV/m] [dBµV/m] [dBµV/m] 65.66 48.79 -16.87 74.00	Reading Level Factor Limit Margin IBµV/m] [dBµV/m] [dB] [dB] [dBµV/m] [dB] 65.66 48.79 -16.87 74.00 25.21	Reading Level Factor Limit Margin Trace IBµV/m] [dBµV/m] [dB] [dB] [dBµV/m] [dB] Trace 65.66 48.79 -16.87 74.00 25.21 PK

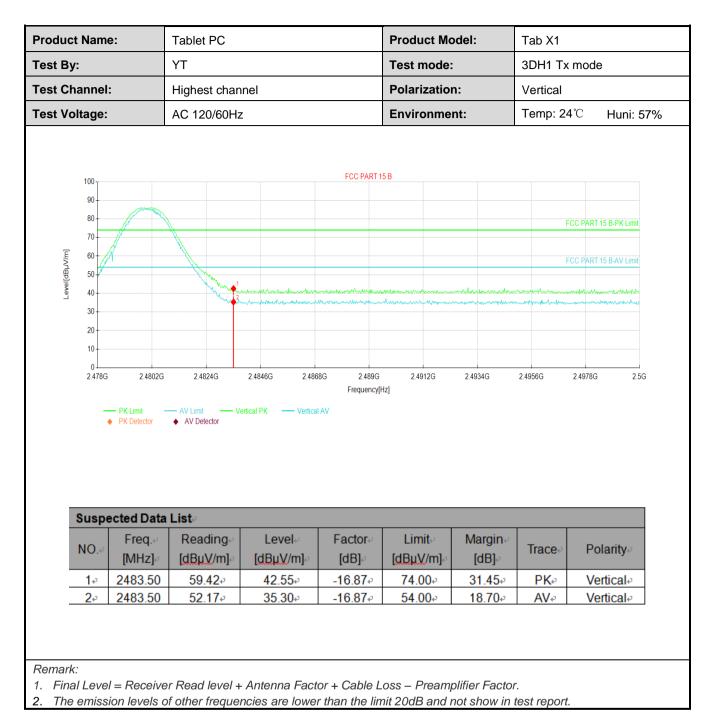
$\pi/4$ -DQPSK mode

	Name	e:	Tablet PC		Product Mo	odel:	Tab X1			
est By:			ΥT			Test mode	:	2DH1 T	x mode	
est Cha	annel:	:	Lowest chan	nel		Polarizatio	n:	Vertical		
est Vol	tage:		AC 120/60Hz	7		Environme	nt:	Temp: 2	24℃ Hu	uni: 57%
	100				FCC PART 1	5 B				
	90									
	80-									Λ
	70								FCC PART 15 B-P	Killimit
Ē	60									
Level[dBµV/m]	50								FCC PART 15 B-A	V Limiti
evel[o	40	manna	have a second and the second	m Mun man man	Lelinghard marchen	man	manunghanna	mannal	Munhmm	
	Martin	+ Marphanna harras	mannana	WWWwwwwwwwwwwwww	www.waanalista	munderstorm	way-powerstandow-when-powersta	muniperson	and Maller White	
-	30+									
-	30									
_	20-									
_		2.3194G	2.3288G	2.3382G 2.347	76G 2.357G Frequency[ł		2.3758G	2.3852G	2.3946G	2.404G
	20 10 0 2.31G	PK Limit - PK Detector	AV Limit Vi AV Detector Vi	erfical PK — Vertical	Frequency[Hz]		2.3852G	2.3946G	2.404G
	20 10 0 2.31G	PK Limit PK Detector	AV Limit Vi ◆ AV Detector List. Reading.	ertical PK — Vertical	Frequency[I	Hz] Limit≁	Margine	2 3852G	2.3946G	
	20 10 0 2.31G	PK Limit - PK Detector	AV Limit Vi AV Detector Vi	erfical PK — Vertical	Frequency[Hz]				ty₄

_	ie:	Tablet PC		Product Model:		Tab X1		
est By:		ΥT			Test mode:		2DH1 Tx	mode
est Channe	l:	Highest chan	nel		Polarizatio	n:	Vertical	
est Voltage	:	AC 120/60Hz	2		Environme	nt:	Temp: 24	t℃ Huni: 5
100 90 80 70 (U) 100 80 70 60 80 70 40 40				FCC PART 1			FC	CC PART 15 B-PK Limit
30 20 10 2.4780	 3 24802G → PK Limit → PK Detector 	2.4824G — AV Limit — Vi AV Detector	2.4846G 2.4860 ertical PK — Vertical	Frequency[H	2.4912G tz]	2.4934G	2 4956G	2.4978G 2.50
20- 10- 2 4780	PK Limit	AV Limit Vo		Frequency[H		2.4934G	2.4956G	2.4978G 2.50
20 10 2.4780 Susp	PK Limit → PK Detector → PECted Data	AV Limit Vo		Frequency[H		24934G Margin <i>⊌</i>		
20- 10- 2 4780	PK Limit → PK Detector → PECted Data	AV Limit Vi AV Detector	ertical PK — Vertical	Frequency[ł	łz]		2.4956G	2.4978G 2.50
20 10 2.4780 Susp	PK Limit → PK Detector → PK Limit → PK Detector → PK Dete	AV Limit Vo AV Detector	ertical PK — Vertical	Frequency[ł AV Factor⊮	tz] Limit⊷	Margin⊷		


duct Name:		Tablet PC			Product Model:		Tab X1			
t By:		YT Tes		Test mode:		:	2DH1 Tx mode			
t Char	nnel:	:	Highest char	nnel		Polarizatio	n:	Horizont	tal	
st Volta	age:		AC 120/60H	z		Environme	nt:	Temp: 2	4 ℃	Huni: 579
Level[dBµV/m]	100 90 80 70 60 50 40 30				FCC PART 1	5 B			FCC PART 1	
	20 10 0 2.478G	2.4802G – PK Limit • PK Detector	2.4824G AV Limit — H AV Detector	24846G 2486 orizontal PK — Hori	Frequency[ł	2.4912G †z]	2.4934G	2.4956G	2.4978G	2.56
	10 0 2.478G	– PK Limit	AV Limit H AV Detector		Frequency[ł		2.4934G	2.4956G	2.4978G	2.56
SI	10 0 2.478G	→ PK Limit → PK Detector	AV Limit H AV Detector		Frequency[ł		2.4934G Margin.∉ [dB].₽	2.4956G Trace		25G arity∞
SI	10 0 2.478G	PK Limit PK Detector PC Detector PC Detector PC Detector PC Detector	AV Limit H AV Detector H	orizontal PK — Hori	Frequency[i zontal AV	tz] Limit⊷	Margin≓		Pol	

8DPSK mode


t By:	ne:	Tablet PC			Product Me	odel:	Tab X1		
		YT			Test mode	:	3DH1 T	x mode	
t Channe	l:	Lowest chan	nel		Polarizatio	n:	Vertical		
t Voltage	:	AC 120/60Hz	2		Environme	nt:	Temp: 2	24 ℃	Huni: 57%
				FCC PART 1	5 B				5 B-AV Limit
₀⊥ 2310	B 2.3194G → PK Limit - ◆ PK Detector	2.3288G AV Limit Ve AV Detector	2.3382G 2.34 ertical PK — Vertica	Frequency[2.3758G	2.3852G	2.3946G	2.404G
2.316	PK Limit − ◆ PK Detector	AV Limit Ve		Frequency[2.3758G	2.3852G	2.3946G	2 404G
2310 	PK Limit - ◆ PK Detector -	AV Limit Ve		Frequency[2.3758G Margin⊷			
2.316	PK Limit - ◆ PK Detector -	AV Limit Va AV Detector	ertical PK — Vertica	Frequency[H2]		2.3852G		2 404G
2310 	PK Limit PK Detector PK Detector	AV Limit Va ♦ AV Detector Va List Reading [dBµV/m] ₽	ertical PK — Vertica	Frequency[IAV Factore	tz] Limit	Margin∉		Pol	

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

est By:		Tablet PC			Product Mo	odel:	Tab X1		
		ΥT			Test mode:	:	3DH1 Tx	mode	
est Channe	d:	Highest chan	inel		Polarizatio	n:	Horizonta	al	
est Voltage:		AC 120/60Hz	2	Environment:		Temp: 24°C Huni: 579			
100 90 80 70 60 50 50 40 30 20				FCC PART 1			F	CC PART 15 B-PK Limit	
10 0 2.4780	G 2.4802G	2.4824G AV Limit Ho AV Detector	2.4846G 2.4866 prizontal PK — Horiz	Frequency[ł	2.4912G Hz]	2.4934G	2.4956G	2.4978G 2.5G	
02.4780	PK Limit	AV Limit Ho		Frequency[ł		2.4934G	2.4956G	2.4978G 2.5G	
0 2.4780	PK Limit PK Detector	AV Limit Ho		Frequency[ł		2.4934G Margin⊷			
02.4780	PK Limit PK Detector	AV Limit Ho AV Detector Ho List	orizontal PK — Horiz	Frequency[i	Hz]		2.4956G Trace⊮	2.4978G 2.5G	
0 2.4780 Susp	PKLimit ◆ PK Detector →	AV Limit Har AV Detector Har AV Detector	orizontal PK — Horiz	Frequency[i contal AV	Hz] Limit⊷	Margin≓			

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.10.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C S	Section 15.2	209				
Test Frequency Range:	9 kHz to 25 GHz	2					
Test Distance:	3m or 10m						
Receiver setup:	Frequency	Detector	r	RBW	VBW	/	Remark
	30MHz-1GHz	Quasi-pea	ak	120kHz	300k⊦	lz	Quasi-peak Value
		Peak		1MHz	3MH:	z Peak Value	
	Above 1GHz	RMS		1MHz	3MH	z	Average Value
Limit:	Frequenc	;y	Limi	t (dBuV/m @	@10m)		Remark
	30MHz-88N	ЛНz		30.0		C	Quasi-peak Value
	88MHz-216	MHz		33.5		C	Quasi-peak Value
	216MHz-960	MHz		36.0		C	Quasi-peak Value
	960MHz-10	GHz		44.0		0	Quasi-peak Value
	Frequenc	у	Lin	nit (dBuV/m @	⊉3m)		Remark
	Above 1G	H7		54.0			Average Value
	7,8070 10	112		74.0			Peak Value
	EUT Tur Tal Ground Above 1GHz	m 0.8m	lm ▲> 1m ▲			— An	arch itenna eiver
Test Procedure:	1. The EUT		Test Re	3m Ground Reference Plane	Pre- Amplier Contr		Tower Tower table 0.8m(below
	1GHz)/1.5m (below 1GH 360 degree	n(above 1G Iz)or 3 mete s to determ	GHz) er ch iine tl	above the amber(above) above the amber(above) above ab	ground a ve 1GHz of the hig	at a). Th ghes	10 meter chamber table was rotated

Project No.: JYTSZE2105052

	away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	 The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30 MHz is noise floor and lower than the limit 20dB, so only shows the data of above 30MHz in this report.

Measurement Data (worst case):

Below 1GHz:

oduct Na	me.	Tablet P	0			uct Model:		Tab X1		
st By:		ΥT			Test	mode:		BT Tx mode	e	
st Freque	ency:	30 MHz	~ 1 GHz		Pola	rization:		Vertical & H	Horizontal	
st Voltage	e:	AC 120/	60Hz		Envi	ronment:		Temp: 24 °C	C Huni: 5	
				Full	Spectrum					
	45 -							CC PART 1	5.247 10m	
	40-									
	30-							**	*	
Level in dBµV/	+							*		
el ii.	20						*	LINE AND A		
			1 1 1				1 1	1. July 1997		
Lev							·····			
Leve	W				ll.tr		A STATE			
Levi	10-	ku Mudda				The state of				
Lev	10	y My				alta (1840) arti				
Fev					1					
Lev	10	50	60 8		200	300	400	500	800 1G	
Lev.		50	60 8		1	300				
Lev		50	60 8		200	300				
	10 0 30M			Fr	200 equency in l	300 Hz	400	500	800 1G	
	10 0 30M	↓ Ma	axPeak↓	Fr Limit↓	200 equency in I Margin↓	300 Hz Height↓		500 Azimuth↓	800 1G	
	10 0 30M	↓ Ma (dB		Fr Limit∔ (dB ዞ	200 equency in l	300 Hz Height∔ (cm)≁3	400	500	800 1G Corr.↓ (dB/m)⊷	
	10 0 30M Frequency (MHz)= 408.0090 576.0130	↓ <mark>M</mark> a (dB 00↔ 00↔	nxPeak↓ ⊮V/m)⊷	Fr Limit↓ (dB ル 36.00↔ 36.00↔	200 equency in I (dB),∂ 14.43+3 12.87+3	300 Hz Height∔ (cm)⊷ 100.0⊷	400 Pol ⊷	500 Azimuth∔ (deg)⊷	800 1G Corr.↓ (dB/m)↩ -11.5↩	
	10 0 30M Frequency (MHz) 408.0090 576.0130 599.9720	↓ Ma (dB 00+2 00+2 00+2	axPeak↓ ₩V/m)↔ 21.57 23.13 27.50	Fr Limit↓ (dB ↓ ² 36.004 ³ 36.004 ³ 36.004	200 equency in l (dB)- 14.43- 12.87- 8.50-	300 Hz Height↓ (cm)⊷ 100.0⊷ 100.0⊷ 100.0⊷	400 Pole ³ He ³ He ³	500 Azimuth↓ (deg), 64.0.¢ 17.0.¢ 21.0.¢	800 1G	
	10 0 30M Frequency (MHz)-3 408.0090 576.0130 599.9720 638.9660	↓ Ma (dB 00+3 00+3 00+3 00+3 00+3	axPeak↓ ₽V/m)⊮ 21.57 23.13 27.50 26.74	Fr 2 Limit↓ 36.004 2 36.004 2 36.004 2 36.004 3 36.004 3 36.004	200 equency in l (dB)- 14.43+ 12.87+ 8.50+ 9.26+	300 Hz Height↓ (cm)+3 100.0+3 100.0+3 100.0+3	400 Pole ³ He ³ He ³ He ³	500 500 Azimuth↓ (deg), 64.0.4 17.0.4 21.0.4 31.0.4	Corr.↓ (dB/m)- -11.5- -7.2- -6.6- -6.0-	
	10 0 30M Frequency (MHz) 408.0090 576.0130 599.9720	↓ Ma (dB 00+2 00+2 00+2 00+2 00+2 00+2	axPeak↓ ₩V/m)↔ 21.57 23.13 27.50	Fr 2 Limit↓ 3 (dB ↓ 2 36.004 2 36.004 2 36.004 2 36.004 2 36.004 2 36.004 3 36.004	200 equency in l (dB)- 14.43+ 12.87+ 8.50- 9.26+ 7.12+	300 Hz Height↓ (cm)↔ 100.0↔ 100.0↔ 100.0↔ 100.0↔ 100.0↔	400 Pole ³ He ³ He ³ He ³	500 Azimuth↓ (deg), 64.0.¢ 17.0.¢ 21.0.¢	Corr.↓ (dB/m) -11.5- -7.2- -6.6- -6.0- -2.9-	

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz:

		Test ch	annel: Lowest ch	annel		
		Det	tector: Peak Valu	e		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	56.43	-10.39	46.04	74.00	27.96	Vertical
4804.00	56.86	-10.39	46.47	74.00	27.53	Horizontal
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	47.16	-10.39	36.77	54.00	17.23	Vertical
4804.00	48.09	-10.39	37.70	54.00	16.30	Horizontal
		Test ch	annel: Middle ch	annel		
			tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4882.00	56.12	-10.18	45.94	74.00	28.06	Vertical
4882.00	56.84	-10.18	46.66	74.00	27.34	Horizontal
		Dete	ctor: Average Va	llue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4882.00	47.62	-10.18	37.44	54.00	16.56	Vertical
4882.00	47.89	-10.18	37.71	54.00	16.29	Horizontal
		Test ch	annel: Highest cł	nannel		
		Det	tector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4960.00	56.82	-10.12	46.70	74.00	27.30	Vertical
4960.00	56.17	-10.12	46.05	74.00	27.95	Horizontal
		Dete	ctor: Average Va	llue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
(1011 12)	1	-10.12	37.41	54.00	16.59	Vertical
4960.00	47.53	-10.12	01111			

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.