

TEST REPORT			
F	or WiFi-2.4GHz Band		
Report No:	CHTEW22040114	Report Verification:	
Project No	SHT2202043705EW		
FCC ID	2AZP5-L651SP		
Applicant's name:	DUO AMERICA, LLC		
Address	8925 NW 26TH ST, DORAL	, MIAMI, Florida, United States	
Product Name:	Smart Phone		
Trade Mark:	HYUNDAI		
Model No	L651		
Listed Model(s):	-		
Standard:	FCC CFR Title 47 Part 15 Subpart C Section 15.247		
Date of receipt of test sample:	Mar. 11, 2022		
Date of testing	Mar. 12, 2022- Apr. 18, 2022		
Date of issue	Apr. 19, 2022		
Result:	PASS		
Compiled by (Position+Printed name+Signature):	File administrator Silvia Li	Silvia Li Aaron.Fang	
Supervised by (Position+Printed name+Signature):	Project Engineer Aaron Fan	Aaron.Fang	
Approved by (Position+Printed name+Signature):	RF Manager Hans Hu	Homsty	
Testing Laboratory Name :	Testing Laboratory Name Shenzhen Huatongwei International Inspection Co., Ltd.		
Address	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China		
Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.			
This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. The test report merely correspond to the test sample.			

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
2	CUMMARY	-
<u>3.</u>	SUMMARY	5_
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Radio Specification Description	5
3.4.	Testing Laboratory Information	6
<u>4.</u>	TEST CONFIGURATION	7
		-
4.1.	Test frequency list	7
4.2.	Descriptions of Test mode	7
4.3.	Test mode	7
4.4.	Test sample information	8
4.5.	Support unit used in test configuration and system	8
4.6.	Testing environmental condition	8
4.7. 4.8.	Statement of the measurement uncertainty Equipment Used during the Test	8 9
<u>5.</u>	TEST CONDITIONS AND RESULTS	11
5.1.	Antenna Requirement	11
5.2.	AC Conducted Emission	12
5.3.	Peak Output Power	15
5.4.	Power Spectral Density	16
5.5.	6dB bandwidth	17
5.6.	99% Occupied Bandwidth	18
5.7.	Duty Cycle	19
5.8.	Conducted Band edge and Spurious Emission	20
5.9.	Radiated Band edge Emission	22
5.10.	Radiated Spurious Emission	26
<u>6.</u>	TEST SETUP PHOTOS	32
<u>7.</u>	EXTERANAL AND INTERNAL PHOTOS	33
<u>8.</u>	APPENDIX REPORT	33

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

- <u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz
- <u>ANSI C63.10:2013</u>: American National Standard for Testing Unlicensed Wireless Devices
- <u>KDB 558074 D01 15.247 Meas Guidance v05r02:</u> Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of The FCC Rules

1.2. Report version

Revision No.	Date of issue	Description
N/A	2022-04-19	Original

2. TEST DESCRIPTION

Report clause	Test Items	Standard Requirement	Result	Test Engineer
5.1	Antenna Requirement	15.203/15.247(c)	PASS	Xiaoqin Li
5.2	AC Conducted Emission	15.207	PASS	Xiaoqin Li
5.3	Peak Output Power	15.247(b)(3)	PASS	Xiaoqin Li
5.4	Power Spectral Density	15.247(e)	PASS	Xiaoqin Li
5.5	6dB Bandwidth	15.247(a)(2)	PASS	Xiaoqin Li
5.6	99% Occupied Bandwidth	-	PASS ^{*1}	Xiaoqin Li
5.7	Duty cycle	-	PASS ^{*1}	Xiaoqin Li
5.8	Conducted Band Edge and Spurious Emission	15.247(d)/15.205	PASS	Xiaoqin Li
5.9	Radiated Band Edge Emission	15.205/15.209	PASS	Pan Xie
5.10	Radiated Spurious Emission	15.247(d)/15.205/15.209	PASS	Pan Xie

Note:

- The measurement uncertainty is not included in the test result.

- *1: No requirement on standard, only report these test data.

3. SUMMARY

3.1. Client Information

Applicant:	DUO AMERICA, LLC	
Address:	8925 NW 26TH ST, DORAL, MIAMI, Florida, United States	
Manufacturer:	Sprocomm Technologies Co., Limited	
Address: RM 14, 29/F HO KING COMMERCIAL CENTRE, 2-16 FA YUEN STREET, MONGKOK, KOWLOON HK		

3.2. Product Description

Main unit information:		
Product Name:	Smart Phone	
Trade Mark:	HYUNDAI	
Model No.:	L651	
Listed Model(s):	-	
Power supply:	DC 3.85V from Battery	
Hardware version:	V1.0	
Software version:	V1.0	
Accessory unit information:		
Battery information: DC 3.85V, 5000mAh		
Adapter information:	Model:AS5020A Input: AC100-240V, 50/60Hz, 350mA Output: 5.0Vdc,2.0A	

3.3. Radio Specification Description

⊠ 802.11n PSK, QPSK	
BPSK, QPSK, 16QAM, 64QAM	
Z	
FIFA Antenna	
0.5dBi	

Note:

*2: only show the RF function associated with this report.

3.4. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.		
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China		
Connect information:	Phone: 86-755-26715499 E-mail: <u>cs@szhtw.com.cn</u> <u>http://www.szhtw.com.cn</u>		
Qualifications	Туре	Accreditation Number	
Qualifications	FCC	762235	

4. TEST CONFIGURATION

4.1. Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channels which were tested. The Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the below blue front.

802.11b/g/n(HT20)		
Channel	Frequency (MHz)	
01	2412	
02	2417	
· :	• :	
06	2437	
• :	• :	
10	2457	
11	2462	

4.2. Descriptions of Test mode

Preliminary tests were performed in different data rates, final test modes are considering the modulation and worse data rates as below table.

Modulation	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(HT20)	MCS0

4.3. Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data Recorded in the report.

4.4. Test sample information

Test item	HTW sample no.	
RF Conducted test items	Please refer to the description in the appendix report	
RF Radiated test items	YPHT22020437016	
EMI test items	YPHT22020437016	

Note:

RF Conducted test items: Peak Output Power, Power Spectral Density, 6dB Bandwidth, 99% Occupied Bandwidth, Duty cycle, Conducted Band Edge and Spurious Emission

RF Radiated test items: Radiated Band Edge Emission, Radiated Spurious Emission

EMI test items: AC Conducted Emission

4.5. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Whether support unit is used?			
✓ No			
Item	Equipment	Trade Name	Model No.
1			
2			

4.6. Testing environmental condition

Туре	Requirement	Actual
Temperature:	15~35°C	25°C
Relative Humidity:	25~75%	50%
Air Pressure:	860~1060mbar	1000mbar

4.7. Statement of the measurement uncertainty

Test Item	Measurement Uncertainty
AC Conducted Emission (150kHz~30MHz)	3.00 dB
Radiated Emission (30MHz~1000MHz	4.36 dB
Radiated Emissions (1GHz~25GHz)	5.10 dB
Peak Output Power	0.77dB
Power Spectral Density	0.77dB
Conducted Spurious Emission	0.77dB
6dB Bandwidth	70Hz for <1GHz
	130Hz for >1GHz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

•	Conducted Emission											
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)					
•	Shielded Room	Albatross projects	HTWE0114	N/A	N/A	2018/09/28	2023/09/27					
•	EMI Test Receiver	R&S	HTWE0111	ESCI	101247	2021/09/14	2022/09/13					
•	Artificial Mains	SCHWARZBECK	HTWE0113	NNLK 8121	573	2021/09/17	2022/09/16					
•	Pulse Limiter	R&S	HTWE0033	ESH3-Z2	100499	2021/09/16	2022/09/15					
•	RF Connection Cable	HUBER+SUHNER	HTWE0113-02	ENVIROFLE X_142	EF-NM- BNCM-2M	2021/09/17	2022/09/16					
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A					

4.8. Equipment Used during the Test

•	Radiated emi	ssion-6th test sit	te				
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2018/09/30	2022/09/29
•	EMI Test Receiver	R&S	HTWE0099	ESCI	100900	2021/09/14	2022/09/13
•	Loop Antenna	R&S	HTWE0170	HFH2-Z2	100020	2021/04/06	2024/04/05
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0123	VULB9163	538	2021/04/06	2024/04/05
•	Pre-Amplifer	SCHWARZBECK	HTWE0295	BBV 9742	N/A	2021/11/05	2022/11/04
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-01	N/A	N/A	2022/02/25	2023/02/24
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-02	SUCOFLEX104	501184/4	2022/02/25	2023/02/24
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A

•	Radiated em	ission-7th test s	ite				
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	N/A	2018/09/27	2022/09/26
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2021/09/13	2022/09/12
•	Horn Antenna	SCHWARZBECK	HTWE0126	9120D	1011	2020/04/01	2023/03/31
•	Broadband Horn Antenna	SCHWARZBECK	HTWE0103	BBHA9170	BBHA9170472	2020/04/27	2023/04/26
•	Pre-amplifier	CD	HTWE0071	PAP-0102	12004	2021/11/05	2022/11/04
•	Broadband Pre- amplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2022/02/28	2023/02/27
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-01	6m 18GHz S Serisa	N/A	2022/02/25	2023/02/24
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-02	6m 3GHz RG Serisa	N/A	2022/02/25	2023/02/24
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-03	6m 3GHz RG Serisa	N/A	2022/02/25	2023/02/24
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-04	6m 3GHz RG Serisa	N/A	2022/02/25	2023/02/24
•	RF Connection Cable	HUBER+SUHNER	HTWE0121-01	6m 18GHz S Serisa	N/A	2018/09/27	2022/09/26
•	Test Software	Audix	N/A	E3	N/A	N/A	N/A

Page:

•	RF Conducted Method										
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)					
•	Signal and spectrum Analyzer	R&S	FSV40	100048	2021/09/13	2022/09/12					
•	Spectrum Analyzer	Agilent	N9020A	MY50510187	2021/09/13	2022/09/12					
•	Power Meter	Anritsu	ML249A	N/A	2021/09/13	2022/09/12					
0	Radio communication tester	R&S	CMW500	137688-Lv	2021/09/13	2022/09/12					

5. TEST CONDITIONS AND RESULTS

5.1. Antenna Requirement

REQUIREMENT

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responseble party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

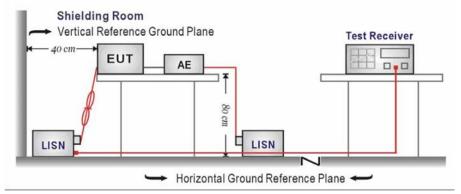
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

TEST RESULT

☑ Passed □ Not Applicable

The antenna type is a FIFA antenna, the directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

5.2. AC Conducted Emission


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

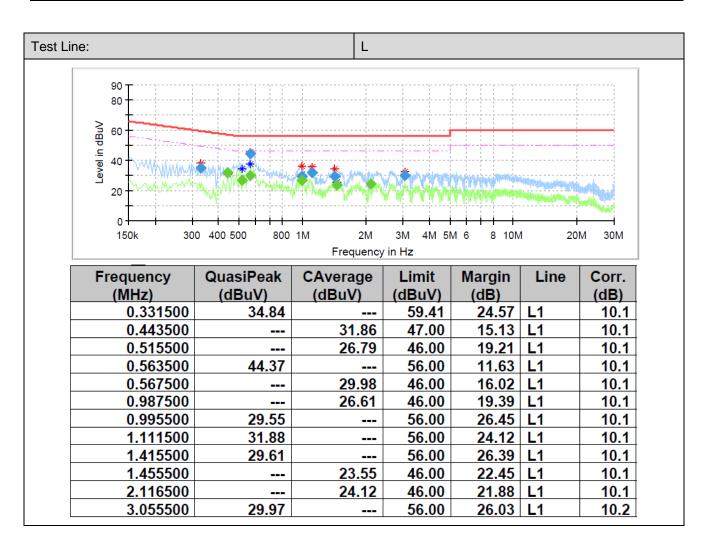
* Decreases with the logarithm of the frequency.

TEST CONFIGURATION

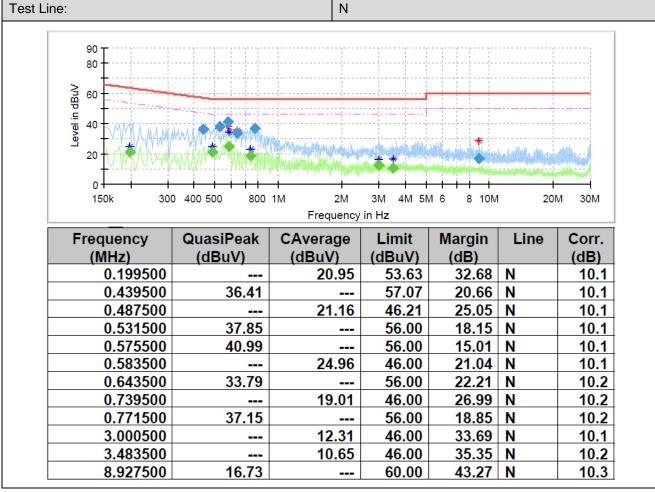
TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10 requirements.
- The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE

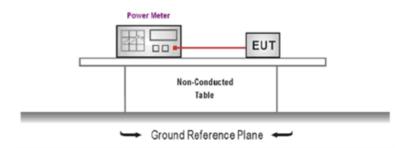

Please refer to the clause 4.2

TEST RESULT


☑ Passed □ Not Applicable

Shenzhen Huatongwei International Inspection Co., Ltd.

Page:


2022-04-19

5.3. Peak Output Power

LIMIT FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): 30dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.10 and KDB 558074 D01 requirements.
- 2. The maximum peak conducted output power may be measured using a broadband peak RF power meter.
- 3. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.
- 4. Record the measurement data.

TEST MODE

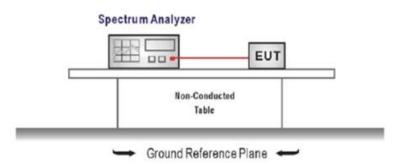
Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

TEST DATA

Please refer to appendix A on the appendix report


5.4. Power Spectral Density

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e):

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input,
- Configure the spectrum analyzer as shown below: Center frequency=DTS channel center frequency Span =1.5 times the DTS bandwidth RBW = 3 kHz ≤ RBW ≤ 100 kHz, VBW ≥ 3 × RBW Sweep time = auto couple Detector = peak Trace mode = max hold
 Place the radio in continuous transmit mode, allow the second s
- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 5. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST MODE

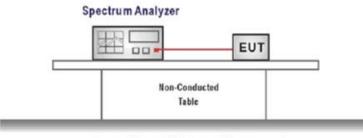
Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

TEST DATA

Please refer to appendix B on the appendix report


5.5. 6dB bandwidth

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2):

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST CONFIGURATION

Ground Reference Plane

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency =DTS channel center frequency

Span=2 x DTS bandwidth

RBW = 100 kHz, VBW \ge 3 × RBW

Sweep time= auto couple

Detector = Peak

Trace mode = max hold

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements.

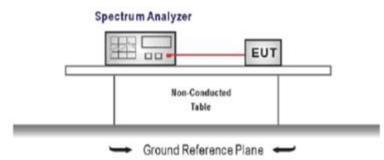
TEST MODE

Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

TEST DATA


Please refer to appendix C on the appendix report

5.6. 99% Occupied Bandwidth

<u>LIMIT</u>

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency =channel center frequency Span≥1.5 x OBW RBW = 1%~5%OBW VBW ≥ 3 × RBW Sweep time= auto couple Detector = Peak Trace mode = max hold

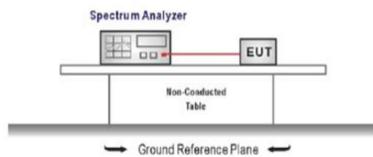
3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.

TEST MODE

Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable


TEST DATA

Please refer to appendix D on the appendix report

5.7. Duty Cycle

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:

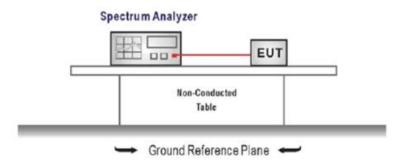
Span=zero span, Frequency=centered channel, RBW= 1 MHz, VBW ≥ RBW Sweep=as necessary to capture the entire dwell time,

Detector function = peak, Trigger mode

4. Measure and record the duty cycle data

TEST MODE

Please refer to the clause 4.2


TEST DATA

Please refer to appendix E on the appendix report

5.8. Conducted Band edge and Spurious Emission LIMIT

FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- Establish a reference level by using the following procedure Center frequency=DTS channel center frequency The span = 1.5 times the DTS bandwidth. RBW = 100 kHz, VBW ≥ 3 x RBW Detector = peak, Sweep time = auto couple, Trace mode = max hold Allow trace to fully stabilize

Use the peak marker function to determine the maximum PSD level

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

3. Emission level measurement

Set the center frequency and span to encompass frequency range to be measured RBW = 100 kHz, VBW \ge 3 x RBW Detector = peak, Sweep time = auto couple, Trace mode = max hold

Allow trace to fully stabilize

Use the peak marker function to determine the maximum amplitude level.

- 4. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- Ensure that the amplitude of all unwanted emission outside of the authorized frequency band excluding restricted frequency bands) are attenuated by at least the minimum requirements specified (at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz). Report the three highest emission relative to the limit.

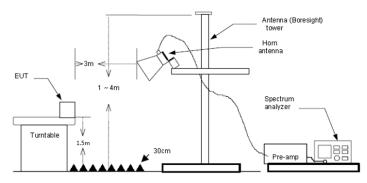
TEST MODE

Please refer to the clause 4.2

TEST RESULT

□ Not Applicable 🛛 Passed

TEST DATA


Please refer to appendix F on the appendix report

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, Radiated Emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the Radiated Emissions limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10 .
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10 on radiated measurement.
- 5. Use the following spectrum analyzer settings:
 - a) Span shall wide enough to fully capture the emission being measured
 - b) Set RBW=100kHz for <1GHz, VBW=3*RBW, Sweep time=auto, Detector=peak, Trace=max hold
 - c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement

For average measurement:

- VBW=10Hz, When duty cycle is no less than 98 percent
- VBW≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation, so refer to this clasue 5.6 duty cycle.

TEST MODE

Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

Note:

- 1) Level= Reading + Factor; Factor = Antenna Factor+ Cable Loss- Preamp Factor
- 2) Over Limit = Level– Limit
- 3) Average measurement was not performed if peak level is lower than average limit(54 dBuV/m).

Page:

2022-04-19

Туре		802.11	b	Test cha	nnel	CH01		Polar	ity	ŀ	Horizontal	
	1 2	requency MHz 310.00 390.01	Reading dBuV/m 38.78 39.31	Antenna dB 27.96 27.72	Cable dB 5.43 5.53	Preamp dB 37.56 37.45	Aux dB 20.00 20.00	Level dBuV/m 54.61 55.11	Limit dBuV/m 74.00 74.00) Peak	
	1 2	requency MHz 2310.00 2390.01	Reading dBuV/m 31.57 31.51	Antenna dB 27.96 27.72	Cable dB 5.43 5.53	Preamp dB 37.56 37.45	Aux dB 20.00 20.00		Limit dBuV/m 0 54.00 L 54.00	Over limit -6.60 -6.69	0 Average	
Туре		802.11	b	Test cha	nnel	CH01		Polar	ity	١	Vertical	
-	1 2	requency MHz 310.00	Reading dBuV/m 39.45	Antenna dB 27.96	Cable dB 5.43	Preamp dB 37.56	Aux dB 20.00	Level dBuV/m 55.28	74.00		2 Peak	
		390.01 requency MHz	38.43 Reading dBuV/m	27.72 Antenna dB	5.53 Cable dB	37.45 Preamp dB	20.00 Aux dB	54.23 Level dBuV/m	74.00 Limit dBuV/m	-19.77 Over limit		
		310.00 390.01	32.92 32.19	27.96 27.72	5.43 5.53	37.56 37.45	20.00 20.00	48.75 47.99	54.00 54.00			

Туре	802.11	b	Test cha	nnel	CH11		Polarity	Horizontal
	Mark Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level Limit dBuV/m dBuV/m l:	Over Remark Imit
	1 2483.49 2 2500.00	32.68 30.93	27.43 27.40	5.64 5.66	37.26 37.26	20.00 20.00	48.49 54.00 46.73 54.00	0
	Mark Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB		Over Remark imit
	1 2483.49 2 2500.00	38.60 39.52	27.43 27.40	5.64 5.66	37.26 37.26	20.00 20.00	54.41 74.00 - 55.32 74.00 -	
Туре	802.11	b	Test cha	channel CH11			Polarity	Vertical
	Mark Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level Limit dBuV/m dBuV/m li	Over Remark Lmit
	1 2483.49 2 2500.00	32.09 31.29	27.43 27.40	5.64 5.66	37.26 37.26	20.00 20.00	47.90 54.00 47.09 54.00	-6.10 Average -6.91 Average
	Mark Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level Limit dBuV/m dBuV/m l:	Over Remark imit
	1 2483.49 2 2500.00	39.22 38.99	27.43 27.40	5.64 5.66	37.26 37.26	20.00	55.03 74.00 -: 54.79 74.00 -:	

Page:

Туре		802.1	1g	Test ch	annel	CH0 ²	1	Polarity	Horizontal
		equency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB		
	1 23 2 23		27.44 27.84			37.56 37.45		43.27 54.00 -10.7 43.64 54.00 -10.3	0
		equency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB		er Remark
	1 23 2 23		39.49 38.89			37.56 37.45	20.00 20.00		
Туре		802.1	1g	Test channel CH01		Polarity	Vertical		
		equency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB		
			27.46 28.04			37.56	20.00	43.29 54.00 -10.7 43.84 54.00 -10.1	1 Average
		equency MHz		Antenna dB	Cable dB	Preamp dB	Aux dB	Level Limit Ove dBuV/m dBuV/m limit	er Remark
	1 23 2 23		37.83 45.40	27.96 27.72	5.43 5.53	37.56 37.45	20.00 20.00	53.66 74.00 -20.3 61.20 74.00 -12.8	

Туре	802.	11g	Test ch	annel	CH11		Pol	arity		Horizontal
	Mark Frequency	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m			Remark
	1 2483.49	39.61 43.07	27.43	5.64	37.26	20.00 20.00	55.42	74.00 74.00	-18.58	
	3 2500.00	38.54	27.40	5.66	37.26	20.00	54.34	74.00	-19.66	i Peak
	Mark Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m		Remark
		27.24 26.93		5.64 5.66	37.26 37.26	20.00 20.00	43.0 42.7			Average Average
Туре	802.	11g	Test ch	annel	CH11		Pol	arity		Vertical
	Mark Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m		Remark
	1 2483.49	43.38 39.30	27.43			20.00 20.00	59.19	74.00 74.00	-14.81	
	Mark Frequency	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
	1 2483.49 2 2500.00	27.53 26.91		5.64		20.00	43.3 42.7	4 54.00	-10.66	0

Page:

Туре	8	302.11n(HT20)	Test cha	annel	CH01		Polarity	Horizontal
-	Mark Freque MHz	ency Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level Limit Ov dBuV/m dBuV/m limi:	
	1 2310.0 2 2390.0		27.96 27.72	5.43 5.53	37.56 37.45	20.00 20.00	54.60 74.00 -19.4 55.32 74.00 -18.4	
	Mark Freque MHz	dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level Limit Ov dBuV/m dBuV/m limi	t
	1 2310.0 2 2390.0		27.96 27.72	5.43 5.53	37.56 37.45	20.00 20.00	43.26 54.00 -10. 43.68 54.00 -10.	•
Туре	8	302.11n(HT20)	Test cha	annel	CH01		Polarity	Vertical
	Mark Freque MHz	ency Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level Limit Ove dBuV/m dBuV/m limit	
	1 2310.0 2 2390.0		27.96 27.72	5.43 5.53	37.56 37.45	20.00 20.00	54.14 74.00 -19.8 58.86 74.00 -15.3	36 Peak
	Mark Freque MHz	ncy Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level Limit Ove dBuV/m dBuV/m limit	
	1 2310.0 2 2390.0		27.96 27.72	5.43 5.53	37.56 37.45	20.00 20.00	43.16 54.00 -10.8 43.93 54.00 -10.0	0

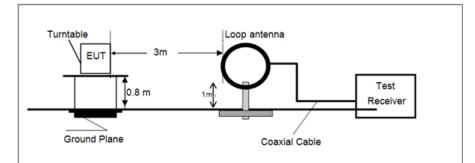
Туре		802.11	n(HT20)	Test	channel	CH	11	Polarity	Horizontal
-	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level Limit Ove dBuV/m dBuV/m limit	
	1 2		27.26 26.86		5.64 5.66	37.26 37.26	20.00 20.00	43.07 54.00 -10.9 42.66 54.00 -11.3	
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level Limit Ove dBuV/m dBuV/m limit	
	-		42.57 38.84		5.64 5.66	37.26 37.26	20.00 20.00	58.38 74.00 -15.0 54.64 74.00 -19.3	
Туре		802.11	n(HT20)	Test	channel	CH	11	Polarity	Vertical
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level Limit Ove dBuV/m dBuV/m limit	
	_		27.71 26.85		5.64 5.66	37.26 37.26	20.00 20.00	43.52 54.00 -10.4 42.65 54.00 -11.3	•
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level Limit Ov dBuV/m dBuV/m limi:	
	1 2		42.47 38.60	27.43 27.40	5.64 5.66	37.26 37.26	20.00 20.00	58.28 74.00 -15. 54.40 74.00 -19.	

5.10. Radiated Spurious Emission

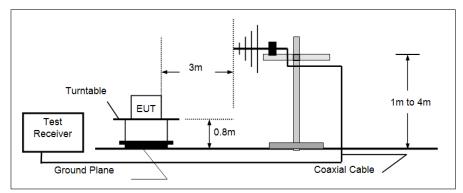
LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209

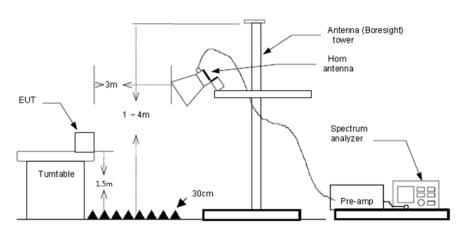
Frequency	Limit (dBuV/m)	Value
0.009 MHz ~0.49 MHz	2400/F(kHz) @300m	Quasi-peak
0.49 MHz ~ 1.705 MHz	24000/F(kHz) @30m	Quasi-peak
1.705 MHz ~30 MHz	30 @30m	Quasi-peak


Note: Limit dBuV/m @3m = Limit dBuV/m @300m + 40*log(300/3)= Limit dBuV/m @300m +80,

Limit dBuV/m @3m = Limit dBuV/m @30m +40*log(30/3)= Limit dBuV/m @30m + 40.


Frequency	Limit (dBuV/m @3m)	Value
30MHz~88MHz	40.00	Quasi-peak
88MHz~216MHz	43.50	Quasi-peak
216MHz~960MHz	46.00	Quasi-peak
960MHz~1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
	74.00	Peak

TEST CONFIGURATION


➢ 9 kHz ~ 30 MHz

> 30 MHz ~ 1 GHz

> Above 1 GHz

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10 .
- The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - a) Span shall wide enough to fully capture the emission being measured;
 - b) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement

For average measurement:

- VBW=10Hz, When duty cycle is no less than 98 percent
- − VBW≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation, so refer to this clasue 5.6 duty cycle.

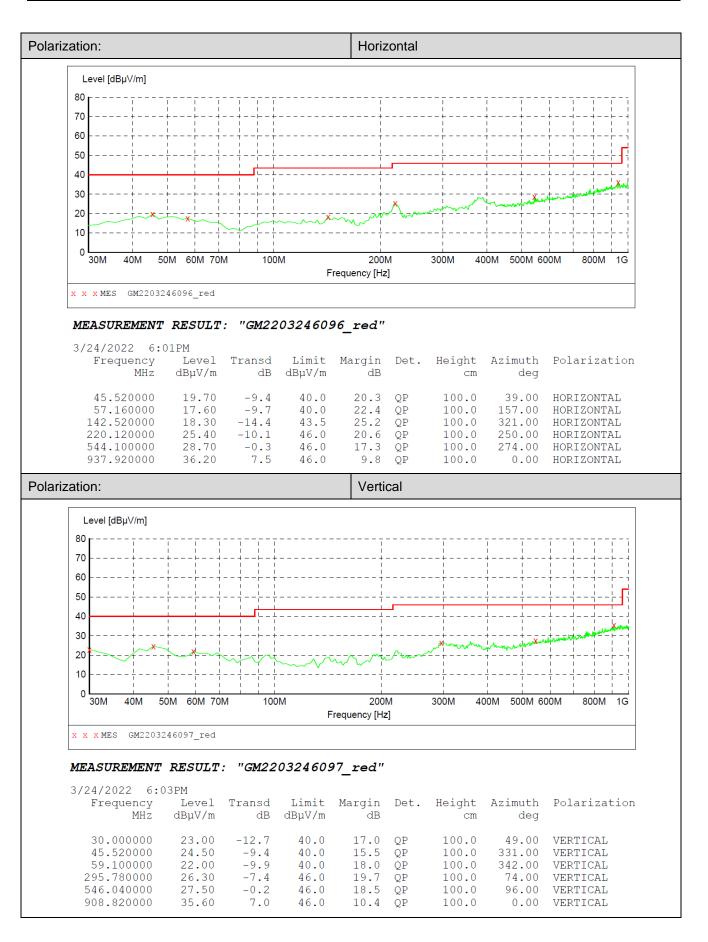
TEST MODE

Please refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

Note:


- 1) Level= Reading + Factor/Transd; Factor/Transd = Antenna Factor+ Cable Loss- Preamp Factor
- 2) Over Limit = Level- Limit
- Average measurement was not performed if peak level is lower than average limit(54 dBuV/m) for above 1GHz.

For 9 kHz ~ 30 MHz

The EUT was pre-scanned this frequency band, found the radiated level 20dB lower than the limit, so don't show data on this report.

For 30 MHz ~ 1000 MHz

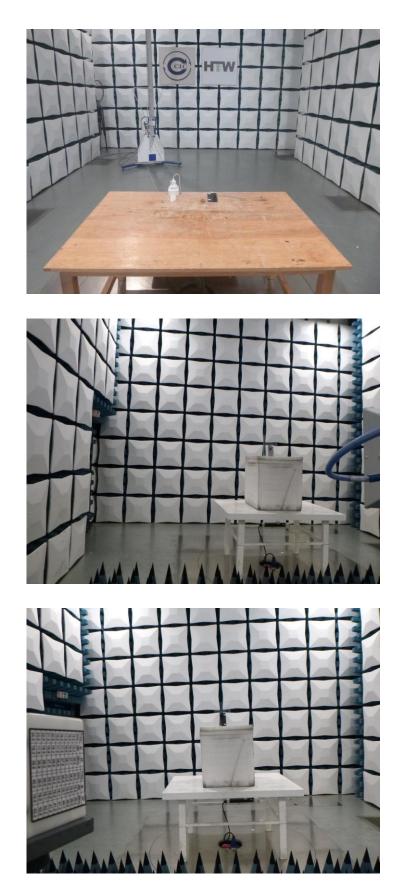
Have pre-scan all test channel, found CH06 of 802.11B which it was worst case, so only show the worst case's data on this report.

Туре		802.11b		Test channel	С	CH01		Polarity		Horizontal
	Mark	Frequency	Readir	ng Antenna	Cable	Preamp	Leve	l Limit	Over	r Remark
	THAT IS	MHz	dBuV/	•	dB	dB	dBuV		limit	
	1	1284.65	40.56	25.97	4.01	36.35	34.19	74.00	-39.81	
	2	2237.33	40.13	28.13	5.35	37.41	36.20	74.00	-37.80	
	3	5039.80	36.08	32.14	8.86	35.35	41.73	74.00	-32.27	
	4	7992.86	33.51		10.90	33.31	48.17	74.00	-25.83	
Туре		802.11b		Test channel		CH01		Polarity		Vertical
туре		002.110		Test channel	C			Folanty		Ventical
	Marali							1 1 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		Demails
	Mark	Frequency	Readir		Cable	Preamp	Leve		Over	
		MHz	dBuV/		dB	dB	dBuV		limit	
	1	1314.63	40.88	26.09	4.05	36.33	34.69	74.00	-39.31	
	2	2259.56	40.30	28.08	5.37	37.42	36.33	74.00	-37.67	
	3	4825.23	36.95	31.40	8.51	35.23	41.63	74.00	-32.37	
	4	8121.39	33.83	37.11	11.27	33.36	48.85	74.00	-25.15	Peak
Туре		802.11b		Test channel	C	CH06		Polarity		Horizontal
	Mark	Frequency	Readin		Cable	Preamp	Level		Over	Remark
		MHz	dBuV/		dB	dB	dBuV/		limit	
	1	1284.65	40.56	25.97	4.01	36.35	34.19		-39.81	
	2	2237.33	40.13	28.13	5.35	37.41	36.20	74.00	-37.80	Peak
	3	4874.47	38.01	31.40	8.64	35.16	42.89	74.00	-31.11	Peak
	4	7316.14	35.74	36.43	10.05	34.10	48.12	74.00	-25.88	Peak
Туре		802.11b		Test channel	C	CH06		Polarity		Vertical
	Mark	Frequency			Cable		Leve		Over	
		MHz	dBuV/		dB	dB	dBuV		limit	
	1	1314.63	40.88	26.09	4.05	36.33	34.69	74.00	-39.31	l Peak
	2	2259.56	40.30	28.08	5.37	37.42	36.33	74.00	-37.67	7 Peak
	3	5076.48	36.22	32.20	8.90	35.44	41.88	74.00	-32.12	2 Peak
	4	8016.07	34.10	37.13	10.93	33.31	48.85	74.00	-25.15	6 Peak
Туре		802.11b		Test channel	С	CH11		Polarity		Horizontal
	Mark	Frequency	Readin		Cable	Preamp	Leve		Over	
				m dB	dB	dB	dBuV,	/m dBuV/m	limit	
	-	MHz	dBuV/							
	1	1284.65	40.56	25.97	4.01	36.35	34.19		-39.81	
	2	1284.65 2237.33	40.56 40.13	25.97 28.13	4.01 5.35	37.41	36.20	74.00	-37.80) Peak
	2 3	1284.65 2237.33 4924.20	40.56 40.13 36.89	25.97 28.13 31.45	4.01 5.35 8.74	37.41 35.21	36.20 41.87	74.00 74.00	-37.80 -32.13	Peak Peak
	2	1284.65 2237.33	40.56 40.13	25.97 28.13 31.45	4.01 5.35	37.41	36.20	74.00 74.00	-37.80) Peak Peak
Туре	2 3	1284.65 2237.33 4924.20	40.56 40.13 36.89	25.97 28.13 31.45	4.01 5.35 8.74 10.89	37.41 35.21	36.20 41.87	74.00 74.00	-37.80 -32.13	Peak Peak
Туре	2 3 4	1284.65 2237.33 4924.20 7981.27 802.11b	40.56 40.13 36.89 33.90	25.97 28.13 31.45 37.03	4.01 5.35 8.74 10.89	37.41 35.21 33.31	36.20 41.87 48.51	74.00 74.00 74.00 Polarity	-37.80 -32.13 -25.49	Peak Peak Peak Vertical
Туре	2 3	1284.65 2237.33 4924.20 7981.27 802.11b Frequency	40.56 40.13 36.89 33.90 Readin	25.97 28.13 31.45 37.03 Test channel	4.01 5.35 8.74 10.89 Cable	37.41 35.21 33.31 CH11 Preamp	36.20 41.87 48.51	74.00 74.00 74.00 Polarity	-37.80 -32.13 -25.49 Over	Peak Peak Peak Vertical
Туре	2 3 4 Mark	1284.65 2237.33 4924.20 7981.27 802.11b Frequency MHz	40.56 40.13 36.89 33.90 Readin dBuV/	25.97 28.13 31.45 37.03 Test channel g Antenna m dB	4.01 5.35 8.74 10.89 Cable dB	37.41 35.21 33.31 CH11 Preamp dB	36.20 41.87 48.51 Leve dBuV,	74.00 74.00 74.00 Polarity	-37.80 -32.13 -25.49 Over limit	Peak Peak Peak Vertical
Туре	2 3 4 Mark	1284.65 2237.33 4924.20 7981.27 802.11b Frequency MHz 1314.63	40.56 40.13 36.89 33.90 Readin dBuV/ 40.88	25.97 28.13 31.45 37.03 Test channel g Antenna m dB 26.09	4.01 5.35 8.74 10.89 Cable dB 4.05	37.41 35.21 33.31 CH11 Preamp dB 36.33	36.20 41.87 48.51 Level dBuV, 34.69	74.00 74.00 74.00 Polarity	-37.80 -32.13 -25.49 Over limit -39.31	Peak Peak Peak Vertical Remark Peak
Туре	2 3 4 Mark 1 2	1284.65 2237.33 4924.20 7981.27 802.11b Frequency MHz 1314.63 2259.56	40.56 40.13 36.89 33.90 Readin dBuV/ 40.88 40.30	25.97 28.13 31.45 37.03 Test channel g Antenna m dB 26.09 28.08	4.01 5.35 8.74 10.89 Cable dB 4.05 5.37	37.41 35.21 33.31 CH11 Preamp dB 36.33 37.42	36.20 41.87 48.51 Level dBuV, 34.69 36.33	74.00 74.00 74.00 Polarity L Limit /m dBuV/m 74.00 74.00	-37.80 -32.13 -25.49 Over limit -39.31 -37.67	Peak Peak Peak Vertical Remark Peak Peak Peak
Туре	2 3 4 Mark	1284.65 2237.33 4924.20 7981.27 802.11b Frequency MHz 1314.63	40.56 40.13 36.89 33.90 Readin dBuV/ 40.88	25.97 28.13 31.45 37.03 Test channel g Antenna m dB 26.09 28.08 32.20	4.01 5.35 8.74 10.89 Cable dB 4.05	37.41 35.21 33.31 CH11 Preamp dB 36.33	36.20 41.87 48.51 Level dBuV, 34.69	74.00 74.00 74.00 Polarity L Limit /m dBuV/m 74.00 74.00 74.00 74.00	-37.80 -32.13 -25.49 Over limit -39.31	Peak Peak Peak Vertical Remark Peak Peak Peak Peak

For 1 GHz ~ 25 GHz

Page:

Туре		802.11g		Test channel	I C	CH01		Polarity		Horizontal	
-	Mark	Frequency MHz	Readin dBuV/	•	Cable dB	Preamp dB	Leve dBuV		Over limit	Remark	
	1	1335.01	40.24	26.21	4.08	36.39	34.14	74.00	-39.86	Peak	
	2	2257.08	40.26	28.09	5.37	37.42	36.30	74.00	-37.70	Peak	
	3	5083.85	36.85	32.20	8.91	35.45	42.51	74.00	-31.49	Peak	
	4	8016.07	33.90	37.13	10.93	33.31	48.65	74.00	-25.35	Peak	
Туре		802.11g		Test channel	I C	CH01		Polarity		Vertical	
	Marali							1 1 1 1			
	Mark	Frequency MHz	Readin dBuV/	•	Cable dB	Preamp dB	Leve dBuV		Over limit		
	1	1385.81	40.79	26.16	4.15	36.52	34.58	74.00	-39.42		
	2	2145.85	40.67	27.65	5.22	37.36	36.18	74.00	-37.82		
	3	5578.30	35.74	31.86	9.41	35.22	41.79	74.00	-32.21		
	4	8770.25	34.98	37.70	11.95	34.83	49.80	74.00	-24.20		
Туре		802.11g		Test channel		CH06		Polarity		Horizontal	
		1 3									
	Mark	Frequency	Readir	ng Antenna	Cable	Preamp	Leve	l Limit	Over	Remark	
		MHz	dBuV/		dB	dB	dBuV		limit		
	1	1335.01	40.24	26.21	4.08	36.39	34.14	74.00	-39.86		
	2	2257.08	40.26	28.09	5.37	37.42	36.30	74.00	-37.70	Peak	
	3	5742.47	35.76	31.90	9.57	34.84	42.39	74.00	-31.61	Peak	
	4	7981.27	34.15	37.03	10.89	33.31	48.76	74.00	-25.24	Peak	
Туре		802.11g		Test channel	I C	CH06		Polarity		Vertical	
	Mark	Frequency	Readir		Cable	Preamp	Leve		Over		
		MHz	dBuV/	/m dB	dB	dB	dBuV	/m dBuV/m	limit		
	1	MHz 1385.81	dBuV/ 40.79	/m dB 26.16	dB 4.15	dB 36.52	dBuV, 34.58	/m dBuV/m 74.00	limit -39.42	Peak	
	1 2	MHz 1385.81 2145.85	dBuV/ 40.79 40.67	/m dB 26.16 27.65	dB 4.15 5.22	dB 36.52 37.36	dBuV 34.58 36.18	/m dBuV/m 74.00 74.00	limit -39.42 -37.82	Peak Peak	
	1	MHz 1385.81 2145.85 5039.80	dBuV/ 40.79 40.67 36.21	/m dB 26.16 27.65 32.14	dB 4.15 5.22 8.86	dB 36.52 37.36 35.35	dBuV 34.58 36.18 41.86	/m dBuV/m 74.00 74.00 74.00	limit -39.42 -37.82 -32.14	Peak Peak Peak	
Type	1 2 3	MHz 1385.81 2145.85 5039.80 8004.46	dBuV/ 40.79 40.67	/m dB 26.16 27.65 32.14 37.11	dB 4.15 5.22 8.86 10.91	dB 36.52 37.36 35.35 33.31	dBuV 34.58 36.18	/m dBuV/m 74.00 74.00 74.00 74.00	limit -39.42 -37.82	Peak Peak Peak Peak	
Туре	1 2 3	MHz 1385.81 2145.85 5039.80	dBuV/ 40.79 40.67 36.21	/m dB 26.16 27.65 32.14	dB 4.15 5.22 8.86 10.91	dB 36.52 37.36 35.35	dBuV 34.58 36.18 41.86	/m dBuV/m 74.00 74.00 74.00	limit -39.42 -37.82 -32.14	Peak Peak Peak	
Туре	1 2 3 4	MHz 1385.81 2145.85 5039.80 8004.46 802.11g	dBuV/ 40.79 40.67 36.21 34.04	/m dB 26.16 27.65 32.14 37.11 Test channel	dB 4.15 5.22 8.86 10.91	dB 36.52 37.36 35.35 33.31	dBuV 34.58 36.18 41.86 48.75	/m dBuV/m 74.00 74.00 74.00 74.00 74.00 Polarity	limit -39.42 -37.82 -32.14 -25.25	Peak Peak Peak Peak Horizontal	
Туре	1 2 3	MHz 1385.81 2145.85 5039.80 8004.46 802.11g Frequency	dBuV/ 40.79 40.67 36.21 34.04 Readin	7m dB 26.16 27.65 32.14 37.11 Test channel	dB 4.15 5.22 8.86 10.91 I C Cable	dB 36.52 37.36 35.35 33.31 CH11 Preamp	dBuV 34.58 36.18 41.86 48.75 Level	/m dBuV/m 74.00 74.00 74.00 74.00 74.00 Polarity	limit -39.42 -37.82 -32.14 -25.25	Peak Peak Peak Peak	
Туре	1 2 3 4 Mark	MHz 1385.81 2145.85 5039.80 8004.46 802.11g Frequency MHz	dBuV/ 40.79 40.67 36.21 34.04 Readin dBuV/	/m dB 26.16 27.65 32.14 37.11 Test channel	dB 4.15 5.22 8.86 10.91 I C Cable dB	dB 36.52 37.36 35.35 33.31 CH11 Preamp dB	dBuV 34.58 36.18 41.86 48.75 Leve dBuV,	/m dBuV/m 74.00 74.00 74.00 74.00 74.00 Polarity	limit -39.42 -37.82 -32.14 -25.25	Peak Peak Peak Peak Horizontal	
Туре	1 2 3 4 	MHz 1385.81 2145.85 5039.80 8004.46 802.11g Frequency MHz 1335.01	dBuV/ 40.79 40.67 36.21 34.04 Readin dBuV/ 40.24	/m dB 26.16 27.65 32.14 37.11 Test channel mg Antenna m dB 26.21	dB 4.15 5.22 8.86 10.91 I C Cable dB 4.08	dB 36.52 37.36 35.35 33.31 CH11 Preamp dB 36.39	dBuV 34.58 36.18 41.86 48.75 Leve dBuV, 34.14	/m dBuV/m 74.00 74.00 74.00 74.00 Polarity L Limit /m dBuV/m 74.00	limit -39.42 -37.82 -32.14 -25.25 Over limit -39.86	Peak Peak Peak Horizontal Remark Peak	
Туре	1 2 3 4 Mark	MHz 1385.81 2145.85 5039.80 8004.46 802.11g Frequency MHz	dBuV/ 40.79 40.67 36.21 34.04 Readin dBuV/	/m dB 26.16 27.65 32.14 37.11 Test channel	dB 4.15 5.22 8.86 10.91 I C Cable dB	dB 36.52 37.36 35.35 33.31 CH11 Preamp dB	dBuV 34.58 36.18 41.86 48.75 Leve dBuV,	/m dBuV/m 74.00 74.00 74.00 74.00 74.00 Polarity	limit -39.42 -37.82 -32.14 -25.25	Peak Peak Peak Peak Horizontal	
Туре	1 2 3 4 Mark 1 2	MHz 1385.81 2145.85 5039.80 8004.46 802.11g Frequency MHz 1335.01 2257.08	dBuV/ 40.79 40.67 36.21 34.04 Readin dBuV/ 40.24 40.26	/m dB 26.16 27.65 32.14 37.11 Test channel mg Antenna m dB 26.21 28.09	dB 4.15 5.22 8.86 10.91 I C Cable dB 4.08 5.37	dB 36.52 37.36 35.35 33.31 CH11 Preamp dB 36.39 37.42	dBuV 34.58 36.18 41.86 48.75 Leve dBuV, 34.14 36.30	/m dBuV/m 74.00 74.00 74.00 74.00 74.00 74.00 1 Limit /m dBuV/m 74.00 74.00	limit -39.42 -37.82 -32.14 -25.25 Over limit -39.86 -37.70	Peak Peak Peak Morizontal Remark Peak Peak	
Туре	1 2 3 4 Mark 1 2 3	MHz 1385.81 2145.85 5039.80 8004.46 802.11g Frequency MHz 1335.01 2257.08 5083.85	dBuV/ 40.79 40.67 36.21 34.04 Readin dBuV/ 40.24 40.26 36.44	<pre>/m dB 26.16 27.65 32.14 37.11 Test channel mg Antenna m dB 26.21 28.09 32.20</pre>	dB 4.15 5.22 8.86 10.91 Cable dB 4.08 5.37 8.91 10.90	dB 36.52 37.36 35.35 33.31 CH11 Preamp dB 36.39 37.42 35.45	dBuV 34.58 36.18 41.86 48.75 Leve dBuV 34.14 36.30 42.10	/m dBuV/m 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00	limit -39.42 -37.82 -32.14 -25.25 Over limit -39.86 -37.70 -31.90	Peak Peak Peak Morizontal Remark Peak Peak Peak Peak	
	1 2 3 4 Mark 1 2 3	MHz 1385.81 2145.85 5039.80 8004.46 802.11g Frequency MHz 1335.01 2257.08 5083.85 7992.86	dBuV/ 40.79 40.67 36.21 34.04 Readin dBuV/ 40.24 40.26 36.44	<pre>/m dB 26.16 27.65 32.14 37.11 Test channel og Antenna m dB 26.21 28.09 32.20 37.07</pre>	dB 4.15 5.22 8.86 10.91 Cable dB 4.08 5.37 8.91 10.90	dB 36.52 37.36 35.35 33.31 CH11 Preamp dB 36.39 37.42 35.45 33.31	dBuV 34.58 36.18 41.86 48.75 Leve dBuV 34.14 36.30 42.10	/m dBuV/m 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00	limit -39.42 -37.82 -32.14 -25.25 Over limit -39.86 -37.70 -31.90	Peak Peak Peak Peak Morizontal Remark Peak Peak Peak Peak Peak	
	1 2 3 4 Mark 1 2 3	MHz 1385.81 2145.85 5039.80 8004.46 802.11g Frequency MHz 1335.01 2257.08 5083.85 7992.86	dBuV/ 40.79 40.67 36.21 34.04 Readin dBuV/ 40.24 40.26 36.44	<pre>/m dB 26.16 27.65 32.14 37.11 Test channel m dB 26.21 28.09 32.20 37.07 Test channel</pre>	dB 4.15 5.22 8.86 10.91 Cable dB 4.08 5.37 8.91 10.90	dB 36.52 37.36 35.35 33.31 CH11 Preamp dB 36.39 37.42 35.45 33.31	dBuV 34.58 36.18 41.86 48.75 Leve dBuV 34.14 36.30 42.10	/m dBuV/m 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00	limit -39.42 -37.82 -32.14 -25.25 Over limit -39.86 -37.70 -31.90	Peak Peak Peak Horizontal Remark Peak Peak Peak Peak Peak Peak	
	1 2 3 4 Mark 1 2 3 4	MHz 1385.81 2145.85 5039.80 8004.46 802.11g Frequency MHz 1335.01 2257.08 5083.85 7992.86 802.11g	dBuV/ 40.79 40.67 36.21 34.04 Readin dBuV/ 40.24 40.26 36.44 34.19 Readir dBuV/	/m dB 26.16 27.65 32.14 37.11 Test channel ng Antenna dB 26.21 28.09 32.20 37.07 Test channel	dB 4.15 5.22 8.86 10.91 Cable dB 4.08 5.37 8.91 10.90	dB 36.52 37.36 35.35 33.31 CH11 Preamp dB 36.39 37.42 35.45 33.31 CH11 CH11	dBuV 34.58 36.18 41.86 48.75 Leve dBuV, 34.14 36.30 42.10 48.85	/m dBuV/m 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00	limit -39.42 -37.82 -32.14 -25.25 Over limit -39.86 -37.70 -31.90 -25.15	Peak Peak Peak Horizontal Remark Peak Peak Peak Peak Peak Peak Peak	
	1 2 3 4 Mark 1 2 3 4 Mark Mark	MHz 1385.81 2145.85 5039.80 8004.46 802.11g Frequency MHz 1335.01 2257.08 5083.85 7992.86 802.11g Frequency MHz 1385.81	dBuV/ 40.79 40.67 36.21 34.04 Readin dBuV/ 40.24 40.26 36.44 34.19 Readir dBuV/ 40.79	<pre>/m dB 26.16 27.65 32.14 37.11 Test channel m dB 26.21 28.09 32.20 37.07 Test channel mg Antenna /m dB 26.16</pre>	dB 4.15 5.22 8.86 10.91 Cable dB 4.08 5.37 8.91 10.90 Cable dB 4.15	dB 36.52 37.36 35.35 33.31 CH11 Preamp dB 36.39 37.42 35.45 33.31 CH11 Preamp dB 36.52	dBuV 34.58 36.18 41.86 48.75 Leve dBuV, 34.14 36.30 42.10 48.85 Leve dBuV 34.58	/m dBuV/m 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00	limit -39.42 -37.82 -32.14 -25.25 Over limit -39.86 -37.70 -31.90 -25.15 Over limit -39.42	Peak Peak Peak Horizontal Remark Peak Peak Peak Peak Peak Peak Peak Pea	
	1 2 3 4 Mark 1 2 3 4 Mark Mark 1 2	MHz 1385.81 2145.85 5039.80 8004.46 802.11g Frequency MHz 1335.01 2257.08 5083.85 7992.86 802.11g Frequency MHz 1385.81 2145.85	dBuV/ 40.79 40.67 36.21 34.04 Readin dBuV/ 40.24 40.26 36.44 34.19 Readir dBuV/ 40.79 40.67	<pre>/m dB 26.16 27.65 32.14 37.11 Test channel m dB 26.21 28.09 32.20 37.07 Test channel m dB 26.16 26.16 27.65</pre>	dB 4.15 5.22 8.86 10.91 Cable dB 4.08 5.37 8.91 10.90 Cable dB 4.15 5.22	dB 36.52 37.36 35.35 33.31 CH11 Preamp dB 36.39 37.42 35.45 33.31 CH11 Preamp dB 36.52 37.36	dBuV 34.58 36.18 41.86 48.75 Leve dBuV 34.14 36.30 42.10 48.85 Leve dBuV 34.58 36.18	/m dBuV/m 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00	limit -39.42 -37.82 -32.14 -25.25 Over limit -39.86 -37.70 -31.90 -25.15 Over limit -39.42 -37.82	Peak Peak Peak Horizontal Remark Peak Peak Peak Peak Peak Peak Peak Pea	
	1 2 3 4 Mark 1 2 3 4 Mark Mark	MHz 1385.81 2145.85 5039.80 8004.46 802.11g Frequency MHz 1335.01 2257.08 5083.85 7992.86 802.11g Frequency MHz 1385.81	dBuV/ 40.79 40.67 36.21 34.04 Readin dBuV/ 40.24 40.26 36.44 34.19 Readir dBuV/ 40.79	<pre>/m dB 26.16 27.65 32.14 37.11 Test channel m dB 26.21 28.09 32.20 37.07 Test channel mg Antenna /m dB 26.16</pre>	dB 4.15 5.22 8.86 10.91 Cable dB 4.08 5.37 8.91 10.90 Cable dB 4.15	dB 36.52 37.36 35.35 33.31 CH11 Preamp dB 36.39 37.42 35.45 33.31 CH11 Preamp dB 36.52	dBuV 34.58 36.18 41.86 48.75 Leve dBuV, 34.14 36.30 42.10 48.85 Leve dBuV 34.58	/m dBuV/m 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00	limit -39.42 -37.82 -32.14 -25.25 Over limit -39.86 -37.70 -31.90 -25.15 Over limit -39.42	Peak Peak Peak Horizontal Remark Peak Peak Peak Peak Peak Peak Peak Pea	


Page:

Туре		802.11n(H	T20)	Test channe	I (CH01		Polarity		Horizontal	
	Mark	Frequency MHz	Readin dBuV/		Cable dB	Preamp dB	Level dBuV/		Over limit		
	1 2	1345.31 2335.27	41.21 40.02	26.27 27.86	4.10 5.46	36.41 37.53	35.17 35.81	74.00 74.00	-38.83 -38.19	Peak Peak	
	3 4	5734.15 8156.80	35.73 33.76	31.90 36.96	9.56 11.26	34.85 33.42	42.34 48.56	74.00 74.00	-31.60		
Туре		802.11n(H	T20)	Test channe	I (CH01		Polarity		Vertical	
	Mark	Frequency MHz	Readin dBuV/		Cable dB	Preamp dB	Level dBuV/		Over limit		
	1 2	1349.75 2337.84	41.10 40.38	26.30 27.85	4.10 5.46	36.42 37.53	35.08 36.16	74.00 74.00	-38.92 -37.84	Peak	
	3 4	5317.62 8027.71	37.05 34.17	31.44 37.16	9.48 10.97	35.41 33.31	42.56 48.99	74.00 74.00	-31.44 -25.01		
Туре		802.11n(H	T20)	Test channe	I (CH06		Polarity		Horizontal	
	Mark	Frequency MHz	Readir dBuV/		Cable dB	Preamp dB	Leve] dBuV/		Over limit		
	1 2	1345.31 2335.27	41.21 40.02	26.27 27.86	4.10 5.46	36.41 37.53	35.17 35.81	74.00 74.00	-38.83 -38.19	Peak	
	3 4	5039.80 8109.62	36.49 34.37	32.14 37.16	8.86 11.23	35.35 33.34	42.14 49.42	74.00 74.00	-31.86 -24.58		
Туре		802.11n(H	T20)	Test channe	I (CH06		Polarity		Vertical	
Туре	Mark						Leve		Ove		
Туре	Mark	802.11n(H Frequency MHz	T2O) Readin dBuV,	ng Antenna	Cable dB	Preamp dB	Leve dBuV	l Limit	limi	r Remark t	
Туре	1	Frequency MHz 1349.75	Readin dBuV, 41.10	ng Antenna /m dB 26.30	Cable dB 4.10	Preamp dB 36.42	dBuV 35.08	l Limit //m dBuV/m 74.00	limi -38.9	r Remark t 2 Peak	
Туре	1 2	Frequency MHz 1349.75 2337.84	Readin dBuV, 41.10 40.38	ng Antenna /m dB 26.30 27.85	Cable dB 4.10 5.46	Preamp dB 36.42 37.53	dBuV 35.08 36.16	l Limit //m dBuV/m 74.00 74.00	limi -38.9 -37.8	r Remark t 2 Peak 4 Peak	
Туре	1	Frequency MHz 1349.75	Readin dBuV, 41.10	ng Antenna /m dB 26.30 27.85 31.75	Cable dB 4.10	Preamp dB 36.42	dBuV 35.08	l Limit //m dBuV/m 74.00 74.00 74.00 74.00	limi -38.9	r Remark t 2 Peak 4 Peak 5 Peak	
Туре	1 2 3	Frequency MHz 1349.75 2337.84 4981.67	Readi dBuV 41.10 40.38 36.61 33.81	ng Antenna /m dB 26.30 27.85 31.75	Cable dB 4.10 5.46 8.80 11.08	Preamp dB 36.42 37.53 35.21	dBuV 35.08 36.16 41.95	l Limit //m dBuV/m 74.00 74.00 74.00 74.00	limi -38.9 -37.8 -32.0	r Remark t 2 Peak 4 Peak 5 Peak	
	1 2 3 4	Frequency MHz 1349.75 2337.84 4981.67 8062.71 802.11n(H	Readi dBuV 41.10 40.38 36.61 33.81 T20)	ng Antenna /m dB 26.30 27.85 31.75 37.20 Test channe	Cable dB 4.10 5.46 8.80 11.08	Preamp dB 36.42 37.53 35.21 33.32 CH11	dBuV 35.08 36.16 41.95 48.77	l Limit //m dBuV/m 74.00 74.00 74.00 74.00 Polarity	limi -38.9 -37.8 -32.0 -25.2	r Remark t 2 Peak 4 Peak 5 Peak 3 Peak Horizontal	
	1 2 3	Frequency MHz 1349.75 2337.84 4981.67 8062.71 802.11n(H Frequency MHz	Readin dBuV, 41.10 40.38 36.61 33.81 T20) Readin dBuV/	ng Antenna /m dB 26.30 27.85 31.75 37.20 Test channe ng Antenna /m dB	Cable dB 4.10 5.46 8.80 11.08 I Cable dB	Preamp dB 36.42 37.53 35.21 33.32 CH11 Preamp dB	dBuV 35.08 36.16 41.95 48.77 Leve dBuV	1 Limit //m dBuV/m 74.00 74.00 74.00 74.00 Polarity 1 Limit /m dBuV/m	limi -38.9 -37.8 -32.0 -25.2 Over limit	r Remark t 2 Peak 4 Peak 5 Peak 3 Peak Horizontal	
	1 2 3 4 	Frequency MHz 1349.75 2337.84 4981.67 8062.71 802.11n(H Frequency MHz 1345.31	Readin dBuV, 41.10 40.38 36.61 33.81 T20) Readin dBuV/ 41.21	ng Antenna /m dB 26.30 27.85 31.75 37.20 Test channe mg Antenna /m dB 26.27	Cable dB 4.10 5.46 8.80 11.08 I Cable dB 4.10	Preamp dB 36.42 37.53 35.21 33.32 CH11 Preamp dB 36.41	dBuV 35.08 36.16 41.95 48.77 Leve dBuV 35.17	1 Limit 1/m dBuV/m 74.00 74.00 74.00 74.00 Polarity 1 Limit 1 Limit 1 MBuV/m 74.00	limi -38.9 -37.8 -32.0 -25.2 Over limit -38.83	r Remark t 2 Peak 4 Peak 5 Peak 3 Peak Horizontal Remark 3 Peak	
	1 2 3 4 Mark 1 2	Frequency MHz 1349.75 2337.84 4981.67 8062.71 802.11n(H Frequency MHz 1345.31 2335.27	Readin dBuV, 41.10 40.38 36.61 33.81 T20) Readin dBuV/ 41.21 40.02	ng Antenna /m dB 26.30 27.85 31.75 37.20 Test channe mg Antenna (m dB 26.27 27.86	Cable dB 4.10 5.46 8.80 11.08 I Cable dB 4.10 5.46	Preamp dB 36.42 37.53 35.21 33.32 CH11 Preamp dB 36.41 37.53	dBuV 35.08 36.16 41.95 48.77 Leve dBuV 35.17 35.81	1 Limit //m dBuV/m 74.00 74.00 74.00 74.00 Polarity 1 Limit /m dBuV/m 74.00 74.00	limi -38.9 -37.8 -32.0 -25.2 -25.2 Over limit -38.83 -38.19	r Remark t 2 Peak 4 Peak 5 Peak 3 Peak Horizontal Remark 3 Peak 9 Peak	
	1 2 3 4 	Frequency MHz 1349.75 2337.84 4981.67 8062.71 802.11n(H Frequency MHz 1345.31	Readin dBuV, 41.10 40.38 36.61 33.81 T20) Readin dBuV/ 41.21	ng Antenna /m dB 26.30 27.85 31.75 37.20 Test channe mg Antenna /m dB 26.27	Cable dB 4.10 5.46 8.80 11.08 I Cable dB 4.10	Preamp dB 36.42 37.53 35.21 33.32 CH11 Preamp dB 36.41	dBuV 35.08 36.16 41.95 48.77 Leve dBuV 35.17	l Limit //m dBuV/m 74.00 74.00 74.00 74.00 74.00 74.00 1 Limit /m dBuV/m 74.00 74.00 74.00 74.00	limi -38.9 -37.8 -32.0 -25.2 Over limit -38.83	r Remark t 2 Peak 4 Peak 5 Peak 3 Peak Horizontal Remark 3 Peak 9 Peak 9 Peak	
	1 2 3 4 Mark 1 2 3	Frequency MHz 1349.75 2337.84 4981.67 8062.71 802.11n(H Frequency MHz 1345.31 2335.27 4952.85	Readin dBuV, 41.10 40.38 36.61 33.81 T20) Readin dBuV/ 41.21 40.02 36.73 34.28	ng Antenna /m dB 26.30 27.85 31.75 37.20 Test channe /m dB 26.27 27.86 31.52	Cable dB 4.10 5.46 8.80 11.08 1.08 Cable dB 4.10 5.46 8.77 11.25	Preamp dB 36.42 37.53 35.21 33.32 CH11 Preamp dB 36.41 37.53 35.20	dBuV 35.08 36.16 41.95 48.77 Leve dBuV 35.17 35.81 41.82	l Limit //m dBuV/m 74.00 74.00 74.00 74.00 74.00 74.00 1 Limit /m dBuV/m 74.00 74.00 74.00 74.00	limi: -38.9. -37.8 -32.0 -25.2 -25.2 - Over limit -38.83 -38.19 -32.18	r Remark t 2 Peak 4 Peak 5 Peak 3 Peak Horizontal Remark 3 Peak 9 Peak 9 Peak	
Туре	1 2 3 4 Mark 1 2 3	Frequency MHz 1349.75 2337.84 4981.67 8062.71 802.11n(H Frequency MHz 1345.31 2335.27 4952.85 8168.64	Readin dBuV, 41.10 40.38 36.61 33.81 T20) Readin dBuV/ 41.21 40.02 36.73 34.28	ng Antenna /m dB 26.30 27.85 31.75 37.20 Test channe m dB 26.27 27.86 31.52 36.89 Test channe	Cable dB 4.10 5.46 8.80 11.08 1.08 Cable dB 4.10 5.46 8.77 11.25	Preamp dB 36.42 37.53 35.21 33.32 CH11 Preamp dB 36.41 37.53 35.20 33.44 CH11	dBuV 35.08 36.16 41.95 48.77 Leve dBuV 35.17 35.81 41.82	l Limit //m dBuV/m 74.00 74.00 74.00 74.00 Polarity l Limit /m dBuV/m 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.01 Limit	limi: -38.9. -37.8 -32.0 -25.2 -25.2 - Over limit -38.83 -38.19 -32.18	r Remark 2 Peak 4 Peak 5 Peak 3 Peak 4 Horizontal 6 Remark 9 Peak 9 Peak	
Туре	1 2 3 4 Mark 1 2 3 4 Mark 1	Frequency MHz 1349.75 2337.84 4981.67 8062.71 802.11n(H Frequency MHz 1345.31 2335.27 4952.85 8168.64 802.11n(H Frequency MHz 1349.75	Readin dBuV, 41.10 40.38 36.61 33.81 T20) Readin dBuV/ 41.21 40.02 36.73 34.28 T20) Readin	ng Antenna /m dB 26.30 27.85 31.75 37.20 Test channe m dB 26.27 27.86 31.52 36.89 Test channe	Cable dB 4.10 5.46 8.80 11.08 I Cable dB 4.10 5.46 8.77 11.25 I Cable	Preamp dB 36.42 37.53 35.21 33.32 CH11 Preamp dB 36.41 37.53 35.20 33.44 CH11 Preamp	dBuV 35.08 36.16 41.95 48.77 Leve dBuV, 35.17 35.81 41.82 48.98 Leve	l Limit //m dBuV/m 74.00 74.00 74.00 74.00 Polarity l Limit /m dBuV/m 74.00 74.00 74.00 74.00 74.00 74.00 74.00 1 Limit	limi: -38.9. -37.8. -32.0 -25.2. Over limit -38.83 -38.19 -32.18 -32.18 -25.02 Over limit -38.92	r Remark t 2 Peak 4 Peak 5 Peak 3 Peak 4 Peak 9 Peak	
Туре	1 2 3 4 Mark 1 2 3 4 Mark 1 2	Frequency MHz 1349.75 2337.84 4981.67 8062.71 802.11n(H Frequency MHz 1345.31 2335.27 4952.85 8168.64 802.11n(H Frequency MHz 1349.75 2337.84	Readin dBuV, 41.10 40.38 36.61 33.81 T20) Readin dBuV/ 41.21 40.02 36.73 34.28 T20) Readin dBuV/ 41.10 40.38	ng Antenna /m dB 26.30 27.85 31.75 37.20 Test channe m dB 26.27 27.86 31.52 36.89 Test channe m dB 26.30 27.85	Cable dB 4.10 5.46 8.80 11.08 I Cable dB 4.10 5.46 8.77 11.25 I Cable dB 4.10 5.46	Preamp dB 36.42 37.53 35.21 33.32 CH11 Preamp dB 36.41 37.53 35.20 33.44 CH11 Preamp dB 36.42 37.53	dBuV 35.08 36.16 41.95 48.77 Leve dBuV, 35.17 35.81 41.82 48.98 Leve dBuV, 35.08 36.16	l Limit //m dBuV/m 74.00 74.00 74.00 74.00 Polarity l Limit /m dBuV/m 74.00 74.00 74.00 1 Limit /m dBuV/m 74.00 7	limi: -38.9 -37.8 -32.0 -25.2 -25.2 -25.2 -25.2 -25.2 -25.2 -25.2 -25.2 -25.02 -25.02 -25.02 -25.02 -25.02 -25.02 -25.02 -25.02 -25.	r Remark t 2 Peak 4 Peak 5 Peak 3 Peak 4 Peak 6 Peak 9 Peak	
Туре	1 2 3 4 Mark 1 2 3 4 Mark 1	Frequency MHz 1349.75 2337.84 4981.67 8062.71 802.11n(H Frequency MHz 1345.31 2335.27 4952.85 8168.64 802.11n(H Frequency MHz 1349.75	Readin dBuV, 41.10 40.38 36.61 33.81 T20) Readin dBuV/ 41.21 40.02 36.73 34.28 T20) Readin dBuV/ 41.10	ng Antenna /m dB 26.30 27.85 31.75 37.20 Test channe m dB 26.27 27.86 31.52 36.89 Test channe	Cable dB 4.10 5.46 8.80 11.08 I Cable dB 4.10 5.46 8.77 11.25 I Cable dB 4.10	Preamp dB 36.42 37.53 35.21 33.32 CH11 Preamp dB 36.41 37.53 35.20 33.44 CH11 Preamp dB 36.42	dBuV 35.08 36.16 41.95 48.77 Leve dBuV, 35.17 35.81 41.82 48.98 Leve dBuV, 35.08	l Limit //m dBuV/m 74.00 74.00 74.00 74.00 Polarity l Limit /m dBuV/m 74.00 74.00 74.00 74.00 1 Limit /m dBuV/m 74.00	limi: -38.9. -37.8. -32.0 -25.2. Over limit -38.83 -38.19 -32.18 -32.18 -25.02 Over limit -38.92	r Remark t 2 Peak 4 Peak 5 Peak 3 Peak Horizontal Remark 9 Peak 9 Peak	

2022-04-19

6. TEST SETUP PHOTOS

Radiated Emission

AC Conducted Emission

7. EXTERANAL AND INTERNAL PHOTOS

Refer to the test report No.: CHTEW22040109

8. APPENDIX REPORT