

RADIO TEST REPORT FCC ID: 2AZPE-PSBTS95LT

Product:	Wireless Pixel Party Dancing Lights Speaker
Trade Mark: Acoustix	
Model No.:	PS-BTS95LT
Family Model:	PS-BTS95LT-BK, PS-BTS95LT-GY, PS-BTS95LT-MT, BT02, MY683BT
Report No.:	S21041204601001
Issue Date:	May 10. 2021

Prepared for

NWE Brands Inc.

5410 SE International Way Milwaukie, OR 97222

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel:400-800-6106,0755-2320 0050 / 2320 0090 Website:http://www.ntek.org.cn

TABLE OF CONTENTS

ACCREDIT

Certificate #4298.01

1	TES	T RESULT CERTIFICATION	3		
2	2 SUMMARY OF TEST RESULTS4				
3	FACILITIES AND ACCREDITATIONS				
	3.1	FACILITIES			
	3.2 3.3	LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY			
4	GE	NERAL DESCRIPTION OF EUT	6		
5	DES	SCRIPTION OF TEST MODES	8		
6	SET	UP OF EQUIPMENT UNDER TEST	9		
	6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM			
	6.2 6.3	SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	.10		
7		TREQUIREMENTS			
'	7.1	CONDUCTED EMISSIONS TEST			
	7.1	RADIATED SPURIOUS EMISSION			
	7.3	NUMBER OF HOPPING CHANNEL.			
	7.4	HOPPING CHANNEL SEPARATION MEASUREMENT			
	7.5	AVERAGE TIME OF OCCUPANCY (DWELL TIME)	.28		
	7.6	20DB BANDWIDTH TEST			
	7.7	PEAK OUTPUT POWER			
	7.8	CONDUCTED BAND EDGE MEASUREMENT			
	7.9	SPURIOUS RF CONDUCTED EMISSION			
	7.10	ANTENNA APPLICATION			
	7.11	FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	.35		
8	TES	ST RESULTS	.36		
	8.1	DWELL TIME	.36		
	8.2	MAXIMUM CONDUCTED OUTPUT POWER			
	8.3	OCCUPIED CHANNEL BANDWIDTH			
	8.4	CARRIER FREQUENCIES SEPARATION	.56		
	8.5	NUMBER OF HOPPING CHANNEL			
	8.6	BAND EDGE			
	8.7	CONDUCTED RF SPURIOUS EMISSION	.75		

Report No.: S21041204601001

1 TEST RESULT CERTIFICATION

Applicant's name:	NWE Brands Inc.		
Address	5410 SE International Way Milwaukie, OR 97222		
Manufacturer's Name:	Shenzhen Bobotel Technoiogy DEV.co.,Ltd.		
Address	No.20,Xiuling YiRoad,Kengzi Street,Pingshan District Shenzhen China		
Product description			
Product name	Wireless Pixel Party Dancing Lights Speaker		
Model and/or type reference:	PS-BTS95LT		
Family Model:	PS-BTS95LT-BK, PS-BTS95LT-GY, PS-BTS95LT-MT, BT02, MY683BT		

Measurement Procedure Used:

APPLICABLE STANDARDS		
STANDARD/ TEST PROCEDURE TEST RESULT		
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	: Apr 22. 2021 ~ May 08. 2021
Testing Engineer	:(Allen Liu)
Technical Manager	Jasonchen
	(Jason Chen)
Authorized Signatory	:(Alex Li)

NTEK北测

SUMMARY OF TEST RESULTS 2

FCC Part15 (15.247), Subpart C					
Standard Section Test Item Verdict Remark					
15.207	Conducted Emission	PASS			
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS			
15.247(a)(1)	Hopping Channel Separation	PASS			
15.247(b)(1)	Peak Output Power	PASS			
15.247(a)(iii)	Number of Hopping Frequency	PASS			
15.247(a)(iii)	Dwell Time	PASS			
15.247(a)(1)	Bandwidth	PASS			
15.247 (d)	Band Edge Emission	PASS			
15.247 (d)	Spurious RF Conducted Emission	PASS			
15.203	Antenna Requirement	PASS			

ACCREDIT

Certificate #4298.01

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A. CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705. Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

NTEK北测

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment Wireless Pixel Party Dancing Lights Speaker		
Trade Mark Acoustix		
FCC ID	2AZPE-PSBTS95LT	
Model No.	PS-BTS95LT	
Family Model	PS-BTS95LT-BK, PS-BTS95LT-GY, PS-BTS95LT-MT, BT02, MY683BT	
Model Difference	All the model are the same circuit and RF module, except the model name.	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK, π/4-DQPSK, 8-DPSK	
Number of Channels	79 Channels	
Antenna Type PCB Antenna		
Antenna Gain 2 dBi		
Power supply	DC supply: DC 3.7V from Battery or DC 5V from USB port	
	Adapter supply:	
Battery	DC 3.7V, 2400mAh, 8.88Wh	
HW Version	MGM128_65C_MAIN V1.1	
SW Version	MGM128_5365_V23	

ACCREDITED

Certificate #4298.01

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Report No.: S21041204601001

Revision History

ACCREDITED

Certificate #4298.01

Report No.	Version	Description	Issued Date
S21041204601001	Rev.01	Initial issue of report	May 10, 2021

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission		
Final Test Mode Description		
Mode 1 normal link mode		

Note: AC power line Conducted Emission was tested under maximum output power.

	For Radiated Test Cases				
Final Test Mode	Description				
Mode 1	normal link mode				
Mode 2	CH00(2402MHz)				
Mode 3	CH39(2441MHz)				
Mode 4	CH78(2480MHz)				

Note: For radiated test cases, the worst mode data rate 3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

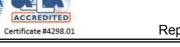
	For Conducted Test Cases	
Final Test Mode	Description	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	
Mode 5	Hopping mode	

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

5.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
For AC Conducted Emission Mode	_
C-1 AE-1 Adapter Adapter	
For Radiated Test Cases	
EUT	
For Conducted Test Cases	
C-2 Measurement Instrument EUT	
Note:The temporary antenna connector is soldered on the PCB board in orde ests and this temporary antenna connector is listed in the equipment list.	r to perform conducted

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	0.5m
C-2	RF Cable	NO	NO	0.5m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK北测

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		estequipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2020.05.11	2021.05.10	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2020.07.13	2021.07.12	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2020.07.13	2021.07.12	1 year
4	Test Receiver	R&S	ESPI7	101318	2020.05.11	2021.05.10	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2020.05.11	2021.05.10	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2020.05.11	2021.05.10	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2020.05.11	2021.05.10	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2020.07.13	2021.07.12	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2020.05.11	2021.05.10	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2020.07.13	2021.07.12	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.06	2022.08.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.06	2022.08.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.06.28	2022.06.27	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2020.05.11	2021.05.10	1 year
16	Filter	TRILTHIC	2400MHz	29	2020.07.13	2021.07.12	1 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Conduction Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2020.05.11	2021.05.10	1 year
2	LISN	R&S	ENV216	101313	2020.05.11	2021.05.10	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2020.05.11	2021.05.10	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2021.05.10	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

NTEKJLIN CERTIFICATE #4298.01

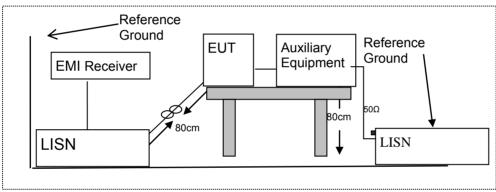
7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit


Fraguanay (MHz)	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

2. The lower limit shall apply at the transition frequencies

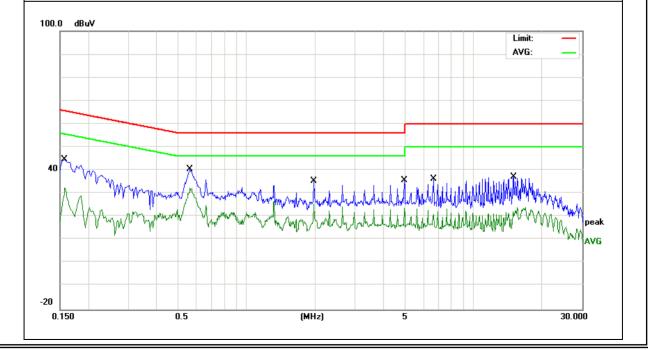
3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.


7.1.5 Test Results

	Wireless Pixel Party Dancing Lights Speaker	Model Name :	PS-BTS95LT
Temperature:	20.5 ℃	Relative Humidity:	52%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1580	35.01	9.56	44.57	65.56	-20.99	QP
0.1580	22.91	9.56	32.47	55.56	-23.09	AVG
0.5620	30.93	9.55	40.48	56.00	-15.52	QP
0.5620	22.95	9.55	32.50	46.00	-13.50	AVG
1.9740	25.80	9.58	35.38	56.00	-20.62	QP
1.9740	15.98	9.58	25.56	46.00	-20.44	AVG
4.9459	26.16	9.62	35.78	56.00	-20.22	QP
4.9459	16.04	9.62	25.66	46.00	-20.34	AVG
6.6379	26.64	9.65	36.29	60.00	-23.71	QP
6.6379	16.82	9.65	26.47	50.00	-23.53	AVG
14.9220	27.36	9.77	37.13	60.00	-22.87	QP
14.9220	14.25	9.77	24.02	50.00	-25.98	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

EUT:	Wireless Pixel Party Dancing Lights Speaker	Model Name :	PS-BTS95LT
Temperature:	20.5 ℃	Relative Humidity:	52%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

ACCREDITED

Certificate #4298.01

Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
33.83	9.55	43.38	65.36	-21.98	QP
19.53	9.55	29.08	55.36	-26.28	AVG
24.26	9.54	33.80	56.00	-22.20	QP
15.45	9.54	24.99	46.00	-21.01	AVG
23.66	9.55	33.21	56.00	-22.79	QP
14.11	9.55	23.66	46.00	-22.34	AVG
21.90	9.59	31.49	56.00	-24.51	QP
11.99	9.59	21.58	46.00	-24.42	AVG
24.95	9.64	34.59	60.00	-25.41	QP
12.14	9.64	21.78	50.00	-28.22	AVG
26.92	9.75	36.67	60.00	-23.33	QP
13.08	9.75	22.83	50.00	-27.17	AVG
	(dBµV) 33.83 19.53 24.26 15.45 23.66 14.11 21.90 11.99 24.95 12.14 26.92	(dBµV) (dB) 33.83 9.55 19.53 9.55 24.26 9.54 15.45 9.54 23.66 9.55 14.11 9.55 21.90 9.59 24.95 9.64 12.14 9.64 26.92 9.75	$(dB\mu V)$ (dB) $(dB\mu V)$ 33.839.5543.3819.539.5529.0824.269.5433.8015.459.5424.9923.669.5533.2114.119.5523.6621.909.5931.4911.999.5921.5824.959.6434.5912.149.6421.7826.929.7536.67	$(dB\mu V)$ (dB) $(dB\mu V)$ $(dB\mu V)$ 33.839.5543.3865.3619.539.5529.0855.3624.269.5433.8056.0015.459.5424.9946.0023.669.5533.2156.0014.119.5523.6646.0021.909.5931.4956.0011.999.5921.5846.0024.959.6434.5960.0022.149.6421.7850.0026.929.7536.6760.00	$(dB\mu V)$ (dB) $(dB\mu V)$ $(dB\mu V)$ (dB) 33.839.5543.3865.36-21.9819.539.5529.0855.36-26.2824.269.5433.8056.00-22.2015.459.5424.9946.00-21.0123.669.5533.2156.00-22.7914.119.5523.6646.00-22.3421.909.5931.4956.00-24.5111.999.5921.5846.00-24.4224.959.6434.5960.00-25.4112.149.6421.7850.00-28.2226.929.7536.6760.00-23.33

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 CC 1 alt 13.20			
MHz	MHz	MHz GHz	
0.090-0.110	16.42-16.423	23 399.9-410 4.5-5.15	
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance	
0.009~0.490	2400/F(KHz) 20 log (uV/m)		300	
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30	
1.705~30.0	30	29.5	30	
30-88	100	40	3	
88-216	150	43.5	3	
216-960	200	46	3	
Above 960	500	54	3	

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/m) (at 3M)		
	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz:

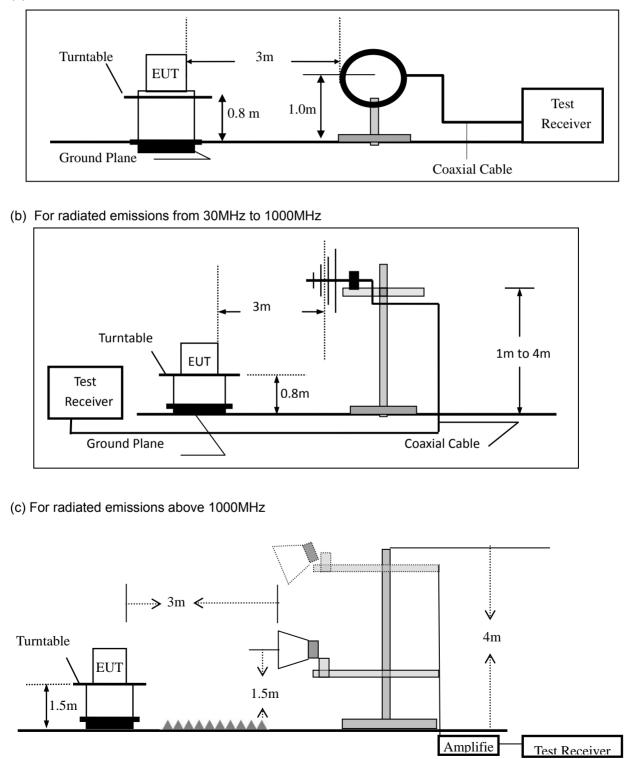
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the	Spectrum Analyzer was set with the following	a configurations:
Banng are radiated enheelen teet, are		g oormgaradono.

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth	
30 to 1000	00 QP 120 kHz		300 kHz	
Ah awa 4000	Peak	1 MHz	1 MHz	
Above 1000	Average	1 MHz	1 MHz	

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

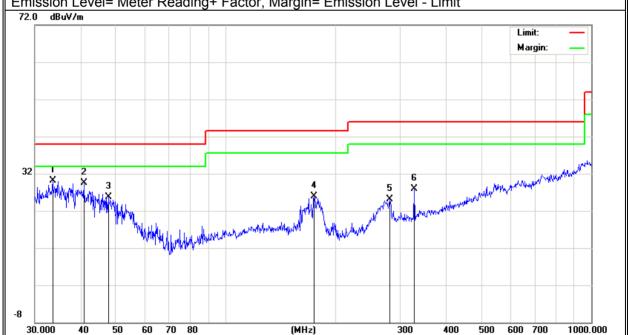
7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

	Wireless Pixel Party Dancing Lights Speaker	Model No.:	PS-BTS95LT
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3	m(dBuV/m)	Over	r(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.


Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

All the modulation modes have been tested, and the worst result was report as below.					
	Wireless Pixel Party Dancing Lights Speaker	Model Name :	PS-BTS95LT		
Temperature:	25.2 ℃	Relative Humidity:	51%		
Pressure:	1010hPa	Test Mode:	Mode 1		
Test Voltage :	DC 3.7V				

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	33.5624	12.59	17.42	30.01	40.00	-9.99	QP
V	40.8444	16.10	13.48	29.58	40.00	-10.42	QP
V	47.6584	14.91	10.83	25.74	40.00	-14.26	QP
V	174.4241	15.60	10.21	25.81	43.50	-17.69	QP
V	281.0075	9.45	15.67	25.12	46.00	-20.88	QP
V	327.8873	12.75	15.24	27.99	46.00	-18.01	QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Kentarr
Н	34.1561	7.15	17.22	24.37	40.00	-15.63	QP
Н	54.6428	11.54	6.93	18.47	40.00	-21.53	QP
Н	174.4241	15.28	10.21	25.49	43.50	-18.01	QP
Н	268.4853	17.45	14.32	31.77	46.00	-14.23	QP
Н	334.8589	11.92	15.74	27.66	46.00	-18.34	QP
Н	654.2318	7.92	22.65	30.57	46.00	-15.43	QP
						Margin:	
	on Level= Meter	Reading+ Fa	ictor, Margi	n= Emission L	evel - Limit		
							 +- -------------
				4		C C	~
32				- M	5	6	Marth and C
1				3 X	WWW Manus	NW KING WALLAND	
Maria	2 Martin Martin Martin Martin Martin		1.11	W W	The second second		
	MAN WAY HAVE A	1 havente	and a stand and a stand of the	Wy almost War			
	NI NA AND	the production of the second					
				_			
<u> </u>							
-8							

UT:		eless Pix	el Party hts Speake	er Mode	I No.:	PS	-BTS95LT			
emperature			<u></u>		ive Humidity	/: 48	48%			
est Mode:			e3/Mode4		Test By: Allen Liu					
					,		port as belov	v:		
				-					T	
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limit	Margin	Remark	Commen	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/				
			Low Chann	el (2402 M	Hz)(8-DPSK)Above	1G	1		
4804.214	62.61	5.21	35.59	44.30	59.11	74.00	-14.89	Pk	Vertical	
4804.214	41.98	5.21	35.59	44.30	38.48	54.00	-15.52	AV	Vertical	
7206.265	60.33	6.48	36.27	44.60	58.48	74.00	-15.52	Pk	Vertical	
7206.265	44.44	6.48	36.27	44.60	42.59	54.00) -11.41	AV	Vertical	
4804.109	61.02	5.21	35.55	44.30	57.48	74.00	-16.52	Pk	Horizonta	
4804.109	44.03	5.21	35.55	44.30	40.49	54.00	-13.51	AV	Horizonta	
7206.224	62.52	6.48	36.27	44.52	60.75	74.00	-13.25	Pk	Horizonta	
7206.224	47.01	6.48	36.27	44.52	45.24	54.00		AV	Horizonta	
			Mid Chann	el (2441 M	Hz)(8-DPSK)Above	1G		1	
4882.396	63.18	5.21	35.66	44.20	59.85	74.00	-14.15	Pk	Vertical	
4882.396	42.65	5.21	35.66	44.20	39.32	54.00	-14.68	AV	Vertical	
7323.241	59.94	7.10	36.50	44.43	59.11	74.00	-14.89	Pk	Vertical	
7323.241	48.10	7.10	36.50	44.43	47.27	54.00	-6.73	AV	Vertical	
4882.108	61.26	5.21	35.66	44.20	57.93	74.00	-16.07	Pk	Horizonta	
4882.108	48.78	5.21	35.66	44.20	45.45	54.00	-8.55	AV	Horizonta	
7323.132	59.91	7.10	36.50	44.43	59.08	74.00	-14.92	Pk	Horizonta	
7323.132	42.20	7.10	36.50	44.43	41.37	54.00		AV	Horizonta	
		1	-	-	Hz)(8-DPSK				1	
4960.397	65.71	5.21	35.52	44.21	62.23	74.00		Pk	Vertical	
4960.397	42.30	5.21	35.52	44.21	38.82	54.00	-15.18	AV	Vertical	
7440.201	60.88	7.10	36.53	44.60	59.91	74.00		Pk	Vertical	
7440.201	45.23	7.10	36.53	44.60	44.26	54.00		AV	Vertical	
4960.225	68.43	5.21	35.52	44.21	64.95	74.00		Pk	Horizonta	
4960.225	46.73	5.21	35.52	44.21	43.25	54.00		AV	Horizonta	
7440.298	61.80	7.10	36.53	44.60	60.83	74.00		Pk	Horizonta	
7440.298	44.82	7.10	36.53	44.60	43.85	54.00	-10.15	AV	Horizonta	

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

EU		Wireless F Lights Spe		ty Dancin	g Mode	el No.:		PS-B	TS95LT			
er	mperature:	•			Relat	ive Humidit	y:	48%				
	-	Mode2/ M	ode4		Test			Allen	Liu			
				been teste		e worst res				low:		
_					,			•				
	Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lim	nits	Margin	Detector	Comment	
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	V/m)	(dB)	Туре		
3Mbps(8-DPSK)-Non-hopping												
L	2310.00	58.37	2.97	27.80	43.80	45.34	74	4	-28.66	Pk	Horizontal	
	2310.00	44.20	2.97	27.80	43.80	31.17	54	4	-22.83	AV	Horizontal	
	2310.00	58.89	2.97	27.80	43.80	45.86	74	4	-28.14	Pk	Vertical	
	2310.00	42.22	2.97	27.80	43.80	29.19	54	4	-24.81	AV	Vertical	
	2390.00	58.69	3.14	27.21	43.80	45.24	74	4	-28.76	Pk	Vertical	
L	2390.00	42.24	3.14	27.21	43.80	28.79	54	4	-25.21	AV	Vertical	
	2390.00	56.66	3.14	27.21	43.80	43.21	74	4	-30.79	Pk	Horizontal	
L	2390.00	42.90	3.14	27.21	43.80	29.45	54	4	-24.55	AV	Horizontal	
	2483.50	58.58	3.58	27.70	44.00	45.86	74	4	-28.14	Pk	Vertical	
	2483.50	43.26	3.58	27.70	44.00	30.54	54	4	-23.46	AV	Vertical	
	2483.50	59.25	3.58	27.70	44.00	46.53	74	4	-27.47	Pk	Horizontal	
	2483.50	42.02	3.58	27.70	44.00	29.30	54	4	-24.70	AV	Horizontal	
L					3Mbps(8-E	PSK)-hoppiı	ng					
	2310.00	53.53	2.97	27.80	43.80	40.50	74.	00	-33.50	Pk	Vertical	
L	2310.00	42.72	2.97	27.80	43.80	29.69	54.	00	-24.31	AV	Vertical	
	2310.00	50.51	2.97	27.80	43.80	37.48	74.	00	-36.52	Pk	Horizontal	
	2310.00	41.03	2.97	27.80	43.80	28.00	54.	00	-26.00	AV	Horizontal	
	2390.00	50.19	3.14	27.21	43.80	36.74	74.	00	-37.26	Pk	Vertical	
	2390.00	42.45	3.14	27.21	43.80	29.00	54.	00	-25.00	AV	Vertical	
L	2390.00	53.10	3.14	27.21	43.80	39.65	74.	00	-34.35	Pk	Horizontal	
	2390.00	42.15	3.14	27.21	43.80	28.70	54.	00	-25.30	AV	Horizontal	
L	2483.50	53.68	3.58	27.70	44.00	40.96	74.	00	-33.04	Pk	Vertical	
L	2483.50	44.92	3.58	27.70	44.00	32.20	54.	00	-21.80	AV	Vertical	
Ļ	2483.50	53.03	3.58	27.70	44.00	40.31	74.	00	-33.69	Pk	Horizontal	
	2483.50	44.65	3.58	27.70	44.00	31.93	54.	00	-22.07	AV	Horizontal	

Note: (1) All other emissions more than 20dB below the limit.

EUT:		less Pixe ing Ligh	el Party ts Speake	r Mode	Model No.:		PS-BTS95LT			
Cemperature:	20 ℃	1		Rela	Relative Humidity:					
Fest Mode: Mode2/ Mode4			Test	By:	A	Allen	Liu			
All the modula	ation mode	es have	been teste	ed, and th	ne worst res	ult was	s repo	ort as be	low:	
Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limi	its	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)		(dB)	Туре	
3260	60.77	4.04	29.57	44.70	49.68	74	ŀ	-24.32	Pk	Vertical
3260	55.89	4.04	29.57	44.70	44.80	54	ł	-9.20	AV	Vertical
3260	62.79	4.04	29.57	44.70	51.70	74	ł	-22.30	Pk	Horizontal
3260	57.54	4.04	29.57	44.70	46.45	54	ŀ	-7.55	AV	Horizontal
3332	65.49	4.26	29.87	44.40	55.22	74	ŀ	-18.78	Pk	Vertical
3332	54.41	4.26	29.87	44.40	44.14	54	ł	-9.86	AV	Vertical
3332	63.07	4.26	29.87	44.40	52.80	74	ł	-21.20	Pk	Horizontal
3332	53.97	4.26	29.87	44.40	43.70	54	ł	-10.30	AV	Horizontal
17797	44.41	10.99	43.95	43.50	55.85	74	Ļ	-18.15	Pk	Vertical
17797	32.46	10.99	43.95	43.50	43.90	54	ł	-10.10	AV	Vertical
17788	44.26	11.81	43.69	44.60	55.16	74	ł	-18.84	Pk	Horizontal

54

-10.55

AV

Horizontal

ACCREDITED

Certificate #4298.01

Note: (1) All other emissions more than 20dB below the limit.

43.69

44.60

43.45

11.81

17788

32.55

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

VBW ≥ RBW

Sweep = auto

Detector function = peak Trace = max hold

7.3.6 Test Results

	Wireless Pixel Party Dancing Lights Speaker	Model No.:	PS-BTS95LT
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Allen Liu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Measurement Bandwidth or Channel Separation RBW: Start with the RBW set to approximately 3% of the channel spacing; adjust as necessary to best identify the center of each individual channel. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.4.6 Test Results

	Wireless Pixel Party Dancing Lights Speaker	Model No.:	PS-BTS95LT
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

	Wireless Pixel Party Dancing Lights Speaker	Model No.:	PS-BTS95LT
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4 DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to (1600 / 6 / 79) x (0.4 x 79) = 106.67 hops.
- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

	Wireless Pixel Party Dancing Lights Speaker	Model No.:	PS-BTS95LT
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW \geq the 20 dB bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Wireless Pixel Party Dancing Lights Speaker	Model No.:	PS-BTS95LT
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

	Wireless Pixel Party Dancing Lights Speaker	Model No.:	PS-BTS95LT
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Allen Liu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

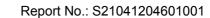
- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level. Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION


7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible partyshall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PCB Antenna (Gain: 2 dBi). It comply with the standard requirement.

NTEK北测

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Certificate #4298 01

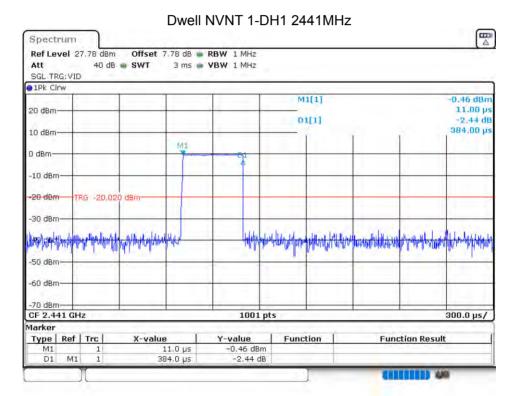
7.11.2 Frequency Hopping System

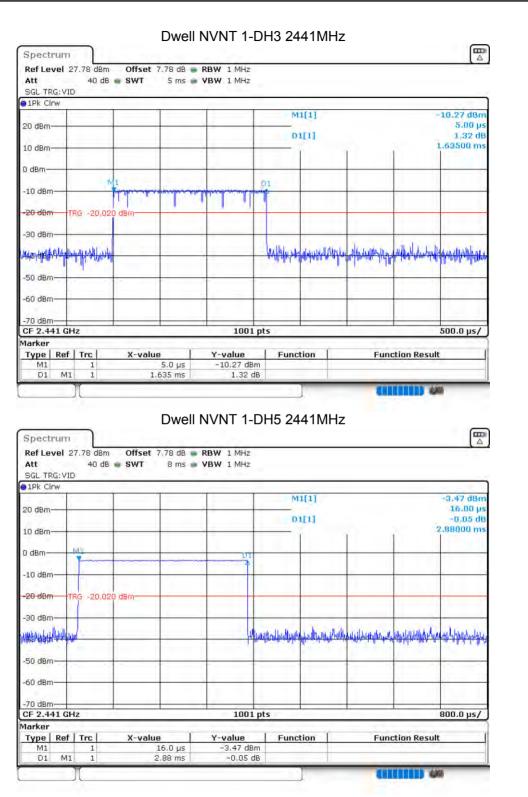
This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

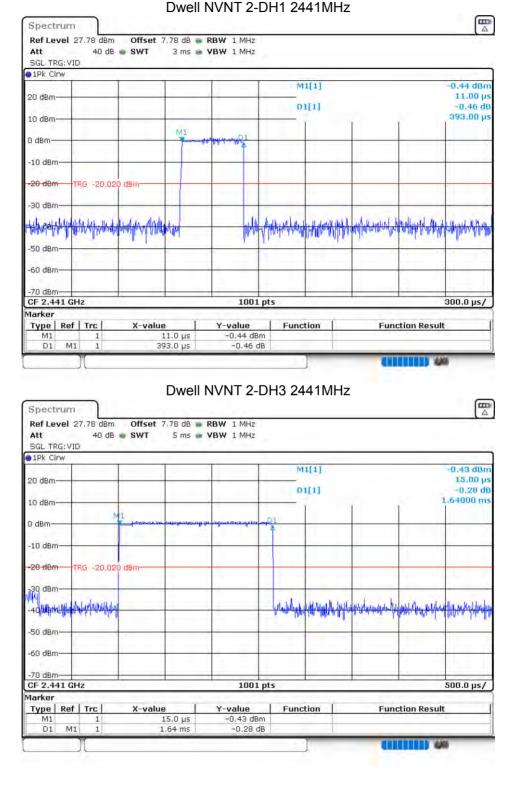
Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.


The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

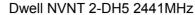

8 TEST RESULTS

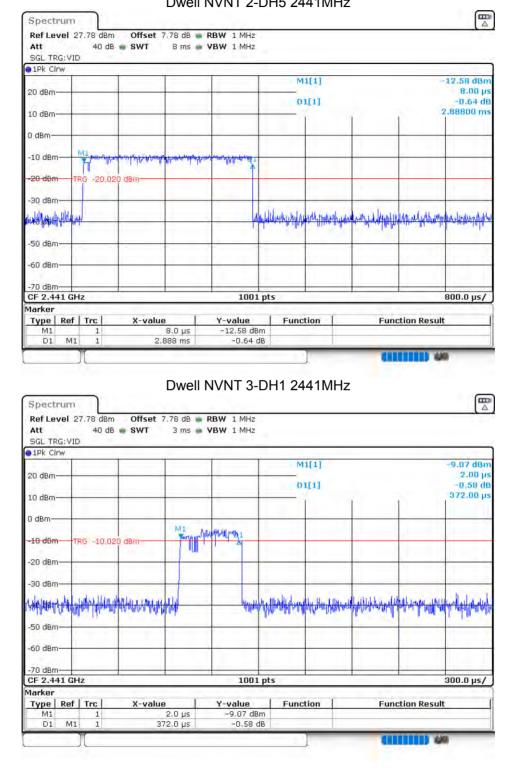
8.1 **DWELL TIME**

Condition	Mode	Frequency	Pulse Time	Total Dwell	Period Time	Limit	Verdict
		(MHz)	(ms)	Time (ms)	(ms)	(ms)	
NVNT	1-DH1	2441	0.384	122.88	31600	400	Pass
NVNT	1-DH3	2441	1.635	261.6	31600	400	Pass
NVNT	1-DH5	2441	2.88	307.2	31600	400	Pass
NVNT	2-DH1	2441	0.393	125.76	31600	400	Pass
NVNT	2-DH3	2441	1.64	262.4	31600	400	Pass
NVNT	2-DH5	2441	2.888	308.053	31600	400	Pass
NVNT	3-DH1	2441	0.372	119.04	31600	400	Pass
NVNT	3-DH3	2441	1.62	259.2	31600	400	Pass
NVNT	3-DH5	2441	2.888	308.053	31600	400	Pass

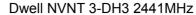

ACCREDITED

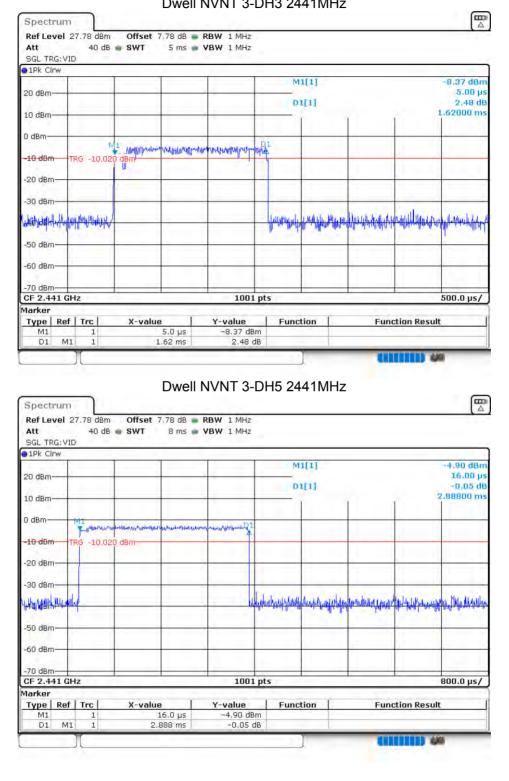
Certificate #4298.01




Dwell NVNT 2-DH1 2441MHz

ACCREDITED

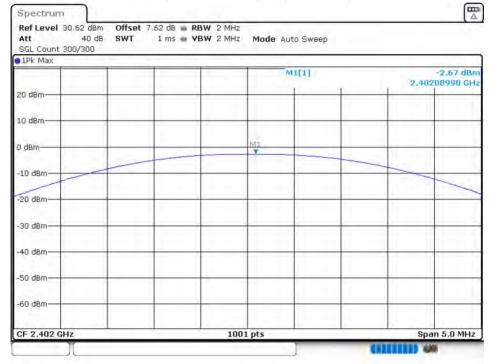




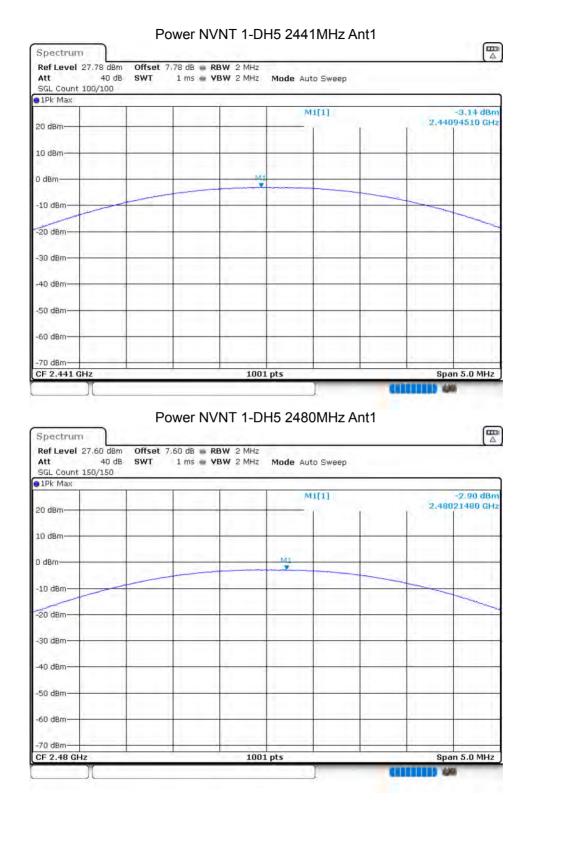
NTEK北测

Report No.: S21041204601001

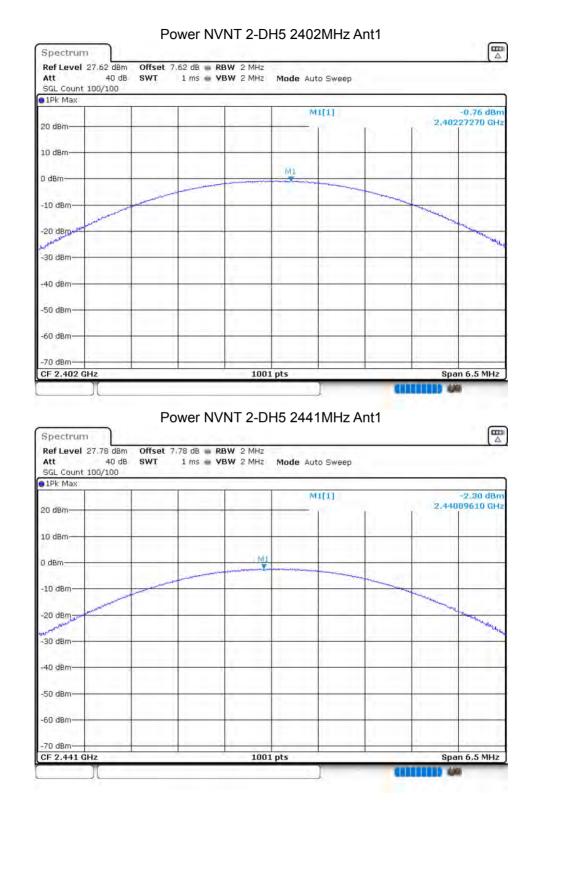
8.2 MAXIMUM CONDUCTED OUTPUT POWER

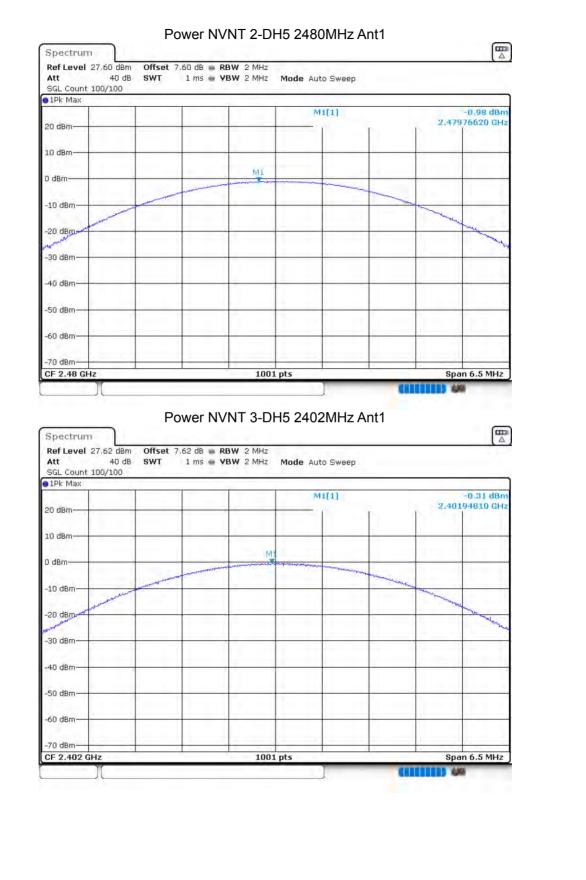

Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	-2.668	30	Pass
NVNT	1-DH5	2441	Ant 1	-3.143	30	Pass
NVNT	1-DH5	2480	Ant 1	-2.898	30	Pass
NVNT	2-DH5	2402	Ant 1	-0.764	21	Pass
NVNT	2-DH5	2441	Ant 1	-2.304	21	Pass
NVNT	2-DH5	2480	Ant 1	-0.976	21	Pass
NVNT	3-DH5	2402	Ant 1	-0.307	21	Pass
NVNT	3-DH5	2441	Ant 1	-1.682	21	Pass
NVNT	3-DH5	2480	Ant 1	-0.449	21	Pass

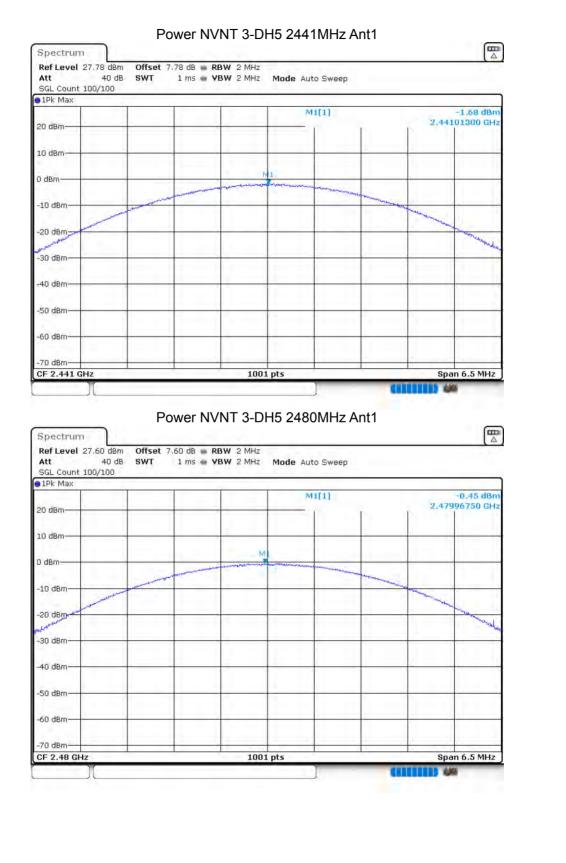
ACCREDITED

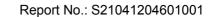

Certificate #4298.01

ilac ME


Power NVNT 1-DH5 2402MHz Ant1







8.3 OCCUPIED CHANNEL BANDWIDTH

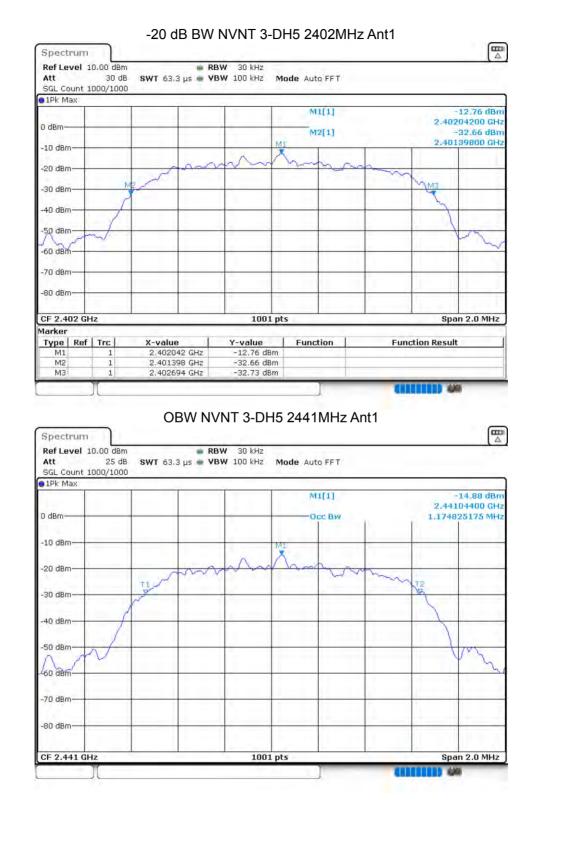
0.0 00001						
Condition	Mode	Frequency	Antenna	99% OBW	-20 dB Bandwidth	Verdict
		(MHz)		(MHz)	(MHz)	
NVNT	1-DH5	2402	Ant 1	0.8591	0.942	Pass
NVNT	1-DH5	2441	Ant 1	0.8372	0.946	Pass
NVNT	1-DH5	2480	Ant 1	0.8651	0.914	Pass
NVNT	2-DH5	2402	Ant 1	1.1768	1.32	Pass
NVNT	2-DH5	2441	Ant 1	1.1688	1.326	Pass
NVNT	2-DH5	2480	Ant 1	1.1688	1.33	Pass
NVNT	3-DH5	2402	Ant 1	1.1768	1.296	Pass
NVNT	3-DH5	2441	Ant 1	1.1748	1.296	Pass
NVNT	3-DH5	2480	Ant 1	1.1768	1.298	Pass

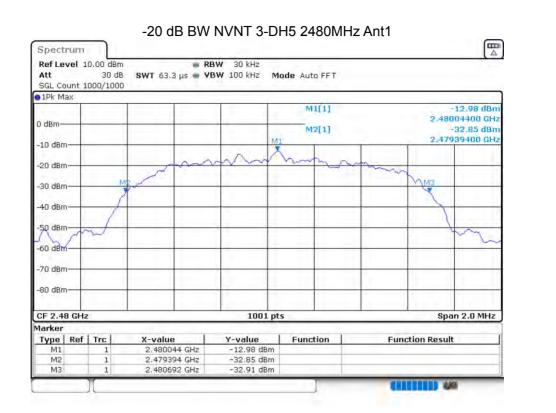
ACCREDITED

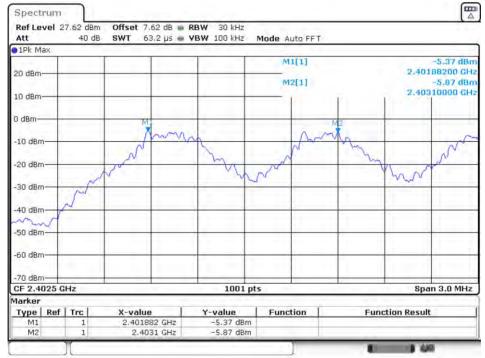
Certificate #4298.01

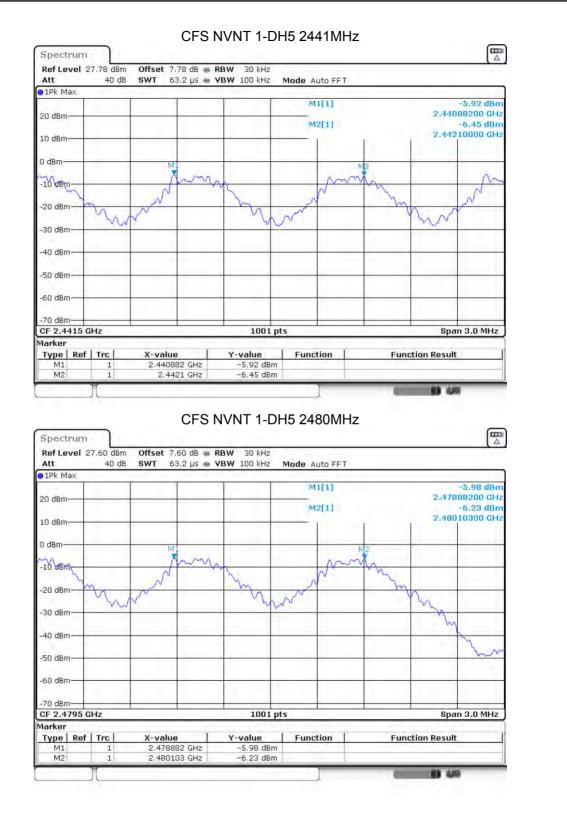
OBW NVNT 1-DH5 2402MHz Ant1

Version.1.3

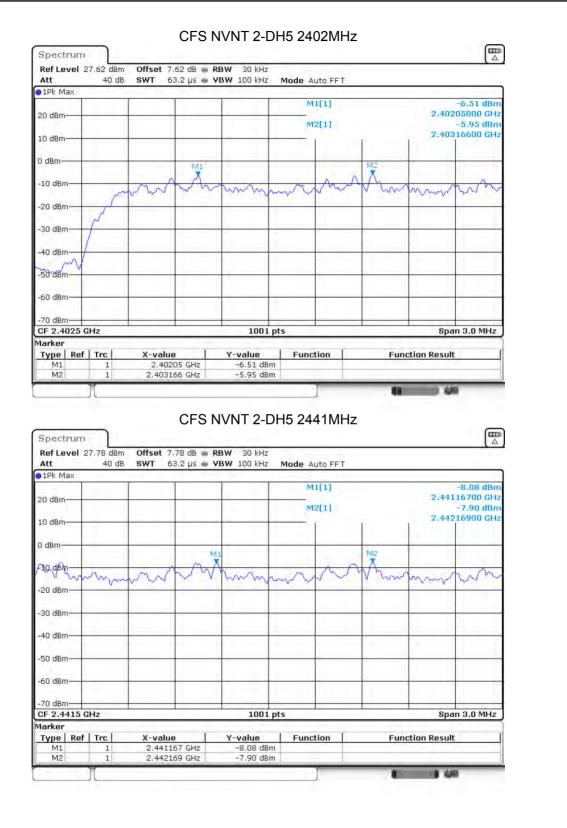







8.4 CARRIER FREQUENCIES SEPARATION

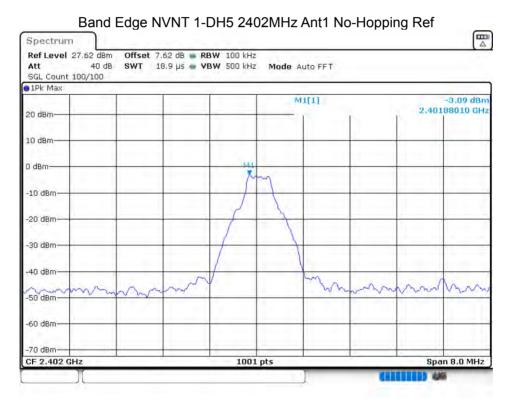
Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
		(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH5	2401.882	2403.1	1.218	0.942	Pass
NVNT	1-DH5	2440.882	2442.1	1.218	0.946	Pass
NVNT	1-DH5	2478.882	2480.103	1.221	0.914	Pass
NVNT	2-DH5	2402.05	2403.166	1.116	0.88	Pass
NVNT	2-DH5	2441.167	2442.169	1.002	0.884	Pass
NVNT	2-DH5	2479.044	2480.169	1.125	0.887	Pass
NVNT	3-DH5	2402.044	2403.052	1.008	0.864	Pass
NVNT	3-DH5	2441.044	2442.034	0.99	0.864	Pass
NVNT	3-DH5	2479.044	2480.046	1.002	0.865	Pass

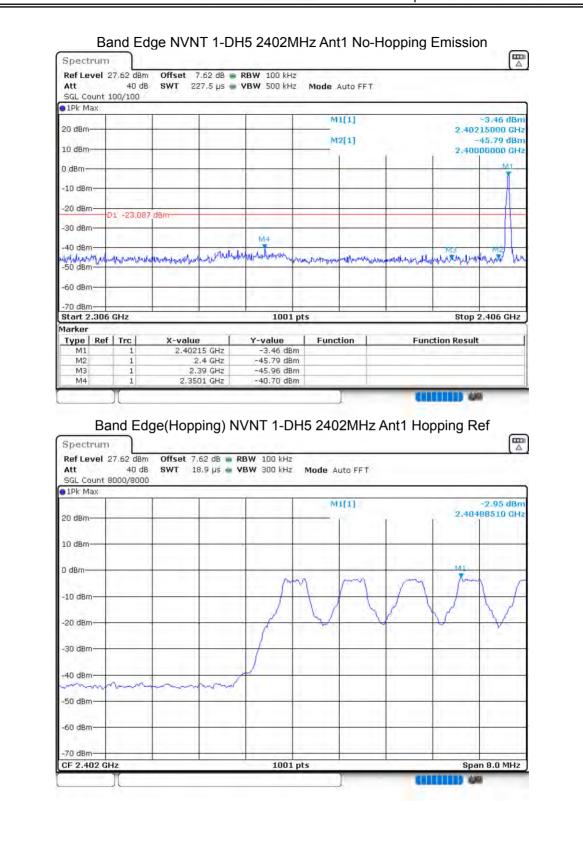

CFS NVNT 1-DH5 2402MHz



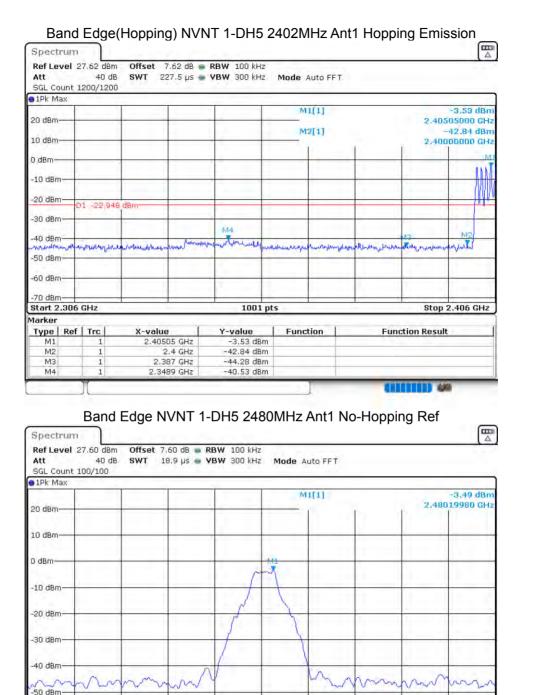
8.5 NUMBER OF HOPPING CHANNEL

Condition	Mode	Hopping Number	Limit	Verdict
NVNT	1-DH5	79	15	Pass

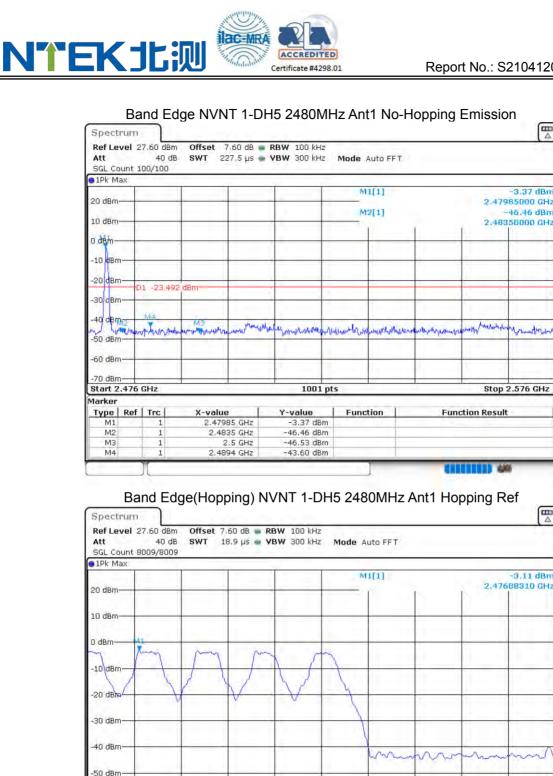

Ref Level : Att SGL Count :	40 dB	Offset 7. SWT		RBW 100 kHz VBW 300 kHz		uto Sw	eep			["
91Pk Max	1000/1000									
20 dBm						11[1] 12[1]				-3.74 dB 120040 GH -3.65 dB
10 dBm									2.48	100765 GH
-10 ===++++++++++++++++++++++++++++++++++	MAAAAA			YVVVVV					hannann	
-20 dBm	<u>tttrur</u>		a cui i cu					0.11	10010401	N I I I I I
40 dBm	_									
-50 dBm								1		
-70 dBm										
Start 2.4 GI Marker	Hz		-	1001	pts		-		Stop 2	.4835 GH
Type Ref	Trc 1	X-value 2.40200		Y-value -3,74 dB		tion	-	Fund	tion Result	1
M2	1	2,480076		-3.65 dB			1			


NTEK北测

8.6 BAND EDGE


0.0 DANDL							
Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH5	2402	Ant 1	No-Hopping	-37.6	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-37.58	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-40.11	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-38.85	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-37.84	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-37.48	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-39.63	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-39.05	-20	Pass
NVNT	3-DH5	2402	Ant 1	No-Hopping	-38.01	-20	Pass
NVNT	3-DH5	2402	Ant 1	Hopping	-37.68	-20	Pass
NVNT	3-DH5	2480	Ant 1	No-Hopping	-38.44	-20	Pass
NVNT	3-DH5	2480	Ant 1	Hopping	-38.82	-20	Pass

1001 pts

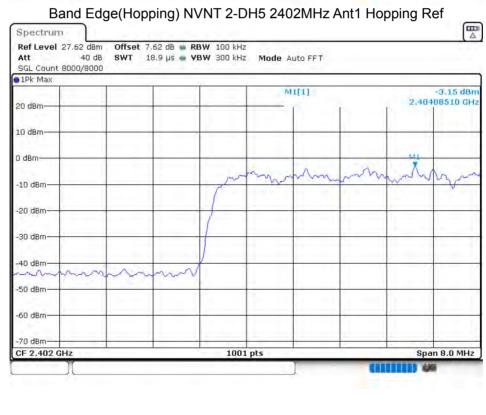

-60 dBm -70 dBm

CF 2.48 GHz

Span 8.0 MHz

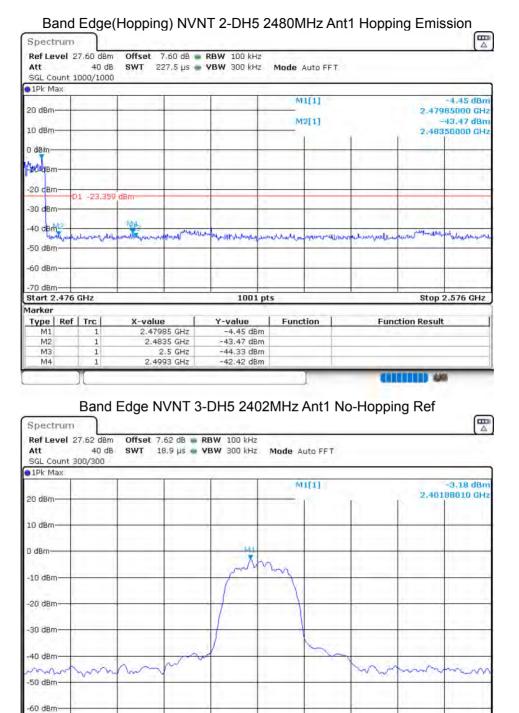

Span 8.0 MHz

1001 pts


-60 dBm -70 dBm-

CF 2.48 GHz


Att	vel 27.6 unt 100/	40 dB			RBW 100 kHz VBW 300 kHz		Auto FFT				
D1Pk M	эх	-			i i	M	1[1]		-	-4,41	dBm
20 dBm·				-	-				2.40205000		
					1.2	M2[1]			-46.65 d		
10 dBm					1	-	1	1	2.40	000000	GHz
0 dBm-										•	41
			internet de		1		11	() · · · · · · · · · · · · · · · · · ·	1		X
-10 dBm		-			1	-	-		1		1
-20 dBm					1. A.				1		
-20 050	D1 -	23,255 (1Bm	-	7	-		-			/
-30 dBm		-	-		1	-		-	-		1
-40 dBm	- 11 T				M4						
-40 OBN	and the	Acres	no de ha de de de	mounda	work and her whether		Alla bra	a halo abber our les	Ante Talli	M	1
-50 dBm	Con Marco A	on an Da Kharah	him all all all all ar	No at		anthran da a An	and many office	and have a chall be	and a Partition day	Anthon II	
											. 1.
-60 dBm											
-70 dBm						_		-			
	.306 GH	z			1001	pts			Stop	2.406	GHz
1arker	100	1				1.0	1.00		1.275		
Type	Ref Tr	rc	X-value		Y-value	Fund	tion	Fun	ction Resul	t	-
M1	1.1	1	2,4020		-4.41 dBr		100				
M2 M3		1		4 GHz	-46.65 dBr	17 million (1997)					_
		1	2.3	39 GHz	-44.67 dBr	n					

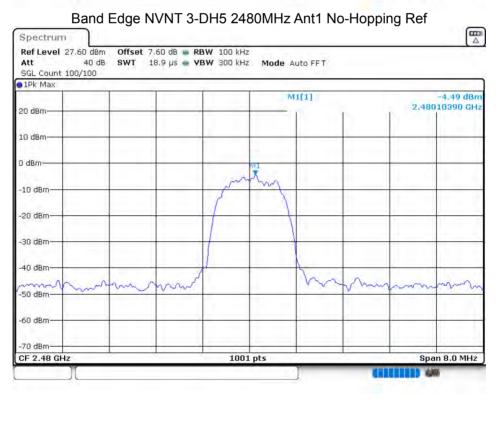


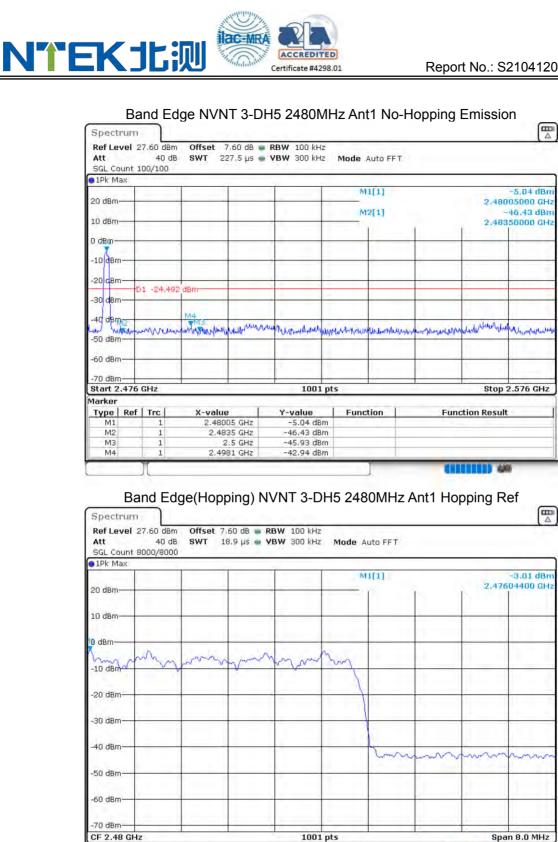
Spectrum	7 60 40**	Offert	co do - 1	DOM 100 LU-				
Ref Level 2 Att SGL Count 1	40 dB			RBW 100 kHz VBW 300 kHz	Mode Auto FF	т		
• 1Pk Max			1					
20 dBm					M1[1]		2 404	-3.27 dBn 85000 GHz
10 dBm					M2[1]	200		46.10 dBm 00000 GHz
0 dBm	_			-		-		M
-10 dBm								prove
-20 dBm-D	1 -23,149	dBm		-		-		
-30 dBm				M4		-		
-40 dBm	WWW Lynn	-	apary through	all miles under mark	hermannente	Muner water Annan	March Terle mile	Autor
-50 dBm								
-60 dBm				1			1	
-70 dBm	GHz	1	1	1001 p	ts		Stop 1	2.406 GHz
Marker				- 10 K - 1			10.0	
Type Ref M1 M2	1 1		85 GHz .4 GHz	Y-value -3.27 dBm -46.10 dBm		Fun	ction Result	
M3 M4	1	2.	39 GHz	-44.66 dBm				
M4		2. 2.35	39 GHz D3 GHz	-44.66 dBm -40.63 dBm		No-Hoppi	ng Ref	
M4 Spectrum Ref Level 2 Att	1 1 Band 7.60 dBm 40 dB	2. 2.35 Edge N Offset 7	39 GHz 03 GHz VNT 2- 60 dB R	-44.66 dBm -40.63 dBm DH5 2480 BW 100 kHz			ng Ref	
M4 Spectrum Ref Level 2	1 1 Band 7.60 dBm 40 dB	2. 2.35 Edge N Offset 7	39 GHz 03 GHz VNT 2- 60 dB R	-44.66 dBm -40.63 dBm DH5 2480 BW 100 kHz	DMHz Ant1		ng Ref	
M4 Spectrum Ref Level 2 Att SGL Count 1	1 1 Band 7.60 dBm 40 dB	2. 2.35 Edge N Offset 7	39 GHz 03 GHz VNT 2- 60 dB R	-44.66 dBm -40.63 dBm DH5 2480 BW 100 kHz	DMHz Ant1			-4,25 dBm
M4 Spectrum Ref Level 2 Att SGL Count 1	1 1 Band 7.60 dBm 40 dB	2. 2.35 Edge N Offset 7	39 GHz 03 GHz VNT 2- 60 dB R	-44.66 dBm -40.63 dBm DH5 2480 BW 100 kHz	OMHz Ant1 Mode Auto FF1			[△
M4 Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max	1 1 Band 7.60 dBm 40 dB	2. 2.35 Edge N Offset 7	39 GHz 03 GHz VNT 2- 60 dB R	-44.66 dBm -40.63 dBm DH5 2480 BW 100 kHz	OMHz Ant1 Mode Auto FF1			-4,25 dBn
M4 Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max 20 dBm-	1 1 Band 7.60 dBm 40 dB	2. 2.35 Edge N Offset 7	39 GHz 03 GHz VNT 2- 60 dB R	-44.66 dBm -40.63 dBm DH5 2480 BW 100 kHz BW 300 kHz	OMHz Ant1 Mode Auto FF1			-4,25 dBn
M4 Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 20 dBm 10 dBm	1 1 Band 7.60 dBm 40 dB	2. 2.35 Edge N Offset 7	39 GHz 03 GHz VNT 2- 60 dB R	-44.66 dBm -40.63 dBm DH5 2480 BW 100 kHz BW 300 kHz	DMHz Ant1 Mode Auto FF1			-4,25 dBn
M4 Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 20 dBm 10 dBm 0 dBm	1 1 Band 7.60 dBm 40 dB	2. 2.35 Edge N Offset 7	39 GHz 03 GHz VNT 2- 60 dB R	-44.66 dBm -40.63 dBm DH5 2480 BW 100 kHz BW 300 kHz	DMHz Ant1 Mode Auto FF1			-4,25 dBn
M4 Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm	1 1 Band 7.60 dBm 40 dB	2. 2.35 Edge N Offset 7	39 GHz 03 GHz VNT 2- 60 dB R	-44.66 dBm -40.63 dBm DH5 2480 BW 100 kHz BW 300 kHz	DMHz Ant1 Mode Auto FF1			-4,25 dBn
M4 Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	1 1 Band 7.60 dBm 40 dB	2. 2.35 Edge N Offset 7	39 GHz 03 GHz VNT 2- 60 dB R	-44.66 dBm -40.63 dBm DH5 2480 BW 100 kHz BW 300 kHz	DMHz Ant1 Mode Auto FF1			-4,25 dBn
M4 Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	1 1 Band 7.60 dBm 40 dB	2. 2.35 Edge N Offset 7	39 GHz 03 GHz VNT 2- 60 dB R	-44.66 dBm -40.63 dBm DH5 2480 BW 100 kHz BW 300 kHz	DMHz Ant1 Mode Auto FF1			-4,25 dBn
M4 Spectrum Ref Level 2 Att SGL Count 1 PIPK Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 1 Band 7.60 dBm 40 dB	2. 2.35 Edge N Offset 7	39 GHz 03 GHz VNT 2- 60 dB R	-44.66 dBm -40.63 dBm DH5 2480 BW 100 kHz BW 300 kHz	DMHz Ant1 Mode Auto FF1			-4,25 dBn
M4 Spectrum Ref Level 2 Att SGL Count 1 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -5	1 1 Band 7.60 dBm 40 dB	2. 2.35 Edge N Offset 7	39 GHz 03 GHz VNT 2- 60 dB R	-44.66 dBm -40.63 dBm DH5 2480 BW 100 kHz BW 300 kHz	DMHz Ant1 Mode Auto FF1			-4,25 dBn

1001 pts

-70 dBm-

CF 2.402 GHz


Span 8.0 MHz


Spectrum			0.000						
Ref Level 27 Att SGL Count 10	40 dB			BW 100 kHz BW 300 kHz	Mode /	Auto FFT.			
SGL Count It 1Pk Max	00/100	-	_		-				
					M	1[1]		C. New	-3.11 dBm
20 dBm					M	2[1]			185000 GHz -46.09 dBm
10 dBm	-			-					100000 GHz
0 dBm				-					M1
-10 dBm						_			A
-20 dBm								1	
-30 dBm-	1 -23,178	dBm	1			_			
	-		M4			1	1		
-40 dBm-	4 march March	Medromants	multhum	moutherended	mitheful days	human and man provide	Mathanna	May Pr estate	any with the
-50 dBm	Sec. M. Level	and the offer she			an in a flan a saide	a way a day a		A. West on	
-60 dBm					_				
-70 dBm						1	1		
Start 2.306 (GHz			1001 p	ots			Stop	2.406 GHz
Marker Type Ref	Trc	X-value	1	Y-value	Fund	tion	Fund	tion Result	t
M1 M2	1		35 GHz .4 GHz	-3.11 dBm -46.09 dBm					
M3	1		39 GHz	-46.28 dBm					
Spectrum		2.339 ge(Hopp	- X	-41.20 dBm		2MHz A	Int1 Hop	oping R	ef
Bai Spectrum Ref Level 2 Att	nd Edg 7.62 dBm 40 dB	2,339 ge(Hopp offset 7.	0ing) N\ 62 dB ■ R B	'NT 3-Dŀ	45 240		nt1 Ho	oping R	
Bai Spectrum Ref Level 2	nd Edg 7.62 dBm 40 dB	2,339 ge(Hopp offset 7.	0ing) N\ 62 dB ■ R B	'NT 3-DH	H5 240 Mode A	uto FFT	ant1 Hop	oping R	
Bai Spectrum Ref Level 27 Att SGL Count Bi 1Pk Max	nd Edg 7.62 dBm 40 dB	2,339 ge(Hopp offset 7.	0ing) N\ 62 dB ■ R B	'NT 3-DH	H5 240 Mode A		ant1 Hop		-2,90 dBm
Bai Spectrum Ref Level 2 Att SGL Count Bi	nd Edg 7.62 dBm 40 dB	2,339 ge(Hopp offset 7.	0ing) N\ 62 dB ■ R B	'NT 3-DH	H5 240 Mode A	uto FFT	ant1 Hop		
Bai Spectrum Ref Level 27 Att SGL Count Bi 1Pk Max	nd Edg 7.62 dBm 40 dB	2,339 ge(Hopp offset 7.	0ing) N\ 62 dB ■ R B	'NT 3-DH	H5 240 Mode A	uto FFT	nt1 Hop		-2,90 dBm
Bai Spectrum Ref Level 27 Att SGL Count 80 • 1Pk Max 20 dBm	nd Edg 7.62 dBm 40 dB	2,339 ge(Hopp offset 7.	0ing) N\ 62 dB ■ R B	'NT 3-DH	H5 240 Mode A	uto FFT	ant1 Hop		-2,90 dBm
Bai Spectrum Ref Level 27 Att SGL Count 80 • 1Pk Max 20 dBm	nd Edg 7.62 dBm 40 dB	2,339 ge(Hopp offset 7.	0ing) N\ 62 dB ■ R B	'NT 3-DH	H5 240 Mode A	uto FFT	ant1 Hop		-2,90 dBm
Bai Spectrum Ref Level 27 Att SGL Count 80 • IPk Max 20 dBm- 10 dBm- D dBm-	nd Edg 7.62 dBm 40 dB	2,339 ge(Hopp offset 7.	0ing) N\ 62 dB ■ R B	'NT 3-DH	H5 240 Mode A	uto FFT	ant1 Hop		-2,90 dBm
Bai Spectrum Ref Level 2: Att SGL Count 80 1Pk Max 20 dBm 10 dBm	nd Edg 7.62 dBm 40 dB	2,339 ge(Hopp offset 7.	0ing) N\ 62 dB ■ R B	'NT 3-DH	H5 240 Mode A	uto FFT	Int1 Hop		-2,90 dBm
Bai Spectrum Ref Level 27 Att SGL Count 80 • IPk Max 20 dBm- 10 dBm- D dBm-	nd Edg 7.62 dBm 40 dB	2,339 ge(Hopp offset 7.	0ing) N\ 62 dB ■ R B	'NT 3-DH	H5 240 Mode A	uto FFT	ant1 Hop		-2,90 dBm
Bai Spectrum Ref Level 2: Att SGL Count 80 • 1Pk Max 20 dBm 10 dBm 0 dBm - 10 dBm - 20 dBm	nd Edg 7.62 dBm 40 dB	2,339 ge(Hopp offset 7.	0ing) N\ 62 dB ■ R B	'NT 3-DH	H5 240 Mode A	uto FFT	ant1 Hop		-2,90 dBm
Bai Spectrum Ref Level 2: Att SGL Count 80 • IPk Max 20 dBm- 10 dBm- 0 dBm- -10 dBm-	nd Edg 7.62 dBm 40 dB	2,339 ge(Hopp offset 7.	0ing) N\ 62 dB ■ R B	'NT 3-DH	H5 240 Mode A	uto FFT	unt1 Hop		-2,90 dBm
Bai Spectrum Ref Level 2: Att SGL Count 80 • 1Pk Max 20 dBm 10 dBm 0 dBm - 10 dBm - 20 dBm	nd Edg 7.62 dBm 40 dB	2,339 ge(Hopp offset 7.	0ing) N\ 62 dB ■ R B	'NT 3-DH	H5 240 Mode A	uto FFT	Inti Hop		-2,90 dBm
Bai Spectrum Ref Level 2: Att SGL Count 80 • 1Pk Max 20 dBm 10 dBm - 0 dBm - 10 dBm - 20 dBm - 30 dBm - 40 dBm	nd Edg 7.62 dBm 40 dB	2,339 ge(Hopp offset 7.	0ing) N\ 62 dB ■ R B	'NT 3-DH	H5 240 Mode A	uto FFT	Ant1 Hop		-2,90 dBm
Bai Spectrum Ref Level 2: Att SGL Count 80 • 1Pk Max 20 dBm 10 dBm - 0 dBm - 10 dBm - 20 dBm - 30 dBm	nd Edg 7.62 dBm 40 dB	2,339 ge(Hopp offset 7.	0ing) N\ 62 dB ■ R B	'NT 3-DH	H5 240 Mode A	uto FFT	Ant1 Hop		-2,90 dBm
Bai Spectrum Ref Level 2: Att SGL Count 80 • 1Pk Max 20 dBm 10 dBm - 0 dBm - 10 dBm - 20 dBm - 30 dBm - 40 dBm	nd Edg 7.62 dBm 40 dB	2,339 ge(Hopp offset 7.	0ing) N\ 62 dB ■ R B	'NT 3-DH	H5 240 Mode A	uto FFT	ant1 Hop		-2,90 dBm
Bai Spectrum Ref Level 2: Att SGL Count 80 • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	nd Edg 7.62 dBm 40 dB	2,339 ge(Hopp offset 7.	0ing) N\ 62 dB ■ R B	'NT 3-DH	H5 240 Mode A	uto FFT	ant1 Hop		-2,90 dBm
Bai Spectrum Ref Level 2: Att SGL Count 80 • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	nd Edg 7.62 dBm 40 dB 3000/8000	2,339 ge(Hopp offset 7.	0ing) N\ 62 dB ■ R B	'NT 3-DH	H5 240	uto FFT	ant1 Hop	2.40- MI	-2,90 dBm



O 1Pk M	ax								
	1				M1[1]		-3.07 d	Bn	
20 dBm				-			2.40305000 0		
10 dBm				1.1	M2[1]		-44.14 dB 2.40000000 G		
					1	1			
0 dBm-			-	1			M N	11	
to do-							- In In	4A	
-10 dBn				1					
-20 dBn	1-1-								
		1 -22,89	9 dBm						
-30 dBn	1-1-	_						-	
-40 dBn	-			M4			M2		
hadder	inverse	mutallent	were and the second second second	man plant on prover plant	warming a firm growth	www.wowlendergunghe	maring providente the		
-50 dBn	1			-				-	
1.0									
-60 dBn				1 1 1 1					
-70 dBn				-				_	
Start 2		GHz	1 1	1001 pts		-	Stop 2.406 GI	Hz	
Marker		10.00			The Area				
Type	Ref	Trc	X-value	Y-value	Function	Fur	nction Result		
M1		1	2.40305 GHz	-3.07 dBm					
M2		1	2.4 GHz	-44.14 dBm				_	
M3	(*	1	2.39 GHz	-45.57 dBm					
M4		1	2.3485 GHz	-40.58 dBm					

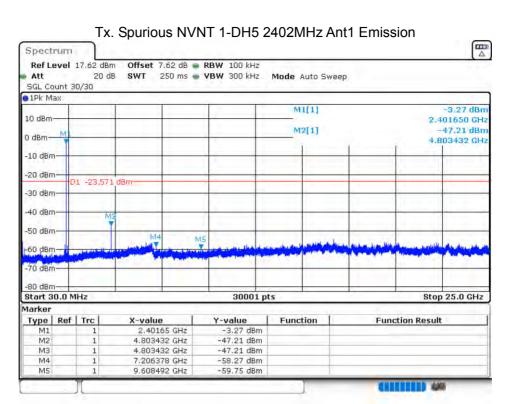
NTEK北 测	Certificate #4298.01

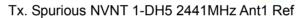
Band Edge(Hopping) NVNT 3-DH5 2480MHz Ant1 Hopping Emission	
	1

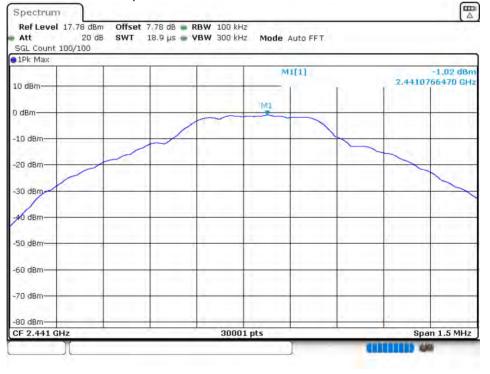
40 d	B SWT 22			Mode Auto	FFT.				
			M1[1] M2[1]				-4,76 dBm 2,47685000 GHz -44,48 dBm 2,48350000 GHz		
1 -23,00	07 dBm								
M4.	M3 MMMMgmmm	Northerson	manymenter	Moriontopopulario	normal particular	and the states of the states o	whether	nontransmember	
					_				
011-	1		1001 -		1		Otar	2.576 GHz	
GFIZ			1001 p	LS	_		acut	2.370 GH2	
Trc 1	2.4835 GHz 2.5 GHz		Y-value -4.76 dBm	Function	on Function Result				
1 1 1			and have been been as a second s						
	40 d 000/100 11 -23,00 M4 0/10 M4 0/10 GHz Trc 1 1 1	40 dB SWT 22 000/1000 11 -23,007 dBm M4 M3 W4 M3 W4 M3 M4 M3 M4 M3 W4 M3 M4 M3 1 -23,007 dBm M4 M3 1 -23,007 dBm 1 -2,4768 1 -2,4768	40 dB SWT 227.5 μs 000/1000 11 -23,007 dBm M4 M3 M4 M3 GHz GHz Trc X-value 1 2.47685 GHz 1 2.4835 GHz 1 2.5 GHz	40 dB SWT 227.5 μs VBW 300 kHz 000/1000 1 -23,007 dBm M4 M3 M4 M3 M4 M3 GHz 1001 p Trc X-value Y-value 1 2.47685 GHz -44.76 dBm 1 2.4835 GHz -44.84 dBm 1 2.5 GHz -44.89 dBm	40 dB SWT 227.5 μs VBW 300 kHz Mode Auto 000/1000 M1[1 M2[1]	40 dB SWT 227.5 µs VBW 300 kHz Mode Auto FFT .000/1000 M1[1] M2[1] M2[1] M2[1] M4 M3 M4 M3	40 dB SWT 227.5 μs VBW 300 kHz Mode Auto FFT 000/1000 M1[1] M2[1] M2[1] M2[1] M2[1] M4 M3 M4 M3	40 dB SWT 227.5 μs VBW 300 kHz Mode Auto FFT 000/1000 M1[1] 2.47 M2[1] 2.47 M2[1] 2.47 M2[1] 2.47 M2[1] 2.48 M2[1] 2.48 M4 M3 M2[1] 2.48 M4 M4 M3 M2[1] 2.48 M4 M4	

8.7 CONDUCTED RF SPURIOUS EMISSION

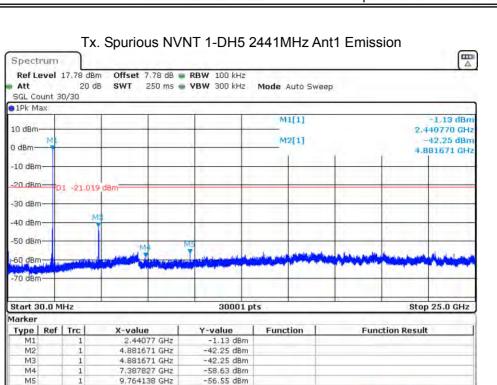
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-43.63	-20	Pass
NVNT	1-DH5	2441	Ant 1	-41.23	-20	Pass
NVNT	1-DH5	2480	Ant 1	-45.82	-20	Pass
NVNT	2-DH5	2402	Ant 1	-46.3	-20	Pass
NVNT	2-DH5	2441	Ant 1	-39.74	-20	Pass
NVNT	2-DH5	2480	Ant 1	-44.79	-20	Pass
NVNT	3-DH5	2402	Ant 1	-45.58	-20	Pass
NVNT	3-DH5	2441	Ant 1	-38.34	-20	Pass
NVNT	3-DH5	2480	Ant 1	-46.17	-20	Pass

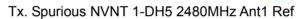

ACCREDITED


Certificate #4298.01

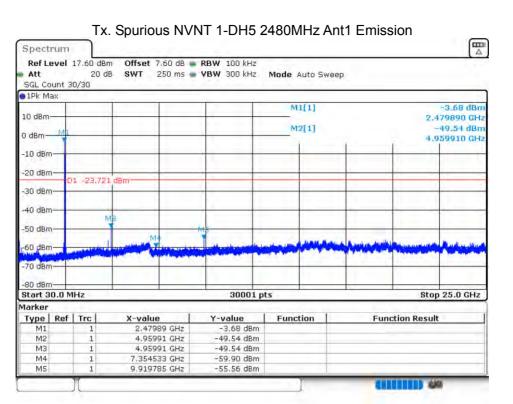


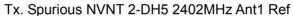
Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Ref

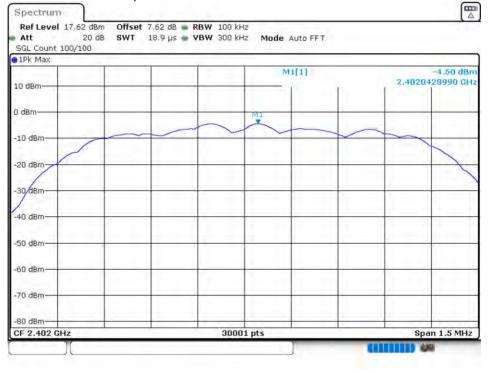


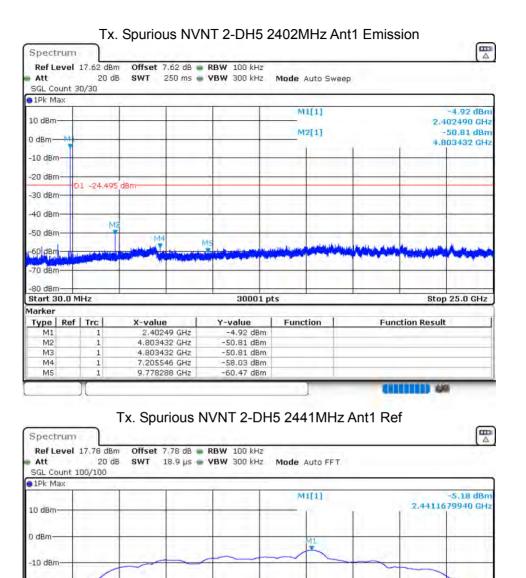


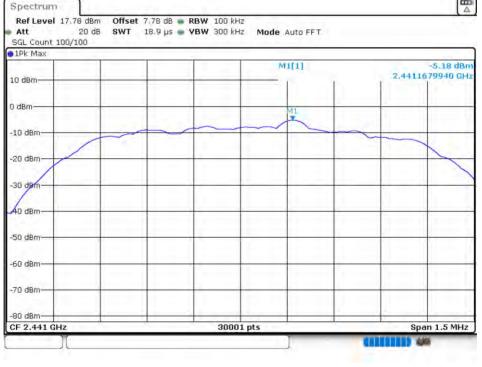


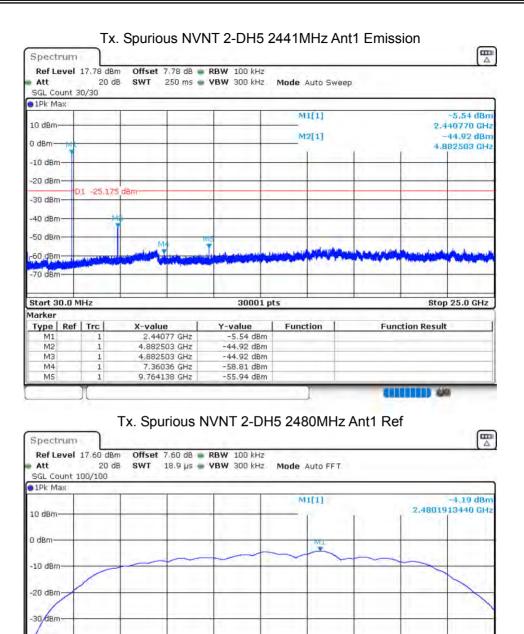




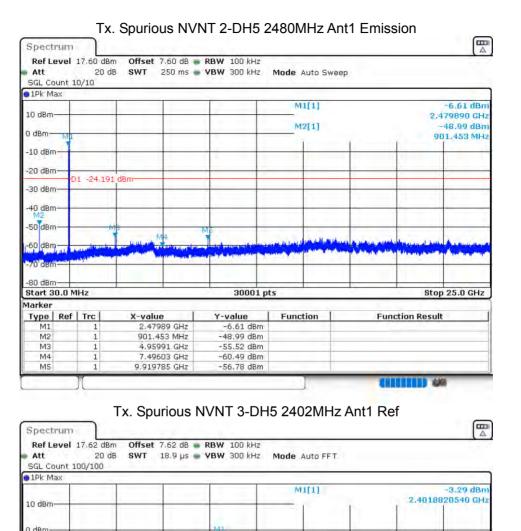






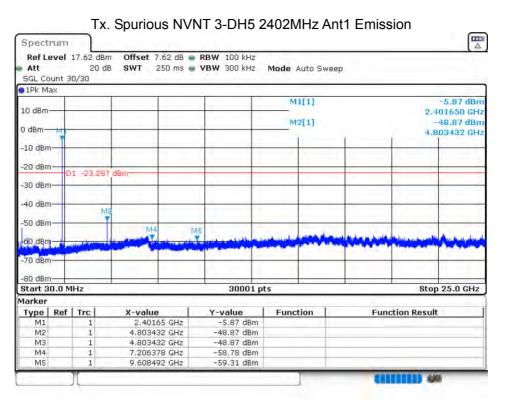


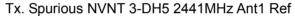
30001 pts

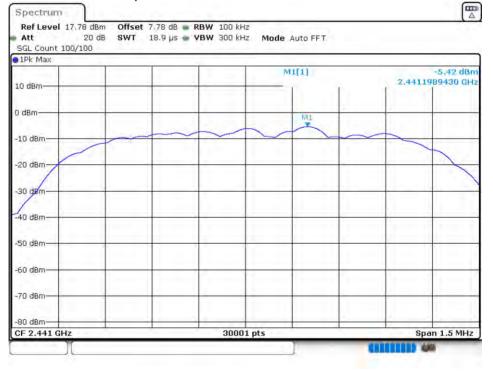

-40 dBm -50 dBm -60 dBm

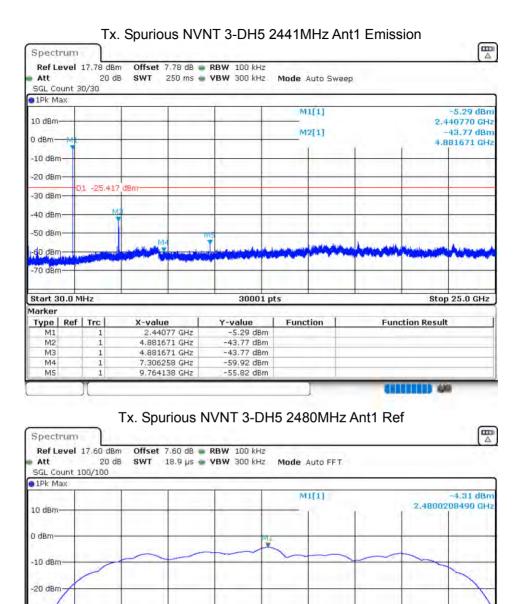
-70 dBm -80 dBm

CF 2.48 GHz


Span 1.5 MHz







 Att
 20 dB
 SWT
 18.9 µs
 YBW 300 kHz
 Mode Auto FFT.

 SGL Count 100/100
 IPK Max
 M1[1]
 -4.31 dBm

 10 dBm
 2.4800208490 GHz
 0 dBm

 -10 dBm
 M1
 -4.31 dBm

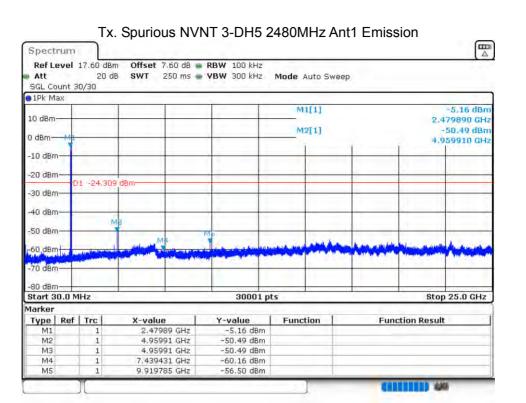
 -20 dBm
 M1
 -4.31 dBm

 -30 dBm
 M1
 -4.31 dBm

 -50 dBm
 M1
 -4.31 dBm

 -60 dBm
 M1
 -4.31 dBm

 -70 dBm
 -9.000 gBm
 -9.000 gBm


 -60 dBm
 -9.000 gBm
 -9.000 gBm

 -60 dBm
 -9.000 gBm
 -9.000 gBm

 -70 dBm
 -9.000 gBm
 -9.000 gBm

 -60 dBm
 -9.000 gBm
 -9.000 gBm

END OF REPORT