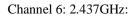
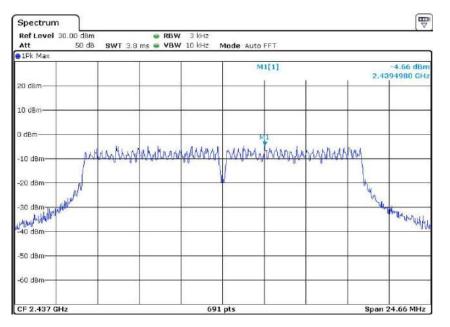
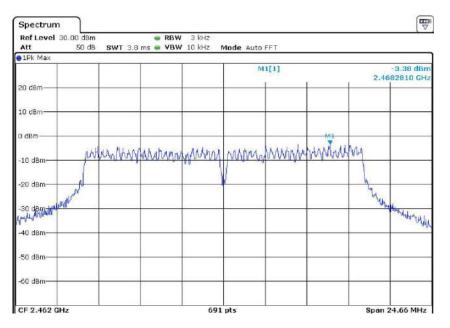


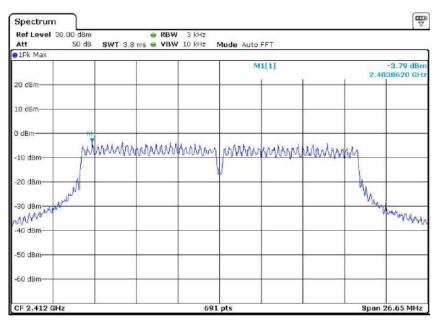
Channel 11: 2.462GHz:

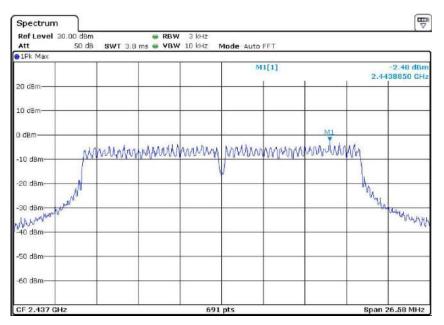

802.11g mode with 54Mbps data rate


Channel 1: 2.412GHz:



Channel 11: 2.462GHz:

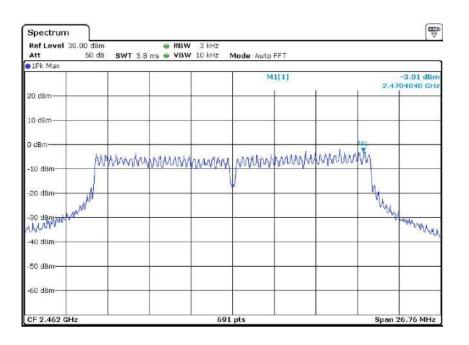




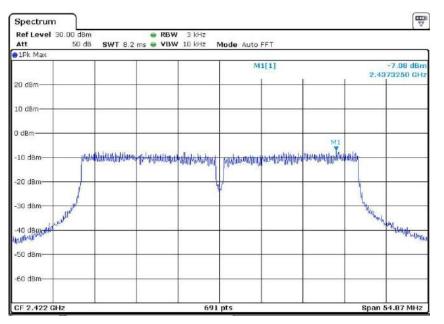
802.11n(HT20) mode with 72.2Mbps data rate

Channel 1: 2.412GHz:

Channel 6: 2.437GHz:



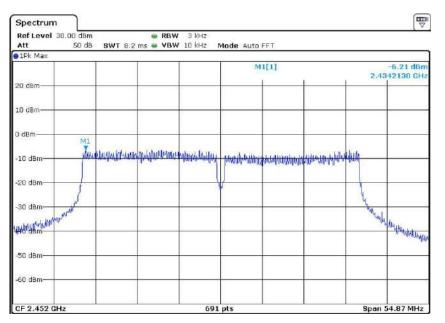
AA Electro Magnetic Test Laboratory Private Limited


Report No.: AAEMT/EMC/221003-01-07

Channel 11: 2.462GHz:

802.11n(HT40) mode with 150Mbps data rate

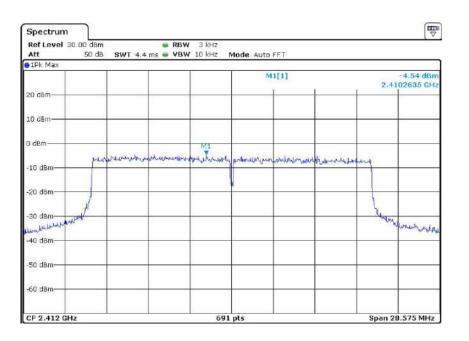
Channel 3: 2.422GHz:

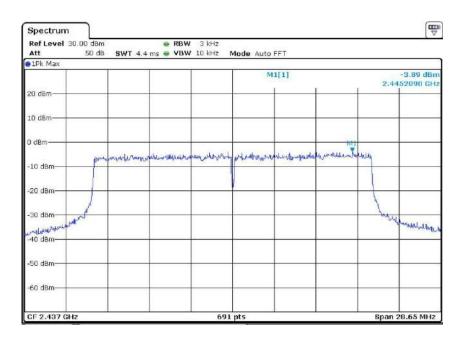


Channel 6: 2.437GHz:

Ref Level 30 Att		● RB		de Auto FFT		
1Pk Max						
				M1[1]	2.	-4.87 dBm 4442260 GHz
20 dBm						
10 dBm						
J dBm				MI		-
-10 dBm	[Maladaya	hadebachedegeelastead allas	wannanna h	North Constrained Strain of the	allination in the	
-20 dBm	1					
-30 dBm HJMMM/MM 40 dBm	loure				- Mark	under the second
-50 d8m						
-60 dBm						-

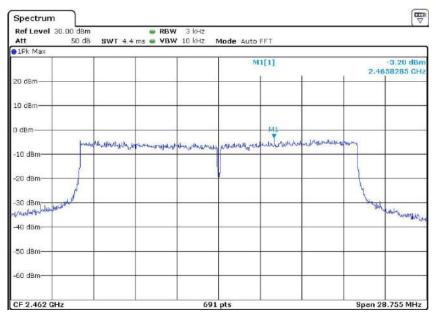
Channel 9: 2.452GHz:

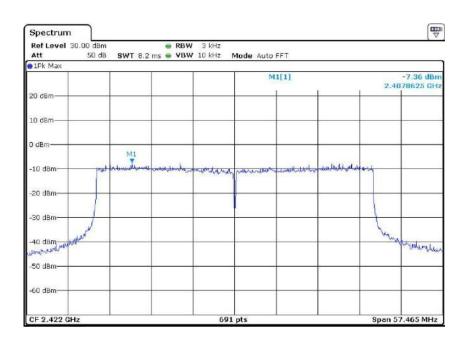




802.11ax(HE20) mode with MCS11 data rate

Channel 1: 2.412GHz


Channel 6: 2.437GHz:



Channel 11: 2.462GHz:

802.11ax(HE40) mode with MCS11 data rate

Channel 3: 2.422GHz:

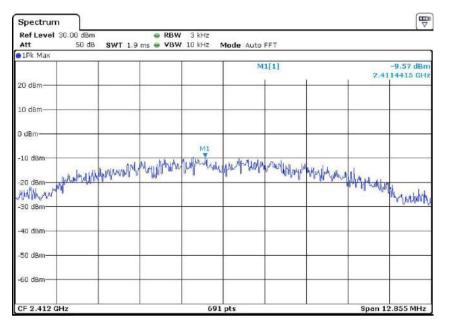
AA Electro Magnetic Test Laboratory Private Limited

Report No.: AAEMT/EMC/221003-01-07

Channel 6: 2.437GHz:

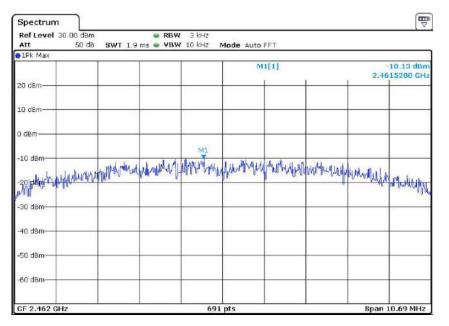
Ref Level 30				3 kHz				
Att	50 dB S'	WT 8.2 ms	VBW 1	0 kHz Mode	Auto FFT			
1Pk Max	-				241511			-6.54 dBn
					M1[1]		2.44	27205 GH
20 dBm							-	-
10 d8m							-	
1400-948 5 100 million								
0 dBm							-	-
20.545.000					MI			
-10 dBm	working	Wentrudoh	nampha	throughout poly	manual providence	mannaments	raly	
				1		-		
-20 dBm								
-30 dBm				12			1	
and and a	M						1 Charles	Windman
-30 dBm	· · · · · · · · · · · · · · · · · · ·							AM John March
10 dbm								
-50 d8m								
-uon								
-60 d8m								

Channel 9: 2.452GHz:

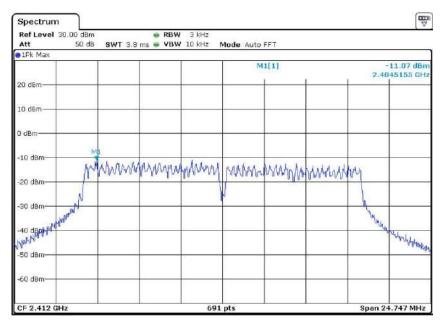

Ref Level 30.00 dBm	🖷 RBW 3	kHz	118×
Att 50 dB	SWT 8.2 ms 🖷 VBW 10	kHz Mode Auto FFT	
1Pk Max			
		M1[1]	-6.52 dBn
20 d8m		1	2.4462600 GH
20 dbm			
10 d8m			
10 0011			
0 dBm		5	
o dom	ML		
-10 dBm	nuclear and a manufacture of the	Mr. Holy Hallmandering the more more	and the address species
10 doin			
-20 dBm-			
-30 dBm /			
-30 dBm			The second se
40 dBm			When you want so it is
			- ARAC
-50 dBm			
-60 dBm			
-60 dBm			

Test Result plot as follows: Chain 1 802.11b mode with 11Mbps data rate

Channel 1: 2.412GHz:

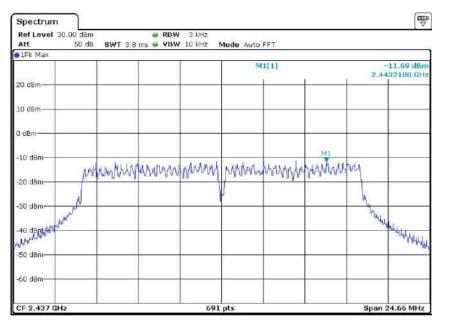

Channel 6: 2.437GHz:

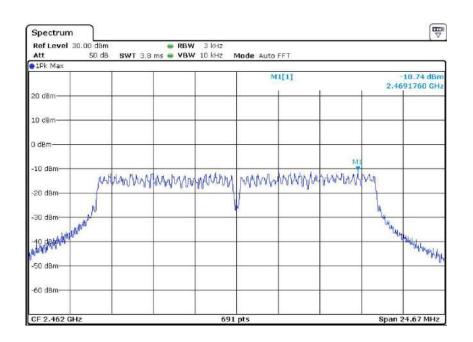
Ref Level 30.0 Att		• RB		Mode Auto	FFT			
91Pk Max								
				M	1[1]		2.43	-9.59 dBm 60730 GHz
20 dBm			-		1	<u>6</u>	-	
10 d8m				· ·			2	
0 dBm		_						
15			MI					
-10 d8m-		and the street	Madre	all and the Man	And the stars	las blo		
REGISTANTALLELO	MANY	multinand	Pulie a. A	West I am	him the	a Jan a chef rad	Who yeally	H. M. MIL
Mad. Louis								W. W. M. M.
-30 d8m		-	-		-		-	
-40 dBm								
-50 d8m			-					
-60 dBm								
-oo usm								5
CF 2.437 GHz		2	60	L pts		0 j	Poan 1	0.17 MHz



Channel 11: 2.462GHz:

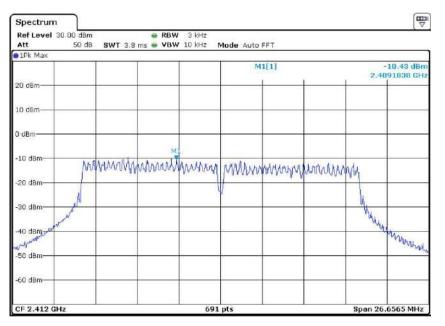
802.11g mode with 54Mbps data rate

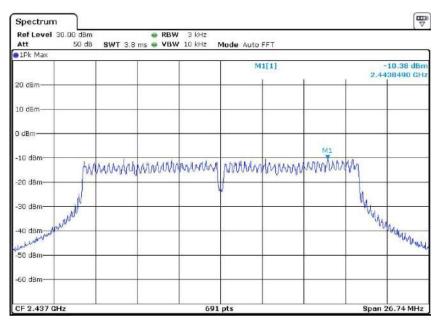

Channel 1: 2.412GHz:



Channel 6: 2.437GHz:

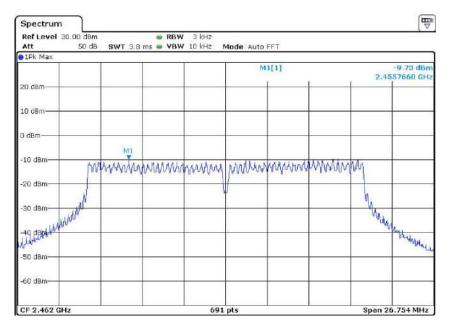
Channel 11: 2.462GHz:

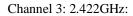




802.11n(HT20) mode with 72.2Mbps data rate

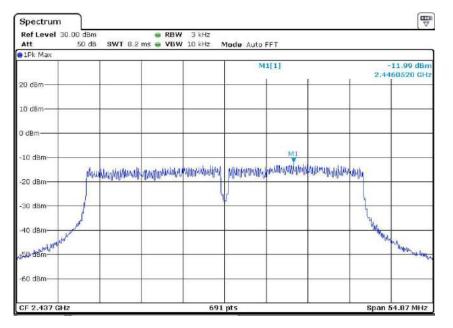
Channel 1: 2.412GHz:


Channel 6: 2.437GHz:

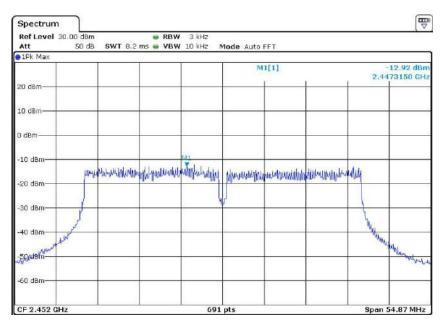


Channel 11: 2.462GHz:

802.11n(HT40) mode with 150Mbps data rate

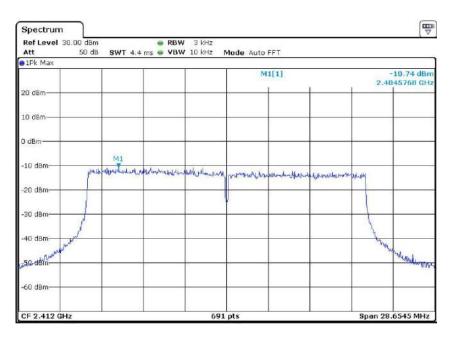


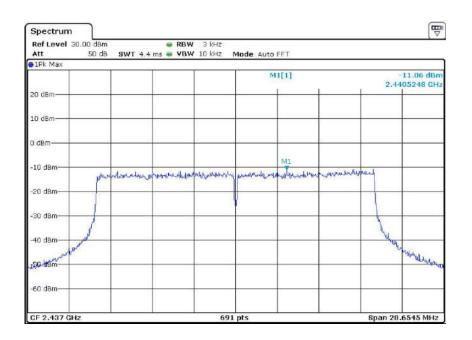
Ref Level 30.1 Att	00 dBm 50 dB	PWT 0.0	e RBW		Andre Antre				
1Pk Max	SU GB	SWI 0.2	ms 🖷 YDW	TU KHZ P	lode Auto	FFI			
					м	1[1]			14.15 dBm 95490 GHz
0 dBm			-						
.0 d8m	_								
) dBm					v				
10 dBm	2003							A1	
20 d8m	Parto	ana kana kana kana kana kana kana kana	ndividuaritati	Malaworkidad	panetaletta	hardningfilm	away where we	ulu .	
30 dBm			-		/			1	
40 dBm	1		-		2			June .	
50 dBm ^{tore}								Willy	and the second start
A dem									a fail
60 dBm	-								
	_			691					54.87 MHz



Channel 6: 2.437GHz:

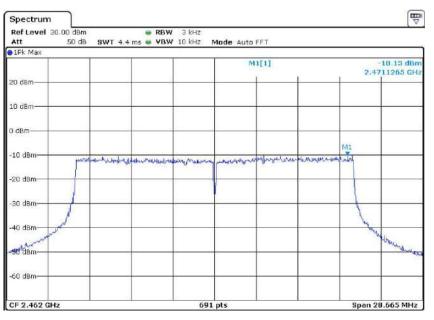
Channel 9: 2.452GHz:

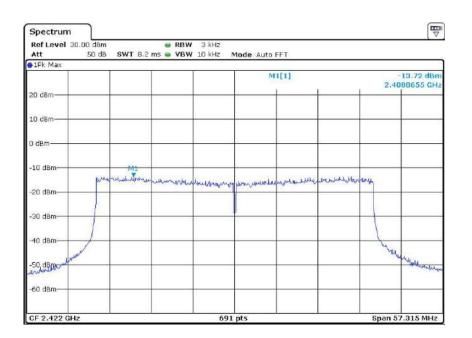




802.11ax(HE20) mode with MCS11 data rate

Channel 1: 2.412GHz

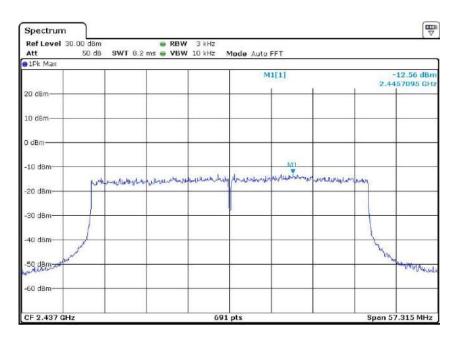

Channel 6: 2.437GHz:



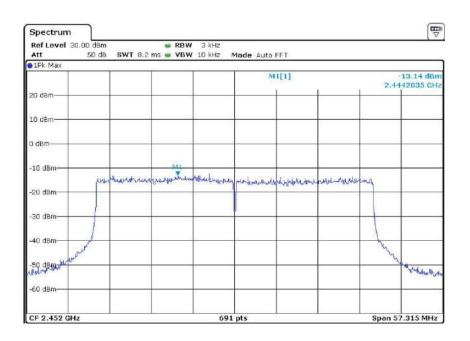
Channel 11: 2.462GHz:

802.11ax(HE40) mode with MCS11 data rate

Channel 3: 2.422GHz:



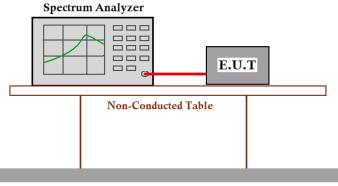
AA Electro Magnetic Test Laboratory Private Limited



Report No.: AAEMT/EMC/221003-01-07

Channel 6: 2.437GHz:

Channel 9: 2.452GHz:



7.8 Band Edges Requirement

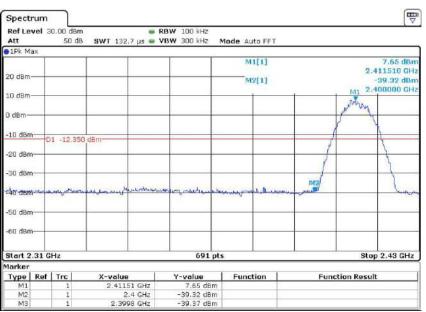
Test Requirement:	FCC Part 15 C section 15.247
	(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating. The radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Based on either an RF conducted or a radiated measurement. Provided the transmitter demonstrates compliance with the peak conducted power limits.
Frequency Band:	2400 MHz to 2483.5 MHz
Test Method:	FCC/KDB-558074 D01 v03r01 Clause 13.3.1
Test Status:	Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. Pre-test the EUT under 2 modes: power-supplied by using the AC adapter and power-supplied by using internal battery. After pre-testing, we found the worst case is the test mode of EUT power-supplied by using internal battery.
Test Configuration:	

Ground Reference Plane

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer or power meter.
- 2. Set instrument center frequency to the frequency of the emission to be measured (must be within 2MHz of the authorized band edge).
- 3. Set span to 2MHz,
- 4. RBW=100kHz,
- 5. VBW≥3×RBW

- 6. Detector=peak
- 7. Sweep time =auto,
- 8. Trace mode=max hold.
- 9. Allow sweep to continue until the trace stabilizes(required measurement time may increase for low duty cycle applications)
- 10. Compute the power by integrating the spectrum over 1MHz using the analyzer's band power measurement function with band limits set equal to the emission frequency($f_{emission}$)±0.5MHz.If the instrument does not have a band power function, the sum the amplitude levels(in power units) at 100kHz intervals extending across the 1MHz spectrum defined by femission±0.5MHz.



Test result with plots as follows: Chain 0

Compare with the output power of the lowest frequency, the Lower Edges attenuated more than 20dB Compare with the output power of the highest frequency, the Upper Edges attenuated more than 20dB.

802.11b mode with 11Mbps data rate

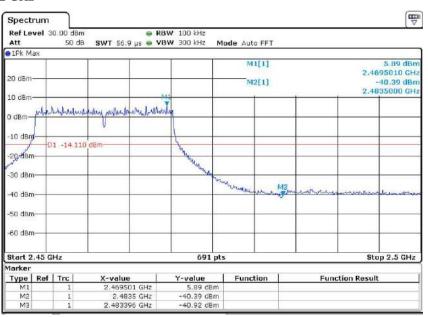
Channel1: 2.412 GHz

Channel11: 2.462 GHz

Spect	rum								₩ V
Ref Le	vel 3	0.00 dBn	n 📦 🖡	BW 100 kHz					
Att		50 di	8 🛛 SWT 56.9 µs 📟 V	/ BW 300 kHz	Mode Auto F	FT			
D1Pk M	ах		12						
					MIL	1]			8.52 dBn
20 d8m	_			_		141			13240 GH
			100		M2[1	1]			42.11 dBn 35000 GH
10 dBm	_		M1	-				2.40	BISBUUU GHA
		1.1	MI NI						
0 dBm-	_	N	144						-
		AF	MAN .	5					
-10 dBm		1 -11.48	0 dam	4					
	1			he					
-20 dBp				6					
1				4					
-30, dBn									
Jun day	8			4		MZ	A March	and a section that	an one-state
40 dBn						Arrest Arrest	and the first	A Changelow	a state of the second of the
-50 dBm									
-50 ubn									
-60 dBm									
Start 2	.45 G	Hz		691 p	ts		6	Ste	p 2.5 GHz
larker									
Type	Ref	Trc	X-value	Y-value	Functio	n	Fun	ction Result	
M1		1	2.461324 GHz	8.52 dBn					
M2		1	2.4835 GHz	-42,11 dBn					
M3		1	2.483396 GHz	-41.17 dBn	¥.				

Page | 100

Plot No.174, UdyogVihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact: 0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels AAEMT/A2LA/TRF/FCC-15C/22_01_REV1

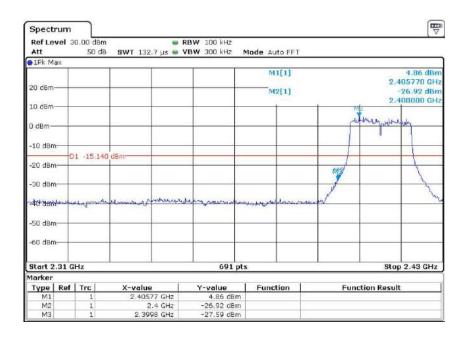

802.11g mode with 54 Mbps data rate

Channel1: 2.412 GHz

Ref Le	vel 3	0.00 dBm 50 dB	and the second se	RBW 100 kHz	lode Auto FFT		113 Tel 1
P1Pk M	ах	30 40	awi 152.7 µs 🖷	1011 JUG KHZ	IDGE AGIO FFI		
20 dBm					M1[1] M2[1]		5.03 dBm 2.405770 GHz -28.09 dBm 2.400000 GHz
10 dBm						TAL	
0 dBm-	_					, uhi	Moleta photology
-10 dBn		1 -14.970	dom				
-20 d8n		1 -14.970	1 dBm			Mar	1
-30 dBn						7	
wid dan	peter and	- yoon	and an and and a second	other gelder Man	warper Roman	margan	They
-50 dBn	•						
-60 dBn	n						
	.31 G	Hz		691 pts			Stop 2.43 GHz
Start 2							
				Y-value	Function	Funct	ion Result
	Ref	Trc	X-value		T WITH STOTT		
Marker Type M1	Ref	Trc 1	2.40577 GHz	5.03 dBm	T unuturi		
	Ref				- underent		

802.11g mode with 54 Mbps data rate

Channel11: 2.462 GHz

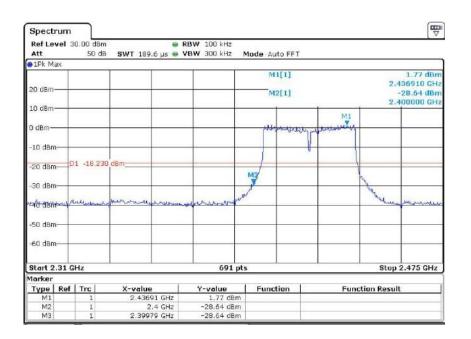


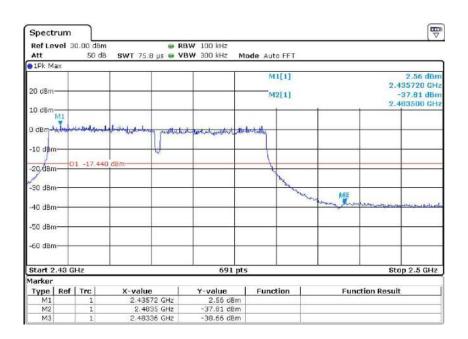
802.11n(HT20) mode with 72.2Mbps data rate

Channel1: 2.412 GHz

802.11n(HT20) mode with 72.2Mbps data rate

Channel11: 2.462 GHz


Spect										
	vel 3	0.00 dBr	2 D D	3W 100 kHz						
Att		50 d	B SWT 56.9 µs 📾 V	BW 300 kHz M	ode Aut	o FFT				
D1Pk M	ax									
					M	1[1]				5.42 dBn
20 dBm										557530 GH
20.0011					M	2[1]				-40.17 dBn
10 d8m	1.1	1							2.40	935000 GH
			and the second sec	10						
) dBm	-which i	mentapphen	where realize between order	NTAM						_
acing										
-10 dBn										
10 49		1 -14.58	an ciam	4						
20 dBn		A	o dom	N.						
Su ubli	1			New .						
-30 dBn				The second se						
00 000				~	hunderty		100			
40 dBn					Mark	anne	Mann	mounder	men harris	annenator
40 050	8						190		0.00	and a straight
50 dBn								y	-	
So upi	2									
-60 dBn										
00 000										
Start 2	.45 G	Hz		691 pts	5		-		Ste	op 2.5 GHz
larker										
Туре	Ref	Trc	X-value	Y-value	Funct	tion		Fun	ction Resul	t
M1		1	2.455753 GHz	5.42 dBm						
M2		1	2.4835 GHz	-40.17 dBm						
M3		1	2,483396 GHz	-41.17 dBm						

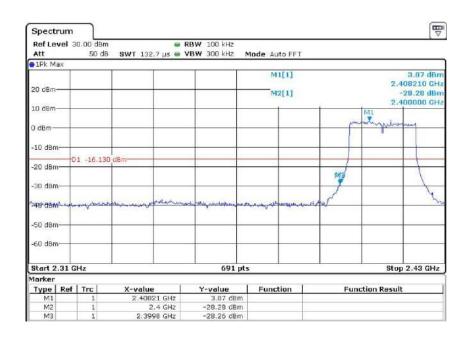

802.11n(HT40) mode with 150Mbps data rate

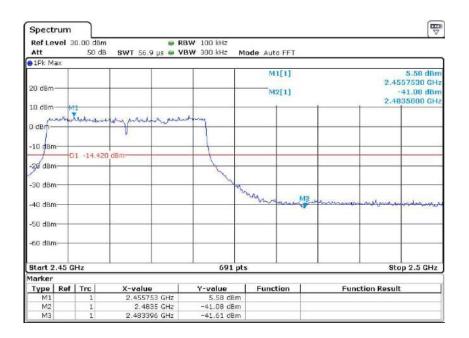
Channel 3: 2.422 GHz

802.11n(HT40) mode with 150Mbps data rate

Channel 9: 2.452 GHz

Page | 103


Plot No.174, UdyogVihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact: 0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels AAEMT/A2LA/TRF/FCC-15C/22_01_REV1

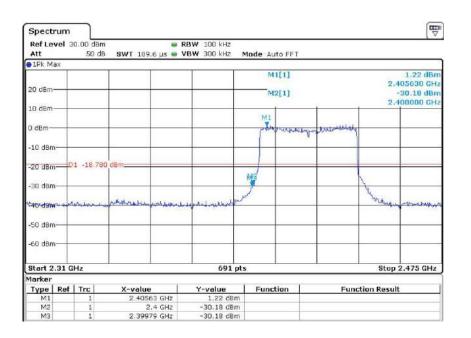


802.11ax(HE20) mode with MCS11 data rate

Channel1: 2.412 GHz

Channel11: 2.462 GHz

Page | 104


Plot No.174, UdyogVihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact: 0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: www.aaemtlabs.com Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels AAEMT/A2LA/TRF/FCC-15C/22_01_REV1

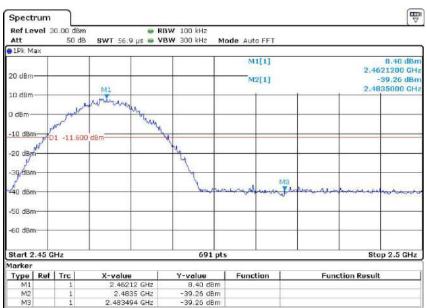
802.11ax(HE40) mode with MCS11 data rate

Channel 3: 2.422 GHz

Channel 9: 2.452 GHz

	vel 30	0.00 dBm		3W 100 kHz	S. 15					
Att 1Pk M	ax	50 dB	SWT 75.8 µs 🖷 V	BW JUU KHZ M	ode Aut	OFFI				
20 d8m						1[1] 2[1]				2.30 dBr 435010 GH -38,98 dBr 483500 GH
	11							ŝ	2.	483300 GH
-10 dBn		الدينية والمراقة التنا	all a star produces	double they h	million					
-29 dan	01	1 -17.700) dBm				_			
-30 dBn	n			-		Ju	and and	M2		N.
-40 dBn							- grant	the state of the s	Antone many	pelderander
-50 dBn										
-60 dBn)									
Start 2	.43 GI	Ηz	M Me	691 pt	5	<i>2</i>	10		St	op 2.5 GHz
Marker Type	Ref	Trc	X-value	Y-value	Func	tion	0	Fund	ction Resu	lt
M1		1	2.43501 GHz	2.30 dBm			8			
M2		1	2.4835 GHz	-38.98 dBm						
MB		1	2.48336 GHz	-39.13 dBm						

Test result with plots as follows: Chain 1


Compare with the output power of the lowest frequency, the Lower Edges attenuated more than 20dB Compare with the output power of the highest frequency, the Upper Edges attenuated more than 20dB.

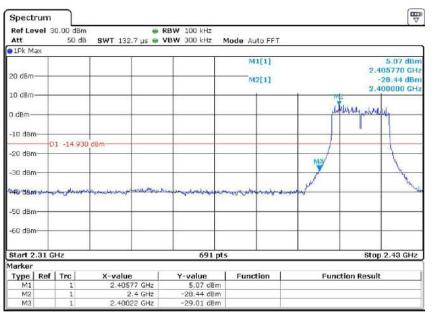
802.11b mode with 11Mbps data rate

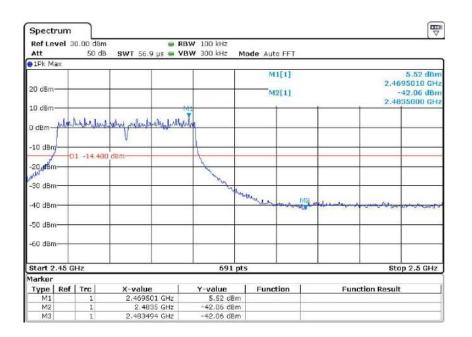
Channel1: 2.412 GHz

Spect		0.00 dBm		RBW 100 kHz			
Att	AGI 2	50 dB			Ande Auto FFT		
1Pk M	ах		on roun po o		Note Hate IT		
20 d8m-	_				Ma[1] M1[1]		-39.30 dBn 2.400220 GH 8.59 dBn
10 dBm-	_				-		M1 2.411680 GH2
0 dBm-	_					كېر	why
10 dBm	-	1 -11.41	o dem	_			
20 dBm						- /-	4
-30 dBm						Ma	
4e den	And	any make	and and a second	under the second	-any enhandline	many mar	Vices
-50 dBm	-+						
-60 dBm	n						
Start 2	.31 G	Hz		691 pts			Stop 2.43 GHz
1arker							
Туре	Ref		X-value	Y-value	Function	Functio	in Result
M1		1	2.41168 GHz 2.4 GHz	8.59 d8m -39.52 d8m			
M2							

Channel11: 2.462 GHz

Page | 106

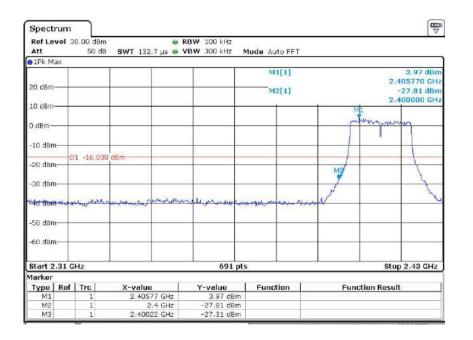

Plot No.174, UdyogVihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact: 0124-4235350, 4145343; e-mail: info @aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels AAEMT/A2LA/TRF/FCC-15C/22_01_REV1

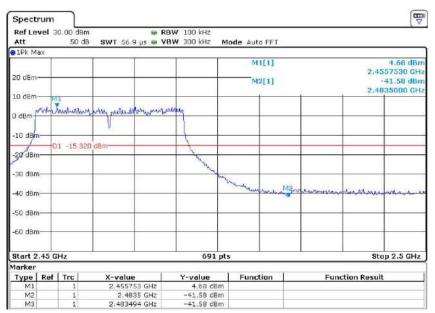

802.11g mode with 54 Mbps data rate

Channel1: 2.412 GHz

802.11g mode with 54 Mbps data rate

Channel11: 2.462 GHz

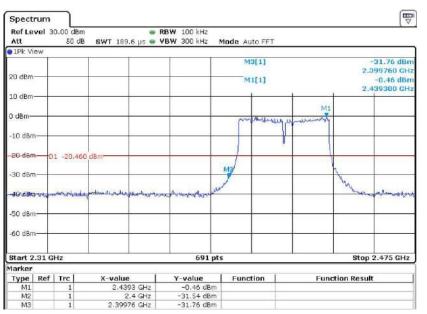


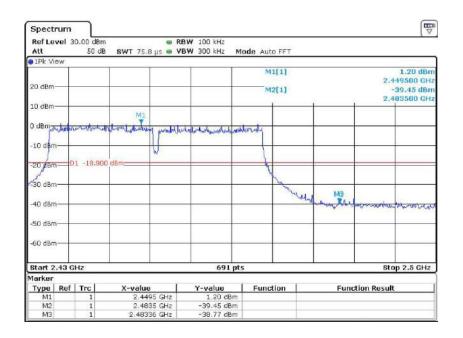

802.11n(HT20) mode with 72.2Mbps data rate

Channel1: 2.412 GHz

802.11n(HT20) mode with 72.2Mbps data rate

Channel11: 2.462 GHz

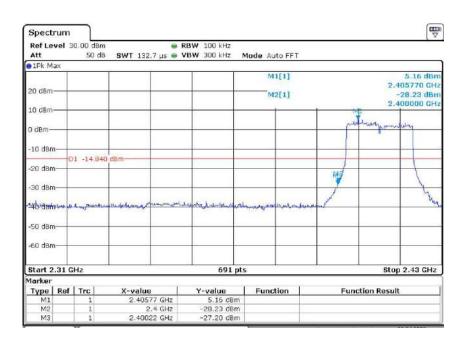



802.11n(HT40) mode with 150Mbps data rate

Channel 3: 2.422 GHz

802.11n(HT40) mode with 150Mbps data rate

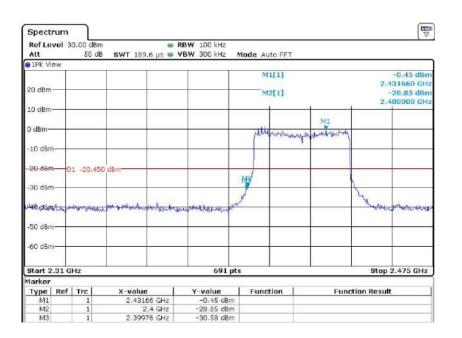
Channel 9: 2.452 GHz

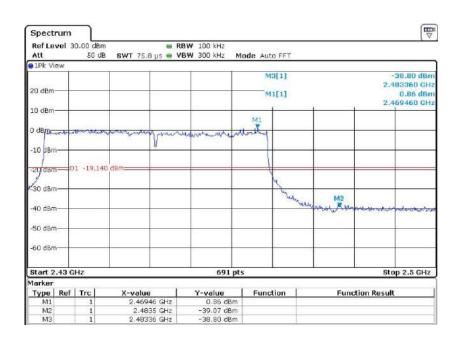


802.11ax(HE20) mode with MCS11 data rate

Channel1: 2.412 GHz

Channel11: 2.462 GHz

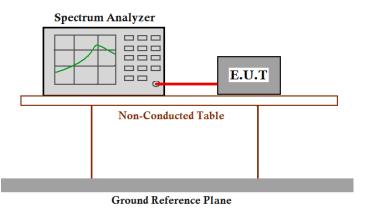

Att	vel 3	0.00 dBm 50 dB		3W 100 kHz BW 300 kHz M	ode Auto FF	т			
DIPk M	ах		un our part		due Haterri				
20 d8m					M1[1] M2[1]				5.39 dBn 95010 GH -40.88 dBn 95000 GH
10 dBm	100			VIII					
0 dBm-	mad	vaturan	www.pertertertertert	returney					
1			v						
-10 dBn								-	-
1		1 -14.610	0 dBm				2		
-20 dBn	1								
-30 dBn				Z					
-30 060				N	New York	140			
-40 dBn					under More	Anton	moundin	norther	and and and a
									A CONTRACTOR OF CONTRACTOR
-50 dBn									
co do-									
-60 dBn									
Start 2	.45 G	Hz		691 pt:	s			Ste	p 2.5 GHz
Marker									
Туре	Ref	Trc	X-value	Y-value	Function		Fund	tion Result	t
M1 M2		1	2.469501 GHz 2.4835 GHz	5.39 dBm -40.88 dBm		-			
M3		1	2.483494 GHz	-40.88 d8m		-			



802.11ax(HE40) mode with MCS11 data rate

Channel 3: 2.422 GHz

Channel 9: 2.452 GHz



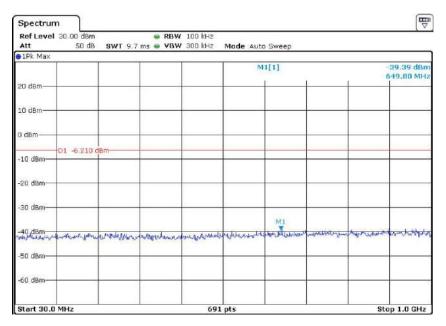
7.9 Conducted Spurious Emissions

Test Requirement:	FCC Part 15 C section 15.247
	(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating. the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Based on either an RF conducted or a radiated measurement. Provided the transmitter demonstrates compliance with the peak conducted power limits.
Test Method:	ANSI C63.10: Clause 6.7
Test Status:	Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. Pre-Test the EUT using external Standard DC power source for powering on the board.

Test Configuration:

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer or power meter.
- 2. Set the spectrum analyzer: RBW=100 KHz, VBW = 300KHz. Sweep = auto; Detector Function = Peak. Trace = Max Hold, Scan up through 10th harmonic.
- 3. Measure the Conducted Spurious Emissions of the test frequency with special test status.
- 4. Repeat until all the test status is investigated.
- 5. Report the worse case.



Result plot as follows: Chain 0

802.11b mode with 11Mbps data rate

Channel 1: 2.412GHz:

30 MHz to 1 GHz

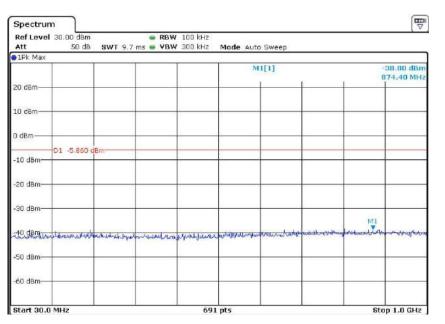
1 G to 3 GHz

Ref Level Att	I 30.00 dBm 50 dB	DULT (100 kHz 300 kHz						
1Pk Max	50 UD	SWI	(U ms 🖷	VDW	JUU KHZ	Mode /	Auto Swe	eep			
-							M1[1]	1		2	13.79 dBm 41390 GHz
20 dBm			-				-		11	+	
10 dBm			+-				+	_	7	-	
0 dBm							_				
-10 d8m	-D1 -6.210 d	Bm					-				
-20 dBm			_				_				
-30 dBm			+				-		è	-	
ad districts	an market	Muchina	an shounds	HL-Mar	appropriation of the particular	anon mu	impilipeli	uitutung	hundrende	whenthemener	nellhurutuschei
-50 d8m			_				_				
-60 d8m			_			-	_				

3 G to 13 GHz

RefLevel 30.00 dBm Att 50 dB	RBW 100 kH SWT 100 ms VBW 300 kH		
1Pk Max			
		M1[1]	-33.24 dBn 6.6400 GH
20 dBm			
10 dBm			
0 dBm			
01 -6.210 dBn			
-10 dBm	()		
-20 dBm			
-30 dBm	643		
and the state	por supering and the set	a living but a	unales and substantia
40 dBm	Maryan	and the production of the productions	a what nationalise is
-50 dBm			
-60 dBm			

13 G to 25 GHz $\,$


Spectrum			[₩
Ref Level 30.00 dBm Att 50 dB SWT 120	RBW 100 kHz ms	Mode Auto Sweep	
PIPk Max		ioue nate encep	
		M1[1]	-30.76 dBm 15.4570 GHz
20 dBm			
10 dBm			
0 dBm			
-10 dBm			
-20 dBm-			
-30 dBm - NII	Here while also a	. March Street	NA CONTRACTOR OF A
40 dBm	and the second of the	w w representation	and the stand of the state of t
50 dBm			
-60 dBm			
Start 13.0 GHz	691 p		

Channel 6: 2.437GHz:

30 MHz to 1 GHz

1 G to 3 GHz

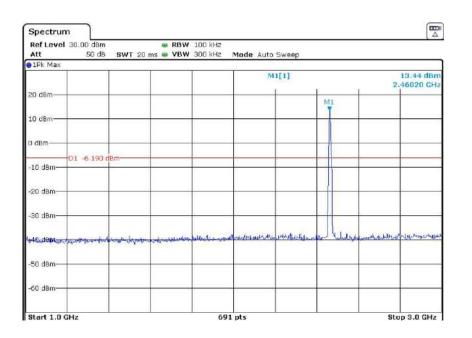
Ref Level Att	30.00 dBm 50 dB	SWT	_		100 kHz 300 kHz	Mode Auto	Sweep			
1Pk View										
						M	1[1]			14.14 dBm 2.43700 GHz
20 dBm	-	-		-		-	1	MI	+	+
								T		
10 d8m						Ś.				
0 d8m	-								-	-
o dom	D1 -5.860	Ben								
-10 dBm	01 -0.000		-		-		-	+	-	-
-20 dBm—		-				e				-
-30 dBm								11		
HO-dam	المداليور ومدارية	manut	refer aller	Mal Mary	muniplemant	mandahara	They briller	ad history		mountemplater
-50 dBm					-		-	-	-	
-60 dBm										
						17				top 3.0 GHz

3 G to 13 GHz

RefLevel 30.00 dBm Att 50 dB	0.00	W 100 kHz W 300 kHz Mode	e Auto Sweep		
1Pk Max					
			M1[1]		-32.97 dBn 6.6250 GHz
0 dBm					
0 dBm					_
dBm					
D1 -5.860	dBm				
20 dBm					
30 dBm	MI				
to dam	and any state and the second and	"angen from half and	inprovement	haven an history	also have the
50 dBm					
50 dBm					

13 G to 25 GHz $\,$

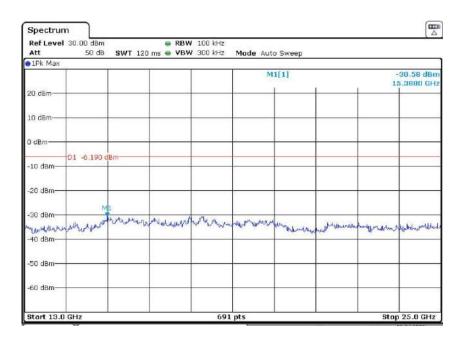
Ref Level 30.00 dBm Att 50 dB SW	 RBW 100 kHz T 120 ms VBW 300 kHz 	Mode Auto Sweep	
1Pk Max			
		M1[1]	-30.31 dBm 15.7350 GHz
20 dBm		+ +	13.7340 017
10 dBm	-		
10 dbin			
0 dBm		<u> </u>	
01 -5.860 dBm			
-10 dBm			
-20 dBm			
20 dam			
-30 dBm	Monte Autrine	a la Marchenter	upplanghall an Maradal assaultan
	d seated as a	and and have and the	a the second of the stand of the second of the second of the
-40 dBm			
-50 dBm			
-60 dBm			



Channel 11:2.462 GHz

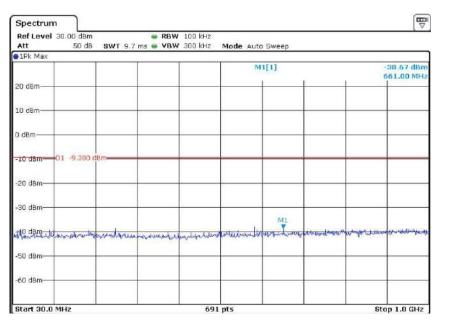
30 MHz to 1 GHz

Ref Level 30.00 dBm	RBW 100 kHz			
Att 50 dB SWT	9.7 ms 🖷 VBW 300 kHz	Mode Auto Sweep		
1Pk Max		978		
		M1[1]		-37.60 dBm 881.40 MHz
20 dBm				
10 dBm				-
0 dBm				
D1 -6.190 dBm				
-10 dBm				
-20 dBm				
-30 dBm				
			M1	
th Brementer mederserved	outormous remarks have no	and the second	Actuary of the street of the second states of the s	and conversion and a second
50 dBm-				
-60 dBm				-
Start 30.0 MHz	69	1 pts	St	op 1.0 GHz



3 G to 13 GHz

	30.00 dBm			W 100 kHz	- 8 - 13				
Att 1Pk Max	50 dB	SWT 1	10 ms 🖷 VB	W 300 kHz	Mode Aut	o Sweep			
TEK INda					м	1[1]			29.39 dBm
20 d8m				-				-	
LO dBm			-						-
) dBm			-						
10 dBm	D1 -6.190 d	Bm							
20 dBm					0		ţ		
30 dBm	MI	_			2				
40 dam	uninesemble	where where	helphanistran	Mariana	autom	Munipund	intertructed	Moderate	lotadican with the
50 d8m									
60 dBm							0		



802.11g mode with 54Mbps data rate

Channel 1: 2.412GHz:

30 MHz to 1 GHz

-38.56 dBn 2.49490 GH 10.62 dBn 2.40810 GH
2.49490 GH 10.62 dBn
10.62 dBn
2.40810 GH
untrainerphras

3 G to 13 GHz

Att 50 dBr	A CONTRACT OF A	BW 100 kHz BW 300 kHz	Mode Auto	Sweep		
1Pk Max				N.		
			MI	[1]		-34.06 dBm 5.4670 GHz
20 dBm			-	E	-	+
10 dBm				1		
0 dBm						_
-10 dBm D1 -9.380	dBm		0			
-20 dBm-		_				
-30 dBm	MI			_		
40 dam	MI	un land when he	aluphaniture print	Menurchingadia	international tool	alunna
-50 d8m-						+
60 dBm						_
Start 3.0 GHz	-	691	nts	1	Str	p 13.0 GHz

13 G to 25 GHz

Ref Level 30.00 dBm		W 100 kHz	The second second		
Att 50 dB	SWT 120 ms 🖷 VB	W 300 kHz Mode	a Auto Sweep		
1Pk Max		- F			and the second second
			M1[1]		-30.49 dBn 16.8490 GHz
20 d8m				<u> </u>	
10 d8m		-			
0 dBm					
-10 dBm D1 -9.380 c	Bm				
-20 dBm					
-30 dBm-	M1				
-30 dBm-	the attraction all almost	Mathemanipucto	which and upon 1	alsting that it	Mr. 1. A secondar all
-40 dBm			blassly	full with a start	Seamon allowed and
Ho dan					
-50 dBm					
-60 dBm					
Start 13.0 GHz		691 pts			Stop 25.0 GHz

Channel 6: 2.437GHz:

30 MHz to 1 GHz

Ref Level		ç	R RAW	/ 100 kHz					
Att	50 dB	SWT 9	7 ms SVBV		Mode Auto	o Sweep			
1Pk Max						o o coop			
					M	11[1]			-38.83 dBm 843.50 MHz
20 d8m						1		-	-
10 dBm									-
0 dBm	ł				12				
10 dBm (01 -9.390 0	iBm====		-			-		
-20 dBm			_				þ		1
-30 dBm							-		
40 dBm	the second and the second	hatter have	al Albertaking	hundrabeli	- www.tuense	-	Josephilitering	M1	the sheathers
-50 dBm									-
60 dBm									
Start 30.0 M	A1 1-				pts				p 1.0 GHz

			300 kHz /	Mode Auto	Sweep			
					2[1]		2.	38.52 dBn 52100 GH
				M				10.61 dBn 44280 GH
-9.390 dBm=								
						Д		
wether marked	<u>ahraderapper</u>	a pelenneting	adamente	herektoreautro	antheninen	(M2)	hyperanderitors	ran and an and a start of the
			-			-		
	-9.390 dBm=				-9.390 dBm	-9.390 dBm	-9.390 dBm	-9.390 dBm

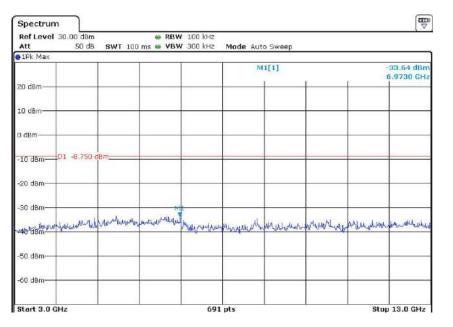
3 G to 13 GHz

3 SWT 100 ms • VB		Mode Auto Swe M1[1]	- 55	-32.06 dBm
		M1[1]		-32 06 dBm
				5.3950 GHz
1				
dBm	-		_	
		0		
MI				
Julia manine alla tarane	Muntuckide	mbilities when	intropolation was not	hadron parabation
	-			
	MI	M1	MI	

Ref Level 30.00 dBm		RBW 1						
Att 50 dB 1Pk Max	SWT 120 m	s 🖷 VBW 🤅	100 kHz	Mode Auto	o Sweep			
The Wax				М	1[1]			30.25 dBm 5.3880 GHz
0 dBm								
0 dBm								
dBm								
10 dam 01 -9.390	dBm							
20 dBm						3		
30 dBm n	4	and the	My March 1	have the work of	ul.			1 14 1
40 dBm		a hale to a	V 40 4-	-0 4	manuru	haddenation	hangeleseters	under 11 march
50 dBm								
50 dBm								

Channel 11:2.462 GHz

30 MHz to 1 GHz


0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -50 dBm	
20 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm	
10 dBm 0 dBm 10 dBm 10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm	-38.66 dBr 707,30 MH
-20 dBm	707,00 MP
D dBm 10 dBm 20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm	
10 dBm D1 -8.750 dBm	
-10 dBm	
20 dBm- -30 dBm- -30 dBm- -30 dBm- -50 dBm-	
30 dBm M1 Al 1820 - when the war of all when a source to the of a start and a start and a start and a start and a start a	
-30 dBm -30 dBm -30 dBm	
10 dBm-	
10 dBm-	
19 dem-	
-50 dBm-	ation was the at the street
	and the second second second second
60 dba	
-50 08m	
Start 30.0 MHz 691 pts	Stop 1.0 GHz

Ref Level 30 Att		🛶 WT 20 ms 🖷 '	RBW 100 kHz VBW 300 kHz	Mode Auto	Sweep			
1Pk Max				T.				
				M	2[1]			8.50 dBm
20 d8m				-M	1[1]		1	1.45 dBm
						MI	2.4	6600 GH;
10 dBm					-	1		
0 dBm				-	2			
01	-8.750 dBm-		-					
-10 dBm-01	-Birbu uBrig							
-20 dBm								
-20 asm								
-30 dBm								
						M2		
AU demonstra	and annot a	warpur marked a	newaradahan	monum	untulknude w	48 Wellerich	www.webhand	internal internet
-50 d8m			-	-				
-60 d8m								

3 G to 13 GHz

13 G to 25 GHz

M1[1]		-29.90 dBr 15.7870 GH
MI[1]		
	<i>.</i> /v	
sportune the where should be	untrapped material	amental months will be
	100 cm or thy miles allows	1000 contribution allow a logo fine yel maken al

802.11n(HT20) mode with 72.2Mbps data rate

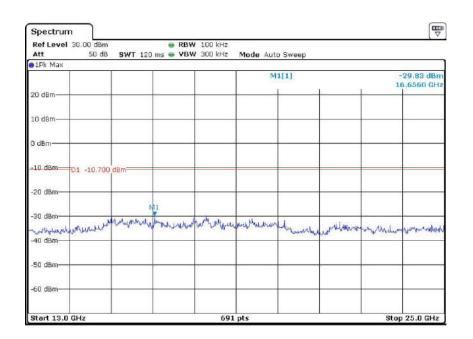
Channel 1: 2.412GHz:

30 MHz to 1 GHz

	30.00 dBm			V 100 kHz				
Att 1Pk Max	50 dB	SWT 9	7 ms 🖶 VB1	₩ 300 kHz	Mode Auto	sweep		
TEK MIRK					М	1[1]		39.14 dBm 12.30 MHz
20 dBm								
LO dBm			-					
0 dBm								
10 dBm	01 -10.700	dBm						
20 dBm					0		· · · · ·	
30 dBm			+	-				
40 dBm	numericality	Hutanta	Mylantruckin	-Jull-An-	timplandet	-blad-marcad	L.J. Brong and Marco	11 Jupratorio
50 d8m								
60 dBm								

1 G to 3 GHz

Spectrur		05	-	-	and have					
Att	50.00 asm 50 dB		20 ms -		100 kHz 300 kHz	Mode Auto	Sweep			
PIPk Max										
						IV	12[1]			38.69 dBm
00 d0m							11[1]		2	55860 GHz 9.73 dBm
20 d8m						- 17	11[1]		2	40810 GHz
10 dBm							N	1		
10 08m								1		
0 dBm						12				
o dom										
-10 d8m-	01 -10.700	d B on						1		
	01 -10.700	Gen								
-20 dBm										
								1		
-30 dBm	-	-						1		
	1V					a constant of the	and and the second	M2	A A A A MA AN A	man making
-40 Banal	sides.adesasades	Apple As	wheeland	ap filed	and a state of the	er heren work all	rectinguisment	net and the second	how wanter and	Alter and a service of the service o
-50 d8m		-	_			·	-			
-60 d8m										-
Start 1.0	GHz				691	pts			Sto	p 3.0 GHz



3 G to 13 GHz

Ref Level 30.00 dBm	RBW 100 kHz		[1
	00 ms 🖷 VBW 300 kHz	Mode Auto Sweep	
1Pk Max			
		M1[1]	-34.02 dt 6.5820 G
20 d8m			
10 dBm			
1004800305			
0 dBm			
-10 dBm D1 -10.700 dBm			
20 d8m			
-30 dBm	INIT		
had dom	aby which all all any time	upon block and and mentales	open to a manufacture of the second
50 dBm-			
60 dBm			
Start 3.0 GHz	60	1 pts	Stop 13.0 GH

13 G to 25 GHz

Channel 6: 2.437GHz:

30 MHz to 1 GHz

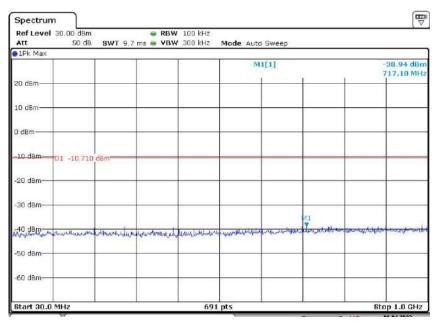
Ref Level 30.00 Att		RBW 7 ms SVBW	100 kHz 300 kHz Mod	e Auto Sweep					
1Pk Max		1 1110 1 1 10 11		e nete encep					
				M1[1]					
20 dBm									
10 d8m					-				
) dBm									
10 dam 01 -9	.330 dBm								
20 dBm		-			-				
30 dBm					-				
40 d8m	The sector Land			contraction to	M1	and the second particular	-		
and the second second	and a sub-	rana manakanisi	Preflatellar Analysis						
50 dBm									
60 dBm									

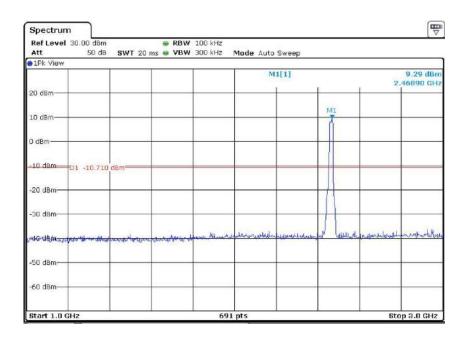
1 G to 3 GHz

Ref Level 30.00 Att		ms SVBW	100 kHz 300 kHz M	lode Auto	Sweep			
1Pk Max								
				M	2[1]			38.62 dBn 62520 GH
20 d8m				M	1[1]			10.67 dBn
						MI	2.	43990 GH
10 d8m			-	-		Å	-	
0 dBm							1	
	9.330 dBm							
-10 dBm	9,330 0811-					1		
-20 d8m								
						1		
-30 dBm-						[]	-	
ANTRONO MARINE STREET			a second de la companya de la		In In In		Mannah	
AD BAR MAL	bon factor and the low	representations	when the way		marchenter	alanda	MAR SHOWARD	
-50 d8m						¢.		
-60 dBm								
-oo ubm	1							

3 G to 13 GHz

Ref Level 30.	00 dBm	👄 RB'	₩ 100 kHz					
Att	50 dB SW	T 100 ms 🖷 VB	W 300 kHz	Mode Auto	o Sweep			
1Pk Max		1	-					
				M	1[1]			33.42 dBm 5.9580 GHz
20 d8m					1	1		
10 d8m		-	-			d:		
0 dBm			-			-		-
-10 dBm 01	-9.330 dBm		-					
-20 dBm				1-	-			-
-30 dBm			-					
ad dem	we have have been all the	unter landation of the	Marine and	manufalle	rectionation	when the white	Minumana	pastry/lentheur
-50 dBm			1.0			6		
-60 dBm				1				-
Start 3.0 GHz			600	pts				13.0 GHz


Ref Level 30.00 dBm Att 50 dB SW1	 RBW 100 kHz 120 ms VBW 300 kHz 	Mode Auto Sweep	
1Pk Max			
		M1[1]	-30.61 dBm 16.7080 GHz
20 dBm		+ +	
10 dBm			
) dBm		-	
10 dBm D1 -9.330 dBm			
20 dBm			
	641		
-30 dBm	hand a fel a second the day	and the second	national second second second second
when the beneficial show	, and almatrices a set out	and a support property	person and support the manufactures and
40 dBm			
50 dBm-			
60 dBm			



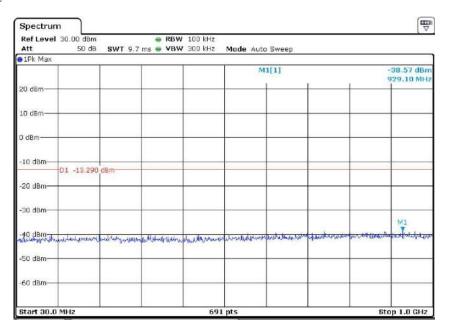
Channel 11:2.462 GHz

30 MHz to 1 GHz

3 G to 13 GHz

RefLevel 30.00 dBm Att 50 dB		RBW 100 kHz VBW 300 kHz	Mode Auto Sweep				
1Pk Max	3W1 100 IIIS	10W 300 KHZ	Hode Auto Sweep				
			M1[1] -34.21 dt 6.9150 G				
0 dBm							
0 dBm							
dBm							
10 dBm-01 -10.710	dBm						
20 dBm			·				
0 dBm	100 1100 W 10007 - 00	1913					
18 anni march anna	labor and and a service	gound ward war	photometry providence	hypotentificanteries	ellan isnelateri		
60 dBm							
60 dBm							

Ref Level 30.00 dBm		100 kHz		
	WT 120 ms 🖷 VBW	300 kHz Mode	Auto Sweep	
1Pk Max			M1[1]	-30.38 dBm
			milti	16.1520 GHz
20 d8m			+ +	
10 dBm				
0 dBm-				
10 dBm01 -10.710 dBm				
-20 dBm				
	MI			
-30 d8m	JUL 20	Jas d	1	
-30 dBm	and and the second second	or when he will be	william home in	any references when bey much
40 dBm				The second s
0.000.000.000				
-50 d8m			_	
60 d8m			_	



802.11n(HT40) mode with 150Mbps data rate

Channel 3: 2.422GHz:

30 MHz to 1 GHz

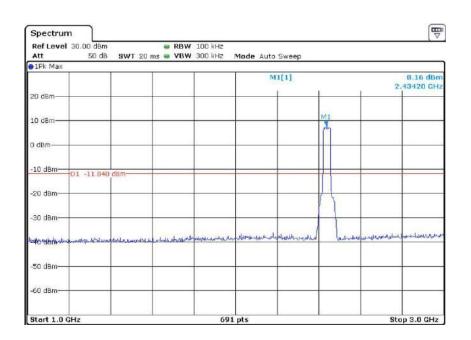
1 G to 3 GHz

Ref Level Att	30.00 dBm 50 dB	SWT 20	ms VBW	100 kHz 300 kHz	Mode Auto	Sweep			
1Pk Max	-					0.			
					M	1[1]		2	6.71 dBn 43990 GHz
20 d8m				-			2	+	
10 dBm							M		
0 dBm	-				2				
-10 dBm	D1 -13.290	dBm							
-20 dBm									
-30 dBm									
40 demain	antelan mide	Hunterstan	manappendictor	Anthropomotion	eyenter-training	andhriannad	Los-Maria	للعلام المتمالي المعالم	eldennour
-50 d8m	-			-		-			
60 d8m-									

3 G to 13 GHz

Ref Level 30.00 Att 5		 RBW 100 kHz VBW 300 kHz 	Mode Auto Sweep		
1Pk Max			0.9 0.9		
			M1[1]		-33.68 dBm 6.6400 GHz
20 dBm				F - F	0.0400 GH2
10 dBm					1
0 dBm					
-10 d8m					
-20 dBm	3.290 dBm				
-30 dBm		141			
all the shall have a	which work made by	when alphanter or	nollining the other should	anning as white has a	maynaut
de dom					
50 dBm					
60 dBm					

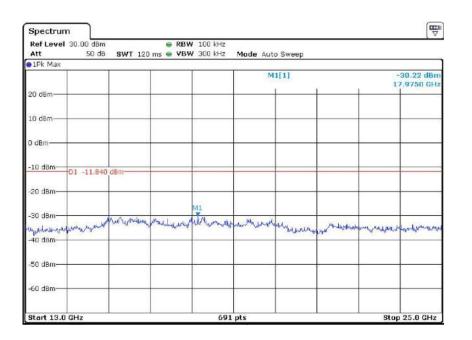
RefLevel 30.00 att 50		e RBW ms e VBW	/ 100 kHz / 300 kHz	Mode Auto	o Sween			
1Pk Max								
				M	1[1]			30.63 dBn 5.7250 GH
20 dBm						V		
l0 d8m		-	-	0				
) dBm								
10 dBm	.290 d8m			1				
20 dBm	_							
30 dBm	M. M. Mas.	MI	- Mary Is			In plan and		
40 dBm	Mar a mar in	an analasta	w water	an amar	Mayerduna	pustiningent	water-ridius	water water
50 dBm								
60 dBm	_							



Channel 6: 2.437GHz:

$30\ \text{MHz}$ to $1\ \text{GHz}$

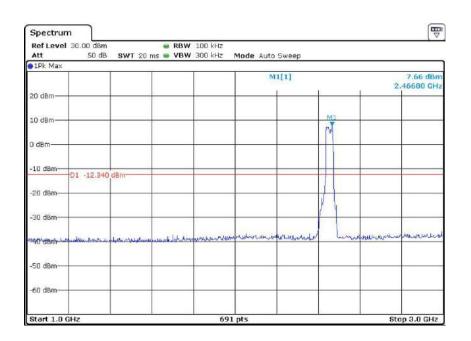
RefLevel 30.00 dBm Att 50 dB		100 kHz		
1Pk Max	5W1 9.7 ms 🖷 VBW	300 kHz Mode Auto S	sweep	
		MI	[1]	-38.11 dBn 635.70 MH
0 dBm		-		
.0 dBm				
I dBm		· · · ·		
10 dBm-01 -11.840) dBm			
20 dBm				
30 dBm				
40 dpm	www.www.wiplohum	in a should be the second second	MI	the production of the state of
50 dBm				
60 dBm				



3 G to 13 GHz

Att	30.00 dBm 50 dB	SWT 10	RBV RBV O ms VBV	V 100 kHz	Mode Aut	o Sween			
1Pk Max	50 40	3991 10	0 ms • • •	• 000 Kin	Hode Hot	o oweeh			
					М	1[1]			-34.67 dBn 8.8540 GHz
:0 dBm			-						
0 dBm							-		
dBm								-	
10 dBm	D1 -11.840	dBm	-						
20 d8m					0		-		
30 dBm	_			-	M1				
ad Usin	ehlicklasherdlar	lannan Aslana	a providente alternation	hundungh	arennauly all	Maynum	pole mark	- Where are block	en statute
50 dBm									
60 dBm				1	1				

13 G to 25 GHz



Channel 9:2.452 GHz

30 MHz to 1 GHz

Ref Level 30.0 Att		 RBW 100 kH 7 ms VBW 300 kH 		11/24
1Pk Max	30 00 3 MT 9.	7 ms - + 6 505 km	2 Mode Auto Sweep	
			M1[1]	-38.55 dBm 704.50 MHz
0 dBm				
0 dBm				
dBm				
10 dBm D1 -	12.340 d8m			
20 dBm				
30 dBm			M	
10, dBm	hur him portentester	dillowed doubt to be a series		warante manufacture and
50 dBm				
60 dBm				

3 G to 13 GHz

RefLevel 30. Att	00 dBm 50 dB	SWT 1	RBN 00 ms	₩ 100 kHz ₩ 300 kHz	Mode Aut	o Sweep			
1Pk Max			1		12				
					M	11[1]			32.97 dBm 6.6400 GHz
0 dBm	-		-			1	6		
0 dBm									
dBm									
10 dBm-01	-12.340	d8m							
20 dBm		201200			0				
30 dBm	_		MI	20				-	1
4Budem	mallipap	wanturing	all of the second second	Myeywardsh	harvenarily	or Huber Mollo	ndehabilities	perheralities	od hortragene
50 dBm									
60 dBm					-		-		

$1\ 3\ G$ to $25\ GHz$

Ref Level	30.00 dBm		A REV	/ 100 kHz					
Att	50 dB	SWT 1	20 ms - VBV		Mode Aut	o Sweep			
1Pk Max						1/2			
					м	1[1]			29.82 dBn 7.7840 GH;
20 d8m							<u>, </u>	-	Trono un
10 dBm			-				2		-
0 dBm					12				
-10 dBm	D1 -12.340	dBm							
-20 dBm									
-30 dBm		and the local states	N.	1	1				
40 dBm-	aph ranken we	er inative res	hall had a share a shar	to maphood	Harris Scherer	When Irodathie	hand the share while the	white	Walderforder
-50 d8m									
-60 d8m							ā -		

802.11ax(HE20) mode with MCS11 data rate

Channel 1: 2.412GHz:

30 MHz to 1 GHz

	30.00 dBm			RBW 100 kHz	99 B. A. Y. B.		
Att	50 dB	SWT	9.7 ms 🖶 '	VBW 300 kHz	Mode Auto Swe	ер	
1Pk Max							
					M1[1]		-38.64 dBn 905.20 MH
20 dBm			_	-			1
10 d8m							
0 dBm							
-10 dBm	20 90.00		_	-			
-20 d8m	D1 -14.130	d8m					
-30 dBm			_				
							MI
- Watten	when the second	and Advertise	mounder	menninghamme	uprilitions and managements	the who who who who who	approximiting the state the
-50 dBm							
-60 dBm							
	MHz				1 pts		Stop 1.0 GHz

1 G to 3 GHz

Ref Level Att	30.00 dBm 50 dB	SWT 20	e RBW	100 kHz 300 kHz	Mode Auto	Sweep			
1Pk Max	-					<i></i>			
					M	1[1]		2	5.87 dBn .41970 GHz
20 d8m	-		-				ł	+	
10 d8m				1	-		M1 M1		
0 dBm		-			·		~		
-10 d8m-	D1 -14.130	dem							
-20 dBm	01 -14.100								
-30 dBm					· · · · · · · · · · · · · · · · · · ·			1	
ad and some an	, paramental	were any an	androwenershill	onlinutern	mounderwhe	rhandmind	have	an order whether	al have been de stran Alle
-									
-50 d8m							2		
-60 dBm	-			-					

3 G to 13 GHz

Ref Level Att	l 30.00 dBm 50 dB	SWT 10	e RBV 0 ms e VBV	✔ 100 kHz ✔ 300 kHz	Mode Aut	o Sweep			
1Pk Max					м	11[1]			-34.35 dBm 6.9870 GHz
20 dBm			-			-	<u>E</u>		s.sore and
10 dBm						-			
0 dBm									
-10 dBm	D1 -14.130	d8m							
-20 d8m									
-30 dBm—			M	1					
Hodem-	particular de	Materia	how the production of the prod	nonentril whe	deutricity all my	wharpena	hillentry	Marineland	adablarow
-50 d8m									
60 d8m					-				
Start 3.0	CH2			691	nts			Stor	13.0 GHz

Att	30.00 dBm 50 dB	BUIT 1	.20 ms		LOO kHz	Mode Aut	Curren			
1Pk Max	50 UB	9M1 1	.20 ms 🖷	YDW .	SUU KHZ	Mode Aut	o Sweep			
						M	1[1]			30.18 dBn 3.1140 GH
20 dBm										
10 d8m				-						
) dBm	-					a — — — — — — — — — — — — — — — — — — —		<u>.</u>		-
10 dBm	D1 -14.130	dēm-		-						
20 dBm	01 -14,150	ubin .	_			-				
30 dBm		an lunr.	a all a		AL		1			1
40 dBm-	watericher	- V- 4	and antiple	JAIN TON	marky	pulitennikel	with the house of	populationship	mbrishedunis	albertradies
50 d8m				_						
60 d8m				_						

Channel 6: 2.437GHz:

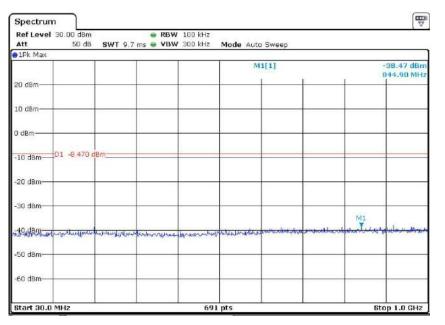
30 MHz to 1 GHz

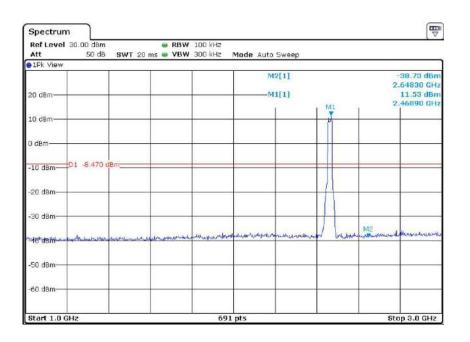
20 dBm 607.60 Mi 10 dBm 0 -10 dBm 0 -30 dBm 0	Ref Level	30.00 dBm	2	👄 RBW	100 kHz					H ∇
M1[1] -38.74 dB 20 dBm 607.60 Mi 10 dBm 0 10 dBm 0 -10 dBm 01 -11.350 dBm -20 dBm	Att	50 dB	SWT 9.	7 ms 🖷 VBW	300 kHz	Mode Auto	Sweep			
20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	1Pk Max					107				
20 dBm 10 dBm -10 dBm -10 dBm -10 dBm -20 dBm -30 d						M	1[1]			38.74 dBm
10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm							E.	n.	1 0	507.60 MHz
0 dBm -10 dBm -20 dBm -30 d	20 d8m							о.		
0 dBm -10 dBm -10 dBm -20 dBm -30 d	10.000			_	-					
-10 dBm - 01 -11 350 dBm	10 anu			50				8		
-10 dBm -01 -11.350 dBm	0.40.00									
-20 dBm -30 dBm -30 dBm -30 dBm -50 dBm	O GRU									
-20 dBm -30 dBm -30 dBm -30 dBm -50 dBm	10 10									
-30 dBm	-10 dBm	D1 -11.350	dBm			2				
-30 dBm	-									
10 Bm เป็นสารหนุ่มนุ่ม และเห็น และเสาร์ และสารหนุ่มสารและ เสาราราร์ และไรและ เป็นสารและไม่เราขุดสารเป็นสารการปัญหาสาร -50 Bm	-20 abm									
10 Bm เป็นสารหนุ่มนุ่ม และเห็น และเสาร์ และสารหนุ่มสารและ เสาราราร์ และไรและ เป็นสารและไม่เราขุดสารเป็นสารการปัญหาสาร -50 Bm	00.40									
19 dam In any water war an	-30 dBm									
-50 dBm	to down						1		-	ana mana mana ara
	dis wrighter	ad about the second	ariantime	en philosophic based and	newswarr	themperature	Autolistication	wooduster	althor Hundrick	and the second second
	FO JOW									
-60 dam	-50 asm									
-ou uoin	co dom									
	-ou usin									

Att	30.00 dBm 50 dB	SWT 2	e RBV ms e VBV	/ 100 kHz / 300 kHz	Mode Auto	Sweep				
1Pk Max	-									
					M	1[1]			2	8.65 dBn 43700 GHz
20 dBm	-									
10.112101							MI			
10 d&m							M			
0 dBm										
-10 d8m	01 -11.350	dam								
-20 dBm							Ц	_		
-30 dBm								_		
40 dBm	المادر رابطين المحياتين	موسوغا السمويده	nin connubbodies	and and the star	washing	un manual and		mashi	hbelevalueran	conclusion
-50 d8m										
-60 dBm										

3 G to 13 GHz

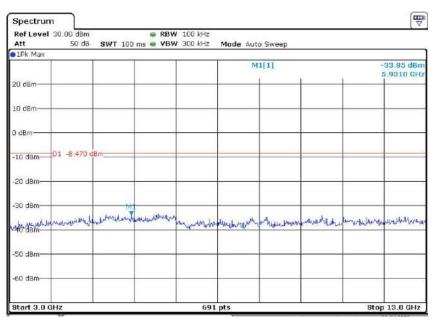
Ref Level 30.00 dBm Att 50 dB s	● RBW WT 100 ms ● VBV	/ 100 kHz / 300 kHz Mode Ad	ito Sweep	
1Pk Max			59.	
		0	M1[1]	-33.17 dBm 6.2630 GHz
20 d8m			+ +	
1910/100100				
10 dBm				
0 dBm				
-10 dBm 01 -11.350 dBr	n			
-20 dBm			-	
-30 d8m	M1			
und all many we are	moundation	anald some of the states	under prover about the	the manufacture and the second
-50 dBm				
-60 dBm				

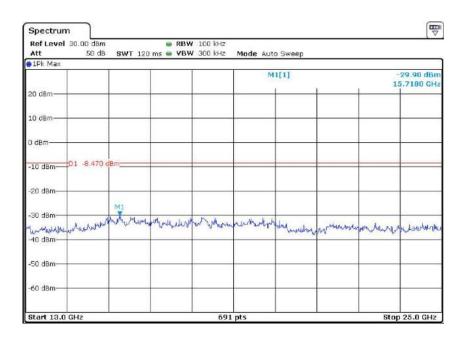

Ref Level 30.00 dB	m	👄 RBW	/ 100 kHz					
Att 50 (B SWT 120	ms 🖷 VBW	/ 300 kHz	Mode Aut	o Sweep			
1Pk Max				14	3.5			
				M	1[1]			30.64 dBn
20 dBm					C	F	1	8.0620 GHz
EO UBIN								
10 dBm								
LO GBIII								
0 dBm								
5 GDIII								
-10 dBm								
D1 -11.3	50 d8m-							
-20 d8m-								
Le dem								
-30 dBm			MI		-			
-30 dBm	Mukashin	Maderaluer	furnering	Anothenhium	4.44	- Press La Mil	Low with a plant	all should be
-40 dBm-	100	A State of the second sec			astimute.	And a floor	a a crossed of	man Man
50 dBm-								
-60 d8m	-		-				-	
					-			
Start 13.0 GHz			691	pts			Stop	25.0 GHz



Channel 11:2.462 GHz

30 MHz to 1 GHz





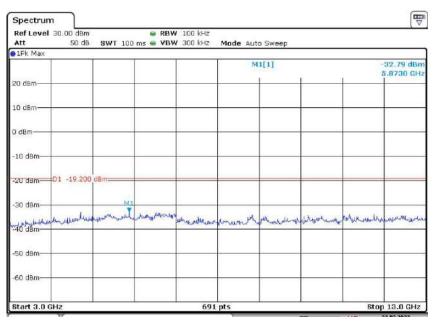
3 G to 13 GHz

13 G to 25 GHz

802.11ax(HE40) mode with MCS11 data rate

Channel 3: 2.422GHz:

30 MHz to 1 GHz


RefLevel 30.00 dBm Att 50 dB SWT 9.7	 RBW 100 kHz ms VBW 300 kHz 	Mode Auto Sweep	
1Pk Max			
		M1[1]	-38.53 dBn 701.70 MHz
20 dBm			
10 dBm			
0 dBm			
-10 dBm			
-20 dBm D1 -19.200 dBm			
-30 dBm-			_
		M	
Ag Barrelower and sound	annountpatiessee	adoration the out of the share	and a second and a second second
-50 dBm			
-60 dBm			

Spectrum Ref Level 30.00 dBm	🖷 RBW	100 kHz			1.
	SWT 20 ms . VBW		de Auto Sweep		
1Pk Max			0.		
			M1[1]		0.80 dBm 2.41970 GHz
20 d8m			1	+ +	2.41970 010
10 dBm					
				MI	
0 dBm				m l	
-10 dBm					
-20 dBm D1 -19.200 d	8m				
-30 dBm-					
AB BH AND IN THE REAL	and of the a mout defined on the	and believen all	mander	Winderstand	ما الاسلىما سالى الماسلىم
-46 dani s		-			
-50 d8m-					
-60 dBm					

3 G to 13 GHz

13 G to 25 GHz

Channel 6: 2.437GHz:

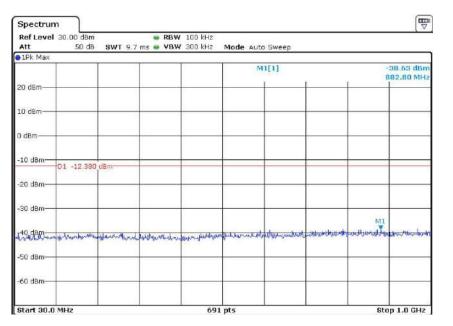
30 MHz to 1 GHz

RefLevel 30.00 dBm Att 50 dB SWT	 RBW 100 kHz 9.7 ms VBW 300 kHz 	Mode Auto Sweep		
1Pk Max		M1[1]		-38.39 dBm 974.00 MHz
20 dBm				974.00 MP12
LO dBm				-
) dBm				_
10 dBm				
20 dBm D1 -18.520 dBm				
-30 dBm				1000
19. B. M. more have the second marked to be	derfibered whether and an unit	way the at a set of the second	and a good of a starter	www.enderstand
50 dBm-				
60 dBm				_
Start 30.0 MHz		1 pts		Stop 1.0 GHz

Ref Level Att	30.00 dBm 50 dB	SWT 20	e RBW	/ 100 kHz / 300 kHz	Mode Auto	Sweep			
1Pk Max				1	1				
					M	11[1]		2	1.48 dBn .45150 GHz
20 d8m			-		-	1	1	+	
10 d8m							MI		
0 dBm							M	· · · · ·	<u>s</u>
- 15									
-10 d8m				1		1		+	
-20 dBm	D1 -18.520	dBm		-	-	-			
-30 dBm							11	-	
Marry Stripen L	dite theshester	mohamania		laderer work	hard and a state of the second	minimum	hiter	inclusion	aduhumm
							_		
-50 dBm			-	-		-			
60 does									
-ou usm					а. 				
-60 dBm	H7			69	Lpts			St	op 3.0 GF

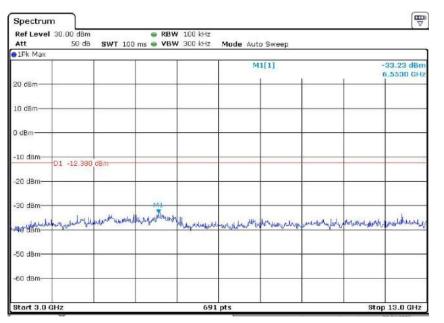
3 G to 13 GHz

Ref Level 30.00 dBm Att 50 dB SWT	 RBW 100 kHz 100 ms VBW 300 kHz 		
1Pk Max		M1[1]	-33.39 dBn 5.8440 GH
20 d8m			
10 dBm			
0 dBm			
-10 dBm			
-20 dBm 01 -18.520 dBm			
-30 dBm-	MI X		and the man and a start and a start and a start and
40 dBm	and an and a second second	when the manual in the	a fille was a first when a second state of the second
50 dBm-			
60 dBm			
Start 3.0 GHz		1 pts	Stop 13.0 GHz

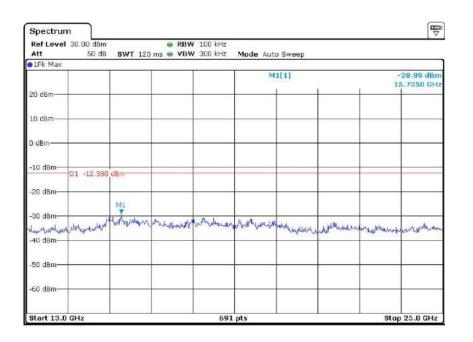

Ref Level 30.00 dBm		RBW 100 kHz			
Att 50 dB	SWT 120 ms 🖷	VBW 300 kHz M	lode Auto Sweep		
1Pk Max	5.00				
			M1[1]		-29.59 dBn
20 d8m			I	T 1	16.1350 GHz
20 0011					
10 d8m					
to usin					1 C
0 dBm					
5 dBm					
10.40					
-10 dBm					
00 dam 01 -18.520	Bm				
-20 dBm-01 -18.520 d	and the second s				
	MI				
-30 dBm	an water when when	annum	with when have a server	dense an and the th	a la contra de la
- Manual approximate			- white	and marine	where the second mental
-40 dBm					
22.722					
-50 dBm				*	
000000000000000000000000000000000000000					
-60 dBm					

Channel 9:2.452 GHz

30 MHz to 1 GHz

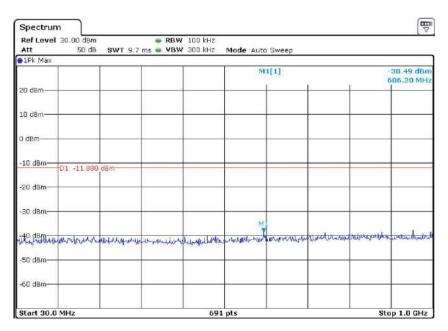


Spectrum Ref Level			e RB	V 100 kHz						♥
Att		SWT 2	0 ms 💩 VB		Mode Auto	Sweep				
1Pk Max										
					M	1[1]			2	7.62 dBm 46890 GHz
20 dBm						-	1		-	10050 0112
10 d8m			-	-			M	1	-	_
							4			
0 dBm										
42										
-10 d8m	1 -12.380	dam						_		
-20 dBm							1			
20 0011							1			
-30 d8m			-	-	-			1	-	
					- to a			Kan	the second	been strong
40 dam	Allenanderstrand	franken h	Way all have an us	with the many deserve	undulations	ghadistikaningan	-	Uniting	ehalumilain	Manana Manana Manana Manana M
-50 dBm				-	-		1			
-60 dBm										
-ou asm										5



3 G to 13 GHz

1 3 G to 25 GHz



Result plot as follows: Chain 1

802.11b mode with 11Mbps data rate

Channel 1: 2.412GHz:

30 MHz to 1 GHz

1 G to 3 GHz

Ref Level	30.00 dBm	OUT OF	ms S VBW	100 kHz	Mode Auto	Curner			
1Pk Max	50 UB	3W1 20		300 MHz	MOUE AULO	oweeh			
					м	1[1]		2	8.15 dBn .41100 GHa
20 dBm									
10 dBm	-	-			0	1	11		
0 dBm									
-10 dBm	D1 -11.880	d8m							
-20 d8m				1					
-30 dBm				-		-			
40 Jonihu	Lengelman	al frank and de	maturation	antra taleve	elevence	handmathliking	hermoni	ar transmission	minumpetitul
-50 d8m									
-60 dBm									

3 G to 13 GHz

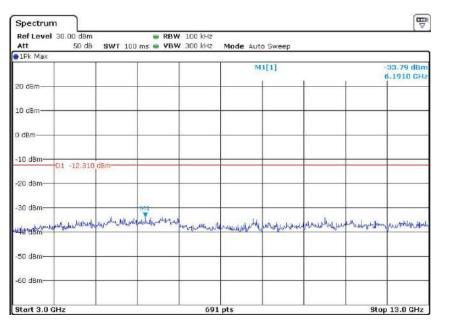
Ref Level 30.00 dBm	RBW 100 kHz			
	100 ms 🖷 VBW 300 kHz	Mode Auto Sweep		
1Pk Max				
		M1[1]		-32.39 dBm 6.6830 GHz
20 d8m			+ + +	
10 dBm		-	+ +	-
0 dBm		1 1		
10.40				
-10 dBm D1 -11.880 dBm				
-20 dBm				
-30 dBm	M1			
He Better Manual March and a state	and a superior and a superior	I at a start when the second	a Above a public was	A STATISTICS AND
40 BBM		when and it was	And Day allowed waters	a contraction that a
-50 d8m				
-60 d8m				
CO COM				

13 G to 25 GHz

Ref Level 30.00 dBm Att 50 dB sw	● RBW 100 T 120 ms ● VBW 300		
1Pk Max	1 120 ms 🖷 YBW 300	kHz Mode Auto Sweep	
		M1[1]	-31.10 dBn 15.4570 GHz
20 dBm			
10 dBm			
0 dBm			
-10 dBm 01 -11.880 dBm			
-20 dBm			
-30 dBm - March	Mad has up MI	he states and	
40 dBm	a de construction est	and the standard and a stand	here all a grant and an an an and a statement and a statement
-50 dBm			
60 dBm			
Start 13.0 GHz		691 pts	Stop 25.0 GHz

Channel 6: 2.437GHz:

30 MHz to 1 GHz

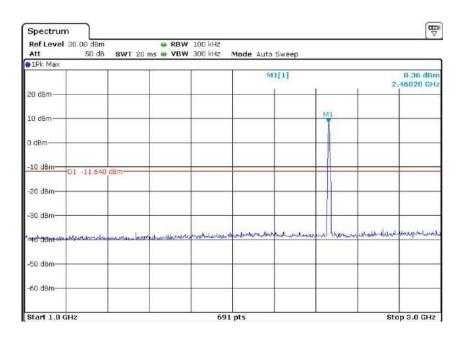

Ref Level Att	1 30.00 dBm 50 dB	SWT 9	7 ms S VB1	₩ 100 kHz ₩ 300 kHz	Mode Auto	o Sweep			
1Pk Max									
					M	1[1]			-38.51 dBm
20 d8m	-		-	-	-	-	1		
.0 d8m			-			1			
) dBm							-		
10 dBm-	-D1 -12.310	dem							
20 dBm—	01 -12.510	GOW -			1				
30 d8m									
40 dBm							1.1	1	In the second second
iportial	heretilitet	utruthing	unanturbulad	e and which the	and the province of	terestell'in-Martin	- Martin Have	dat the mild from	the Adding office
50 dBm	-				-		-		-
60 dBm							2		

Ref Level 30 Att	0.00 dBm 50 dB	SWT 20	ms WBW	100 kHz 300 kHz	Mode Auto	Sweep			
1Pk Max		1	1			1011			7.69 dBm
					M1[1]			2.43700 GHz	
20 dBm			-						
10 d8m							MI		
10 0011							T		
0 dBm			-	-				-	
-10 dBm-01	-12.310	dBm							
-20 d8m		-	-	-					
-30 dBm							1		
48 Hankworth	به المالية	- Lindalater	and a share	alution	ham have	non-monorhie	al however	manualfrent	Multimul
-50 d8m	-			-				-	
-60 dBm									
and and all a second second									

3 G to 13 GHz

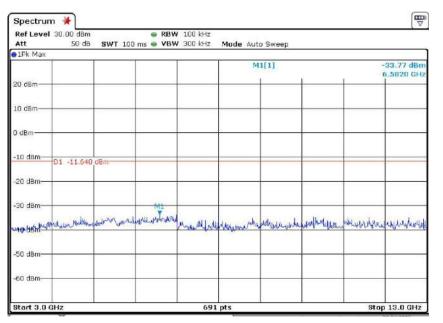
13 G to 25 GHz

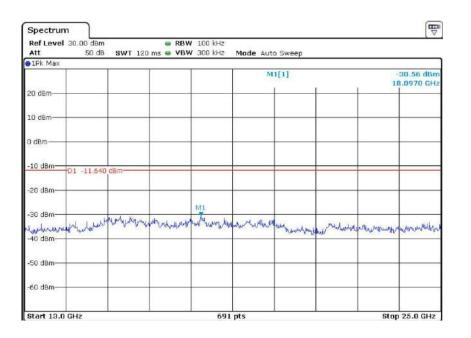
Ref Level 30.00 dBm Att 50 dB	SWT 120 ms	 RBW 100 kHz VBW 300 kHz 	Mode Auto Sweep			
1Pk Max			33 19			
			M1[1]		-30.84 dBn 18.5310 GH	
20 dBm				1 1		
10 dBm						
0 dBm					_	
10 dBm						
D1 -12.310 (d8m					
-20 dBm			0			
-30 dBm		M1				
4 Minungert about	provident with	undurated the	montinuterrander	man a short the shall be a share a sha	a March when the	
-40 dBm			in the second			
-50 d8m					_	
60 dBm						
oo uom						



Channel 11:2.462 GHz

30 MHz to 1 GHz


Ref Level 30.00 dBm	🖷 RBW 100 kHz			
	9.7 ms 🖷 VBW 300 kHz	Mode Auto Sweep		
1Pk Max		C		
		M1[1]		5 dBm 0 MHz
20 d8m				
10 dBm				
O dBm				
-10 dBm D1 -11.640 dBm				
-20 dBm				
-20 000				
-30 d8m-				
			MI	
40 dBm	the section of the total	and that a lost land still a plate		WHAT MAN
(Profingenting and the second for the second second	MULANNA MARINA CARACTERIA	which the the are an away		
50 dBm-		-		
-60 dBm				-
Start 30.0 MHz	69	1 pts	Stop 1.0	GHz



3 G to 13 GHz

13 G to 25 GHz $\,$

802.11g mode with 54Mbps data rate

Channel 1: 2.412GHz:

$30\ \text{MHz}$ to $1\ \text{GHz}$

Ref Level 30.00 dBm		/ 100 kHz		
Att 50 dB 1Pk Max	SWT 9.7 ms 🖷 VBW	/ 300 kHz Mode Au	uto Sweep	
THK M9X			M1[1]	-38.65 dBm 950.20 MHz
0 dBm				
0 d8m				
dBm		a		
10 dBm	0.07			
01 -15.020 d	8m-		-1	
30 dBm				715
40 dBm	monolyce who welled	harden the manual work	and the stand	M1
50 dBm				
60 dBm				

	30.00 dBm				100 kHz	201	15 G	2			1012.0
Att 1Pk Max	50 dB	SWT 2	0 ms 🖷	ABM	300 kHz	Mode	Auto S	Sweep			
TER MAX						1	MI	[1]			4.98 dBm
							MIL	[+]		2	.40810 GHz
20 dBm						-	-+		-	+	
10 d8m			-			-	-		NI	-	-
									K		
0 dBm					-	+	-			-	
-10 dBm			-		-	-	-		-	-	
	D1 -15.020	dBm			-	-	-		-		
-20 dBm			-			-					
-30 dBm			-			-	-		14	-	
	Hendredwan.			177.055-5165	In France	a most a		la a a	11	manuhownitor	mandharth
40 dBm-Ju	Marshalway,	hut dependent	Kullman I	where m	Arth of Courts			at a capitor	all there are	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
-50 dBm			-			-	-		+		
-60 dBm			-			-	-				

3 G to 13 GHz

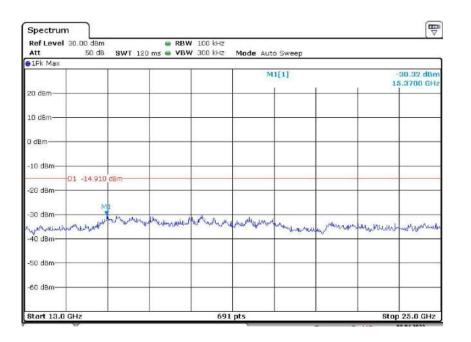
Ref Level 30 Att		SWT 100	e RBW ms e VBW	/ 100 kHz / 300 kHz	Mode Aut	o Sweep			
1Pk Max	1	1				1[1]			33.38 dBm
20 d8m						1	R (5.5670 GHz
20 08m							9		
10 dBm				-					-
) dBm									
10 dBm									
20 dBm	-15.020 dB	m					1		
30 dBm			M2						
worthanni	unormand	Wharline	James Marker	haddeneringen	manultuth	obhies work h	invitticity	Mananadadh	weblinger
50 dBm									
60 dBm									

Ref Level 30.00			100 kHz					
100 C 100	50 dB SWT 13	0 ms 🖷 VBW	300 kHz	Mode Auto	o Sweep			
1Pk Max								
				M	1[1]			29.94 dBn .1080 GHz
20 dBm		_				<u> </u>	18	.1080 GH2
10 dBm								
10 000								
0 dBm-		(c)						_
Julia								
-10 dBm								
	5.020 d8m							
-20 dBm	0.020 0011							
Le dom		100		6°				
-30 dBm		MI						
hunarhund	put porturant	Alberto and any	pharmarhant	youdd in	when when	withour way	here president	monterfal
40 dBm-				Ala	reaction		ad a a	
-50 dBm-								
60 d8m								
2010/2010/10								

Channel 6: 2.437GHz:

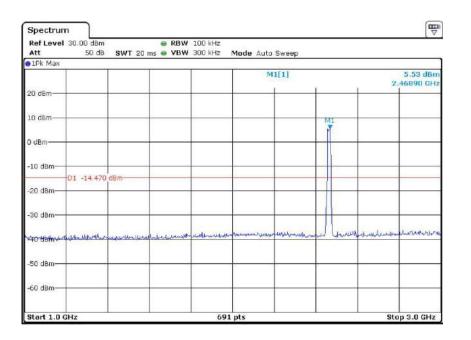
30 MHz to 1 GHz

Ref Level	30.00 dBm	Ý.	e R	BW 100 kHz					
Att	50 dB	SWT 9	.7 ms 🖷 V	' BW 300 kHz	Mode Auto	o Sweep			
1Pk Max			to the state of		10				
					M	1[1]			-38.77 dBn
22112						1	T.	1	753.60 MHz
20 d8m									
10 d8m	-		-		-				
0 dBm	-			-	-			1	<u> </u>
-10 d8m	-						-		-
	D1 -14.910	d8m					<u></u>		
-20 dBm					-	-	-	-	
-30 dBm			-	_	-		-		-
							MI		
-40 d8m-	1 1 1 10 1					Here I Here have		A Link and	the fighters of
instale for the might	hanner	ultertertur	s-p-ph-au	han white	happy	aller's grades	Madmundary	Marradon Ma	A. Aste Deviate and
-50 d8m									
-60 dBm—									
					1				
Start 30.0	MHz			69	1 pts			Ste	p 1.0 GHz


Ref Level Att	I 30.00 dBm 50 dB	SWT 20	e RBW	100 kHz 300 kHz	Mode Auto	Sweep				
1Pk Max	ä e			-	25	10				
					M	1[1]		5.09 2.44570		
20 d8m	-			-		-	6	-		
10 d8m										
to dolli-							MI			
0 dBm	-				a			-	-	
-10 d8m-	01 -14.910	d8m			-					
-20 d8m			-	-	-	-		-	-	
-30 d8m	_							16 8	24	
-40'dami	deput-surfaces	multure	me hinabal	menormation	aluman	nadaharon-audh	al band-ba	inversestated	Robertown	
-50 d8m							ŝ			
-60 dBm										

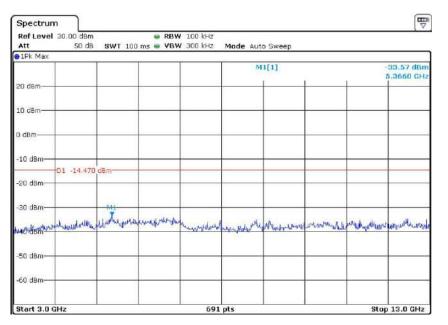
3 G to 13 GHz

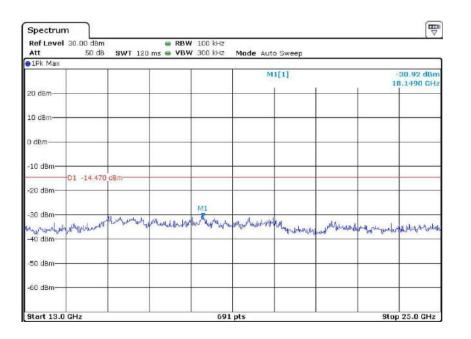
Ref Level 30.00 dBm	RBW 100 kHz			₽
	ms 🖷 VBW 300 kHz	Mode Auto Sweep		
1Pk Max				
		M1[1]		-33.24 dBm 6.9870 GHz
20 dBm			+ +	
10 dBm	-			
0 dBm-				
-10 dBm				_
01 -14.910 dBm				-
-30 dBm	Neg.			
30 dBm 40 dBm	a how and to have have	powerster M. Meterstrike	when you will be a grant of the second	lougher and an
50 dBm				
60 dBm				
Start 3.0 GHz		pts		op 13.0 GHz



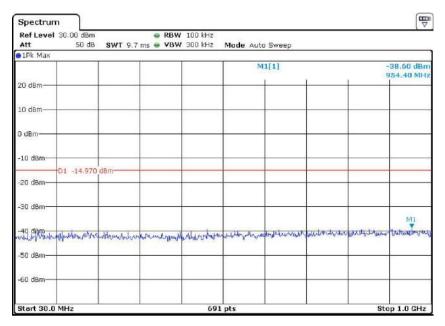
Channel 11:2.462 GHz

30 MHz to 1 GHz


Att	0.00 dBm 50 dB	SWT 9	7 ms SVBV	/ 100 kHz / 300 kHz	Mode Auto	Sweep			
1Pk Max				1					
					M	1[1]			-39.04 dBm 968.40 MHz
0 dBm							-	-	
0 d8m									
dBm									
10 dBm				-					
20 dBm	l -14.470	dBm				-			
30 dBm									
10 dBm	Jackin . the	AN NATLE N	nd put Mar Mill de transf	na na litera	Adaptic	humana	(new later	militative	MI
50 dBm		- a costific	one should be	Marcales Rain					
50 dBm					0				



3 G to 13 GHz



802.11n(HT20) mode with 72.2Mbps data rate

Channel 1: 2.412GHz:

30 MHz to 1 GHz

1 G to 3 GHz

Ref Level Att	30.00 dBm 50 dB	BUT 20	e RBW		Mode Auto	Swaan			
1Pk Max	50 00	341 20	115 . 1011	300 KH2	Houe Auto	Sweep			
					м	1[1]		2.	5.03 dBn 40520 GHz
20 d8m								-	
10 d8m					-	N	1		
0 dBm	-						1		
-10 d8m									
-20 dBm	01 -14.970	dBm		-					
-30 dBm									
70'tak	boahaa hirshaadi	lummah	nanetwhenhall	und dimber and	fanhundunal	urmanda	humanith	improduce	and the only solution
-50 dBm									
60 d8m									
	Hz				pts				p 3.0 GHz

Page | 161

Plot No.174, UdyogVihar Phase 4, Sector -18, Gurgaon -122016, Haryana, India Contact: 0124-4235350, 4145343; e-mail: info @ aaemtlabs.com; Website: <u>www.aaemtlabs.com</u> Decision Rule: The result of conformity based on the mentioned standards actual test limits / levels AAEMT/A2LA/TRF/FCC-15C/22_01_REV1

3 G to 13 GHz

	0.00 dBm 50 dB	-	ms e VB	W 100 kHz	Made tota					
Att 1Pk Max	50 UB	SWI IU	J ms 🖷 🖬	W JUU KHZ	Mode Aut	o sweep			9	
					м	1[1]		-32.45 dBm 6.4950 GHz		
0 dBm										
0 dBm				-						
dBm			-		<u></u>					
LO dBm										
20 dBm	1 -14.970 (.mec			11:					
30 dBm		an I	MI					0.2		
to dam	elenstrong an	uter	Contraction of the second	A hand prayment	-persecument	Milinau	pathatenike	lidemonstration	surradha cadan	
50 dBm							ż			
50 dBm					8		1		-	

Ref Level 30.0		RBV 120 ms	¥ 100 kHz ¥ 300 kHz	Mode Auto	o Sween			
1Pk Max								
				м	1[1]			29.47 dBn 5.4230 GH
20 d8m						<u> </u>	-	
10 dBm								
LU GBM				÷		8		
0 dBm								
-10 dBm		_						
- 20 dBm-	14.970 dBm							
	MI							
-30 dBm	- ANTA MUM	Marth who what	Norman		110.	11110-00		
40 dBm	Marine .				re any worked	hanna	en an anna an	Annalarow
-50 d8m		_						
-60 d8m								
oo dom								

Channel 6: 2.437GHz:

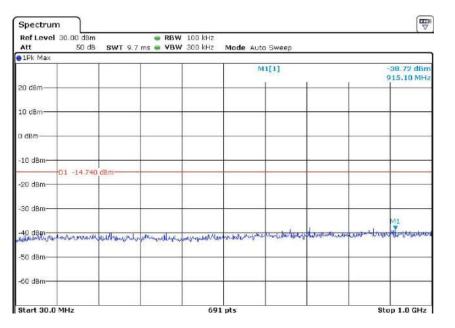
30 MHz to 1 GHz

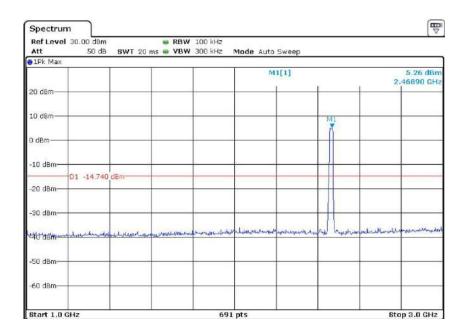
	30.00 dBm				100 kHz						
Att 1Pk Max	50 dB	SWT	9.7 ms 🖷	VBW	300 kHz	Mode Aut	o Sweep				
TER Max						N	11[1]	-38.44 dB 503.80 Mi			
0 d8m				-			-	¢	-		
0 d8m		-		-				9			
dBm		-						5			
10 dBm			_	_							
20 dBm	01 -14.94() dBm	_	_				þ			
30 dBm		-	_	_				-			
RARDIN	trumphetil	withouth	atortella	- Moltinge	1 Million Acher		Antotalico	hathanataha	adiction and a	elfort where	
50 dBm	6204				0.0542						
60 d8m			_					-1- 			

Att	1 30.00 dBm 50 dB	SWT 20	e RBW	100 kHz 300 kHz	Mode Auto	Swaan			
1Pk Max		UNIT 20	112 - 1011	anane na me	Hous Auto	owoop			-
					м	1[1]		2	5.06 dBn .44570 GH:
20 d8m							8		
10 d8m—				-			M1		
0 dBm	-						1		
-10 d8m-									
-20 d8m	-D1 -14.940	dBm							
-30 d8m			-						
laconditional.	uldalased and	ersetyes break	manut	personalistee	in the manufacture	allippor	and low-above	non-water	Maryubrario
-50 d8m							ė		
-60 dBm									

3 G to 13 GHz

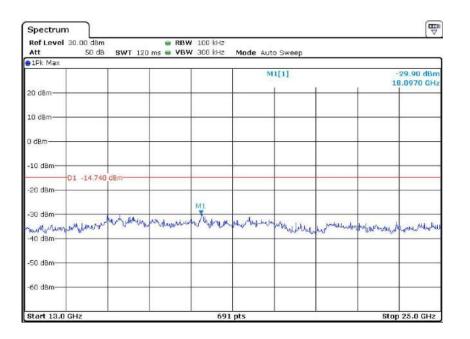
Ref Level Att	30.00 dBm 50 dB	BWT 1	 RBV 10 ms VBV 	V 100 kHz V 300 kHz	Mode Aut	a Sween			
1Pk Max		UNIT I	10 110 - 101			o oncep			
					M	1[1]			33.35 dBm
20 d8m							-	-	1.9730 GFIZ
10 d8m									
) dBm					v				
10 dBm									
20 dBm—	01 -14.940	dam							
30 dBm					v				
40/85%	when whether	hander Thatha	Universitation	bal would	maskener	anth through in these	wood lith rithin	philippahrolyn	while with the action
50 d8m				-			è		
60 dBm	-						-		
Start 3.0 (CH 2			691	ots		5	Stor	13.0 GHz


Ref Level 30.00 dBm Att 50 dB SWT	 RBW 100 kHz 120 ms VBW 300 kHz 		
1Pk Max		5) 	
		M1[1]	-29.39 dBn 15.7000 GH
20 d8m			
10 dBm			
0 dBm			
O GBIN			
-10 d8m			
D1 -14.940 dBm			
20 dBm		-	
-30 dBm			
with a lar and would have been	Hauto and Marine	had well that well	Marcaller survey man for when have
40 dBm		* multimiteral	a design interested in the second
50 dBm-			
-60 dBm			



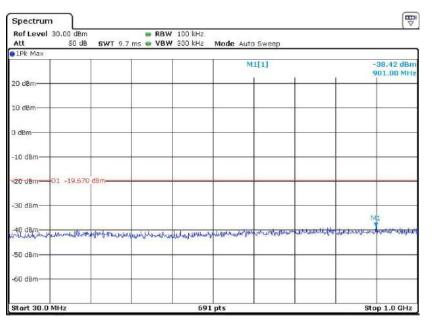
Channel 11:2.462 GHz

30 MHz to 1 GHz



3 G to 13 GHz

Ref Level 30.00 dBm	RBW 100 kHz		
	ms 🖷 VBW 300 kHz 🛛 Mo	de Auto Sweep	
1Pk Max			-33.90 dBm
		M1[1]	6.5670 GHz
20 d8m			
10 dBm			
0 dBm			
-10 dBm			
-20 dBm			
-30 dBm	MI		
-30 dBm	with the and with many played	way when you had a line wanted	and poster actively any tother work
50 dBm			
60 dBm			
Start 3.0 GHz	691 pts		Stop 13.0 GHz



802.11n(HT40) mode with 150Mbps data rate

Channel 3: 2.422GHz:

30 MHz to 1 GHz

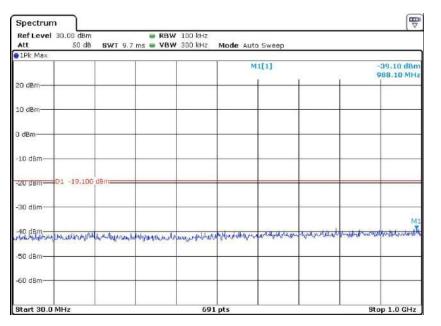
1 G to 3 GHz

Spectrum Ref Level 30.00 dBm 👄 RBW 100 kHz Att 50 dB SWT 20 ms 🖷 VBW 300 kHz Mode Auto Sweep 1Pk Vie M1[1] 0.33 dBn 2.40810 GH 20 dBi 10 dB 0 dBm 10 dBm to us 01 -19.570 d 30 dBm al the share 14 141 d tem -50 dBm 60 dBm 691 pts Stop 3.0 GHz Start 1.0 GHz

3 G to 13 GHz

91Pk.Max M1[1] -33.83 dB	Ref Level Att	30.00 dBm 50 dB	SWT 100	ms VBV	V 100 kHz V 300 kHz	Mode Aut	n Sween			
20 dBm 10 dBm -10 d		200.000	0111 100			11000 1101	o oncop			
10 dBm -10 dBm -10 dBm -20 dBm -20 dBm -30						M	1[1]	2		33.83 dBm 5.5670 GHz
0 d8m	20 dBm								2	
-10 dBm - 01 -19,670 dBm	10 dBm									
-20 UBM 01 - 19,670 dBm-	0 dBm									
-30 dBm - MI 	-10 dBm									
-00 the survey of the the second of the seco	-20 d8m	01 -19.670	dBm							
	-30 dBm			M1						
-50 dBm	40 UBm	ronder judichile	ern Mindelika	Min Martineses	Mahiland and	hoppion	phromalilia	when along	the filmes	herdethaudu
	-50 dBm									
-60 dBm	-60 dBm									

13 G to 25 GHz $\,$


Ref Level 30.00 dBm Att 50 dB		ms VBW	/ 100 kHz / 300 kHz	Mode Aut	o Sween			
1Pk Max	unit ite	/ 115 - 1 - 1 - 1		Citoto Hat	o oncop			
				M	1[1]			-30.69 dBn 5.7000 GH
20 dBm								s.rood arr
10 dBm								
0 dBm								
-10 dBm						-		
-20 dBm-01 -19.67	dBm-							
-30 dBm-	M1							
with which you we also	Mythinghanta	10th which has been t	thereway	headenable	Wither while .	In attraction	diameter	the work of the
40 dBm								and the second s
-50 dBm							3	
-60 dBm								
-00 0011								

Channel 6: 2.437GHz:

30 MHz to 1 GHz

30.00 dBm 50 dB	SWT				Mode Auto	Sweep				
	1	- T-	_		M	1[1]	_		_	0.90 dBn
							1		2	.43420 GH
		-								
		_								
		_					-			
D1 -19.100	dBm	_							-	
		_							-	
mpullinus	الم الا يوم	g, ilow any la	wanter	estdashinera	anulanter	معساية عادي ويعيد	1	turada	popularianananahak	and a second
	50 dB	50 dB SWT	50 dB SWT 20 ms	50 dB SWT 20 ms VBW	50 dB SWT 20 ms WBW 300 kHz	50 dB SWT 20 ms • VBW 300 kHz Mode Auto	S0 dB SWT 20 ms VBW 300 kHz Mode Auto Sweep M1[1]	S0 dB SWT 20 ms VBW 300 kHz Made Auto Sweep M1[1]	S0 dB SWT 20 ms VBW 300 kHz Mode Auto Sweep M1[1]	S0 dB SWT 20 ms VBW 300 kHz Mode Auto Sweep M1[1] 2 M1 2 M1 4 M1 4

3 G to 13 GHz

Ref Level 30.00 dBm Att 50 dB sw	RBW 100 kHz T 100 ms VBW 300 kHz	Mode Auto Sweep	
1Pk Max			
		M1[1]	-33,65 dBn 6,9290 GH
20 dBm			0.9290 011
10 dBm			
0 dBm			
-10 dBm			
-20 dBm-D1 -19.100 dBm=			
-30 dBm-	Ma		
and all international contractions	weberson with a sold webers with the	menness A. Myhurineserver	low and the second descent the second
-50 dBm-			
-60 dBm			
Start 3.0 GHz	691		Stop 13.0 GHz

13 G to 25 GHz $\,$

Ref Level 30.00 dBm		● RBW	100 kHz						
Att 50 dB	SWT 120	ms 🗰 VBW	/ 300 kHz	Mode Auto	5 Sweep				
1Pk Max									
				M	1[1]		-30.29 dBn 16.0480 GH		
20 dBm						í		1.0460 GH	
10 dBm									
10 dem									
) dBm									
2 doni									
-10 dBm									
10 ubin									
20 dgm 01 -19.100	dam						0		
20 0011									
-30 dBm-	MI		5					9	
-30 dBm	approximition	White Hall	with the hash	M. M. With	wh.	where the		I Ida	
40 dBm		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		- 10 S	many shelder	mornin	Marthursel where and	hudlandrand	
-40 dBm									
10 mm									
-50 dBm									
121-21									
-60 dBm									

Channel 9:2.452 GHz

30 MHz to 1 GHz

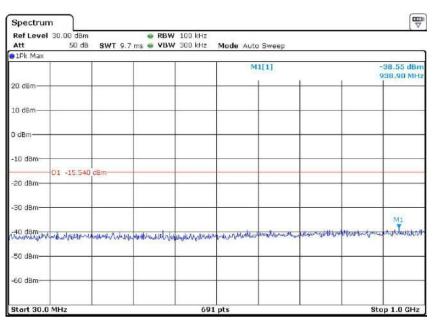
Ref Level				/ 100 kHz		0.1221			
Att	50 dB	SWT 9.	7 ms 🛢 VBW	/ 300 kHz	Mode Aut	o Sweep			
1Pk Max		1	T	1	1				07.54.40
					M	1[1]			-37.51 dBm 995.10 MHz
20 dBm				-					
10 dBm		-					-	-	
0 dBm									
-									
-10 dBm								-	
-20 dBm	D1 -18.970	dBm							
20 0011		TO ALCONTRACT							
-30 dBm			-					-	
5-54) 549(3) (3)									M
40 dBm	Louth paybour	- Bartadata A	In shite water	Alle MAN ALAN	e had be pole to	updanthun	au auto billy	a here je we	the takes of
And with and a			Phy 2 20000 04	Alline to B to a second				and the second sec	
-50 dBm	_	-	-		-			6	-
201422425-222									
-60 dBm								ч. У.	
Start 30.0	MHz			691	pts			St	op 1.0 GHz

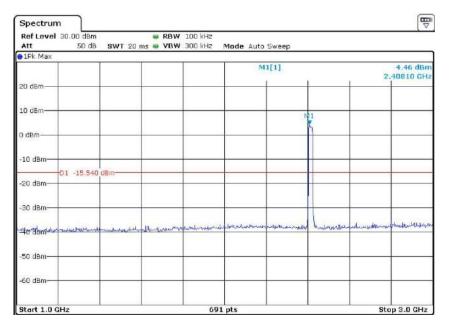
Ref Level 30.0 Att		T 20 ms 🖷	RBW 10 VBW 30		Mode Auto	Sweep				
1Pk View					M	1[1]				1.03 dBm 44280 GHz
20 dBm							-		4.	44200 GH2
10 dBm										
0 dBm							MI			-
-10 dBm					-			-	2	-
-20 dBm-01 -	18.970 dBm=		_		<u></u>			_	8	<u>.</u>
-30 dBm	-								8	V.
ab/gpm_upaupe	-	stand-aty	wellwood also	hynness	www.	altar-duaar-duly;		Lungester	utrebahaham	a substantional
-50 dBm										
-60 dBm									-	

3 G to 13 GHz

Ref Level 30.00 dBr Att 50 d		RBW 100 k s VBW 300 k		to Sweep			
1Pk Max			N	11[1]			-33.59 dBm 5.6980 GHz
20 dBm	-						
10 dBm				-	1		
0 dBm							
-10 dBm			-				
-20 dBm 01 -18.97	0 dBm						
-30 dBm		Mi				-	
-30 dBm-	All Marchen and	welmonther her how have	adueron Alugueron and the	myrouth	educe Myrene	Martumud	bull have a
-50 dBm						-	
-60 dBm							
Start 3.0 GHz			691 pts				13.0 GHz

Att 50 dB SWT 120 ms VBW 300 kHz Mode Auto 1Pk Max	
20 dBm	
10 dBm	
) dBm	
-10 dBm	
-20 dBm	
-30 dBm	· · · · · · · · · · · · · · · · · · ·
so and the second and the solution of the solu	Munadus and made manager of merulances
-50 dBm	
CD UDIA	
-60 dBm-	





802.11ax(HE20) mode with MCS11 data rate

Channel 1: 2.412GHz:

30 MHz to 1 GHz

3 G to 13 GHz

Ref Level 30.00 dBm Att 50 dB SWT 100 m	RBW 100 kHz s VBW 300 kHz	Mode Auto Sw	00D	
1Pk Max	IS WITH SOU KHZ	MODE KO(0 54	eep	
		M1[1]		-33.18 dBm 8.8100 GHz
20 dBm				
10 dBm				
0 dBm				
-10 dBm-				
-20 dBm				
-30 dBm	7 210	541		
eder Ham and and the and the second	have been been been been been been been be	nuderranderselle	an Alberta marker and a	all he phinesperial theme
-50 dBm-				
-60 dBm				
Start 3.0 GHz	691			Stop 13.0 GHz

13 G to 25 GHz $\,$

RefLevel 30.00 Att 51		e RBW	100 kHz					110000
1Pk Max	J 05 SW1 120	ms 🖷 VDW	JUU KHZ	Mode Auto	o sweep			
				M	1[1]			30.51 dBm 3.5310 GHz
0 dBm								
0 dBm			_					
dBm				·				
10 dBm								
01 -15 20 dBm	.540 d8m							
30 dBm	the transmission	an A	M1					
within hith	and the second	v. mysleder i	h. S. mar	New Yorking	magneerman	righthatestart	malinologonic	-up de la historia
50 d8m-								
60 dBm	_							

Channel 6: 2.437GHz:

30 MHz to 1 GHz

Ref Level 30.00 dBm	🖷 RBW	100 kHz			
Att 50 dB	SWT 9.7 ms - VBW	300 kHz 1	Mode Auto Sweep		
1Pk Max	1000				
			M1[1]		-38.67 dBn 700.30 MH:
20 dBm					
10 dBm		1			7
0 dBm					
-10 dBm					
-20 dBm	dBm				
-30 d8m-					
40 dBm	interpretional providence and	metandedter	Mr. Murtal and	formation of all have been	white the w
-50 dBm-					
-60 dBm					
Start 30.0 MHz		691 (op 1.0 GHz

$1\ G$ to $3\ GHz$

Ref Level Att	30.00 dBm 50 dB	SWT 2	e RBV 0 ms e VBV	/ 100 kHz / 300 kHz	Mode Auto	Sweep			
1Pk Max	1		1	1		,Å _l e			
					M	1[1]		2.4	4.79 dBn 13990 GHz
20 dBm	-		-						
10 d8m									
10 000							MI		
0 dBm						· · · · · · ·	1 1		
-10 dBm	D1 -15.210	dem							
-20 d8m	UT TOILTO	-	_						
-30 dBm									
-4dialam	an Madeland	Leulahund	see los municipal	ndre determine	white the service	herdelination	1 harportion	species will a	de la constance de la constance de la constancia de la constancia de la constancia de la constancia de la const
-50 d8m				-	-				
-60 dBm									

3 G to 13 GHz

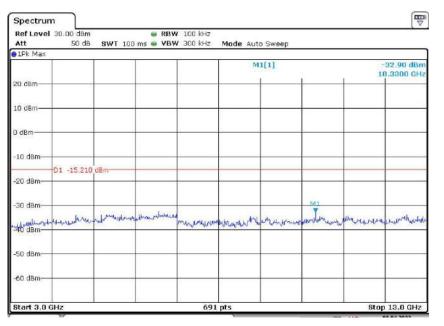
Ref Leve	1 30.00 dBm		🗧 RBV	V 100 kHz					
Att	50 dB	SWT 1	10 ms 🖷 VBV	V 300 kHz	Mode Aut	o Sweep			
1Pk Max	ñ	-		-	iii				
					M	1[1]			33.60 dBm
20 d8m						1	-		
10 d8m—	-	-	-	-	-			-	
0 dBm	-						-	-	
-10 dBm-									
	01 -15.210	dBm							
-20 dBm—									
20 dame									
-50 ubm	E.L.	the is	in a second she				a de		and the second second
40 abm	Monaldural	- and the second	manufunding	myberthad	almed warmy	international	and we donale that	randonatio	prosternations
						1 1			
-50 dBm				-			2		
-60 dBm				-					
Start 3.0	CH 2		S	601	pts	-		Stor	13.0 GHz

13 G to 25 GHz $\,$

Ref Level 30.00 dBm Att 50 dB SW1	 RBW 100 kHz 120 ms VBW 300 kHz 	Mode Auto Sweep	
1Pk Max		M1[1]	-29.99 dBn 17.7840 GH
20 dBm			
10 dBm			
0 dBm			
-10 dBm-01 -15.210 dBm-			
-20 dBm			
-30 dBm-	Marghan were har har	and the provide the working	and the superior and the second
50 dBm			
-60 dBm			
Start 13.0 GHz	69	1 pts	Stop 25.0 GHz

Channel 11:2.462 GHz

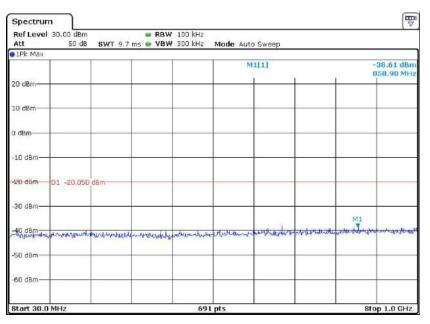
30 MHz to 1 GHz


	30.00 dBm		1232			100 kH;		in r	12			
Att 1Pk Max	50 dB	SWT	9.7 m	s 🖷	VBW	300 kHz	Mod	e Auto	Sweep			
The wax								MI	1[1]			-38.86 dBm 830,80 MHz
0 dBm		-	-		-		-	-	-	<u>E</u>	+	
0 dBm		-	+		_		-		-		-	
dBm					_					-	-	
10 d8m			_									
20 d8m	D1 -15.210	d8m-	_		_		-					
30 dBm	-	<u> </u>	-		_		-		2		-	
10 dBm	manhar	herbar	ma	with	Jaha Mi	Handres	in and the	A. halelly	homenous	yound	MI	addition
50 dBm		-				-						
60 dBm			_				-					

Ref Leve Att	1 30.00 dBm 50 dB	SWT 2		3W 100 kHz 3W 300 kHz	Mode Auto	Swaan			
1Pk Max		UNIT 2		and another set the	HUNG AUTO	oweep			
	1				M	11[1]			4.79 dBm
20 d8m-						1		2	.45440 GHz
						1			
10 d8m-	-			-			MI		
							h		
0 dBm									
-10 dBm-									
10 0000	01 -15,210	d8m		-					
-20 dBm—			-	-	-	-		-	
-30 dBm-						1			
W Annad	and the second	whenwhen	manadra	monthought	have been all and an	nertonationality	and hillows	freedinger and the	Manhandury
1.5 3.5 10									
-50 dBm	-				-		è.		-
-60 dBm	-		-	-					

3 G to 13 GHz

Ref Level 30.00 dBm Att 50 dB		 RBW 100 kHz VBW 300 kHz 	Mode Auto Sweep		
1Pk Max	16 N/18				
			M1[1]		-29.83 dBn 15.4750 GHz
20 d8m				+ +	10.4730 010
10 dBm					2
0 dBm		-			
-10 d8m					
01 -15.210	d8m			-	
-20 dBm					
-30 d8m-	111				
up ab the system was	and the second and the second	union Mr. Charlester	and the second walk where the second	up a particulation of the	Muhander Anna Marker
40 dBm					
50 d8m					
60 dBm					



802.11ax(HE40) mode with MCS11 data rate

Channel 3: 2.422GHz:

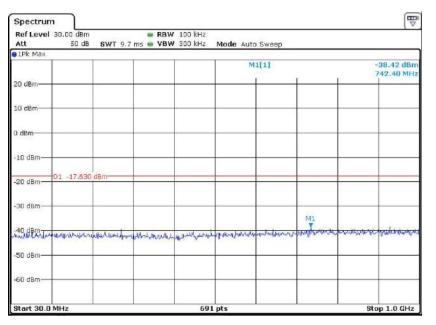
30 MHz to 1 GHz

Ref Level Att	30.00 dBm 50 dB	SWT	20 ms			100 kHz 300 kHz		Auto	Sweep				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1Pk Max	00.00	uni	au m.		1011	000 1012		Auto	Sweep	_			
								M	1[1]			2	-0.05 dBn .43170 GH:
20 dBm			-				+			\vdash			-
10 dBm		_								_			-
0 dBm										M		4	
o asm										1			
-10 dBm							-						
-20 dBm	D1 -20.050	dBm	-				_			-		-	
-30 dBm			-				-						2
utores have	UNAH-MARYOL	within	alinals	de a	versions	luturn	Alexandra da	anti-	methypoprometer		hopenhau	ale the relation	agunnund
-50 d8m			_				_						
-60 d8m													

3 G to 13 GHz

	30.00 dBm			RBW 100 kH		1080			
1Pk Max	50 dB	SWT 1	00 ms 📟	VBW 300 kH	Z Mode Au	ito Sweep			
TEK Max				T.		M1[1]	98		-32.24 dBm 5.6980 GHz
:0 dBm			-			1			
0 dBm						-			
dBm			_						
10 dBm	-				_				
2 0 dBm (01 -20.050	dBm	_		_			-	
30 dBm				T					
40 dem	angulately	-w/Weller	nonemaple	whether roughershi	wheelward	homewhe	aland wandly	Allowenserver	olimetrication
50 dBm			-			-		Ĝ	
60 dBm								1	

13 G to 25 GHz $\,$


Spectrum		PRIM HOS LINE			
Ref Level 30.00 dBm Att 50 dB	SWT 120 ms 🖷	RBW 100 kHz	Mode Auto Swee	20	
1Pk Max	8H1 120 IIS	TON SOUTH	HOUE AUTO SWEE	5P	
			M1[1]	22 115	-30.41 dBn 18.1660 GH
20 dBm					
10 dBm					
0 dBm					
-10 dBm					
-20 dBm D1 -20,050	dBm			_	
-30 dBm	A AND LO LIN	MI		ata	
-30 CBIN- Mertherent of the share	an de outen rates	man at we when	Martine Considered Bullinger	warpen Mahan Maar	mension
-50 dBm					
-60 dBm					
Start 13.0 GHz			L pts		Stop 25.0 GHz

Channel 6: 2.437GHz:

30 MHz to 1 GHz

Ref Level Att	30.00 dBm 50 dB	SWT	20 ms		W 100 kHz W 300 kHz	Mode Auto	Sweep				
1Pk View			1			M	11[1]	_			2.37 dBm
20 dBm					_			1		2	.44280 GH
10 dBm					_						
0 dBm					_	_		M	1		
-10 dBm						_					-
-20 dBm	01 -17.630	dBm								-	-
-30 dBm					-						
440 demante	or and the second second	with the second	- HU and her	-	an an an an an	in deliver history	wellow the second	1	Wennes	winder	and and a series
-50 dBm			_					-		-	
-60 d8m			_								
Start 1.0 G	43					91 pts					op 3.0 GHz

3 G to 13 GHz

Ref Level Att	30.00 dBm 50 dB	SWT 10	ms VBV	/ 100 kHz / 300 kHz	Mode Aut	n Sween				
1Pk Max	00 00	041 10			NIDUG AUT	o oweep				
					M1[1]			-33.26 dBm 6.6830 GHz		
20 dBm		2								
10 dBm										
0 d8m									-	
-10 dBm—										
-20 dBm	DI -17.630	dBm						2		
-30 dBm			MI		-			-	~	
Labosh	hadrowed	remitteness	newspiran	May and Alindeland	aururunter	white an aligned	at the second	h-landlighy. Alas	and the state of t	
-50 dBm										
-60 dBm										
Start 3.0 (691					13.0 GHz	

Spectrum				22					E
Ref Level 30 Att	0.00 dBm 50 dB	SWT 12	RBW 0 ms • VBV	/ 100 kHz / 300 kHz	Mode Aut	o Sweep			
1Pk Max						~~~			
					M	1[1]			30.37 dBm 3.1320 GHz
20 dBm					-	<u> </u>		-	
10 dBm									
0 d8m			-						-
-10 dBm			-					-	
-20 dBm 0.	1 -17,630	dBm	-				-		
20 0011									
-30 dBm		di dan		MI			·		
hundren	hidenter	an Varia	her the here where it	new memory	humbre	with hummlighes	antoninal	aleshours	adamations
-40 dBm									
-50 dBm									
-60 dBm			-		-		-		
Start 13.0 GI	Hz			691	pts			Stop	25.0 GHz

Channel 9:2.452 GHz

30 MHz to 1 GHz

Ref Level	30.00 dBm		RBW	100 kHz					
Att	50 dB	SWT 9.	7 ms - VBV		Mode Auto	o Sweep			
1Pk Max									
					M	1[1]			-39.02 dBm 846.30 MHz
20 dBm			-			-			846.30 MHZ
10 dBm							1		
20 0011									
0 dBm								-	
-10 dBm									
-20 dBm	01 -18,420	dBm							
-30 dBm					-				
40 d9m	CHER N							MI	deserves
had he will ge with the state	hindration	almont	der Monerath	herry	here a second and the second	and the marked set	and many and	her work and	10-Dational Contra
-50 dBm				-			1	-	
60 dBm									
Start 30.0	MHz			60	L pts			Ct.	op 1.0 GHz

Att	30.00 dBm 50 dB	SW T 20	e RBW ms e VBW	100 kHz 300 kHz	Mode Auto	Sweep				
1Pk View					M	1[1]		1.58 dBm 2.44570 GHz		
20 dBm										
10 dBm						_	M1			
0 dBm							M1 M			
-10 dBm										
-20 dBm	01 -18.420	dBm								
-30 dBm								6		
40 stand	n mahrine		togethe group of the stand in	a combility bay and	hardenderber	material dally.	ed Warminte	-longer louise	lynnaman.	
-50 d8m								-		
-60 dBm										
-60 dBm				691					op 3.0 G	

3 G to 13 GHz

Ref Level		August 1991-1991 1994		W 100 kHz					
	50 dB	SWT 100) ms 🖷 🛛 🕬	W 300 kHz	Mode Aut	o Sweep			
1Pk Max			7	-	1	ara I			an as da
						1[1]			33.96 dBm 5.3080 GHz
20 dBm			1			1			
10 dBm									
0 dBm						-	5	-	
-10 dBm				-					
-20 dBm	01 -18,420	dBm							
-30 dBm		MI		-					
-	and a factor of the	realling	Logent an ideal	- layonylah	Louis and	antiaciation	evention	and a residual state	planter pin
-50 dBm									
-60 dBm									

$1\ 3\ G$ to $25\ GHz$

Ref Level Att	30.00 dBm 50 dB	SWT 12	RBW RBW O ms YBW	/ 100 kHz / 300 kHz	Mode Aut	n Sween					
PIPk Max		0111 12	0 110 - 121		niede not	o oncop					
					M	1[1]			-30.64 dBr 18.1140 GH		
20 dBm											
10 dBm		-									
0 dBm											
-10 dBm											
-20 dBm	01 -18,420	dBm	-								
-30 dBm				MI							
a former that	whyselmout	monthe	enthermark	wherein	and which the second	- Myselfelder	Northburk	prenotenerge	hyphickles		
-40 dBm							-				
-50 dBm			-	_	-			-			
-60 d8m											
Start 13.0					pts				25.0 GHz		

End of report