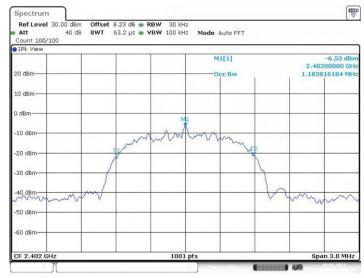
Test Mode:	2DH5		1/20	
Channel frequency (MHz)	99% OCB [MHz]	FL[MHz]	FH[MHz]	Verdict
2402	1.178	2401.410	2402.587	PASS
2441	1.175	2440.410	2441.584	PASS
2480	1.175	2479.410	2480.584	PASS
		2402 MHz		

Date: 10.MAY.2021 20:24:44

2441 MHz

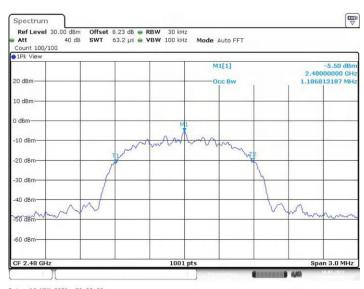


Page 32 of 73

2480 MHz

	AN INSUR			
Test Mode:	3DH5		+/)>>	
Channel frequency (MHz)	99% OCB [MHz]	FL[MHz]	FH[MHz]	Verdict
2402	1.184	2401.410	2402.593	PASS
2441	1.19	2440.407	2441.596	PASS
2480	1.187	2479.407	2480.593	PASS
		2402 MHz	1	

Date: 10.MAY.2021 20:33:34

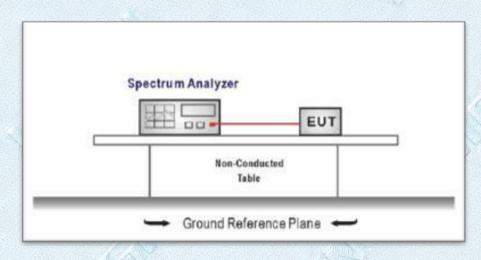

2441 MHz

Page 34 of 73

2480 MHz

Date: 10.MAY.2021 20:38:03

3.5. Carrier Frequencies Separation


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):

frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25kHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

Test Item	Test Item Limit	
Channel Separation	>=25KHz or >=two-thirds of the 20 dB bandwidth Which is greater	2400~2483.5

Test Configuration

Test Procedure

1.Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator.2.Spectrum Setting:

- (1) Set RBW = 100 kHz.
- (2) Set the video bandwidth (VBW) \ge 3 RBW.
- (3) Detector = Peak.
- (4) Trace mode = Max hold.
- (5) Sweep = Auto couple.

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

Test Mode

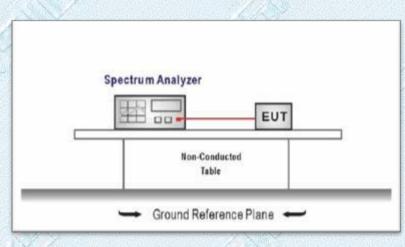
Please refer to the clause 2.3.

Test Results

Test Mode:	DH5 Hopping Mode		
Channel	Result[MHz]	Limit[MHz]	Verdict
DH5	0.974	>=0.646	PASS
	DH5 Hop	ping Mode	
● Att Count 11 ● IPi Viet 20 dBm 10 dBm 0 dBm -10 dBm 20 dBm- -30 dBm- -30 dBm- -50 dBm- -50 dBm- -50 dBm-	vel 30.00 dBm Offset 8.23 dB RBW 100 i 40 dB SWT 18.9 µs VBW 300 i 00/100 W	KHZ Mode Auto FFT M1[1] -1.91 2.44102754	

Test Mode:	2DH5 Hopping Mode		
Test Mode	Result[MHz]	Limit[MHz]	Verdict
2DH5	0.968	>=0.876	PASS

Test Mode 3DH5	30.00 dBm Offset 8.23 dB • RBW 1 40 dB SWT 18.9 µs • VBW 3			Verdict PASS
	30.00 dBm Offset 8.23 dB • RBW 1 40 dB SWT 18.9 µs • VBW 3	opping Mode		
Spectrum	30.00 dBm Offset 8.23 dB • RBW 1 40 dB SWT 18.9 µs • VBW 3	00 kHz	(\	
Spectrum	30.00 dBm Offset 8.23 dB • RBW 1 40 dB SWT 18.9 µs • VBW 3		(¶) ▼	
Spectrum	30.00 dBm Offset 8.23 dB • RBW 1 40 dB SWT 18.9 µs • VBW 3		(III)	
	30.00 dBm Offset 8.23 dB • RBW 1 40 dB SWT 18.9 µs • VBW 3		(♥)	
Count 100/: Plk View				2005-20
20 dBm		M1[1]	-2.87 dBm 2.44095507 GHz -0.19 dB 1.04348 MHz	A Company
10 dBm				
0 dBm-				
-10 dBm				
-20 dBm				
-30 dBm				
-40 dBm				
-50 dBm				AND SHELL
-60 dBm				
Start 2.440	5 GHz	691 pts	Stop 2.4425 GHz	1623
Date: 10.MA	Y.2021 20:53:29			



3.6. Number of Hopping Channel

Limit

Section	Test Item	Limit
15.247	Number of Hopping Channel	>15

Test Configuration

Test Procedure

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator.
- Spectrum Setting:
 Peak Detector: RBW=100 kHz, VBW≥RBW, Sweep time= Auto.

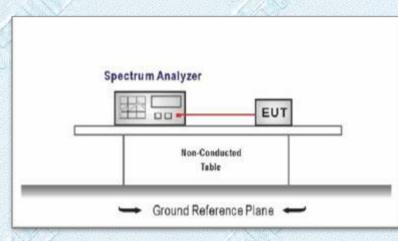
Test Mode

Please refer to the clause 2.3.

Test Result

Test Mode:	3DH	15 Hopping Mode	e		X
Frequency Rang	je	Test Mode		of Hopping annel	Limit
2402MHz~2483.5N	/Hz	3DH5		79	>15
		:	3DH5 Mode		
R 10 10 10 10 10 10 10 10 10 10	A View dBm dBm dBm dBm dBm dBm dBm dBm	40 dB SWT 94.8 µs • V	BW 300 kHz Mode Auto FFT	Stop 2.4835 GHz	

Note: The 8-DPSK modulation is the worst case and recorded in the report.



3.7. Dwell Time

Limit

Section	Test Item	Limit
15.247(a)(1)	Average Time of Occupancy	0.4 sec

Test Configuration

Test Procedure

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator.
- 2. Spectrum Setting:
 - (1) Spectrum Setting: RBW=1MHz, VBW≥RBW.
 - (2) Use video trigger with the trigger level set to enable triggering only on full pulses.
 - (3) Sweep Time is more than once pulse time.
 - (4) Set the center frequency on any frequency would be measure and set the frequency span to zero.
 - (5) Measure the maximum time duration of one single pulse.
 - (6) Set the EUT for packet transmitting.

Test Mode

Please refer to the clause 2.3

Test Result

Note:

1.Dwell time=Pulse time (ms) × $(1600 \div 2 \div 79)$ ×31.6 Second for DH1, 2DH1, 3DH1 Dwell time=Pulse time (ms) × $(1600 \div 4 \div 79)$ ×31.6 Second for DH3, 2DH3, 3DH3 Dwell time=Pulse time (ms) × $(1600 \div 6 \div 79)$ ×31.6 Second for DH5, 2DH5, 3DH5 2.The 3DH5 modulation is the worst case and recorded in the report. KSIGN[®]

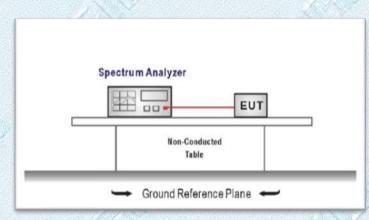
Spectrum Ref Leve Att SGL TRG: 1Pk Clrw 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	el 30.00 dBr 40 d	B SWT	t 8.23 dB	30 RBW VBW		: :	3 11[1] 12[1]	31.6	40	-20.65	50 µs 72 dB
Ref Levo Att SGL TRG: 1Pk Clrw 20 dBm- 10 dBm- -0 dBm- -10 dBm- -20 dBm- -30 dBm-	el 30.00 dBr 40 d VID	B SWT		-						-13.	dBm 50 μs 72 dB
20 dBm	TRG 0.400	dBm	592 beck 110x 592 beck	- Apathan	14 B2					-13.	50 µs 72 dB
- 0 dBm -10 dBm- -20 dBm- -30 dBm-	-TRG 0.400	dBm		Shiriyan bu da Nji dabaya	14.D2						
-20 dBm—					-			N			
1		41									
of the first the first	all tellepterte	u .			Į	annu hinge	A the strend provide	al at such a la l	- AND AND AND A	the provide	mauly
-50 dBm	in dia hi				j,l	And Market Market	- Mipany	n propher and	un an	Alt Halaw	dis polici
-60 dBm—											_
CF 2.402	GHz				8000	pts	Deady		4.90	1.01	ms/

ſest Iode	Channel (MHz)	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)
DH5	2441	2.88	307.20	31.6	400
		<u>`</u>	-		
	Spectrum Ref Level 30.0		dB 👄 RBW 1 MHz		
	er Level 30.0		ab 🖷 RBW 1 MHZ ms 🖷 VBW 3 MHz		
	SGL TRG: VID				
	DIPK CITW			M1[1]	-26.81 dBm
	20 dBm				-13.50 μs 23.86 dB
	20 0811			D2[1]	2.88161 ms
	10 dBm				
	0.10-				
	0 dBm	-5.500 dBm	4		
	-10 dBm	-5.500 dbm			
	-20 dBm	MI			
	-30 dBm				
	We character and the	d Number	de de de state	the debut play boost following the altitude	Willing the addition of the balling the second s
	Unit and march the fillers	de lifte d	hill day and a t	din di nana, si in di Kasadan din dan ka	And a stable south that as
	-50 dBm	di n	du cu a	an na hailaithe a chair a ch	a Marih dut ana
	-60 dBm				
	CF 2.441 GHz		8000 pts		1.0 ms/
			3000 pt3	Deady	10.05.2021

KSIGN

					1 - 1 × 1		
st de	Channel (MHz)				od Time (s)		
DH5 2480		2.889	308.16	3	81.6	400	PAS
Att SGL T	L evel 30.00 dBm 40 dB "RG:VID		 RBW 1 MHz VBW 3 MHz 				
⊖1Pk (Clrw			M1[1]		-94	08 dBm
20 dBr	n			D2[1]		-1 2	.3.50 μs 0.94 dB 9911 ms
10 dBr	n						
0 dBm	TRG -3.600	dBm start grant the start and the start and					
-10 dB	m						
-20 dB	mM	1					
-30 dB	m						
phyself a	holose of all play he			to at high franklad and	and had been a		AN DATE
-50 dB	nedenligt sit per de en m		դրմեր		the part of the second s		ad <mark>an perter</mark> t
-60 dB	m						
CF 2.4	18 GHz		8000 pts			1	.0 ms/

Date: 11.MAY.2021 10:02:13


3.8. Band Edge and Spurious Emission (Conducted)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

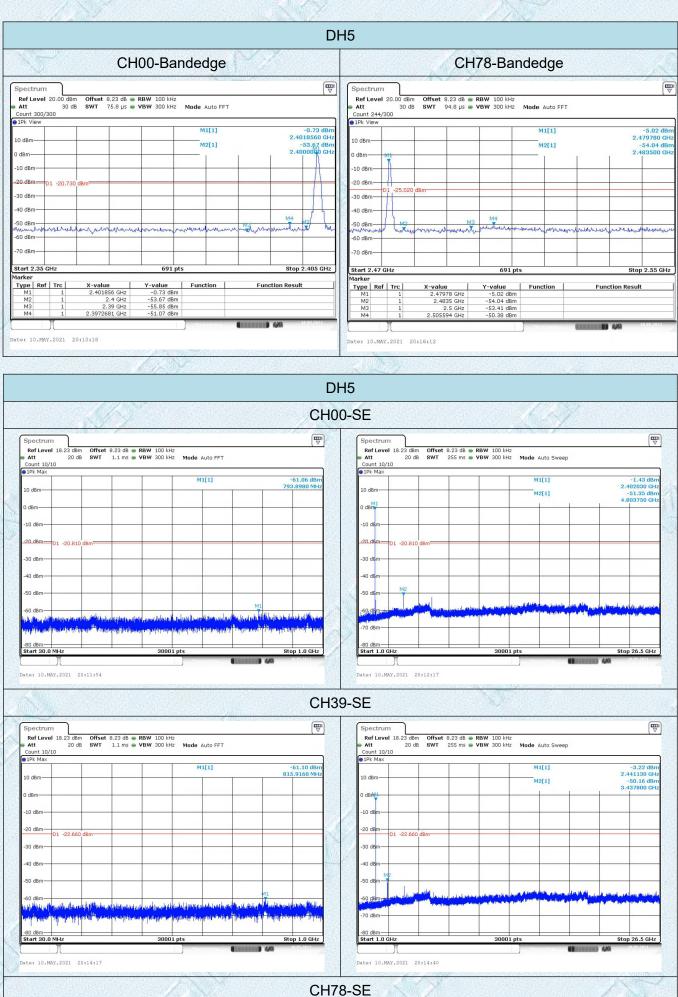
TEST PROCEDURE

- 1. Connect EUT RF Output port to the Spectrum Analyzer through an RF attenuator.
- 2. Spectrum Setting:

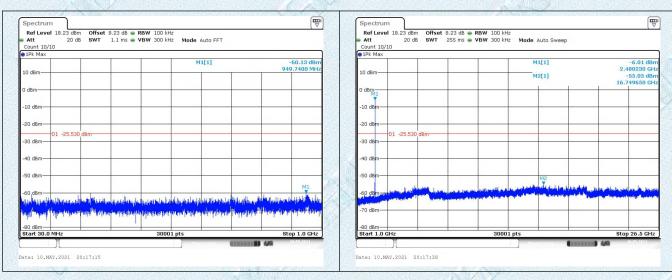
RBW=100KHz

VBW=3*RBW.

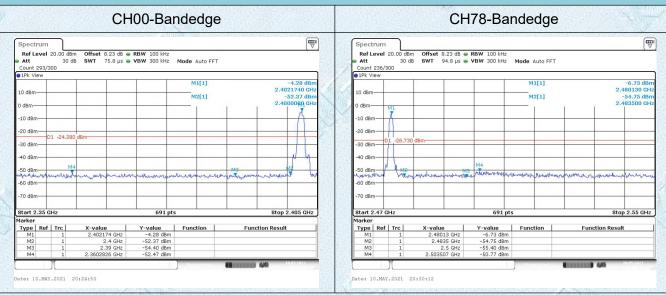
Detector function: Peak. Trace: Max hold. Sweep = Auto couple.

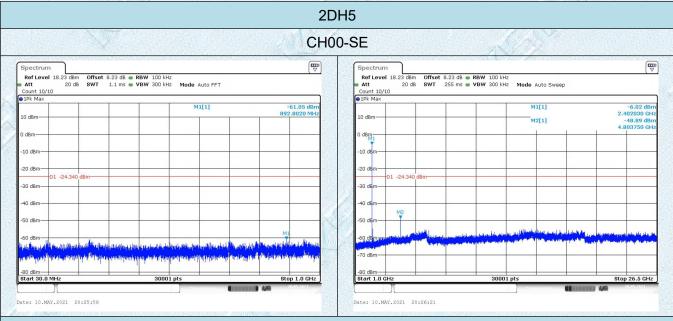

Allow the trace to stabilize.

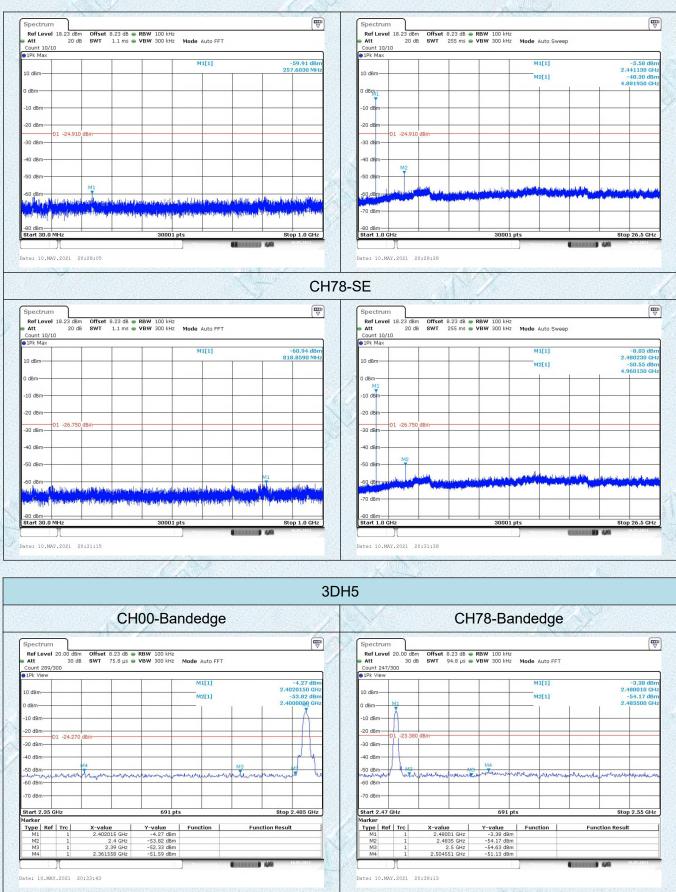
TEST MODE:

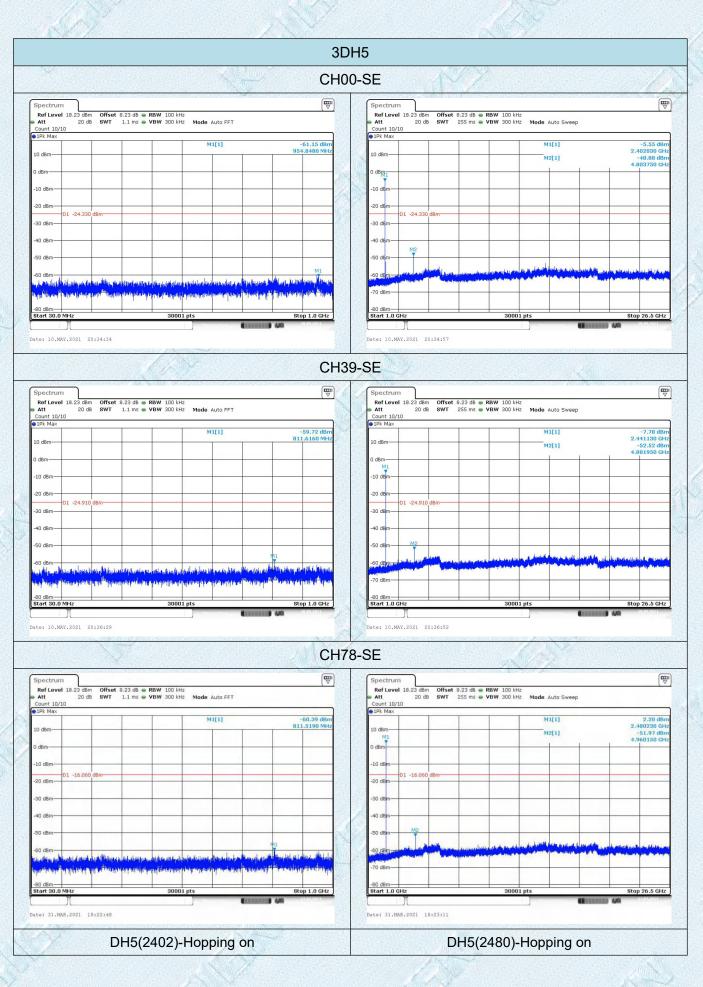

Please refer to the clause 2.3.

TEST RESULTS

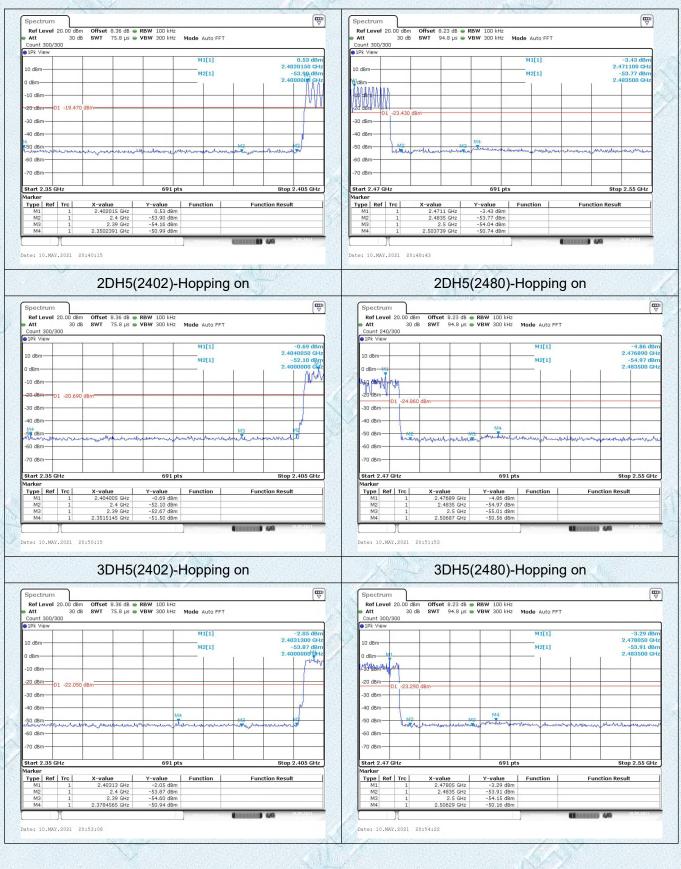






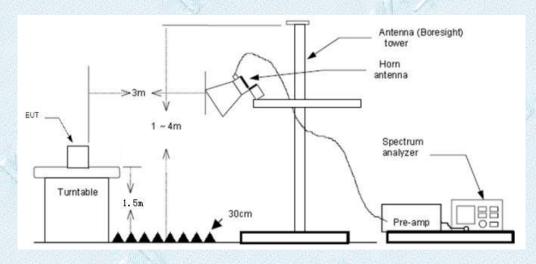

CH39-SE

Page 46 of 73



Page 48 of 73

Report No.: KS2103S0482EC


3.9. Band Edge Emissions(Radiated)

Limit

Restricted Frequency Band	(dBuV/	m)(at 3m)
(MHz)	Peak	Average
2310 ~2390	74	54
2483.5 ~2500	74	54

Note: All restriction bands have been tested, only the worst case is reported.

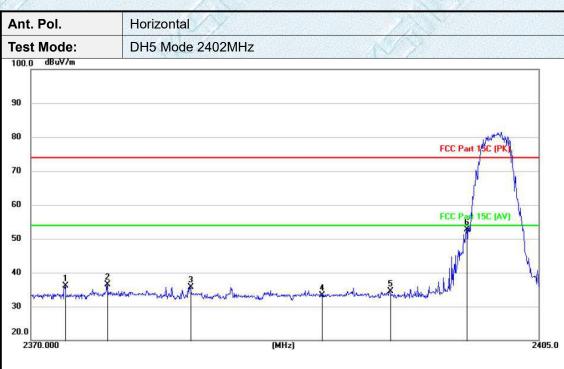
Test Configuration

Test Procedure

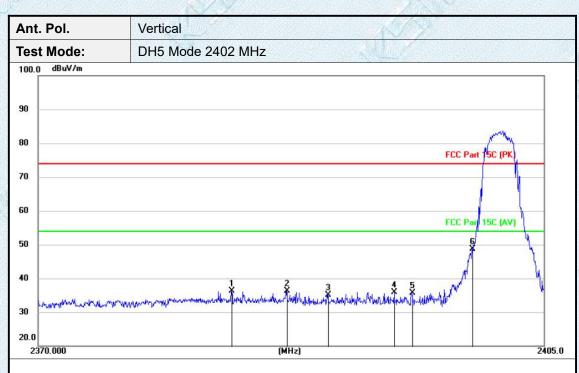
- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1MHz, VBW=3MHz PEAK detector for Peak value. RBW=1MHz, VBW=10Hz with PEAK Detector for Average Value.

Test Mode

Please refer to the clause 2.3.

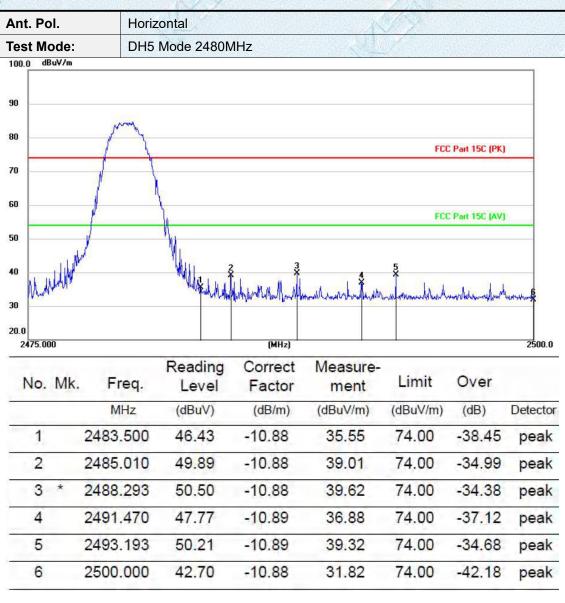

Test Results

Note:


1.Measurement = Reading level + Correct Factor

Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor

2.Pre-scan DH5, 2DH5 and 3DH5 modulation, and found the DH5 modulation which it is worse case, so only show the test data for worse case.



	Over	Limit	Measure- ment	Correct Factor	Reading Level	Freq.	Mk.	No.
Detector	(dB)	(dBuV/m)	(dBuV/m)	(dB/m)	(dBuV)	MHz		
peak	-37.89	74.00	36.11	-10.92	47.03	2372.345		1
peak	-37.54	74.00	36.46	-10.93	47.39	2375.240		2
peak	-38.30	74.00	35.70	-10.93	46.63	2380.955		3
peak	-40.69	74.00	33.31	-10.92	44.23	2390.000		4
peak	-39.55	74.00	34.45	-10.91	45.36	2394.724		5
peak	-21.23	74.00	52.77	-10.92	63.69	2400.000	*	6

	Over	Limit	Measure- ment	Correct Factor	Reading Level	Freq.	No. Mk
Detecto	(dB)	(dBuV/m)	(dBuV/m)	(dB/m)	(dBuV)	MHz	
peak	-37.62	74.00	36.38	-10.92	47.30	2383.335	1
peak	-37.67	74.00	36.33	-10.92	47.25	2387.143	2
peak	-38.90	74.00	35.10	-10.92	46.02	2390.000	3
peak	-38.00	74.00	36.00	-10.91	46.91	2394.615	4
peak	-38.21	74.00	35.79	-10.91	46.70	2395.837	5
peak	-25.36	74.00	48.64	-10.92	59.56	2400.000	6 *

KSIGN

Measurement = Reading level + Correct Factor

Page 53 of 73

KSIGN®

Ant. Po	ol.	Vertic	al		N.			
Test Mo		DH5	Mode 2480 N	٧Hz				
100.0 df 90	BuV/m	\bigcap					C Part 15C (PK C Part 15C (AV	
1.440.50	_purded		My Martine	word warden and	nh-christian fra dhuarda an th	due to a show the		water As
20.0 2475.00)0			(MHz)		Ne No		2500.0
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	Ξ.
-		MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1		2483.500	45.80	-10.88	34.92	74.00	-39.08	peak
2		2488.367	47.10	-10.88	36.22	74.00	-37.78	peak
3		2493.060	47.01	-10.89	36.12	74.00	-37.88	peak
4	*	2495.142	49.12	-10.87	38.25	74.00	-35.75	peak

Measurement = Reading level + Correct Factor

47.25

44.16

-10.88

-10.88

36.37

33.28

74.00

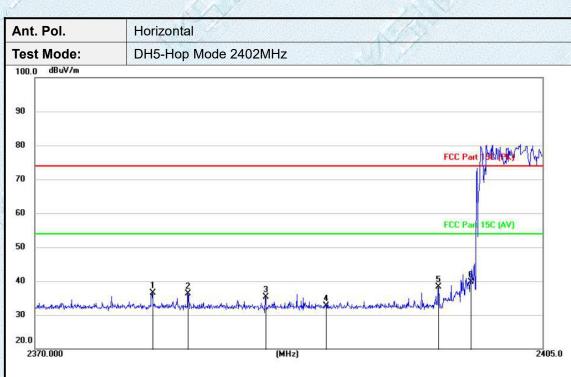
74.00

-37.63

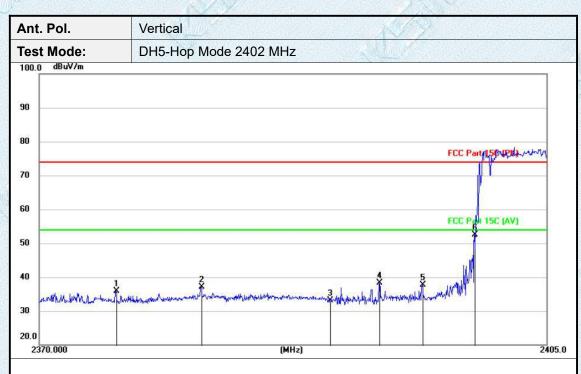
-40.72

peak

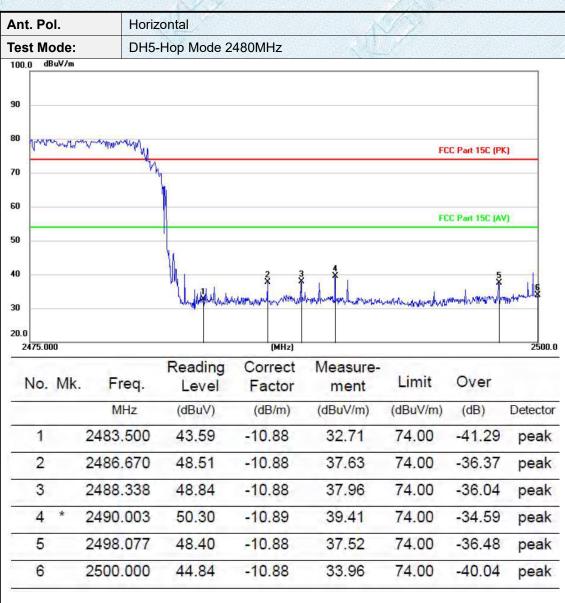
peak


2496.767

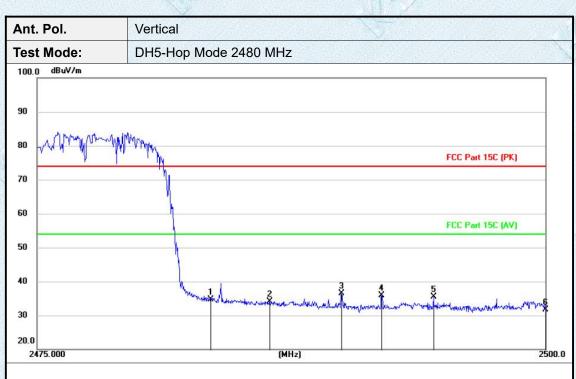
2500.000


5

6



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1		2378.046	47.41	-10.92	36.49	74.00	-37.51	peak
2		2380.503	47.27	-10.92	36.35	74.00	-37.65	peak
3		2385.841	46.22	-10.92	35.30	74.00	-38.70	peak
4		2390.000	43.72	-10.92	32.80	74.00	-41.20	peak
5		2397.751	49.17	-10.92	38.25	74.00	-35.75	peak
6	*	2400.000	50.70	-10.92	39.78	74.00	-34.22	peak


	Over	L <mark>i</mark> mit	Measure- ment	Correct Factor	Reading Level	Freq.	Mk.	No.
Detect	(dB)	(dBuV/m)	(dBuV/m)	(dB/m)	(dBuV)	MHz		-
pea	-38.16	74.00	35.84	-10.93	46.77	2375.274		1
pea	-36.83	74.00	37.17	-10.93	48.10	2381.137	1	2
pea	-40.89	74.00	33.11	-10.92	44.03	2390.000		3
pea	-35.68	74.00	38.32	-10.92	49.24	2393.401		4
pea	-36.30	74.00	37.70	-10.92	48.62	2396.387		5
pea	-21.43	74.00	52.57	-10.92	63.49	2400.000	*	6

KSIGN®

Measurement = Reading level + Correct Factor

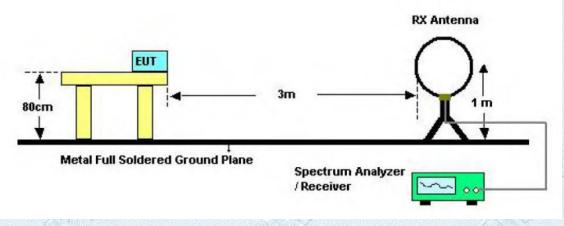
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1		2483.500	45.59	-10.88	34.71	74.00	-39.29	peak
2		2486.405	45.04	-10.88	34.16	74.00	-39.84	peak
3	*	2489.938	47.31	-10.89	36.42	74.00	-37.58	peak
4		2491.920	46.78	-10.89	35.89	74.00	-38.11	peak
5		2494.488	46.40	-10.87	35.53	74.00	-38.47	peak
6		2500.000	42.58	-10.88	31.70	74.00	-42.30	peak

3.10. Radiated Spurious Emissions

Limit

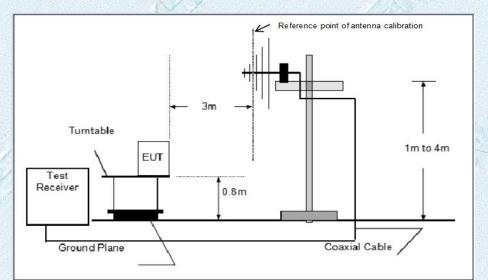
Radiated Emission Limits (9 kHz~1000 MHz)

Frequency (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

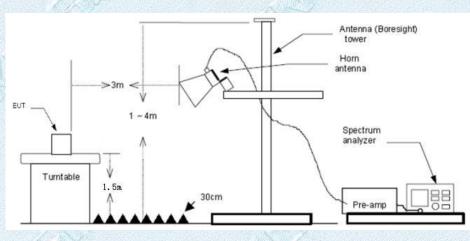

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance M	leters(at 3m)
(MHz)	Peak	Average
Above 1000	74	54

Note:


- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m).

Test Configuration



Below 30MHz Test Setup

KSIGN

Below 1000MHz Test Setup

Above 1GHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

- (3) From 1 GHz to 10th harmonic:
- RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=10Hz Peak detector for Average value.

Test Mode

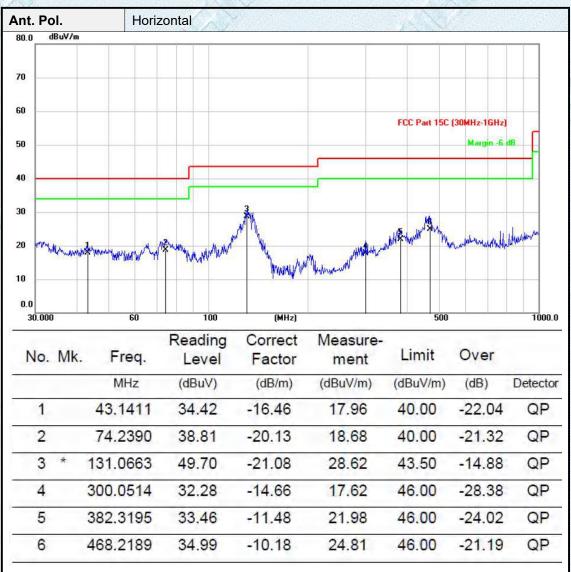
Please refer to the clause 2.3.

Test Result

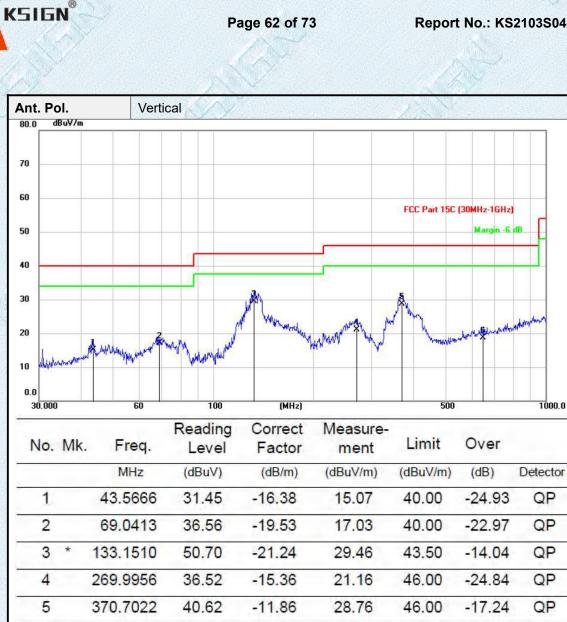
9 KHz~30 MHz and 18GHz~25GHz

From 9 KHz~30 MHz and 18GHz~25GHz: Conclusion: PASS

Note:


- Measurement = Reading level + Correct Factor
 Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor
- The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3) The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4) The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 5) Pre-scan DH5, 2DH5 and 3DH5 modulation, and found the DH5 modulation 2402MHz which it is worse case for 30MHz-1GHz, so only show the test data for worse case.
- 6) Pre-scan DH5, 2DH5 and 3DH5 modulation, and found the DH5 modulation which it is worse case for above 1GHz, so only show the test data for worse case.

RADIATED EMISSION BELOW 30MHZ


No emission found between lowest internal used/generated frequencies to 30MHz.

30MHz-1GHz

Measurement = Reading level + Correct Factor

-7.36

18.71

46.00

-27.29

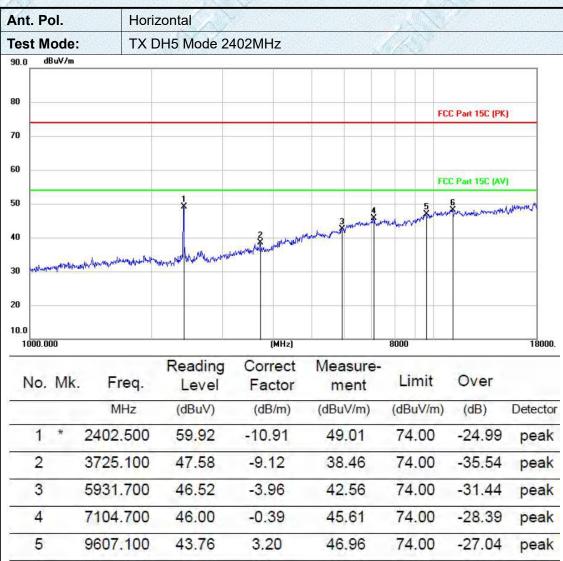
QP

Measurement = Reading level + Correct Factor

26.07

649.6594

6



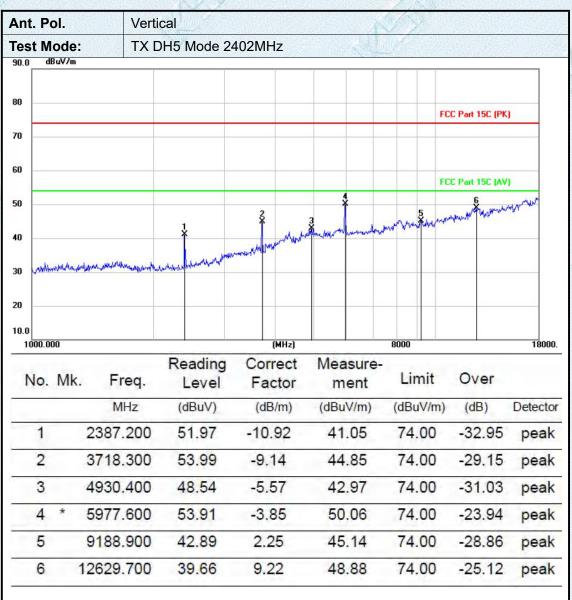
-25.87

peak

74.00

Adobe 1GHz

Measurement = Reading level + Correct Factor

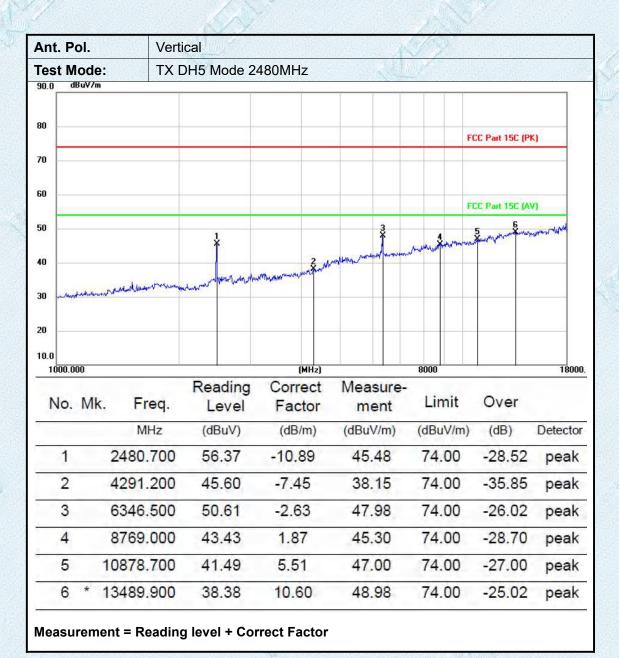

42.05

6.08

48.13

11164.300

6



Ant. P	01.			zontal							N		
Fest M		:	TXI	DH5 Mo	de 24	441MHz	<u>.</u>			12	S.		
b 0.00	Bu¥7m												
80													
70												CC Part 15C (F	⁷ K]
50													
					_			-			F	CC Part 15C (A	(V)
50				1 ¥				<u> </u>	4		5	manufunitions	man
40							X	white small	Mun	-	Mark	manufant	
							when	NY NY					
				and the second sec	A.	Phillips and a							
10 menu	manna	manythemate	whyman was been a	all company and a company	AJAN WALK				-				
30	untrity	on all the second	and an and a second	aller and an an	474U ^M /I ^M								
20	untring	we apply the second	ndrynn Nymryddianau	all contraction and a	4740 ⁴ 48 ⁴								
20		maynem	ndrynn i ner filmini	ngi contribitati secondo.	ayuwar								
20		entry Holenan An	ndrepen Augus Abban Aug				Hz)			8000			180
20			Freq.	Readi	ing	Corre Fact	ct	Meas		8000 Lim	iit	Over	180
20	100	. 1		Read	ing rel	Corre	or		ent			Over (dB)	Detecto
20	100	. 1	Freq.	Readi	ing rel V)	Corre Fact	or n)	me	ent //m)	Lim	//m)		Detecto
20 10.0 1000.0 No.	100	. F 240	Freq.	Readi Lev (dBu\	ing ′el V)	Corre Fact (dB/n	or n)	me (dBuV	ent //m) 15	Lim (dBu\	//m) 00	(dB)	Detecto peal
20 10.0 1000.0 No.	100	. F 240 365	Freq. MHz 2.500	Readi Lev (dBu\ 58.0	ing rel V) 06	Corre Fact (dB/n -10.9	ect or n) 1	me (dBuV 47.	ent //m) 15 05	Lim (dBu\ 74.0	//m) 00 00	(dB) -26.85	Detecto peal peal
20 10.0 1000.0 No. 1 2	100	. F 240 365 445	Freq. MHz 2.500 0.300	Readi Lev (dBu\ 58.0 45.3	ing rel V) 06 95	Corre Fact (dB/n -10.9	ect or n) 1	me (dBuV 47. 36.0	ent //m) 15 05 48	Lim (dBu) 74.0 74.0	//m) 00 00	(dB) -26.85 -37.95	Detecto peal peal peal
20 10.0 1000.0 No. 1 2 3	Mk	. F 240 365 445 654	Freq. MHz 2.500 0.300 1.000	Readi Lev (dBu\ 58.0 45.3 48.4	ing rel V) 06 05	Corre Fact (dB/n -10.9 -9.30 -6.92	ect or n) 1	me (dBuV 47. 36.0 41.4	ent //m) 15 05 48 66	Lim (dBu\ 74.0 74.0 74.0	//m) 00 00 00	(dB) -26.85 -37.95 -32.52	Detecto peal peal peal peal

Ant. Po	ol.	Verti	cal					
lest M	ode:	TX C	OH5 Mode 24	441MHz				
10.0 dB	3u¥7m							
0						F	CC Part 15C (PK	()
ro 📃								
:0						- F	CC Part 15C (AV	n
io								Б
0			×	X	Royal March March	man warmen and	Man Any more	
				went we have been been been been been been been be	webserner most	-		
-	dina on a diama aldal	an and a darme	- MAN W CANNER					
0 composite	Hermondeenade	unin and a name	met Water and Cardon					
	die en alemante	uduka karakan k	mental and a contraction					
0.0 1000.00		udada di sebat managera		(MHz)		8000		1800
0 0.0 1000.00		Freq.	Reading	(MHz) Correct Factor	Measure- ment	8000 Limit	Over	1800
0 0.0 1000.00	00		Reading	Correct				1800 Detecto
0 0.0 1000.00	Mk.	Freq.	Reading Level	Correct Factor	ment	Limit		0.031953
0.0 1000.00 No.	00 Mk. 2	Freq. MHz	Reading Level (dBuV)	Correct Factor (dB/m)	ment (dBuV/m)	Limit (dBuV/m)	(dB)	Detecto
0 0.0 1000.00 No.	00 Mk. 2 3	Freq. MHz 2441.600	Reading Level (dBuV) 55.17	Correct Factor (dB/m) -10.90	ment (dBuV/m) 44.27	Limit (dBuV/m) 74.00	(dB) -29.73	Detecto peal
0 0.0 1000.00 No. 1 2	00 Mk. 2 3 4	Freq. MHz 441.600 805.000	Reading Level (dBuV) 55.17 44.61	Correct Factor (dB/m) -10.90 -8.92	ment (dBuV/m) 44.27 35.69	Limit (dBuV/m) 74.00 74.00	(dB) -29.73 -38.31	Detecto peal peal
0 0.0 1000.00 No. 1 2 3	00 Mk. 2 3 4 7	Freq. MHz 441.600 805.000 627.800	Reading Level (dBuV) 55.17 44.61 48.05	Correct Factor (dB/m) -10.90 -8.92 -6.40	ment (dBuV/m) 44.27 35.69 41.65	Limit (dBuV/m) 74.00 74.00 74.00	(dB) -29.73 -38.31 -32.35	Detecto peal peal peal

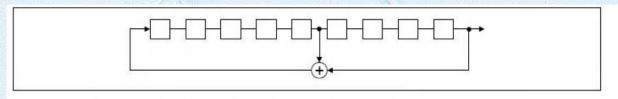
nt. P	ol.	Hori	izontal		4			
est M	lode:	TX [DH5 Mode 24	180MHz				
).0 dl	Bu¥/m						1. 2. 303:445 - 345:46	
						F	CC Part 15C (PK	()
)								
)								
, –							CC Part 15C (AV	6
			1		3	A man	+ Mpman	multimate
í				2	3 and a man and a man	and the second		
Number	nondrathantanta	multinormiteration	former production and a	Bla My hanna				
1) Contractor		and a second						
e —								
)).0 1000.00	00			(MHz)		8000		1800
1000.00	oo Mk.	Freq.	Reading Level	(MHz) Correct Factor	Measure- ment	8000 Limit	Over	1800
1000.00		Freq. MHz	-	Correct	100 F 40 F 400 F		1010	1800 Detecto
1000.00	Mk.		Level	Correct Factor	ment	Limit	1010	Detecto
No.	Mk.	MHz	Level (dBuV)	Correct Factor (dB/m)	ment (dBuV/m)	Limit (dBuV/m)	(dB)	
No.	Mk.	MHz 2480.700	Level (dBuV) 53.83	Correct Factor (dB/m) -10.89	ment (dBuV/m) 42.94	Limit (dBuV/m) 74.00	(dB) -31.06	Detecto peal
No.	Mk.	MHz 2480.700 3303.500	Level (dBuV) 53.83 44.83	Correct Factor (dB/m) -10.89 -10.04	ment (dBuV/m) 42.94 34.79	Limit (dBuV/m) 74.00 74.00	(dB) -31.06 -39.21	Detecto peal peal peal
No.	Mk.	MHz 2480.700 3303.500 5154.800	Level (dBuV) 53.83 44.83 46.79	Correct Factor (dB/m) -10.89 -10.04 -5.24	ment (dBuV/m) 42.94 34.79 41.55	Limit (dBuV/m) 74.00 74.00 74.00	(dB) -31.06 -39.21 -32.45	Detecto peal peal

Note:

1.All test modes had been tested. The GFSK modulation is the worst case and recorded in the report.2.The main frequency has been screened by the filter .

3.11. Pseudorandom Frequency Hopping Sequence

LIMIT


FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

TEST RESULTS

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage.And the result is fed back to the input of the friststage.The sequence begins with the frist one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

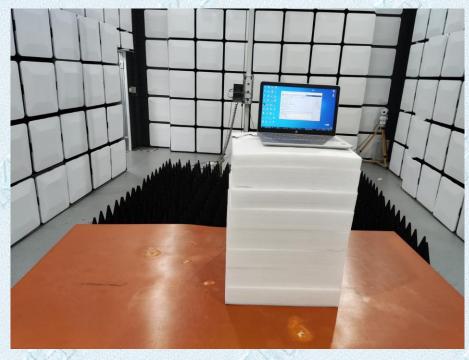
Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

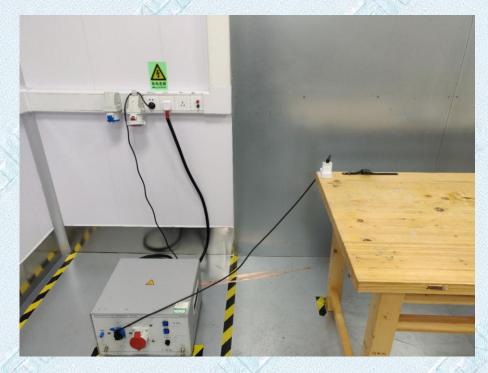
0	2	4	6	62 64	78 1	73 75 7
- 1						

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

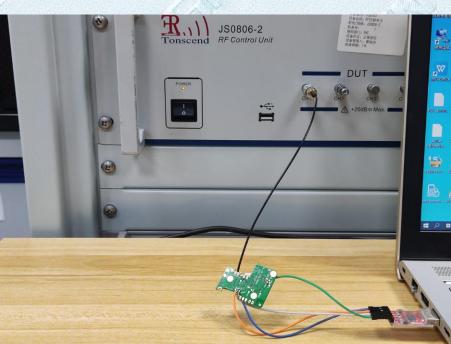


Page 70 of 73


4.EUT TEST PHOTOS

Radiated Measurement (Above 1GHz)

CONDUCTED EMISSION TEST SETUP


RF Conducted

Page 72 of 73

Report No.: KS2103S0482EC

5.PHOTOGRAPHS OF EUT CONSTRUCTIONAL

Please refer to the attached external photos and internal photos