TEST REPORT

For FCC Part15B

Report No.: CHTEW22080191 Report No.

Report verification:

Project No. SHT2207065102EW

FCC ID.....: 2AZP5-P280PT

Applicant's name.....: DUO AMERICA, LLC

Product Name: Smart watch

Trade Mark HYUNDAI

Model No. P280

Listed Model(s)

Standard: 47 CFR FCC Part 15 Subpart B

Date of receipt of test sample........... Jul.18, 2022

Date of issue...... Aug.08, 2022

Result...... Pass

Compiled by

(Position+Printed name+Signature): File administrator Fanghui Zhu

Jang Mr Zhu

Supervised by

(Position+Printed name+Signature): Project Engineer Caspar Chen

Carpar Chen

Approved by

(position+printed name+signature)..: RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely corresponds to the test sample.

Report No.: CHTEW22080191 Page: 2 of 16 Date of issue: 2022-08-08

Contents

<u>!-</u>	1EST STANDARDS AND REPORT VERSION	<u></u>
1.1.	Test Standards	3
1.2.	Report version information	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Testing Laboratory Information	5
<u>4.</u>	TEST CONFIGURATION	6
4.1.	Descriptions of test mode	6
4.2.	Configuration of Tested System	6
4.3.	Support unit used in test configuration and system	7
4.4.	Environmental conditions	7
4.5.	Statement of the measurement uncertainty	7
4.6.	Equipments Used during the Test	8
<u>5.</u>	TEST CONDITIONS AND RESULTS	9
5.1.	Conducted Emissions	9
5.2.	Radiated Emissions	11
<u>6.</u>	TEST SETUP PHOTOS	15
7	EXTERNAL AND INTERNAL PHOTOS	16

Report No.: CHTEW22080191 Page: 3 of 16 Date of issue: 2022-08-08

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

47 CFR FCC Part 15 Subpart B - Unintentional Radiators

<u>ANSI C63.4: 2014</u> – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz

1.2. Report version information

Revision No.	Date of issue	Description		
N/A	2022-08-08	Original		

Report No.: CHTEW22080191 Page: 4 of 16 Date of issue: 2022-08-08

2. TEST DESCRIPTION

Section	Test Item	Section in CFR 47	Result #1	Test Engineer	
5.1	Conducted Emissions	Emissions 15.107(a) PASS		Junman Wang	
5.2 Radiated Emissions		15.109(a)	PASS	Yifan Wang	

Note:

#1: The test result does not include measurement uncertainty value

Report No.: CHTEW22080191 Page: 5 of 16 Date of issue: 2022-08-08

3. **SUMMARY**

3.1. Client Information

Applicant:	DUO AMERICA, LLC		
Address:	925 NW 26TH ST, DORAL, MIAMI, Florida, United States		
Manufacturer:	Shenzhen Smart Care Technology Limited		
	Workshop 2601, Anda Electronic Industrial Park, Heping Community,		
Address:	Fuhai Sub-district, Bao'an District, Shenzhen, China		

3.2. Product Description

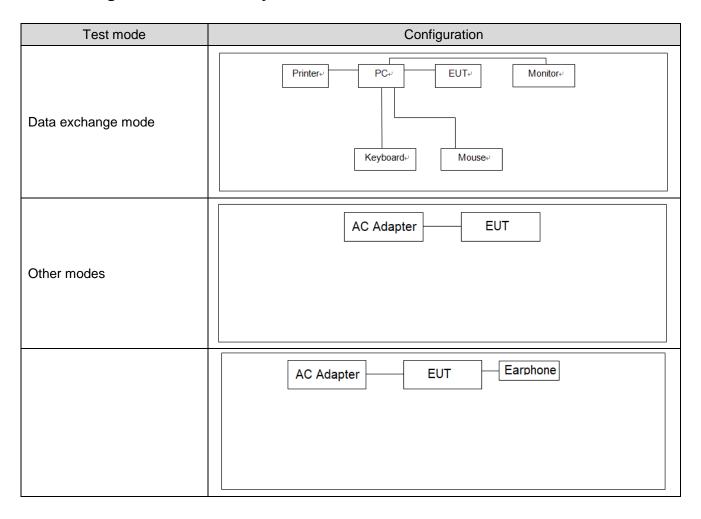
Main unit information:			
Product Name:	Smart watch		
Trade Mark:	HYUNDAI		
Model No.:	P280		
Listed Model(s):	-		
Power supply:	DC 3.7V from Battery		
Hardware version:	V11		
Software version:	P280_Call E08B_R11S_Hyundai_0.0.3_FactoryDownload		

3.3. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.			
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China			
	Tel: 86-755-26715499			
Connect information:	E-mail: cs@szhtw.com.cn			
	http://www.szhtw.com.cn			
Qualifications	Туре	Accreditation Number		
Qualifications	FCC	762235		

Report No.: CHTEW22080191 Page: 6 of 16 Date of issue: 2022-08-08

4. TEST CONFIGURATION


4.1. Descriptions of test mode

Test mode	Description
Charging mode	Keep the EUT in charging mode, but the EUT shut down.

Pre-scan above all test mode, found below test mode which it was worse case mode, so only show the test data for worse case mode on the test report

Test Item	Test mode for worse case
Conducted Emissions	Charging mode
Radiated Emissions	Charging mode

4.2. Configuration of Tested System

Report No.: CHTEW22080191 Page: 7 of 16 Date of issue: 2022-08-08

4.3. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Whether support unit is used?							
✓ Yes							
Item Equipment Trade Name Model No.							
1	Adapter	HUAWEI	HW-050200C01				
2	-	-	-				

4.4. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C		
Relative Humidity:	30~60 %		
Air Pressure:	950~1050mba		

4.5. Statement of the measurement uncertainty

Test Items	MeasurementUncertainty		
Conducted emission	3.25dB		
Dedicted emission	<1GHz: 4.22dB		
Radiated emission	>1GHz:5.06ppm		

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: CHTEW22080191 Page: 8 of 16 Date of issue: 2022-08-08

4.6. Equipments Used during the Test

•	Conducted Emission						
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Shielded Room	Albatross projects	HTWE0114	N/A	N/A	2018/09/28	2023/09/27
•	EMI Test Receiver	R&S	HTWE0111	ESCI	101247	2021/9/14	2022/9/13
•	Artificial Mains	SCHWARZBECK	HTWE0113	NNLK 8121	573	2021/9/17	2022/9/16
•	Pulse Limiter	R&S	HTWE0033	ESH3-Z2	100499	2021/9/13	2022/9/12
•	RF Connection Cable	HUBER+SUHNER	HTWE0113-02	ENVIROFLE X_142	EF-NM- BNCM-2M	2021/9/17	2022/9/16
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A

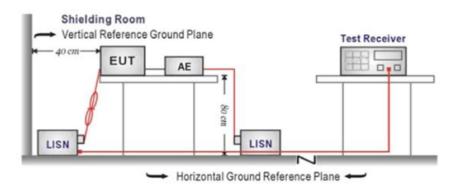
Radiated Emission-6th test site									
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2018/09/30	2022/09/29		
•	EMI Test Receiver	R&S	HTWE0099	ESCI	100900	2021/9/14	2022/9/13		
•	Ultra-Broadband Antenna	SCHWARZBEC K	HTWE0119	VULB9163	546	2020/04/28	2023/04/27		
•	Pre-Amplifer	SCHWARZBEC K	HTWE0295	BBV 9742	N/A	2021/11/5	2022/11/4		
•	RF Connection Cable	HUBER+SUHN ER	HTWE0062-01	N/A	N/A	2021/02/26	2022/02/25		
•	RF Connection Cable	HUBER+SUHN ER	HTWE0062-02	SUCOFLEX10 4	501184/4	2021/02/26	2022/02/25		
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A		

•	Radiated emission-7th test site									
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)			
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	N/A	2018/09/27	2022/09/26			
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2021/9/13	2022/9/12			
•	Horn Antenna	SCHWARZBE CK	HTWE0126	9120D	1011	2020/04/01	2023/03/31			
•	Broadband Pre- amplifier	SCHWARZBE CK	HTWE0201	BBV 9718	9718-248	2021/03/05	2022/03/04			
•	RF Connection Cable	HUBER+SUH NER	HTWE0121-01	RE-7-FH	N/A	2021/03/05	2022/03/04			
•	Test Software	Audix	N/A	E3	N/A	N/A	N/A			

Report No.: CHTEW22080191 Page: 9 of 16 Date of issue: 2022-08-08

5. TEST CONDITIONS AND RESULTS

5.1. Conducted Emissions


LIMIT

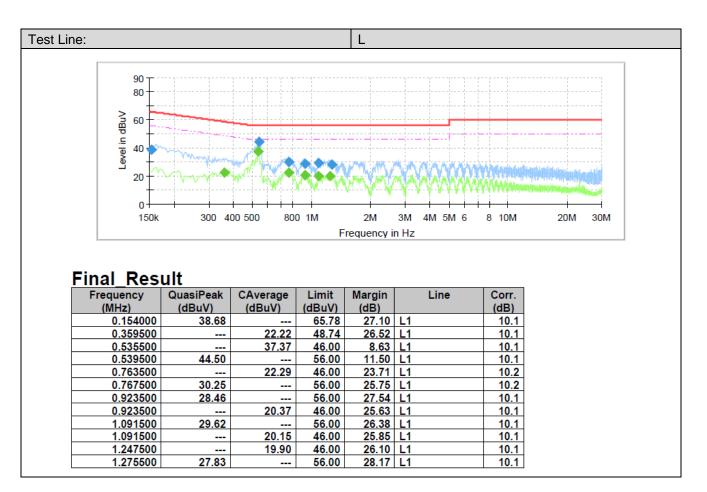
FCC CFR Title 47 Part 15 Subpart B Section 15.107:

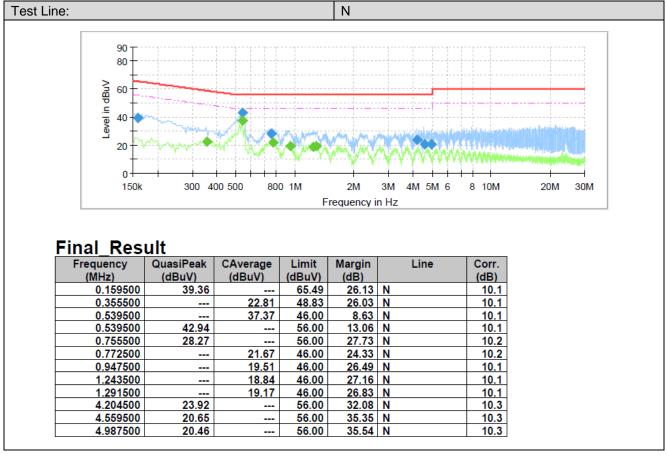
Frequency range (MHz)	Limit (dBuV)				
r requericy rarige (wir iz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE


- 1. The EUT was setup according to ANSI C63.4:2014
- 2. The EUT was placed on a plat form of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50ohm / 50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.


TEST MODE:

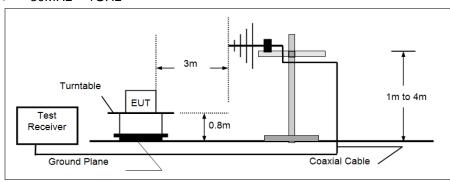
Please refer to the clause 3.3

TEST RESULTS

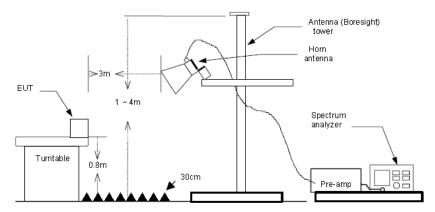
 Report No.: CHTEW22080191 Page: 10 of 16 Date of issue: 2022-08-08

Report No.: CHTEW22080191 Page: 11 of 16 Date of issue: 2022-08-08

5.2. Radiated Emissions


LIMIT

FCC CFR Title 47 Part 15 Subpart B Section 15.109


Frequency	Limit (dBuV/m @3m)	Value	
30MHz-88MHz	40.00	Quasi-peak	
88MHz-216MHz	43.50	Quasi-peak	
216MHz-960MHz	46.00	Quasi-peak	
960MHz-1GHz	54.00	Quasi-peak	
Above 1GHz	54.00	Average	
ABOVE TOTIZ	74.00	Peak	

TEST CONFIGURATION

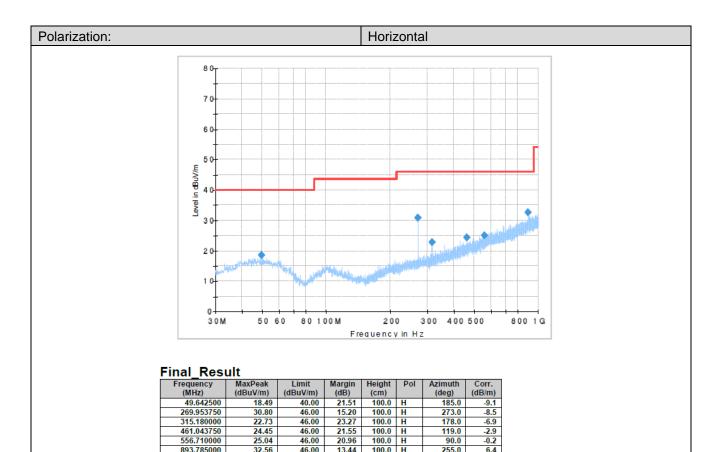
➢ 30MHz ~ 1GHz

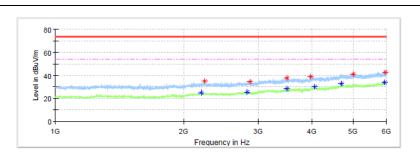
Above 1GHz

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.4:2014.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground.
- 3. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 4. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 5. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1GHz,
 - RBW=120KHz, VBW=300KHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, theemission measurement will be repeated using the quasi-peak detector and reported.
 - (3) From 1GHz to 5th harmonic, RBW=1MHz, VBW=3MHz

Report No.: CHTEW22080191 Page: 12 of 16 Date of issue: 2022-08-08


TEST MODE:


Please refer to the clause 3.3

TEST RESULTS

Note: Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor The emission levels of frequency above 6GHz are very lower than limit and not show in test report.

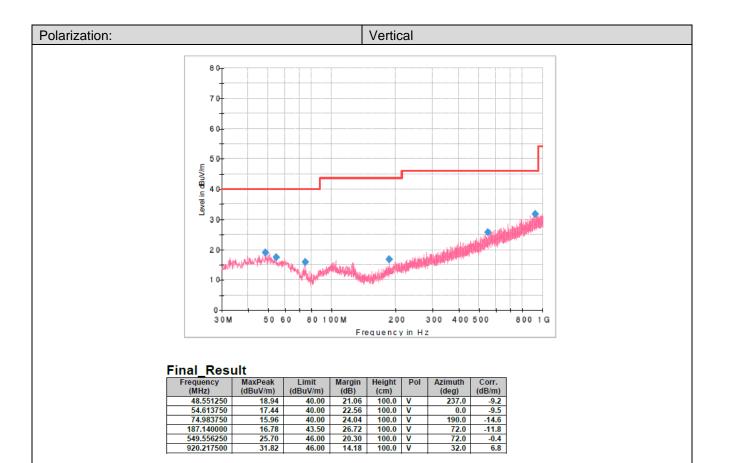
Date of issue: Report No.: CHTEW22080191 Page: 13 of 16 2022-08-08

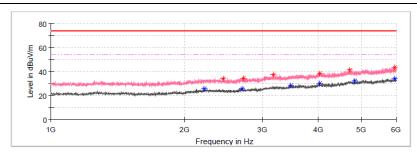
100.0 H 100.0 H

119.0 90.0 255.0

Critical Fregs									
Frequency	MaxPeak	Average	Limit	Margin	Height	Pol	Azimuth	Corr.	
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)		(deg)	(dB/m)	
5011.250000	41.12	.	74.00	32.88	150.0	Η	0.0	6.5	
5965.000000	42.77	-	74.00	31.23	150.0	Н	2.0	9.1	
3500.625000		28.41	54.00	25.59	150.0	Н	14.0	-0.9	
2869.375000	34.26	-	74.00	39.74	150.0	Н	42.0	-3.3	
3495.625000	37.58	-	74.00	36.42	150.0	Н	70.0	-0.9	
5932.500000		33.84	54.00	20.16	150.0	Н	70.0	9.1	
2200.625000		25.09	54.00	28.91	150.0	Н	84.0	-4.4	
2825.000000		25.81	54.00	28.19	150.0	Н	84.0	-3.6	
4689.375000		32.65	54.00	21.35	150.0	Н	98.0	5.1	
2239.375000	34.98		74.00	39.02	150.0	Н	125.0	4.5	
4063.750000	-	29.84	54.00	24.16	150.0	Н	209.0	1.5	
3975.000000	38.92	-	74.00	35.08	150.0	Н	223.0	1.0	
22.31000000	COICE		14100	20100	.5010		12010		

461.043750 556.710000 893.785000


24.45 25.04 32.56


46.00 46.00

46.00

13.44

Report No.: CHTEW22080191 Page: 14 of 16 Date of issue: 2022-08-08

Critical_Freqs

<u></u>									
Frequency	MaxPeak	Average	Limit	Margin	Height	Pol	Azimuth	Corr.	
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)		(deg)	(dB/m)	
2701.875000	-	25.74	54.00	28.26	150.0	V	0.0	-3.6	
4040.000000	38.58		74.00	35.42	150.0	V	0.0	1.5	
4040.000000	-	29.84	54.00	24.16	150.0	V	0.0	1.5	
4717.500000	41.20		74.00	32.80	150.0	٧	0.0	5.3	
5949.375000	43.10	-	74.00	30.90	150.0	٧	0.0	9.1	
5965.000000		34.14	54.00	19.86	150.0	V	0.0	9.1	
4846.250000		32.10	54.00	21.90	150.0	٧	8.0	5.5	
2717.500000	34.70		74.00	39.30	150.0	٧	162.0	-3.6	
3471.875000		28.59	54.00	25.41	150.0	٧	259.0	-1.0	
2220.000000	-	25.39	54.00	28.61	150.0	V	315.0	-4.5	
2448.750000	33.62		74.00	40.38	150.0	٧	355.0	-4.6	
3173.125000	37.46		74.00	36.54	150.0	٧	355.0	-2.2	

Report No.: CHTEW22080191 Page: 15 of 16 Date of issue: 2022-08-08

6. TEST SETUP PHOTOS

Conducted Emissions (AC Mains)

Radiated Emissions (30MHz-1GHz)

Radiated Emissions (Above 1GHz)

Report No.: CHTEW22080191 Page: 16 of 16 Date of issue: 2022-08-08

7. EXTERNAL AND INTERNAL PHOTOS

Refer to the test report No.: CHTEW22080189

-----End of Report-----