

Report No: JYTSZB-R12-2101603

# FCC REPORT (Bluetooth)

| Applicant:              | Todos Industrial Limited                                                                                                                                      |  |  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Address of Applicant:   | Room 308, building A3, Fuhai information port, Fuhai street,<br>Bao'an District, Shenzhen City, Guangdong Province, 518000                                    |  |  |
| Equipment Under Test (E | EUT)                                                                                                                                                          |  |  |
| Product Name:           | Tablet PC                                                                                                                                                     |  |  |
| Model No.:              | Tab64, Tab 64, Tab7ii, Tab8ii, Tab10ii, TabX1, TabX2, TabX3,<br>TabX4, TabXX (X can be "0" to "9", "a" to"z"), TabAl1,<br>Tab1066, TabN1, TabN2, TabN3, TabN4 |  |  |
| Trade mark:             | Aprix, Geex, Hiup, None, Quadrant                                                                                                                             |  |  |
| FCC ID:                 | 2AZQ6-AP64                                                                                                                                                    |  |  |
| Applicable standards:   | FCC CFR Title 47 Part 15 Subpart C Section 15.247                                                                                                             |  |  |
| Date of sample receipt: | 16 Aug., 2021                                                                                                                                                 |  |  |
| Date of Test:           | 16 Aug., to 07 Sep., 2021                                                                                                                                     |  |  |
| Date of report issued:  | 08 Sep., 2021                                                                                                                                                 |  |  |
| Test Result:            | PASS *                                                                                                                                                        |  |  |

<sup>\*</sup> In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:



This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.



### 2 Version

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | 08 Sep., 2021 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

Tested by:

Mike.OU Test Engineer Winner Thang

Date: 08 Sep., 2021

Reviewed by:

Project Engineer

Date: 08 Sep., 2021

Project No.: JYTSZE2108062



## **3** Contents

|                                                             | Page |
|-------------------------------------------------------------|------|
| 1 COVER PAGE                                                | 1    |
| 2 VERSION                                                   | 2    |
| 3 CONTENTS                                                  |      |
| 4 TEST SUMMARY                                              |      |
|                                                             |      |
| 5 GENERAL INFORMATION                                       | 5    |
| 5.1 CLIENT INFORMATION                                      |      |
| 5.2 GENERAL DESCRIPTION OF E.U.T.                           | -    |
| 5.3 TEST ENVIRONMENT AND MODE                               | -    |
| 5.4 DESCRIPTION OF SUPPORT UNITS                            | -    |
| 5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD |      |
| 5.7 LABORATORY FACILITY                                     |      |
| 5.8 LABORATORY LOCATION                                     |      |
| 5.9 TEST INSTRUMENTS LIST                                   | 7    |
| 6 TEST RESULTS AND MEASUREMENT DATA                         | 8    |
| 6.1 ANTENNA REQUIREMENT                                     | 8    |
| 6.2 CONDUCTED EMISSIONS                                     | -    |
| 6.3 CONDUCTED OUTPUT POWER                                  |      |
| 6.4 20DB OCCUPY BANDWIDTH.                                  |      |
| 6.5 CARRIER FREQUENCIES SEPARATION                          |      |
| 6.7 DWELL TIME                                              |      |
| 6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE                 |      |
| 6.9 Band Edge                                               |      |
| 6.9.1 Conducted Emission Method                             |      |
| 6.9.2 Radiated Emission Method<br>6.10 SPURIOUS EMISSION    |      |
| 6.10.1 Conducted Emission Method                            |      |
| 6.10.2 Radiated Emission Method                             |      |
| 7 TEST SETUP PHOTO                                          |      |
|                                                             |      |
| 8 EUT CONSTRUCTIONAL DETAILS                                |      |



### **4** Test Summary

| Test Items                       | Section in CFR 47   | Test Data                     | Result |
|----------------------------------|---------------------|-------------------------------|--------|
| Antenna Requirement              | 15.203 & 15.247 (b) | See Section 6.1               | Pass   |
| AC Power Line Conducted Emission | 15.207              | See Section 6.2               | Pass   |
| Conducted Peak Output Power      | 15.247 (b)(1)       | Appendix A – BT               | Pass   |
| 20dB Occupied Bandwidth          | 15.247 (a)(1)       | Appendix A – BT               | Pass   |
| Carrier Frequencies Separation   | 15.247 (a)(1)       | 15.247 (a)(1) Appendix A – BT |        |
| Hopping Channel Number           | 15.247 (a)(1)       | Appendix A – BT               | Pass   |
| Dwell Time                       | 15.247 (a)(1)       | Appendix A – BT               | Pass   |
| Conducted Band Edge              | 45 005 8 45 000     | Appendix A – BT               | Pass   |
| Radiated Band Edge               | 15.205 & 15.209     | See Section 6.9.2             | Pass   |
| Conducted Spurious Emission      |                     | Appendix A – BT               | Pass   |
| Radiated Spurious Emission       | 15.247(d)           | See Section 6.10.2            | Pass   |
| Remark:                          |                     |                               |        |

Pass: The EUT complies with the essential requirements in the standard. 1.

2. N/A: Not Applicable.

The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by З. the customer).

| Test Method: | ANSI C63.10-2013                           |
|--------------|--------------------------------------------|
| rest method: | KDB 558074 D01 15.247 Meas Guidance v05r02 |



### **5** General Information

### **5.1 Client Information**

| Applicant:    | Todos Industrial Limited                                                                                                |
|---------------|-------------------------------------------------------------------------------------------------------------------------|
| Address:      | Room 308, building A3, Fuhai information port, Fuhai street, Bao'an District, Shenzhen City, Guangdong Province, 518000 |
| Manufacturer: | Todos Industrial Limited                                                                                                |
| Address:      | Room 308, building A3, Fuhai information port, Fuhai street, Bao'an District, Shenzhen City, Guangdong Province, 518000 |

## **5.2 General Description of E.U.T.**

| Product Name:          | Tablet PC                                                                                                                                                                                                                                                                                                                |  |  |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Model No.:             | Tab64, Tab 64, Tab7ii, Tab8ii, Tab10ii, TabX1, TabX2, TabX3, TabX4, TabXX<br>(X can be "0" to "9", "a" to"z"), TabAl1, Tab1066, TabN1, TabN2, TabN3,<br>TabN4                                                                                                                                                            |  |  |  |
| Operation Frequency:   | 2402MHz~2480MHz                                                                                                                                                                                                                                                                                                          |  |  |  |
| Transfer rate:         | 1/2/3 Mbits/s                                                                                                                                                                                                                                                                                                            |  |  |  |
| Number of channel:     | 79                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Modulation type:       | GFSK, π/4-DQPSK, 8DPSK                                                                                                                                                                                                                                                                                                   |  |  |  |
| Modulation technology: | FHSS                                                                                                                                                                                                                                                                                                                     |  |  |  |
| Antenna Type:          | Internal Antenna                                                                                                                                                                                                                                                                                                         |  |  |  |
| Antenna gain:          | 0.1 dBi                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Power supply:          | Rechargeable Li-ion Battery DC3.8V, 6000mAh                                                                                                                                                                                                                                                                              |  |  |  |
| AC adapter:            | Model: EE-0502000UZ<br>Input: AC100-240V, 50/60Hz, 0.5A<br>Output: DC 5.0V, 2000mA                                                                                                                                                                                                                                       |  |  |  |
| Remark:                | Model No.: Tab64, Tab 64, Tab7ii, Tab8ii, Tab10ii, TabX1, TabX2, TabX3,<br>TabX4, TabXX (X can be "0" to "9", "a" to"z"), TabAI1, Tab1066, TabN1,<br>TabN2, TabN3, TabN4 were identical inside, the electrical circuit design,<br>layout, components used and internal wiring, with only difference being model<br>name. |  |  |  |
| Test Sample Condition: | The test samples were provided in good working order with no visible defects.                                                                                                                                                                                                                                            |  |  |  |

| Operation                                                              | Operation Frequency each of channel for GFSK, $\pi$ /4-DQPSK, 8DPSK |         |           |         |           |         |           |  |
|------------------------------------------------------------------------|---------------------------------------------------------------------|---------|-----------|---------|-----------|---------|-----------|--|
| Channel                                                                | Frequency                                                           | Channel | Frequency | Channel | Frequency | Channel | Frequency |  |
| 0                                                                      | 2402MHz                                                             | 20      | 2422MHz   | 40      | 2442MHz   | 60      | 2462MHz   |  |
| 1                                                                      | 2403MHz                                                             | 21      | 2423MHz   | 41      | 2443MHz   | 61      | 2463MHz   |  |
| 2                                                                      | 2404MHz                                                             | 22      | 2424MHz   | 42      | 2444MHz   | 62      | 2464MHz   |  |
| 3                                                                      | 2405MHz                                                             | 23      | 2425MHz   | 43      | 2445MHz   | 63      | 2465MHz   |  |
| 4                                                                      | 2406MHz                                                             | 24      | 2426MHz   | 44      | 2446MHz   | 64      | 2466MHz   |  |
| 5                                                                      | 2407MHz                                                             | 25      | 2427MHz   | 45      | 2447MHz   | 65      | 2467MHz   |  |
|                                                                        |                                                                     |         |           |         |           |         |           |  |
| 15                                                                     | 2417MHz                                                             | 35      | 2437MHz   | 55      | 2457MHz   | 75      | 2477MHz   |  |
| 16                                                                     | 2418MHz                                                             | 36      | 2438MHz   | 56      | 2458MHz   | 76      | 2478MHz   |  |
| 17                                                                     | 2419MHz                                                             | 37      | 2439MHz   | 57      | 2459MHz   | 77      | 2479MHz   |  |
| 18                                                                     | 2420MHz                                                             | 38      | 2440MHz   | 58      | 2460MHz   | 78      | 2480MHz   |  |
| 19 2421MHz 39 2441MHz 59 2461MHz                                       |                                                                     |         |           |         |           |         |           |  |
| Remark: Channel 0, 39 &78 selected for GFSK, $\pi$ /4-DQPSK and 8DPSK. |                                                                     |         |           |         |           |         |           |  |



#### 5.3 Test environment and mode

| Operating Environment:      |                                                                          |
|-----------------------------|--------------------------------------------------------------------------|
| Temperature:                | 24.0 °C                                                                  |
| Humidity:                   | 54 % RH                                                                  |
| Atmospheric Pressure:       | 1010 mbar                                                                |
| Test Modes:                 |                                                                          |
| Non-hopping mode:           | Keep the EUT in continuous transmitting mode with worst case data rate.  |
| Hopping mode:               | Keep the EUT in hopping mode.                                            |
| Remark                      | GFSK (1 Mbps) is the worst case mode.                                    |
| Padiated Emission: The same | Ne was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane |

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber\*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

### **5.4 Description of Support Units**

The EUT has been tested as an independent unit.

#### **5.5 Measurement Uncertainty**

| Parameters                          | Expanded Uncertainty |
|-------------------------------------|----------------------|
| Conducted Emission (9kHz ~ 30MHz)   | ±1.60 dB (k=2)       |
| Radiated Emission (9kHz ~ 30MHz)    | ±3.12 dB (k=2)       |
| Radiated Emission (30MHz ~ 1000MHz) | ±4.32 dB (k=2)       |
| Radiated Emission (1GHz ~ 18GHz)    | ±5.16 dB (k=2)       |
| Radiated Emission (18GHz ~ 40GHz)   | ±3.20 dB (k=2)       |

### 5.6 Additions to, deviations, or exclusions from the method

No

### 5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### • FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

#### • ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

#### • A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

### 5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: <u>http://www.ccis-cb.com</u>



### **5.9 Test Instruments list**

| Test Equipment                  | Manufacturer    | Model No.     | Serial No.    | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |
|---------------------------------|-----------------|---------------|---------------|-------------------------|-----------------------------|
| 3m SAC                          | ETS             | 9m*6m*6m      | 966           | 01-19-2021              | 01-18-2024                  |
| BiConiLog Antenna               | SCHWARZBECK     | VULB9163      | 497           | 03-03-2021              | 03-02-2022                  |
| Biconical Antenna               | SCHWARZBECK     | VUBA9117      | 359           | 07-02-2021              | 07-01-2022                  |
| Horn Antenna                    | SCHWARZBECK     | BBHA9120D     | 916           | 03-03-2021              | 03-02-2022                  |
| Horn Antenna                    | SCHWARZBECK     | BBHA9120D     | 1805          | 06-26-2021              | 06-25-2022                  |
| Horn Antenna                    | SCHWARZBECK     | BBHA 9170     | BBHA9170582   | 11-18-2020              | 11-17-2021                  |
| EMI Test Software               | AUDIX           | E3            | V             | /ersion: 6.110919b      | )                           |
| Pre-amplifier                   | HP              | 8447D         | 2944A09358    | 03-03-2021              | 03-02-2022                  |
| Pre-amplifier                   | CD              | PAP-1G18      | 11804         | 03-03-2021              | 03-02-2022                  |
| Spectrum analyzer               | Rohde & Schwarz | FSP30         | 101454        | 03-03-2021              | 03-02-2022                  |
| Spectrum analyzer               | Rohde & Schwarz | FSP40         | 100363        | 11-18-2020              | 11-17-2021                  |
| EMI Test Receiver               | Rohde & Schwarz | ESRP7         | 101070        | 03-03-2021              | 03-02-2022                  |
| Spectrum Analyzer               | Agilent         | N9020A        | MY50510123    | 11-18-2020              | 11-17-2021                  |
| Signal Generator                | Rohde & Schwarz | SMX           | 835454/016    | 03-03-2021              | 03-02-2022                  |
| Signal Generator                | R&S             | SMR20         | 1008100050    | 03-03-2021              | 03-02-2022                  |
| RF Switch Unit                  | MWRFTEST        | MW200         | N/A           | N/A                     | N/A                         |
| Test Software                   | MWRFTEST        | MTS8200       |               | Version: 2.0.0.0        |                             |
| Cable                           | ZDECL           | Z108-NJ-NJ-81 | 1608458       | 03-03-2021              | 03-02-2022                  |
| Cable                           | MICRO-COAX      | MFR64639      | K10742-5      | 03-03-2021              | 03-02-2022                  |
| Cable                           | SUHNER          | SUCOFLEX100   | 58193/4PE     | 03-03-2021              | 03-02-2022                  |
| DC Power Supply                 | XinNuoEr        | WYK-10020K    | 1409050110020 | 09-25-2020              | 09-24-2021                  |
| Temperature<br>Humidity Chamber | HengPu          | HPGDS-500     | 20140828008   | 11-01-2020              | 10-31-2021                  |
| Simulated Station               | Rohde & Schwarz | CMW500        | 140493        | 07-16-2021              | 07-15-2022                  |
| 10m SAC                         | ETS             | RFSD-100-F/A  | Q2005         | 03-31-2021              | 04-01-2024                  |
| BiConiLog Antenna               | SCHWARZBECK     | VULB 9168     | 1249          | 03-31-2021              | 04-01-2022                  |
| BiConiLog Antenna               | SCHWARZBECK     | VULB 9168     | 1250          | 03-31-2021              | 04-01-2022                  |
| EMI Test Receiver               | R&S             | ESR 3         | 102800        | 04-06-2021              | 04-07-2022                  |
| EMI Test Receiver               | R&S             | ESR 3         | 102802        | 04-06-2021              | 04-07-2022                  |
| Pre-amplifier                   | Bost            | LNA 0920N     | 2016          | 04-06-2021              | 04-07-2022                  |
| Pre-amplifier                   | Bost            | LNA 0920N     | 2019          | 04-06-2021              | 04-07-2022                  |
| Test Software                   | R&S             | EMC32         |               | Version: 10.50.40       |                             |

| Conducted Emission: |                                                  |             |                    |               |            |  |  |
|---------------------|--------------------------------------------------|-------------|--------------------|---------------|------------|--|--|
| Test Equipment      | Test Equipment Manufacturer Model No. Serial No. |             | Cal. Date          | Cal. Due date |            |  |  |
|                     | Manadalo                                         | inouci ito. | oonan to:          | (mm-dd-yy)    | (mm-dd-yy) |  |  |
| EMI Test Receiver   | Rohde & Schwarz                                  | ESCI        | 101189             | 03-03-2021    | 03-02-2022 |  |  |
| Pulse Limiter       | SCHWARZBECK                                      | OSRAM 2306  | 9731               | 03-03-2021    | 03-02-2022 |  |  |
| LISN                | CHASE                                            | MN2050D     | 1447               | 03-03-2021    | 03-02-2022 |  |  |
| LISN                | Rohde & Schwarz                                  | ESH3-Z5     | 8438621/010        | 06-18-2021    | 06-17-2022 |  |  |
| Cable               | HP                                               | 10503A      | N/A                | 03-03-2021    | 03-02-2022 |  |  |
| EMI Test Software   | AUDIX                                            | E3          | Version: 6.110919b |               |            |  |  |

| Conducted method:       |                 |            |             |                         |                             |
|-------------------------|-----------------|------------|-------------|-------------------------|-----------------------------|
| Test Equipment          | Manufacturer    | Model No.  | Serial No.  | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |
| Spectrum Analyzer       | Keysight        | N9010B     | MY60240202  | 11-27-2020              | 11-26-2021                  |
| Vector Signal Generator | Keysight        | N5182B     | MY59101009  | 11-27-2020              | 11-26-2021                  |
| Analog Signal Generator | Keysight        | N5173B     | MY59100765  | 11-27-2020              | 11-26-2021                  |
| Power Detector Box      | MWRF-test       | MW100-PSB  | MW201020JYT | 11-27-2020              | 11-26-2021                  |
| Simulated Station       | Rohde & Schwarz | CMW270     | 102335      | 11-27-2020              | 11-26-2021                  |
| RF Control Box          | MWRF-test       | MW100-RFCB | MW200927JYT | N/A                     | N/A                         |

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: JYTSZE2108062



| PDU             | MWRF-test | XY-G10   | N/A              | N/A        | N/A        |  |
|-----------------|-----------|----------|------------------|------------|------------|--|
| Test Software   | MWRF-tes  | MTS 8310 | Version: 2.0.0.0 |            |            |  |
| DC Power Supply | Keysight  | E3642A   | MY60296194       | 11-27-2020 | 11-26-2021 |  |

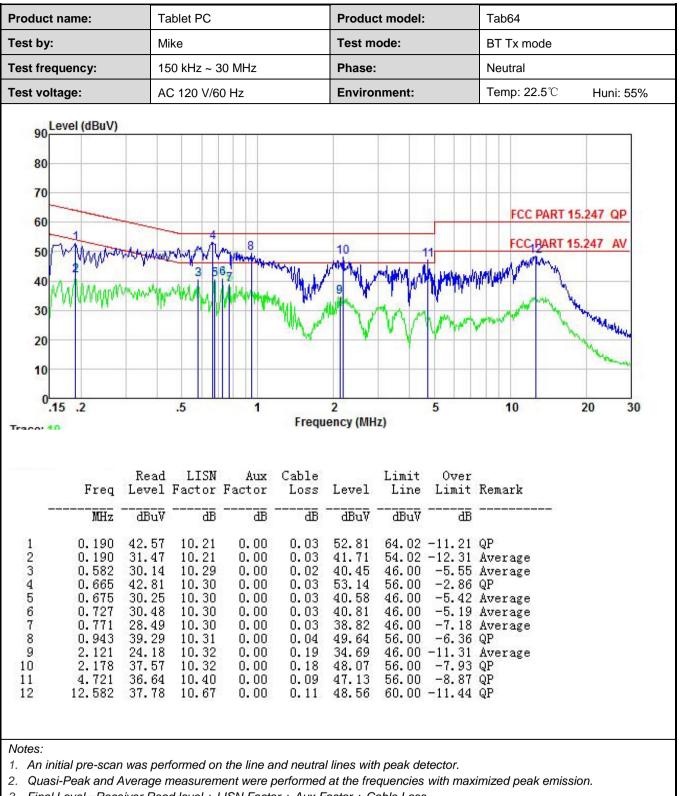
## 6 Test results and measurement data

### 6.1 Antenna Requirement

| Standard requirement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FCC Part 15 C Section 15.203 & 247(b) |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|
| <ul> <li>15.203 requirement:</li> <li>An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.</li> <li>15.247(b) (4) requirement:</li> <li>(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.</li> </ul> |                                       |  |  |  |
| E.U.T Antenna:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |  |  |  |
| The Bluetooth antenna is an Internal antenna which permanently attached, and the best case gain of the antenna is 0.1 dBi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |  |  |  |



### **6.2 Conducted Emissions**


| Test Requirement:     | FCC Part 15 C Section 15.                                                                                                                                                                                               | 207                                                     |                                                                                                                                                                 |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Test Frequency Range: | 150 kHz to 30 MHz                                                                                                                                                                                                       |                                                         |                                                                                                                                                                 |  |  |
| Class / Severity:     | Class B                                                                                                                                                                                                                 |                                                         |                                                                                                                                                                 |  |  |
| Receiver setup:       | RBW=9 kHz, VBW=30 kHz, Sweep time=auto                                                                                                                                                                                  |                                                         |                                                                                                                                                                 |  |  |
| Limit:                | Frequency range (MHz) Limit (dBuV)                                                                                                                                                                                      |                                                         |                                                                                                                                                                 |  |  |
|                       |                                                                                                                                                                                                                         | Quasi-peak                                              | Average                                                                                                                                                         |  |  |
|                       | 0.15-0.5                                                                                                                                                                                                                | 66 to 56*                                               | 56 to 46*                                                                                                                                                       |  |  |
|                       | 0.5-5                                                                                                                                                                                                                   | 56                                                      | 46                                                                                                                                                              |  |  |
|                       | 5-30<br>* Decreases with the logari                                                                                                                                                                                     | 60<br>thm of the frequency                              | 50                                                                                                                                                              |  |  |
| Test setup:           | Reference Pl                                                                                                                                                                                                            |                                                         |                                                                                                                                                                 |  |  |
|                       | AUX       E.U.T         Equipment       E.U.T         Test table/Insulation plane         Remarkc         E.U.T: Equipment Under Test         LISN Line Impedence Stabilization Networ         Test table height=0.8m   |                                                         |                                                                                                                                                                 |  |  |
| Test procedure:       | <ol> <li>50ohm/50uH coupling in</li> <li>The peripheral devices a LISN that provides a 500 termination. (Please reference)</li> <li>Both sides of A.C. line interference. In order to positions of equipment</li> </ol> | tion network (L.I.S.N.). Th<br>npedance for the measuri | his provides a<br>ng equipment.<br>main power through a<br>lance with 500hm<br>the test setup and<br>m conducted<br>sion, the relative<br>ables must be changed |  |  |
| Test Instruments:     | Refer to section 5.9 for det                                                                                                                                                                                            | ails                                                    |                                                                                                                                                                 |  |  |
| Test mode:            | Hopping mode                                                                                                                                                                                                            |                                                         |                                                                                                                                                                 |  |  |
| Test results:         | Pass                                                                                                                                                                                                                    |                                                         |                                                                                                                                                                 |  |  |



#### **Measurement Data:**

| 90<br>Level (dBuV)<br>80<br>70<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Product name:                                                                                                                                                                                                                   | Tablet PC                                            | Product mo                                           | del: Ta                                                                                                                                                                                            | ab64                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|
| Rest voltage:         AC 120 V/60 Hz         Environment:         Temp: 22.5 °C         Huni: 55%           90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | est by:                                                                                                                                                                                                                         | Mike                                                 | Test mode:                                           | B                                                                                                                                                                                                  | BT Tx mode           |  |
| $\frac{1}{10000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | est frequency:                                                                                                                                                                                                                  | 150 kHz ~ 30 MHz                                     | Phase:                                               | Li                                                                                                                                                                                                 | ne                   |  |
| $\frac{1}{10000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | est voltage:                                                                                                                                                                                                                    | AC 120 V/60 Hz                                       | Environme                                            | nt: Te                                                                                                                                                                                             | emp: 22.5℃ Huni: 55% |  |
| Read       LISN       Aux       Cable       Limit       Over         Freq       Level       Factor       Factor       Loss       Level       Line       Limit       Remark         MHz       dBuV       dB       dB       dB       dBuV       dB       dB         1       0.158       43.10       10.22       0.00       0.01       53.33       65.56       -12.23 QP         2       0.158       29.87       10.22       0.00       0.01       50.56       -15.46       Average         3       0.170       41.94       10.22       0.00       0.01       52.17       64.94       -12.77 QP         4       0.627       39.23       10.30       0.00       0.02       38.56       46.00       -7.44       Average         6       0.724       27.77       10.30       0.00       0.03       38.10       46.00       -8.54       Average         7       1.088       27.07       10.32       0.00       0.10       48.41       56.00       -7.59 QP         9       2.527       26.51       10.34       0.00       0.13       36.98       46.00       -9.02       Average         10 | 80<br>70<br>60<br>50<br>40<br>2<br>40<br>20<br>10                                                                                                                                                                               |                                                      | 2                                                    | w.~~~~~                                                                                                                                                                                            | FGC PART 15.247 AV   |  |
| FreqLevelFactorFactorLossLevelLineLimitRemark $MHz$ $dBuV$ $dB$ $dB$ $dB$ $dB$ $dBuV$ $dBuV$ $dBuV$ $dB$ 10.15843.1010.220.000.0153.3365.56-12.23QP20.15829.8710.220.000.0140.1055.56-15.46Average30.17041.9410.220.000.0152.1764.94-12.77QP40.62739.2310.300.000.0249.5556.00-6.45QP50.62728.2410.300.000.0238.5646.00-7.90Average60.72427.7710.300.000.0338.1046.00-7.90Average71.08827.0710.320.000.1048.4156.00-7.59QP92.52726.5110.340.000.1336.9846.00-9.02Average102.60837.6010.340.000.1248.0656.00-7.94QP1111.43837.8810.650.000.1148.6460.00-11.36QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ICe: 17                                                                                                                                                                                                                         |                                                      | Frequency (MHz)                                      |                                                                                                                                                                                                    |                      |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                                                      |                                                      |                                                                                                                                                                                                    | x                    |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MHz dBu                                                                                                                                                                                                                         |                                                      | dB dBuV dBuV                                         | , <u>a</u>                                                                                                                                                                                         |                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2         0.158         29.8           3         0.170         41.9           4         0.627         39.2           5         0.627         28.2           6         0.724         27.7           7         1.088         27.0 | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | <ul> <li>-15.46 Avera;</li> <li>-12.77 QP</li> <li>-6.45 QP</li> <li>-7.44 Avera;</li> <li>-7.90 Avera;</li> <li>-8.54 Avera;</li> <li>-7.59 QP</li> <li>-9.02 Avera;</li> <li>-7.94 QP</li> </ul> | ge<br>ge             |  |



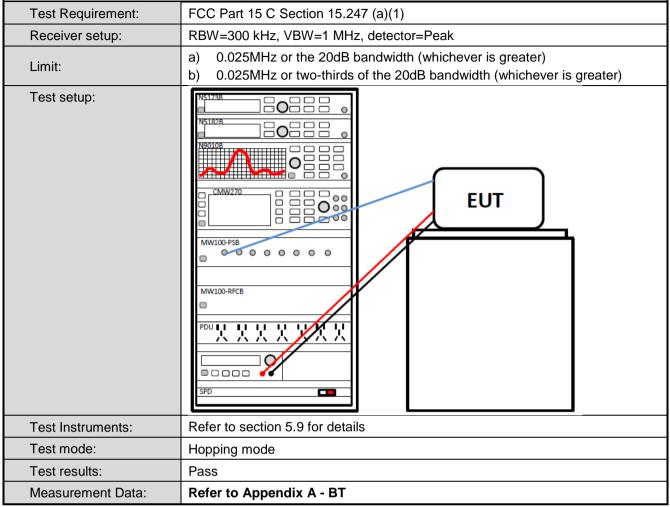


3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.



| 0.5 Conducted Out |                                                                                                                                                                                                                      |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Test Requirement: | FCC Part 15 C Section 15.247 (b)(1)                                                                                                                                                                                  |  |  |
| Receiver setup:   | RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz)<br>RBW=2MHz, VBW=6MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)                                                                                           |  |  |
| Limit:            | For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other requency hopping systems in the 2400-2483.5 MHz band: 0.125 watts. |  |  |
| Test setup:       |                                                                                                                                                                                                                      |  |  |
| Test Instruments: | Refer to section 5.9 for details                                                                                                                                                                                     |  |  |
| Test mode:        | Non-hopping mode                                                                                                                                                                                                     |  |  |
| Test results:     | Pass                                                                                                                                                                                                                 |  |  |
| Measurement Data: | Refer to Appendix A - BT                                                                                                                                                                                             |  |  |

#### 6.3 Conducted Output Power




#### 6.4 20dB Occupy Bandwidth

| Test Requirement: | FCC Part 15 C Section 15.247 (a)(1)                                                           |
|-------------------|-----------------------------------------------------------------------------------------------|
| Receiver setup:   | DH1: RBW=15 kHz, VBW=47 kHz, detector=Peak<br>2DH1&3DH: RBW=20 kHz, VBW=62 kHz, detector=Peak |
| Limit:            | Within authorization band                                                                     |
| Test setup:       |                                                                                               |
| Test Instruments: | Refer to section 5.9 for details                                                              |
| Test mode:        | Non-hopping mode                                                                              |
| Test results:     | Pass                                                                                          |
| Measurement Data: | Refer to Appendix A - BT                                                                      |



### 6.5 Carrier Frequencies Separation





### 6.6 Hopping Channel Number

| Test Deguinement  | FCC Dort 45 C Section 45 247 (c)(4)                 |  |  |
|-------------------|-----------------------------------------------------|--|--|
| Test Requirement: | FCC Part 15 C Section 15.247 (a)(1)                 |  |  |
| Receiver setup:   | RBW=100 kHz, VBW=300 kHz, Center Frequency=2441MHz, |  |  |
|                   | Frequency Range: 2400MHz~2483.5MHz, Detector=Peak   |  |  |
| Limit:            | 15 channels                                         |  |  |
| Test setup:       |                                                     |  |  |
| Test Instruments: | Refer to section 5.9 for details                    |  |  |
| Test mode:        | Hopping mode                                        |  |  |
| Test results:     | Pass                                                |  |  |
| Measurement Data: | Refer to Appendix A - BT                            |  |  |



#### 6.7 Dwell Time

| Test Requirement: | FCC Part 15 C Section 15.247 (a)(1)            |
|-------------------|------------------------------------------------|
| Receiver setup:   | RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak |
| Limit:            | 0.4 Second                                     |
| Test setup:       |                                                |
| Test Instruments: | Refer to section 5.9 for details               |
| Test mode:        | Hopping mode                                   |
| Test results:     | Pass                                           |
| Measurement Data: | Refer to Appendix A - BT                       |



### 6.8 Pseudorandom Frequency Hopping Sequence

| Test Requirement:             | FCC Part 15 C Section 15.247 (a)(1) requirement:                                                                                                    |        |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Frequency hopping systems     | s shall have hopping channel carrier frequencies separated by a mini                                                                                | mum of |
| 25 kHz or the 20 dB bandwi    | ridth of the hopping channel, whichever is greater.                                                                                                 |        |
|                               | pping systems operating in the 2400-2483.5 MHz band may have ho                                                                                     |        |
|                               | that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of                                                                                |        |
|                               | r is greater, provided the systems operate with an output power no gr                                                                               |        |
|                               | shall hop to channel frequencies that are selected at the system hopp                                                                               |        |
|                               | ordered list of hopping frequencies. Each frequency must be used eq                                                                                 |        |
|                               | nsmitter. The system receivers shall have input bandwidths that matches of their corresponding transmitters and shall shift frequencies in          | nine   |
| synchronization with the trar |                                                                                                                                                     |        |
| ,                             | uency Hopping Sequence                                                                                                                              |        |
| •                             |                                                                                                                                                     | etaga  |
|                               | nce may be generated in a nine-stage shift register whose 5th and 9th<br>dulo-two addition stage. And the result is fed back to the input of the fi |        |
|                               | is with the first ONE of 9 consecutive ONEs; i.e. the shift register is ini                                                                         |        |
| with nine ones.               |                                                                                                                                                     |        |
| Number of shift register sta  | tages: 9                                                                                                                                            |        |
| • Length of pseudo-random     | sequence: $2^9 - 1 = 511$ bits                                                                                                                      |        |
| Longest sequence of zeros     | os: 8 (non-inverted signal)                                                                                                                         |        |
|                               |                                                                                                                                                     |        |
|                               | ┨ <u>┝┥</u> ┝┥ <u>┝</u> ┥┝┨┝┨┝┨┝┥┝╤╸                                                                                                                |        |
|                               | ¥                                                                                                                                                   |        |
|                               | (+)•                                                                                                                                                |        |
|                               |                                                                                                                                                     |        |
| Linear Feedback S             | Shift Register for Generation of the PRBS sequence                                                                                                  |        |
| An example of Pseudorando     | lom Frequency Hopping Sequence as follow:                                                                                                           |        |
| 0 2 4 6                       | <u>62 64 78 1 73 75 77</u>                                                                                                                          |        |
|                               |                                                                                                                                                     |        |
|                               |                                                                                                                                                     |        |
|                               |                                                                                                                                                     |        |
|                               |                                                                                                                                                     |        |
| Each frequency used equall    | lly on the average by each transmitter.                                                                                                             |        |
|                               | input bandwidths that match the hopping channel bandwidths of their                                                                                 |        |
|                               | and shift frequencies in synchronization with the transmitted signals.                                                                              |        |



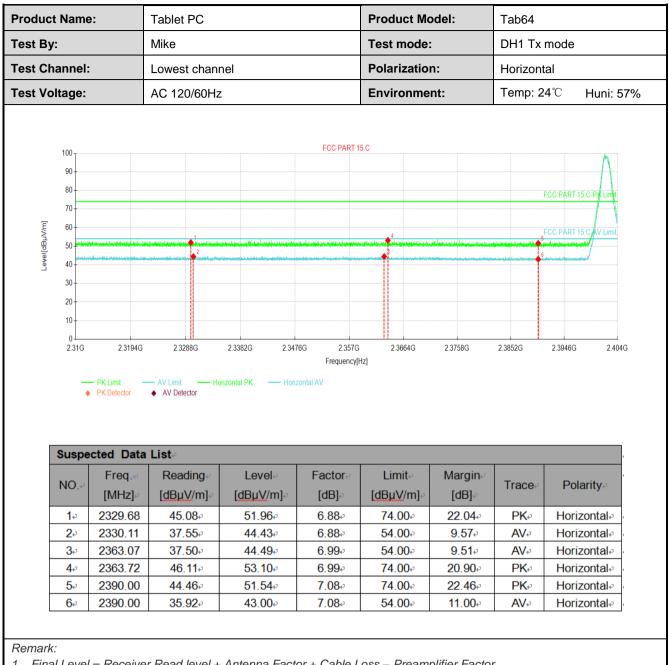
## 6.9 Band Edge

#### 6.9.1 Conducted Emission Method

| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Receiver setup:   | RBW=100 kHz, VBW=300 kHz, Detector=Peak                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |
| Test setup:       |                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Test Instruments: | Refer to section 5.9 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Test mode:        | Non-hopping mode and hopping mode                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Measurement Data: | Refer to Appendix A - BT                                                                                                                                                                                                                                                                                                                                                                |  |  |



#### 6.9.2 Radiated Emission Method


| Test Requirement:     | FCC Part 15 C Section 15.209 and 15.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |         |               |            |                    |            |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|---------------|------------|--------------------|------------|--|
| Test Frequency Range: | 2310 MHz to 2390 MHz and 2483.5 MHz to 2500 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |         |               |            |                    |            |  |
| Test Distance:        | 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |         |               |            |                    |            |  |
| Receiver setup:       | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Detector     | tor RBW |               | VBW Remark |                    |            |  |
|                       | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Peak         |         | 1MHz          |            | MHz                | Peak Value |  |
|                       | Above IGH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RMS          |         | 1MHz          | 31         | 3MHz Average Value |            |  |
| Limit:                | Frequenc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | су           | Lim     | it (dBuV/m @3 | 3m)        |                    | Remark     |  |
|                       | Above 1G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H7           |         | 54.00         |            | Average Value      |            |  |
|                       | 7,5076 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 112          |         | 74.00         |            | F                  | Peak Value |  |
| Test setup:           | AE EUT<br>Horn Antenna Tower<br>Ground Reference Plane<br>Test Receiver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |         |               |            |                    |            |  |
| Test Procedure:       | <ol> <li>The EUT was placed on the top of a rotating table 1.5meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.</li> <li>The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> <li>For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.</li> <li>The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</li> <li>If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.</li> </ol> |              |         |               |            |                    |            |  |
| Test Instruments:     | Refer to section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.9 for deta | ails    | · · ·         |            |                    |            |  |
| Test mode:            | Non-hopping m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ode          |         |               |            |                    |            |  |
| Test results:         | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |         |               |            |                    |            |  |



#### **GFSK Mode:**

|                                                   | ne:                                                                                                                                                     | Tablet PC                                                                                      |                                                     |                                                                                                                | Product Mo                                        | odel:                                                                                                           | Tab64                              |                                                      |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------|
| st By:                                            |                                                                                                                                                         | Mike                                                                                           |                                                     |                                                                                                                | Test mode:                                        | :                                                                                                               | DH1 Tx                             | mode                                                 |
| st Channe                                         | l:                                                                                                                                                      | Lowest channel                                                                                 |                                                     |                                                                                                                | Polarization:                                     |                                                                                                                 | Vertical                           |                                                      |
| st Voltage                                        | :                                                                                                                                                       | AC 120/60Hz                                                                                    | 2                                                   |                                                                                                                | Environme                                         | nt:                                                                                                             | Temp: 2                            | 24℃ Huni: 579                                        |
|                                                   |                                                                                                                                                         |                                                                                                |                                                     |                                                                                                                |                                                   |                                                                                                                 |                                    |                                                      |
|                                                   |                                                                                                                                                         |                                                                                                |                                                     | FCC PART 1                                                                                                     | 5 C                                               |                                                                                                                 |                                    |                                                      |
| 100                                               |                                                                                                                                                         |                                                                                                |                                                     |                                                                                                                |                                                   |                                                                                                                 |                                    | Δ                                                    |
| 90<br>80                                          |                                                                                                                                                         |                                                                                                |                                                     |                                                                                                                |                                                   |                                                                                                                 |                                    |                                                      |
| 70                                                |                                                                                                                                                         |                                                                                                |                                                     |                                                                                                                |                                                   |                                                                                                                 |                                    | FCC PART 15 C-PK Limit                               |
|                                                   |                                                                                                                                                         |                                                                                                |                                                     |                                                                                                                |                                                   |                                                                                                                 |                                    |                                                      |
|                                                   | والإستانية أستعرف المتحد المتحد المتحد                                                                                                                  | والمستخبر فاستلفوه الأستانية ومستقصا والمتناع                                                  |                                                     | an an ball and a start of a day of a start o |                                                   | anticitite de la companya de la comp | la science data a direct star in 2 | FCC PART 15 C-AV Limit                               |
| [ш/Л18р]<br>ворани 50<br>40                       | Acord Supervision Acord and de                                                                                                                          | utional protocolistic for historical business (                                                | 1                                                   | موالدار من المعرود معود المعالية والمالية و                                                                    | 3                                                 | 4444441.48149999999944444444444444444444                                                                        | <u>6</u>                           | an a             |
| 30                                                |                                                                                                                                                         |                                                                                                |                                                     |                                                                                                                |                                                   |                                                                                                                 |                                    |                                                      |
|                                                   |                                                                                                                                                         |                                                                                                |                                                     |                                                                                                                |                                                   |                                                                                                                 |                                    |                                                      |
| 20 +                                              |                                                                                                                                                         |                                                                                                |                                                     |                                                                                                                |                                                   |                                                                                                                 |                                    |                                                      |
| 20                                                |                                                                                                                                                         |                                                                                                |                                                     |                                                                                                                |                                                   |                                                                                                                 |                                    |                                                      |
| 20<br>10<br>0<br>2.31G                            | 2.3194G                                                                                                                                                 | 2.3288G                                                                                        | 2.3382G 2.347                                       |                                                                                                                |                                                   | 2.3758G                                                                                                         | 2.3852G                            | 2.3946G 2.404G                                       |
| 10<br>0<br>2.31G                                  | 2.3194G<br>PK Limit −<br>♦ PK Detector                                                                                                                  |                                                                                                | 2 3382G 2 347<br>ertical PK — Vertical              | Frequency[ł                                                                                                    |                                                   | 2.3758G                                                                                                         | 2.3852G                            | 2.3946G 2.404G                                       |
| 10<br>0<br>2.31G                                  | — PK Limit —                                                                                                                                            | AV Limit Ve<br>AV Detector                                                                     |                                                     | Frequency[ł                                                                                                    |                                                   | 2.3758G                                                                                                         | 2.3852G                            | 2.3946G 2.404G                                       |
| 10<br>0<br>231G                                   | PK Limit     PK Detector     PK Detector                                                                                                                | AV Limit Ve<br>AV Detector Ve                                                                  | ertical PK Vertical<br>Level++                      | Frequency[i                                                                                                    | lz]<br>Limit⇔                                     | Margine                                                                                                         | 2.3852G                            | 2.3946G 2.404G                                       |
| 10<br>0<br>231G<br>Susp<br>NO.+                   | PK Limit     PK Detector      PK Detector      Freq      [MHz]                                                                                          | AV Limit                                                                                       | ertical PK Vertical<br>Level<br>[dBuV/m].2          | Frequency[i<br>AV<br>Factor<br>[dB]                                                                            | Limit⊭<br>[dBμV/m]⊮                               | Margin⊮<br>[dB]∘                                                                                                | Trace                              | Polarity₀                                            |
| 10<br>0<br>2.316<br>Susp                          | PK Limit     PK Detector     PK Detector                                                                                                                | AV Limit Ve<br>AV Detector Ve                                                                  | ertical PK Vertical                                 | Frequency[i                                                                                                    | lz]<br>Limit⇔                                     | Margine                                                                                                         |                                    |                                                      |
| 10<br>0<br>231G<br>Susp<br>NO.4<br>1₽             | PK Limit<br>PK Detector PK Detector ected Data Freq [MHz] 2339.44                                                                                       | AV Limit Ve<br>AV Detector Ve                                                                  | ertical PK — Vertical<br>Level<br>[dBµV/m]<br>44.35 | Frequency[i<br>AV<br>Factor<br>[dB]<br>6.91                                                                    | Limite<br>[dBµV/m]e<br>54.00e                     | Margin⊮<br>[dB]⊮<br>9.65₽                                                                                       | Trace<br>AV.                       | Polarity.<br>Vertical.                               |
| 10<br>0<br>2316<br>Susp<br>NO.4<br>10<br>24       | <ul> <li>▶ PK Limit</li> <li>▶ PK Detector</li> <li>■ Ected Data</li> <li>▶ Freq</li> <li>■ [MHz]</li> <li>■ 2339.44</li> <li>■ 2339.85</li> </ul>      | AV Limit Ve<br>AV Detector Ve                                                                  | Level<br>[dBµV/m]<br>44.35<br>52.13<br>2            | Frequency[i<br>AV<br>Factor<br>[dB]<br>6.91<br>6.91                                                            | Limit<br>[dBµV/m]<br>54.00<br>74.00               | Margin.∉<br>[dB].∉<br>9.65.€<br>21.87.€                                                                         | Trace.<br>AV.<br>PK.               | Polarity<br>Vertical<br>Vertical                     |
| 10<br>0<br>2316<br>Susp<br>NO.*<br>1e<br>2e<br>3e | <ul> <li>PK Limit</li> <li>PK Detector</li> <li>PK Detector</li> <li>Erreq</li> <li>[MHz]</li> <li>2339.44</li> <li>2339.85</li> <li>2362.31</li> </ul> | AV Limit → Ve<br>AV Detector<br>List P<br>Reading P<br>[dBµV/m]P<br>37.44P<br>45.22P<br>38.68P | Level<br>[dBµV/m]<br>44.35<br>52.13<br>45.67        | Frequency[i<br>AV<br>Factor<br>[dB]<br>6.91<br>6.91<br>6.99<br>6.99                                            | Limit.<br>[dBuV/m].<br>54.00.<br>74.00.<br>54.00. | Margin⊮<br>[dB]₽<br>9.65₽<br>21.87₽<br>8.33₽                                                                    | Trace<br>AV<br>PK<br>AV            | Polarity.₀<br>Vertical.₀<br>Vertical.₀<br>Vertical.₀ |





1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

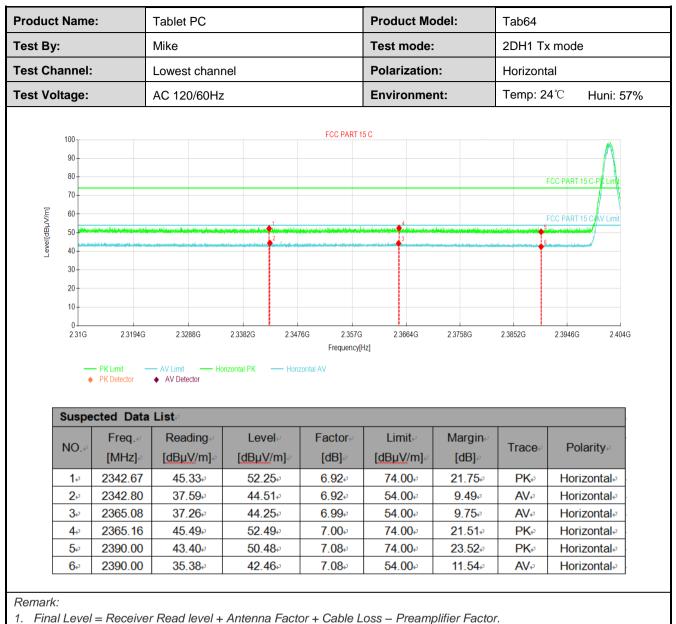
2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



|                                                                                                           | e:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tablet PC                                                                                              |                                                                           |                                                                               | Product Mo                                   | odel:                                             | Tab64                   |                           |                          |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------|-------------------------|---------------------------|--------------------------|
| est By:                                                                                                   | Mike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                        |                                                                           |                                                                               | Test mode:                                   | :                                                 | DH1 Tx                  | mode                      |                          |
| est Channel                                                                                               | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Highest chan                                                                                           | inel                                                                      |                                                                               | Polarization:                                |                                                   | Vertical                |                           |                          |
| est Voltage:                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AC 120/60Hz                                                                                            |                                                                           |                                                                               | Environme                                    | Temp: 24°C Huni: 579                              |                         |                           |                          |
| 100<br>90<br>80<br>70<br>60<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                      |                                                                           | FCC PART 1                                                                    | 5 C                                          |                                                   |                         | FCC PART 1                |                          |
| 40<br>30<br>20<br>10<br>2 4786                                                                            | 2.4802G<br>PK Limit<br>PK Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 4824G<br>AV Limit Ve<br>AV Detector                                                                  | 2.4846G 2.486<br>ertical PK — Vertical                                    | Frequency[                                                                    | 2.4912G<br>Hz]                               | 2.4934G                                           | 2.4956G                 | 2.4978G                   | 2.5G                     |
| 30<br>20<br>10<br>2.478G                                                                                  | - PK Limit -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AV Limit Ve<br>AV Detector                                                                             |                                                                           | Frequency[                                                                    |                                              | 2.4934G                                           | 2.4956G                 | 2.4978G                   | 2.5G                     |
| 30<br>20<br>10<br>2.478G                                                                                  | PK Limit     PK Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AV Limit Ve<br>AV Detector                                                                             |                                                                           | Frequency[                                                                    |                                              | 2.4934G                                           | 2.4956G                 |                           | 25G                      |
| 30<br>20<br>10<br>2 478G<br>Susp                                                                          | PK Limit<br>PK Detector<br>ected Data<br>Freq.↔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AV Limit                                                                                               | ertical PK Vertical<br>Level⊷                                             | Frequency[                                                                    | tz]<br>Limite                                | Margine                                           |                         | Pola                      | 4                        |
| 30<br>20<br>10<br>2.478G<br>Susp<br>NO.~                                                                  | PK Limit<br>PK Detector<br>PK Detector<br>PK Detector<br>PK Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AV Limit Ve<br>AV Detector Ve                                                                          | ertical PK Vertical<br>Levele<br>[dBuV/m].2                               | Frequency<br>AV<br>Factor                                                     | tz]<br>Limit⊷<br>[dBμV/m]↔                   | Margin∉<br>[dB]∘                                  | Trace                   | Pola                      | arity.                   |
| 30<br>20<br>10<br>0<br>2.4786<br>Susp<br>NO.<br>2<br>1                                                    | PK Limit<br>PK Detector<br>ected Data<br>Freq.∉<br>[MHz]∉<br>2483.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AV Limit Ve<br>AV Detector Ve                                                                          | ertical PK — Vertical<br>Levele<br>[dBµV/m]e<br>51.97€                    | Frequency<br>AV<br>Factor<br>[dB]<br>7.69<br>ø                                | <sup>+z]</sup><br>Limit<br>[dBµV/m]<br>74.00 | Margin.∉<br>[dB].∉<br>22.03₽                      | Trace∘<br>PK∘           | Pola<br>Ver<br>Ver        | arity <i>∞</i><br>tical∞ |
| 30<br>20<br>10<br>0<br>24786<br>Susp<br>NO.~<br>1~<br>2~                                                  | <ul> <li>PK Limit</li> <li>PK Detector</li> <li>PK Detecto</li></ul> | AV Limit Ve<br>AV Detector Ve                                                                          | ertical PK — Vertical<br>Level⊷<br>[dBµV/m]₄<br>51.97₊<br>44.13₊          | Frequency<br>AV<br>Factor 4<br>[dB] 4<br>7.69 4<br>7.69 4                     | Limit<br>[dBµV/m]<br>74.00<br>54.00          | Margin.∘<br>[dB].∘<br>22.03.∘<br>9.87.∘           | Trace<br>PK<br>AV       | Pola<br>Ver<br>Ver        | aritye<br>ticale         |
| 30<br>20<br>10<br>0<br>2.478G<br>Susp<br>NO.*<br>1*<br>2*<br>3*                                           | <ul> <li>PK Limit</li> <li>PK Detector</li> <li>PK Detecto</li></ul> | AV Limit Ve<br>AV Detector Ve<br><b>List</b> e<br>Reading v<br>[dBµV/m]e<br>44.28e<br>36.44e<br>37.01e | ertical PK — Vertical<br>Level<br>[dBµV/m]،<br>51.97،<br>44.13،<br>44.74، | Frequency<br>AV<br>Factor<br>[dB]<br>?<br>7.69<br>?<br>7.69<br>3<br>7.73<br>? | Limit<br>[dBµV/m]<br>74.00<br>54.00<br>54.00 | Margin.∉<br>[dB].₂<br>22.03.¢<br>9.87.¢<br>9.26.¢ | Trace<br>PK<br>AV<br>AV | Pola<br>Ver<br>Ver<br>Ver | arity<br>tical<br>tical  |



| roduct N                                                                                                                                                                                                                                                                                                                          | ame:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         | Tablet PC                                                                                 |                                                                                                                  |                                                                                                                 | Product Mc                                          | del:                                           | Tab64                                |                                                                                                                |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------|----------|
| est By:                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         | Mike                                                                                      |                                                                                                                  |                                                                                                                 | Test mode:                                          |                                                | DH1 Tx mode                          |                                                                                                                |          |
| est Chan                                                                                                                                                                                                                                                                                                                          | nel:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         | Highest channel                                                                           |                                                                                                                  |                                                                                                                 | Polarization:                                       |                                                | Horizontal                           |                                                                                                                |          |
| est Volta                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         | AC 120/60H                                                                                |                                                                                                                  |                                                                                                                 | Environme                                           |                                                | Temp: 2                              |                                                                                                                | : 57%    |
|                                                                                                                                                                                                                                                                                                                                   | .g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         | /10/120/0011                                                                              | -                                                                                                                |                                                                                                                 |                                                     |                                                |                                      |                                                                                                                | ,        |
| 40                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                                                                           |                                                                                                                  | FCC PART 1                                                                                                      | 15 C                                                |                                                |                                      |                                                                                                                |          |
| 10                                                                                                                                                                                                                                                                                                                                | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                                                                           |                                                                                                                  |                                                                                                                 |                                                     |                                                |                                      |                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                   | 30-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                                                                           |                                                                                                                  |                                                                                                                 |                                                     |                                                |                                      |                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                   | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                                                                       |                                                                                           |                                                                                                                  |                                                                                                                 |                                                     |                                                |                                      | FCC PART 15 C-PK Lir                                                                                           | nit      |
|                                                                                                                                                                                                                                                                                                                                   | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         | N.                                                                                        |                                                                                                                  |                                                                                                                 |                                                     |                                                |                                      |                                                                                                                |          |
| 2                                                                                                                                                                                                                                                                                                                                 | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                                                                           | alteletika enistantea tarena desenatulia desta                                                                   | al a la secta de la secta d | 3<br>dudbindsonius Pathonikina.                     | and a stand good a local state of some of      |                                      | FCC PART 15 C-AV Li                                                                                            |          |
|                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         | 2                                                                                         | the substant of the second contract of the second state and the second state and the second state and the second | . Martiniana frigitaturu i Martina Lippana di                                                                   | 4                                                   | واستراحه ودهار أحار والمتعادية ومراجع والمعار  | 5<br>                                | a da ana ang sa ang | -        |
|                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         |                                                                                           |                                                                                                                  |                                                                                                                 |                                                     |                                                |                                      |                                                                                                                |          |
| _                                                                                                                                                                                                                                                                                                                                 | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                                                                           |                                                                                                                  |                                                                                                                 |                                                     |                                                |                                      |                                                                                                                |          |
| 3                                                                                                                                                                                                                                                                                                                                 | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                                                                           |                                                                                                                  |                                                                                                                 |                                                     |                                                |                                      |                                                                                                                |          |
| 3                                                                                                                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                                                                           |                                                                                                                  |                                                                                                                 |                                                     |                                                |                                      |                                                                                                                |          |
| 32                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         |                                                                                           |                                                                                                                  |                                                                                                                 |                                                     |                                                |                                      |                                                                                                                |          |
| -<br>3<br>2<br>1                                                                                                                                                                                                                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4802G                                                                                 | 2.4824G                                                                                   | 2.4846G 2.486                                                                                                    |                                                                                                                 |                                                     | 2.4934G                                        | 2.4956G                              | 2.4978G                                                                                                        | 2.5G     |
| -<br>3<br>2<br>1                                                                                                                                                                                                                                                                                                                  | 20<br>10<br>0<br>2.478G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                         |                                                                                           |                                                                                                                  | Frequency[                                                                                                      |                                                     | 2.4934G                                        | 2.4956G                              | 2.4978G                                                                                                        | <br>2.5G |
| -<br>3<br>2<br>1                                                                                                                                                                                                                                                                                                                  | 20<br>10<br>0<br>2.478G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.4802G<br>PK Limit –<br>PK Detector                                                    |                                                                                           | 2.4846G 2.486<br>lorizontal PK — Hori:                                                                           | Frequency[                                                                                                      |                                                     | 2.4934G                                        | 2.4956G                              | 2.4978G                                                                                                        | <br>2.5G |
| -<br>3<br>2<br>1                                                                                                                                                                                                                                                                                                                  | 20<br>10<br>0<br>2.478G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PK Limit –                                                                              | — AV Limit — H                                                                            |                                                                                                                  | Frequency[                                                                                                      |                                                     | 2.4934G                                        | 2.4956G                              | 2.4978G                                                                                                        | 2.5G     |
| 3<br>2<br>1<br>2                                                                                                                                                                                                                                                                                                                  | 20<br>10<br>0.478G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PK Limit –                                                                              | → AV Limit → H<br>♦ AV Detector                                                           |                                                                                                                  | Frequency[                                                                                                      |                                                     | 2.4934G                                        | 2.4956G                              | 2.4978G                                                                                                        | 2.5G     |
| 3<br>2<br>1<br>2<br>2<br><b>Su</b>                                                                                                                                                                                                                                                                                                | 20<br>10<br>0<br>2.478G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PK Limit –<br>PK Detector                                                               | → AV Limit → H<br>♦ AV Detector                                                           |                                                                                                                  | Frequency[                                                                                                      |                                                     | 2.4934G<br>Margin                              |                                      |                                                                                                                | 2.5G     |
| 3<br>2<br>1<br>2<br>2<br><b>Su</b>                                                                                                                                                                                                                                                                                                | 20<br>10<br>0.478G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PK Limit -<br>PK Detector                                                               | AV Limit H<br>AV Detector                                                                 | iorizontal PK — Hori:                                                                                            | Frequency[                                                                                                      | Hz]                                                 |                                                | 2.4956G                              | 2.4978G<br>Polarity                                                                                            | 2.5G     |
| 3<br>2<br>1<br>2<br><b>Su</b>                                                                                                                                                                                                                                                                                                     | 20<br>10<br>0<br>2.478G<br><b>JSPEC</b><br>O.~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PK Limit<br>PK Detector<br>ted Data<br>Freq. 2<br>[MHz] 2                               | AV Limit H<br>AV Detector H<br>List<br>Reading<br>[dBµV/m]                                | lorizontal PK — Hori:<br>Level↔<br>[dBuV/m].₂                                                                    | Frequency[<br>zontal AV<br>Factor                                                                               | Hz]<br>Limit∉<br>[dBµV/m]∉                          | Margin⊮<br>[dB]⊮                               | Trace                                | Polarity                                                                                                       |          |
| 3<br>2<br>1<br>2<br>2<br><b>Su</b>                                                                                                                                                                                                                                                                                                | 20<br>10<br>0<br>2.478G<br><b>JSPEC</b><br>0.4<br>1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PK Limit<br>PK Detector                                                                 | AV Limit H<br>AV Detector H<br>List<br>Reading                                            | lorizontal PK — Hori:<br>Level≓                                                                                  | Frequency(<br>zontal AV<br>Factor                                                                               | Hz]<br>Limite                                       | Margin⊭                                        |                                      |                                                                                                                | р.,      |
| 3<br>2<br>1<br>2<br>2<br>3<br>2<br>2<br>3<br>2<br>2<br>3<br>1<br>2<br>2<br>3<br>1<br>2<br>2<br>3<br>1<br>2<br>2<br>1<br>1<br>2<br>2<br>1<br>1<br>2<br>2<br>1<br>1<br>2<br>2<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 20<br>10<br>0<br>2.478G<br><b>JSPEC</b><br>0.47<br>14<br>2.478G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PK Limit<br>PK Detector<br><b>Eted Data</b><br>Freq.~<br>[MHz].~<br>2483.50             | AV Limit H<br>AV Detector H<br>List<br>Reading<br>[dBµV/m]→<br>43.60↔                     | Level⊷<br>[dBµV/m]↔<br>51.29↔                                                                                    | Frequency                                                                                                       | Hz]<br>Limit.⊷<br>[dBµV/m].∘<br>74.00.•             | Margin⊷<br>[dB].∘<br>22.71⊷                    | Trace∍<br>PK₀                        | Polarity⊮<br>Horizontal                                                                                        | р.       |
| 3<br>2<br>1<br>2<br>3<br>8<br>1<br>2<br>8<br>1<br>2<br>3                                                                                                                                                                                                                                                                          | 20<br>10<br>0<br>2.478G<br><b>Ispec</b><br>0<br>1<br>2<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PK Limit<br>PK Detector<br><b>Eted Data</b><br>Freq.44<br>[MHZ]49<br>2483.50<br>2483.50 | AV Limit H<br>AV Detector<br>List<br>Reading<br>[dBµV/m]<br>43.60<br>36.31                | Level<br>[dBµV/m]<br>51.29<br>44.00                                                                              | Frequency<br>zontal AV<br>Factor<br>[dB]<br>7.69<br>7.69<br>8                                                   | Hz]<br>Limit.↓<br>[dBµV/m].↓<br>74.00.↓<br>54.00.↓  | Margin.<br>[dB].<br>22.71⊷<br>10.00⊷           | Trace<br>PK<br>AV                    | Polarity⊮<br>Horizontal<br>Horizontal                                                                          | ρ.       |
| 3<br>2<br>1<br>2<br>2<br>3<br>3<br>2<br>1<br>2<br>2<br>3<br>2                                                                                                                                                                                                                                                                     | 20<br>10<br>0<br>2.478G<br><b>Ispec</b><br><b>O</b> 2<br><b>I</b> -2<br><b>J</b> -2<br><b></b> | PK Limit<br>PK Detector                                                                 | AV Limit H<br>AV Detector H<br>List<br>Reading<br>[dBµV/m]→<br>43.60↔<br>36.31↔<br>45.18↔ | Level<br>[dBµV/m]. <sup>2</sup><br>51.29. <sup>2</sup><br>44.00. <sup>2</sup><br>52.92. <sup>2</sup>             | Frequency[<br>zontal AV<br>Factor<br>[dB]<br>7.69<br>7.69<br>7.74                                               | Hz]<br>Limit<br>[dBµV/m]<br>74.00<br>54.00<br>74.00 | Margin.<br>[dB].<br>22.71.<br>10.00.<br>21.08. | Traces       PKe       AVe       PKe | Polarity<br>Horizontal<br>Horizontal<br>Horizontal                                                             |          |


Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.
 The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



#### $\pi/4$ -DQPSK mode

|               | Name                                                                    | -                                                                                                                                                                  | Tablet PC                                                                                            |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Product Mc                                                  | odel:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tab64                                    |                                          |                                        |
|---------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|----------------------------------------|
| Test By:      | :                                                                       |                                                                                                                                                                    | Mike                                                                                                 |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Test mode:                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2DH1 Tx mode                             |                                          |                                        |
| Test Ch       | annel:                                                                  |                                                                                                                                                                    | Lowest channel                                                                                       |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Polarization:                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Vertical                                 |                                          |                                        |
| Test Vo       | st Voltage:                                                             |                                                                                                                                                                    | AC 120/60Hz                                                                                          |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Environment:                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Temp: 24°C Huni: 57                      |                                          | uni: 57%                               |
|               |                                                                         |                                                                                                                                                                    |                                                                                                      |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                          |                                        |
|               | 100                                                                     |                                                                                                                                                                    |                                                                                                      |                                                                             | FCC PART 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 C                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                          | Δ                                      |
|               | 90                                                                      |                                                                                                                                                                    |                                                                                                      |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                          |                                        |
|               | 80                                                                      |                                                                                                                                                                    |                                                                                                      |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | FCC PART 15 C-F                          | <sup>o</sup> K Limit                   |
| Ē             | 70<br>60                                                                |                                                                                                                                                                    |                                                                                                      |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                          |                                        |
| Level[dBµV/m] | 50                                                                      | ali con de la del a biser la contra de setativ                                                                                                                     | ann bath leiteath a mhr clair 🔶 m                                                                    | and the second state of the second state of the                             | al a loke market with a method to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A to fi in the line of the bird based by the stand based by | (Arradation ) for the state of the Landscore of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | en actualite and the stillment of many 6 | FCC PART 15 C                            | V Limit                                |
| vel[d         | 40                                                                      | n dan sisa kanta fisika ya kanata kan kisika ata                                                                                                                   |                                                                                                      | unan alaas at messan dae larata weekan dae dae                              | allen and a state of the state |                                                             | lan of state to a state of the | 5                                        |                                          |                                        |
| e             | 30                                                                      |                                                                                                                                                                    |                                                                                                      |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                          |                                        |
|               |                                                                         |                                                                                                                                                                    |                                                                                                      |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                          |                                        |
|               |                                                                         |                                                                                                                                                                    |                                                                                                      |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                          |                                        |
|               | 20                                                                      |                                                                                                                                                                    |                                                                                                      |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                          |                                        |
|               |                                                                         | 2.3194G                                                                                                                                                            | 2.3288G                                                                                              | 2.3382G 2.347                                                               | '6G 2.357G<br>Frequency[ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             | 2.3758G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.3852G                                  | 2.3946G                                  | 2.404G                                 |
|               | 20<br>10<br>0<br>2.31G                                                  | – PK Limit –<br>PK Detector                                                                                                                                        | AV Limit Ve<br>AV Detector                                                                           | 2.3382G 2.347<br>rtical PK — Vertical                                       | Frequency[H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             | 2.3758G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.3852G                                  | 2.3946G                                  | 2.404G                                 |
| [             | 20<br>10<br>0<br>2.31G                                                  | - PK Limit - PK Detector                                                                                                                                           | - AV Limit Ve<br>♦ AV Detector                                                                       | rtical PK — Vertical                                                        | Frequency[ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +z]                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.3852G                                  | 2.3946G                                  | 2.404G                                 |
| F             | 20<br>10<br>0<br>2.31G                                                  | PK Limit<br>PK Detector                                                                                                                                            | AV Limit Ve<br>♦ AV Detector<br>List<br>Reading                                                      | rtical PK — Vertical<br>Level⊷                                              | Frequency[ł<br>AV<br>Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tz]<br>Limit⇔                                               | Margin.e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.3852G                                  |                                          |                                        |
|               | 20<br>10<br>0<br>2.31G                                                  | - PK Limit - PK Detector                                                                                                                                           | - AV Limit Ve<br>♦ AV Detector                                                                       | rtical PK — Vertical                                                        | Frequency[ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +z]                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | 23946G<br>Polarit                        |                                        |
|               | 20<br>10<br>0<br>2.31G<br>Suspe<br>NO.+3<br>13                          | ected Data<br>Freq.~<br>[MHz].~<br>2333.48                                                                                                                         | AV Limit Ve<br>♦ AV Detector<br>List P<br>Reading (dBµV/m) P<br>45.70P                               | rical PK Vertical<br>Level<br>[dBµV/m]<br>52.59                             | Frequency(F<br>AV<br>Factor<br>[dB],0<br>6.89,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Limit⊷<br>[dBµV/m]⊷<br>74.00⊷                               | Margin.<br>[dB]⊶<br>21.41⊷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Trace.⇒<br>PK.₀                          | Polarit                                  | ty                                     |
|               | 20<br>10<br>0<br>2.31G<br>•<br>Suspe                                    | ected Data<br>Freq.4<br>[MHz].2                                                                                                                                    | AV Limit Ve<br>♦ AV Detector<br>List<br>Reading<br>[dBµV/m]<br>45.70<br>37.49<br>₽                   | tical PK — Vertical<br>Level<br>[dBµV/m],<br>52.59,<br>44.38,               | Frequency[+<br>AV<br>Factor<br>[dB]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Limit⊷<br>[dBµV/m]⊷                                         | Margin⊮<br>[dB]⊮<br>21.41₽<br>9.62₽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Trace                                    | Polarit<br>Vertica<br>Vertica            | ty∉<br>al∉<br>al∉                      |
|               | 20<br>10<br>0<br>2.31G<br>Suspe<br>NO.+3<br>13                          | PK Limit           PK Detector           Pcted         Data           Freq4         [MHz]-4           2333.48         2333.58           2361.66         Control    | AV Limit Ve<br>♦ AV Detector<br>List<br>Reading<br>[dBµV/m]<br>45.70<br>37.49<br>45.79<br>45.79      | rtical PK Vertical<br>Level↔<br>[dBµV/m].→<br>52.59.↔<br>44.38.↔<br>52.77.↔ | Frequency[F<br>AV<br>Factor<br>[dB]<br>6.89<br>6.89<br>6.89<br>6.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Limit<br>[dBµV/m]<br>74.00<br>54.00<br>74.00                | Margin.<br>[dB]<br>21.41.<br>9.62.<br>21.23.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Trace<br>PK<br>AV<br>PK                  | Polarit<br>Vertica<br>Vertica            | ty≠<br>al≠<br>al≠                      |
|               | 20<br>10<br>0<br>2.31G<br>Suspe<br>NO.<br>2<br>2<br>2                   | PK Limit           PK Detector           Pcted         Data           Freq           [MHz]           2333.48           2333.58           2361.66           2361.84 | AV Limit Ve<br>♦ AV Detector<br>List P<br>Reading (dBµV/m) P<br>45.70P<br>37.49P<br>45.79P<br>37.97P | tical PK — Vertical<br>Level<br>[dBµV/m],<br>52.59,<br>44.38,               | Frequency(F<br>AV<br>Factor<br>[dB]<br>$\varphi$<br>6.89 $\varphi$<br>6.89 $\varphi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Limit<br>[dBµV/m]<br>74.00<br>54.00<br>74.00<br>54.00       | Margin.<br>[dB].<br>21.41.<br>9.62.<br>21.23.<br>9.05.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Trace<br>PKe<br>AVe                      | Polarit<br>Vertica<br>Vertica<br>Vertica | ly⊭<br>al≠<br>al≠<br>al≠<br>al≠        |
|               | 20<br>10<br>0<br>2.31G<br>Suspe<br>NO. 0<br>10<br>2.21G<br>Suspe<br>3.0 | PK Limit           PK Detector           Pcted         Data           Freq4         [MHz]-4           2333.48         2333.58           2361.66         Control    | AV Limit Ve<br>♦ AV Detector<br>List<br>Reading<br>[dBµV/m]<br>45.70<br>37.49<br>45.79<br>45.79      | rtical PK Vertical<br>Level↔<br>[dBµV/m].→<br>52.59.↔<br>44.38.↔<br>52.77.↔ | Frequency[F<br>AV<br>Factor<br>[dB]<br>6.89<br>6.89<br>6.89<br>6.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Limit<br>[dBµV/m]<br>74.00<br>54.00<br>74.00                | Margin.<br>[dB]<br>21.41.<br>9.62.<br>21.23.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Trace<br>PK<br>AV<br>PK                  | Polarit<br>Vertica<br>Vertica            | ty⇔<br>al⇔<br>al⇔<br>al⇔<br>al⇔<br>al⇔ |





2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



| roduct Name                                                        | e:                                                                                                 | Tablet PC                                                                                          |                                                                |                                                           | Product Mc                                        | del:                                               | Tab64                                          |                                                      |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|------------------------------------------------|------------------------------------------------------|
| est By:                                                            |                                                                                                    | Mike                                                                                               | ke                                                             |                                                           |                                                   |                                                    | 2DH1 T>                                        | x mode                                               |
| est Channel                                                        | :                                                                                                  | Highest channel                                                                                    |                                                                |                                                           | Polarization:                                     |                                                    | Vertical                                       |                                                      |
| est Voltage:                                                       |                                                                                                    | AC 120/60Hz                                                                                        | 2                                                              |                                                           | Environme                                         | nt:                                                | Temp: 2                                        | 4℃ Huni: 57                                          |
| 100<br>90<br>80<br>70<br>60<br>40<br>40                            |                                                                                                    | 2                                                                                                  |                                                                | FCC PART 1                                                | 5 C                                               |                                                    |                                                | FCC PART 15 C-PK Limit                               |
| 30<br>30<br>20<br>10<br>0<br>2.478G                                | 2.4802G<br>PK Limit<br>PK Detector                                                                 | 2.4824G<br>AV Limit Va<br>AV Detector                                                              | 2.4846G 2.4860<br>ertical PK — Vertical                        | Frequency[                                                | 2.4912G<br>Hz]                                    | 2.4934G                                            | 2.4956G                                        | 2.4978G 2.5G                                         |
| 30<br>20<br>10<br>0<br>2.478G                                      | — PK Limit —                                                                                       | AV Limit Ve                                                                                        |                                                                | Frequency[                                                |                                                   | 2.4934G                                            | 2.4956G                                        | 2 4978G 2 5G                                         |
| 30<br>20<br>10<br>0<br>2.478G                                      | PK Limit -                                                                                         | AV Limit Ve                                                                                        |                                                                | Frequency[                                                |                                                   | 2.4934G<br>2.4934G<br>Margin⊷<br>[dB]-∘            | 2.4956G                                        | 24978G 2.5G                                          |
| 30<br>20<br>10<br>0<br>2.478G                                      | PK Limit<br>PK Detector                                                                            | AV Limit                                                                                           | ertical PK — Vertical                                          | Frequency[<br>AV<br>Factor                                | Hz]<br>Limit⇔                                     | Margine                                            |                                                |                                                      |
| 30<br>20<br>10<br>0<br>2.478G<br>Suspe                             | PK Limit<br>PK Detector<br>PC Detector<br>PK Detector<br>PK Detector<br>PK Detector<br>PK Detector | AV Limit Vertex AV Detector                                                                        | ertical PK — Vertical<br>Level⊷<br>[dBµV/m]₽                   | Frequency[<br>AV<br>Factor                                | لنmit بر<br>[dBuV/m] ک                            | Margin.∉<br>[dB].₀                                 | Trace                                          | Polarity∂                                            |
| 30<br>20<br>10<br>0<br>2.478G<br>Suspe<br>NO2                      | PK Limit<br>PK Detector<br>ected Data<br>Freq.40<br>[MHz]40<br>2483.50                             | AV Limit Va<br>AV Detector Va<br>List<br>Reading<br>[dBµV/m]<br>43.75¢                             | Level<br>[dBµV/m]<br>51.44                                     | Frequency<br>AV<br>Factor e<br>[dB] e<br>7.69e            | Limit<br>[dBµV/m]<br>74.00                        | Margin⊮<br>[dB]∞<br>22.56₽                         | Trace-<br>PK-                                  | Polarity.<br>Vertical⊷                               |
| 30<br>20<br>10<br>0<br>2.478G<br>2.478G<br>NO.~<br>1.0<br>2.2      | PK Limit<br>PK Detector<br>ected Data<br>Freq<br>[MHz]<br>2483.50<br>2483.50                       | AV Limit Va<br>AV Detector Va<br>List<br>Reading<br>[dBµV/m]<br>43.75<br>36.25<br>Va               | ertical PK Vertical<br>Level↔<br>[dBµV/m]↔<br>51.44↔<br>43.94↔ | Frequency<br>AV<br>Factor<br>[dB]<br>7.69<br>7.69         | Limit<br>[dBµV/m]<br>74.00<br>54.00               | Margin.∉<br>[dB].₂<br>22.56.₂<br>10.06.₽           | Trace.<br>PKe <sup>3</sup><br>AVe <sup>3</sup> | Polarity<br>Vertical₀<br>Vertical₀                   |
| 30<br>20<br>10<br>0<br>2.478G<br>Suspe<br>NO.~<br>1~<br>2.~<br>3.~ | PK Limit<br>PK Detector<br>Freq.~<br>[MHz].~<br>2483.50<br>2483.50<br>2491.19                      | AV Limit → Ve<br>AV Detector<br>List →<br>Reading →<br>[dBµV/m] →<br>43.75 →<br>36.25 →<br>37.29 → | Errical PK                                                     | Frequency<br>AV<br>Factor<br>[dB]<br>7.69<br>7.69<br>7.74 | Limit.<br>[dBµV/m].<br>74.00.<br>54.00.<br>54.00. | Margin.√<br>[dB].∘<br>22.56.∘<br>10.06.∘<br>8.97.∘ | Trace<br>PK¢<br>AV¢<br>AV¢                     | Polarity -<br>Vertical -<br>Vertical -<br>Vertical - |

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



|                                                                    | e:                                                                                           | Tablet PC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   |                                                                   | Product Mc                                      | odel:                                            | Tab64                     |                                 |                                             |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|---------------------------|---------------------------------|---------------------------------------------|
| fest By:                                                           |                                                                                              | Mike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |                                                                   | Test mode:                                      |                                                  | 2DH1 T                    | x mode                          |                                             |
| Fest Channel                                                       | :                                                                                            | Highest channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                                                                   | Polarization:                                   |                                                  | Horizontal                |                                 |                                             |
| Fest Voltage:                                                      |                                                                                              | AC 120/60Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                 |                                                                   | Environme                                       | nt:                                              | Temp: 2                   | <b>24℃</b>                      | Huni: 57%                                   |
| 100<br>90<br>80<br>70<br>50<br>80<br>40<br>40                      |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   | FCC PART 1                                                        | 5 C                                             | affre an tra with a state of the attra attra     | 5<br>- 1999 - 2019<br>- 6 | FCC PART 1                      |                                             |
| 30<br>20<br>10<br>2.478G                                           | PK Detector                                                                                  | AV Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.4846G 2.4860<br>prizontal PK — Horiz            | Frequency[ł                                                       | 2.4912G<br>iz]                                  | 2.4934G                                          | 2.4956G                   | 2.4978G                         | 2.56                                        |
| 30<br>20<br>10<br>2.478G                                           | — PK Limit —                                                                                 | AV Limit → Ho<br>◆ AV Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   | Frequency[ł                                                       |                                                 | 2.4934G                                          | 2 4956G                   | 2.4978G                         | 256                                         |
| 30<br>20<br>10<br>2.478G                                           | ─ PK Limit —<br>▶ PK Detector                                                                | AV Limit → Ho<br>◆ AV Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   | Frequency[ł                                                       |                                                 | 2.4934G<br>2.4934G<br>Margin⊮<br>[dB]₽           | 2 4956G                   |                                 | 2.5G                                        |
| 30<br>20<br>10<br>0<br>2.478G                                      | PK Limit<br>PK Detector<br>PC Detector<br>PK Detector<br>Freq.*                              | AV Limit Ho<br>AV Detector<br>List.e<br>Reading.e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | orizontal PK Horiz<br>Level&                      | Frequency[I<br>contal AV<br>Factor                                | tz]<br>Limite                                   | Margin.4                                         |                           | Pola                            |                                             |
| 30<br>20<br>10<br>0<br>2.478G<br>Suspe<br>NO.~                     | PK Limit<br>PK Detector                                                                      | AV Limit Ho<br>AV Detector Ho<br>List<br>Reading<br>[dBµV/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nizontal PK — Horiz<br>Level⊮<br>[dBµV/m].₂       | Frequency[I<br>contal AV<br>Factor                                | tz]<br>Limit⊮<br>[dBµV/m]⊷                      | Margin.∉<br>[dB]-₂                               | Trace                     | Pola                            | arity₽                                      |
| 30<br>20<br>10<br>0<br>2.478G<br>Suspe<br>NO2                      | ected Data<br>Freq.4<br>[MHz].2<br>2483.50                                                   | AV Limit Ho<br>AV Detector Ho<br>List<br>Reading<br>[dBµV/m]<br>44.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Level<br>[dBµV/m],2<br>51.82,2                    | Frequency[i<br>contal AV<br>Factor<br>[dB]<br>7.69+               | Limit<br>[dBµV/m].<br>74.00.                    | Margin⊮<br>[dB]∞<br>22.18₽                       | Trace.<br>PK.             | Pola<br>Horiz<br>Horiz          | arity.₀<br>contal.₀                         |
| 30<br>20<br>10<br>0<br>24786<br>Suspe<br>NO.~<br>1+<br>2           | PK Limit<br>PK Detector<br>PK Detector<br>Freq.↔<br>[MHz].→<br>2483.50<br>2483.50            | AV Limit Ho<br>AV Detector<br>List<br>Reading<br>[dBµV/m]<br>44.13<br>36.13<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Level<br>[dBµV/m],<br>51.82,<br>43.82,            | Frequency[<br>contal AV<br>Factor<br>[dB]<br>7.69<br>7.69<br>7.69 | Limit<br>[dBµV/m]<br>74.00+<br>54.00+           | Margin.<br>[dB].₀<br>22.18.₀<br>10.18.₀          | Trace<br>PK<br>AV         | Pola<br>Horiz<br>Horiz<br>Horiz | arity<br>contal<br>contal                   |
| 30<br>20<br>10<br>0<br>2.478G<br>Suspe<br>NO7<br>1+7<br>2.5<br>3-7 | PK Limit<br>PK Detector<br>PK Detector<br>Freq.4<br>[MHz].2<br>2483.50<br>2483.50<br>2490.91 | AV Limit Ho<br>AV Detector<br><b>List</b><br>Reading<br>[dBµV/m]<br>44.13<br>36.13<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62<br>45.62 | Level<br>[dBµV/m]<br>51.82<br>43.82<br>53.36<br>6 | Frequency[<br>contal AV<br>Factor<br>[dB]<br>7.69<br>7.69<br>7.74 | Limit<br>[dBµV/m]<br>74.00↔<br>54.00↔<br>74.00↔ | Margin.∉<br>[dB].¢<br>22.18¢<br>10.18¢<br>20.64¢ | Trace<br>PK<br>AV<br>PK   | Pola<br>Horiz<br>Horiz<br>Horiz | arity.⊭<br>contal.₽<br>contal.₽<br>contal.₽ |

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



#### 8DPSK mode

|                                                   | me:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tablet PC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                            |                                                               | Product Mo                                   | odel:                                         | Tab64                       |                                      |                         |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|-----------------------------|--------------------------------------|-------------------------|
| st By:                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            |                                                               | Test mode:                                   | :                                             | 3DH1 Tx mode                |                                      |                         |
| st Chann                                          | el:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lowest channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                               | Polarization:                                |                                               | Vertical                    |                                      |                         |
| st Voltag                                         | e:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AC 120/60Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                          |                                                               | Environme                                    | nt:                                           | Temp: 2                     | <b>24</b> ℃                          | Huni: 57%               |
| 100-<br>90-<br>80-<br>70-<br>[L. 60-<br>50-<br>[  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                            | FCC PART 1                                                    |                                              |                                               |                             | FCC PART 15                          | 5C-PKLint               |
| 30 -<br>20 -<br>10 -<br>2.3                       | IG 2.3194G<br>PK Limit • PK Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.3288G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.3382G 2.347<br>ertical PK — Vertical                                     | Frequency[                                                    |                                              | 2.3758G                                       | 2.3852G                     | 2.3946G                              | 2.404G                  |
| 20-<br>10-<br>2.3                                 | PK Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AV Limit Vi<br>AV Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            | Frequency[                                                    |                                              | 2.3758G                                       | 2.3852G                     | 2.3946G                              | 2.404G                  |
| 20-<br>10-<br>2.3                                 | PK Limit<br>PK Detector<br>Pected Data<br>Freg. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AV Limit Vi<br>AV Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            | Frequency[                                                    |                                              | 2.3758G<br>Margin⊷<br>[dB]-2                  | 2.3852G                     |                                      | 2.404G                  |
| 20-<br>10-<br>2.3<br>Sus                          | PK Limit<br>PK Detector<br>PF Detector<br>PF Ceq. 4<br>[MHz]-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AV Limit Vi<br>◆ AV Detector Vi<br>a List<br>Reading -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ertical PK — Vertical                                                      | Frequency[<br>AV<br>Factor                                    | Hz]<br>Limite                                | Margine                                       |                             | Pola                                 | 4                       |
| 20-<br>10-<br>2.3<br>Sus                          | PK Limit<br>PK Detector<br>PK Det | AV Limit Vi<br>AV Detector  AV Detector  List  Reading  (dBuV/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ertical PK — Vertical<br>Level↔<br>[dBµV/m].₂                              | Frequency[<br>AV<br>Factor                                    | Hz]<br>Limit⊮<br>[dBµV/m]⊮                   | Margin.∉<br>[dB].₂                            | Trace                       | Pola                                 | arity₽                  |
| 20-<br>10-<br>2.3<br>Sus<br>NC                    | PK Limit         PK Detector           pected Data         Freq.           [MHz]         2331.71           2331.92         2331.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AV Limit V<br>AV Detector V<br><b>List</b><br>Reading<br>[dBuV/m]<br>37.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ertical PK — Vertical<br>Level<br>[dBµV/m]<br>43.94                        | Frequency[<br>AV<br>Factor<br>[dB]<br>6.88                    | Limit.₀<br>[dBµV/m]₀<br>54.00₀               | Margin⊮<br>[dB]⊮<br>10.06₽                    | Trace₀<br>AV₊               | Pola<br>Vert<br>Vert                 | arity@<br>tical@        |
| 20-<br>10-<br>2.3<br>Sus<br>NC<br>14<br>2.4       | PK Limit         PK Detector           PK Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AV Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ertical PK — Vertical<br>Level<br>[dBµV/m]<br>43.94<br>51.93<br>2          | Frequency[<br>AV<br>Factor<br>[dB].0<br>6.88.0<br>6.89.0      | Limit.<br>[dBµV/m].<br>54.00.<br>74.00.      | Margin.⊲<br>[dB].∘<br>10.06.∘<br>22.07.∘      | Trace<br>AV4<br>PK4         | Pola<br>Vert<br>Vert                 | arity<br>tical<br>tical |
| 20-<br>10-<br>2.3<br>Sus<br>NC<br>1-<br>2.4<br>3- | PK Limit         PK Detector           PK Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AV Limit V<br>♦ AV Detector V<br>• AV Detec | ertical PK → Vertical<br>Level↔<br>[dBµV/m]↔<br>43.94↔<br>51.93↔<br>44.48↔ | Frequency[<br>AV<br>Factor<br>[dB]<br>6.88+<br>6.89+<br>6.98+ | Limit<br>[dBµV/m]<br>54.00<br>74.00<br>54.00 | Margin.<br>[dB].<br>10.06.<br>22.07.<br>9.52. | Trace∞<br>AV⊷<br>PK⊷<br>AV⊷ | Pola<br>Vert<br>Vert<br>Vert<br>Vert | arity<br>iical<br>iical |






1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.





The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



|                                                                                   |                                                                                              | Tablet PC                                                                                  |                                              |                                                                    | Product Mo                                        | del:                                           | Tab64                      |                                          |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------|----------------------------|------------------------------------------|
| est By:                                                                           |                                                                                              | Mike                                                                                       |                                              |                                                                    | Test mode:                                        |                                                | 3DH1 T                     | x mode                                   |
| est Channel                                                                       | :                                                                                            | Highest channel                                                                            |                                              |                                                                    | Polarization:                                     |                                                | Horizontal                 |                                          |
| est Voltage:                                                                      |                                                                                              | AC 120/60Hz                                                                                | 2                                            |                                                                    | Environme                                         | nt:                                            | Temp: 2                    | 24℃ Huni: 57%                            |
| 100<br>90<br>80<br>70<br>70<br>40<br>60<br>60<br>60<br>60<br>40<br>90<br>90<br>40 |                                                                                              |                                                                                            |                                              | FCC PART 1                                                         | 5 C                                               | th dougle days and the design with             | 5                          | FCC PART 15 C-PK Limit                   |
| 30<br>20<br>10<br>0<br>2.478G                                                     | PK Detector                                                                                  | AV Detector                                                                                | 2.4846G 2.4860<br>vrizontal PK — Horiz       | Frequency[H                                                        | 2.4912G<br>1z]                                    | 2.4934G                                        | 2.4956G                    | 2.4978G 2.5G                             |
| 30<br>20<br>10<br>0<br>2.478G                                                     | PK Limit PK Detector                                                                         | AV Limit Ho<br>◆ AV Detector                                                               | orizontal PK – Horiz                         | Frequency[ł                                                        | łz]                                               |                                                | 2.4956G                    | 2.4978G 2.5G                             |
| 30<br>20<br>10<br>0<br>2.478G                                                     | PK Limit<br>PK Detector                                                                      | AV Limit Ho<br>◆ AV Detector<br>Liste<br>Reading -                                         | orizontal PK Horiz<br>Level+                 | Frequency()<br>contal AV<br>Factor                                 | tz]<br>Limit≓                                     | Margine                                        | 2.4956G                    | 24978G 25G<br>Polarity⊮                  |
| 30<br>20<br>10<br>0<br>2.4786<br>Suspe                                            | PK Limit<br>PK Detector                                                                      | AV Limit Ho<br>♦ AV Detector<br>List<br>Reading<br>[dBµV/m]                                | nizontal PK — Horiz<br>Level↔<br>[dBµV/m].∂  | Frequency(F<br>contal AV<br>Factor-<br>[dB]-2                      | lz]<br>Limit∉<br>[dBµV/m]∉                        | Margin.≓<br>[dB]-∍                             | Trace                      | Polarity <i>∞</i>                        |
| 30<br>20<br>10<br>0<br>2.4786<br>Suspe<br>NO2                                     | PK Limit<br>PK Detector                                                                      | AV Limit Ho<br>AV Detector<br>List<br>Reading<br>[dBµV/m]<br>43.68+                        | Level<br>[dBµV/m]<br>51.37€                  | Frequency[ł<br>tontal AV<br>Factor⊷<br>[dB]⊷<br>7.69⊷              | Limit⊮<br>[dBµV/m]⊮<br>74.00₽                     | Margin⊮<br>[dB]⊮<br>22.63₽                     | Trace∘<br>PK∘              | Polarity <i>₀</i><br>Horizontal <i>₀</i> |
| 30<br>20<br>10<br>0<br>2.478G<br><b>Suspe</b><br>NO.~                             | PK Limit<br>PK Detector<br>PK Detector<br>Ected Data<br>Freq<br>[MHz]<br>2483.50<br>2483.50  | AV Limit Ho<br>AV Detector<br>List<br>Reading<br>[dBµV/m]<br>43.68+<br>36.68+              | Level<br>[dBµV/m]<br>51.37<br>44.37          | Frequency(F<br>contal AV<br>Factor<br>[dB]<br>7.69<br>7.69<br>7.69 | Limit<br>[dBµV/m]<br>74.00+<br>54.00+             | Margin.∉<br>[dB].∉<br>22.63.€<br>9.63.€        | Trace⇒<br>PK↔<br>AV↔       | Polarity.<br>Horizontal.<br>Horizontal.  |
| 30<br>20<br>10<br>0<br>2.4786<br>Suspe<br>NO2                                     | PK Limit<br>PK Detector<br>PK Detector<br>Freq.4<br>[MHz],0<br>2483.50<br>2483.50<br>2490.14 | AV Limit Ho<br>AV Detector<br>List:<br>Reading:<br>[dBµV/m]:<br>43.68:<br>36.68:<br>45.45: | Level<br>[dBµV/m]<br>51.37<br>44.37<br>53.18 | Frequency(F<br>contal AV<br>Factor                                 | Limit.<br>[dBµV/m].<br>74.00.<br>54.00.<br>74.00. | Margin.√<br>[dB]√<br>22.63√<br>9.63√<br>20.82√ | Trace<br>PKe<br>AVe<br>PKe | Polarity.<br>Horizontal.<br>Horizontal.  |
| 30<br>20<br>10<br>0<br>2.478G<br>Suspe<br>NO.47<br>147<br>247<br>347              | PK Limit<br>PK Detector<br>PK Detector<br>Ected Data<br>Freq<br>[MHz]<br>2483.50<br>2483.50  | AV Limit Ho<br>AV Detector<br>List<br>Reading<br>[dBµV/m]<br>43.68+<br>36.68+              | Level<br>[dBµV/m]<br>51.37<br>44.37          | Frequency(F<br>contal AV<br>Factor<br>[dB]<br>7.69<br>7.69<br>7.69 | Limit<br>[dBµV/m]<br>74.00+<br>54.00+             | Margin.∉<br>[dB].∉<br>22.63.€<br>9.63.€        | Trace⇒<br>PK↔<br>AV↔       | Polarity.<br>Horizontal.<br>Horizontal.  |

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report



### 6.10 Spurious Emission

#### 6.10.1 Conducted Emission Method

| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |
| Test setup:       |                                                                                                                                                                                                                                                                                                                                                                                         |
| Test Instruments: | Refer to section 5.9 for details                                                                                                                                                                                                                                                                                                                                                        |
| Test mode:        | Non-hopping mode                                                                                                                                                                                                                                                                                                                                                                        |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |
| Measurement Data: | Refer to Appendix A - BT                                                                                                                                                                                                                                                                                                                                                                |



#### 6.10.2 Radiated Emission Method

| Test Requirement:     | FCC Part 15 C S                           | Section 15.2                | 209                  |                                          |                        |                |                                                        |
|-----------------------|-------------------------------------------|-----------------------------|----------------------|------------------------------------------|------------------------|----------------|--------------------------------------------------------|
| Test Frequency Range: | 9 kHz to 25 GHz                           | 2                           |                      |                                          |                        |                |                                                        |
| Test Distance:        | 3m or 10m                                 |                             |                      |                                          |                        |                |                                                        |
| Receiver setup:       | Frequency                                 | Detecto                     | r                    | RBW                                      | VBW                    | /              | Remark                                                 |
|                       | 30MHz-1GHz                                | Quasi-pea                   | ak                   | 120kHz                                   | 300k⊢                  | łz             | Quasi-peak Value                                       |
|                       | Above 1GHz                                | Peak                        |                      | 1MHz                                     | 3MHz                   | z              | Peak Value                                             |
|                       | Above IGHZ                                | RMS                         |                      | 1MHz                                     | 3MHz                   | z              | Average Value                                          |
| Limit:                | Frequenc                                  | ;y                          | Limi                 | it (dBuV/m @                             | ⊉10m)                  |                | Remark                                                 |
|                       | 30MHz-88N                                 | ЛНz                         |                      | 30.0                                     |                        | C              | Quasi-peak Value                                       |
|                       | 88MHz-216                                 | MHz                         |                      | 33.5                                     |                        | Ç              | Quasi-peak Value                                       |
|                       | 216MHz-960                                | MHz                         |                      | 36.0                                     |                        | Ç              | Quasi-peak Value                                       |
|                       | 960MHz-10                                 | GHz                         |                      | 44.0                                     |                        | C              | Quasi-peak Value                                       |
|                       | Frequenc                                  | у                           | Lin                  | nit (dBuV/m @                            | ⊉3m)                   |                | Remark                                                 |
|                       | Above 1G                                  | H7 -                        |                      | 54.0                                     |                        |                | Average Value                                          |
|                       |                                           | 112                         |                      | 74.0                                     |                        |                | Peak Value                                             |
|                       | EUT<br>Tur<br>Tak<br>Ground<br>Above 1GHz | m 0.8m                      | im<br>im<br>1m<br>1m |                                          |                        | An<br>RF T     | arch<br>itenna<br>est<br>eiver                         |
| Test Procedure:       |                                           |                             |                      | 3m<br>Ground Reference Plane<br>acceiver | Pre-<br>Ampufier Contr | ating          | Tower<br>Tower<br>table 0.8m(below<br>10 meter chamber |
|                       | (below 1G⊢<br>360 degree                  | lz)or 3 mete<br>s to determ | er ch<br>nine t      | hamber(abov<br>he position (             | /e 1GHz<br>of the hig  | ). Th<br>ghest | e table was rotated                                    |

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: JYTSZE2108062



|                   | away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.                                                                                                                                                                                                                                         |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.                                                                                                                        |
|                   | 4. For each suspected emission, the EUT was arranged to its worst case<br>and then the antenna was tuned to heights from 1 meter to 4 meters<br>and the rota table was turned from 0 degrees to 360 degrees to find<br>the maximum reading.                                                                                                            |
|                   | <ol> <li>The test-receiver system was set to Peak Detect Function and<br/>Specified Bandwidth with Maximum Hold Mode.</li> </ol>                                                                                                                                                                                                                       |
|                   | 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. |
| Test Instruments: | Refer to section 5.9 for details                                                                                                                                                                                                                                                                                                                       |
| Test mode:        | Non-hopping mode                                                                                                                                                                                                                                                                                                                                       |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                   |
| Remark:           | <ol> <li>Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found<br/>the Y-axis is the worst case.</li> <li>9 kHz to 30 MHz is noise floor and lower than the limit 20dB, so only<br/>shows the data of above 30MHz in this report.</li> </ol>                                                                                         |



#### Measurement Data (worst case):

#### Below 1GHz:

| Product Name:     | Tablet PC               | Product Model:           | Tab64                 |
|-------------------|-------------------------|--------------------------|-----------------------|
| Test By:          | Mike                    | Test mode:               | BT Tx mode            |
| Test Frequency:   | 30 MHz ~ 1 GHz          | Polarization:            | Vertical & Horizontal |
| Test Voltage:     | AC 120/60Hz             | Environment:             | Temp: 24℃ Huni: 57%   |
|                   | FullSpec                | tru m                    |                       |
| 45 T              |                         |                          | ECC PART 15.247 10m   |
| 40                |                         |                          |                       |
|                   |                         |                          |                       |
| ≥ <sup>30</sup>   |                         |                          | *,                    |
|                   | *                       |                          |                       |
|                   | *                       |                          |                       |
| 10-               | Martin Martin           |                          |                       |
| diaper the second |                         |                          |                       |
| 0                 |                         |                          |                       |
| 30M               | 50 60 80 100M<br>Freque | 200 300 400<br>ncy in Hz | 500 800 1G            |

#### Critical Freqs.

|   | Frequency↓<br>(MHz)↩ | MaxPeak↓<br>(dBµ V/m)∂ | Limit↓<br>(dBµ V/m)⊮ | Margin↓<br>(dB)∉ | Height↓<br>(cm)↩ | Pole        | Azimuth↓<br>(deg)∉ | Corr.↓<br>(dB/m)⊷ |
|---|----------------------|------------------------|----------------------|------------------|------------------|-------------|--------------------|-------------------|
| • | 37.760000↩           | <b>15.29</b> ₽         | 30.00↩               | 14.71₽           | 100.0₽           | <b>V</b> ₽  | <b>17.0</b> ↩      | <b>-16.1</b> ₽    |
| • | 59.294000↩           | 15.63₽                 | 30.00↩               | 14.37₽           | 100.0↩           | <b>V</b> ₽  | 182.0↩             | <b>-16.3</b> ₽    |
| • | 104.787000           | 23.78↩                 | 33.50∉               | <b>9.72</b> ₽    | 100.0↩           | <b>V</b> ₽  | <b>258.0</b> ↔     | <b>-18.4</b> ₽    |
| • | 118.3670004          | 22.36                  | 33.50∉               | 11.14            | 100.0↩           | <b>V</b> ₄2 | 182.0↩             | -17.2 <i>₽</i>    |
| • | 139.8040004          | <b>15.21</b> ₽         | 33.50∉               | 18.29₽           | 100.0↩           | V           | 302.0∉             | <b>-15.7</b> ₽    |
| • | 945.098000↩          | 27.06↩                 | 36.00∉               | 8.94             | 100.0↩           | <b>V</b> ₽  | 125.0↩             | -0.1₽             |

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.



#### Above 1GHz:

|                    |                      | Test ch    | annel: Lowest ch  | annel                  |                |             |
|--------------------|----------------------|------------|-------------------|------------------------|----------------|-------------|
|                    |                      | Det        | tector: Peak Valu | e                      |                |             |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarizatio |
| 4804.00            | 56.39                | -9.60      | 46.79             | 74.00                  | 27.21          | Vertical    |
| 4804.00            | 63.28                | -9.60      | 53.68             | 74.00                  | 20.32          | Horizonta   |
|                    |                      | Dete       | ctor: Average Va  | lue                    |                |             |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarizatio |
| 4804.00            | 48.99                | -9.60      | 39.39             | 54.00                  | 14.61          | Vertical    |
| 4804.00            | 58.70                | -9.60      | 49.10             | 54.00                  | 4.90           | Horizonta   |
|                    |                      | Test ch    | annel: Middle ch  | annel                  |                |             |
|                    |                      | Det        | ector: Peak Valu  | ie                     |                |             |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarizatio |
| 4882.00            | 56.85                | -9.05      | 47.80             | 74.00                  | 26.20          | Vertical    |
| 4882.00            | 63.21                | -9.05      | 54.16             | 74.00                  | 19.84          | Horizonta   |
|                    |                      | Dete       | ctor: Average Va  | llue                   |                |             |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarizatio |
| 4882.00            | 48.79                | -9.05      | 39.74             | 54.00                  | 14.26          | Vertical    |
| 4882.00            | 59.17                | -9.05      | 50.12             | 54.00                  | 3.88           | Horizonta   |
|                    |                      |            |                   |                        |                |             |
|                    |                      | Test cha   | annel: Highest ch | nannel                 |                |             |
|                    |                      | Det        | ector: Peak Valu  | ie                     |                |             |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarizatio |
| 4960.00            | 56.60                | -8.45      | 48.15             | 74.00                  | 25.85          | Vertical    |
| 4960.00            | 63.36                | -8.45      | 54.91             | 74.00                  | 19.09          | Horizonta   |
|                    |                      | Dete       | ctor: Average Va  | lue                    |                |             |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarizatio |
| 4960.00            | 48.66                | -8.45      | 40.21             | 54.00                  | 13.79          | Vertical    |
|                    | 59.08                | -8.45      | 50.63             | 54.00                  | 3.37           | Horizonta   |

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



## **8 EUT Constructional Details**

Reference to the test report No.: JYTSZB-R12-2101600

-----End of report-----